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Abstract

Benign Paroxysmal Positional Vertigo (BPPV) is the most common cause

of vertigo. It can be diagnosed and treated using simple maneuvers done

by vestibular experts. However, patients with this condition presenting to

the emergency department have high chance of being misdiagnosed. Such

high rate of misdiagnosis results in significant morbidity to the patient and

also incurs huge medical costs from unnecessary neuroimaging tests. Hence,

automatic medical diagnosis is the next step to aid ED practitioners to reduce

diagnostic errors. However, current software employed for this diagnosis

has been found to have very low specificity. This can be attributed to factors

such as low sampling frequency of recording device and the fact that bedside

recordings from patients are susceptible to noise and artifacts. This study

aims to improve methods for automatic quantification of nystagmus, a key

sign of BPPV. Testing the current method using eye movement data recorded

in patients during the diagnostic maneuver yielded better results than the

commercial software.
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Chapter 1

Introduction

1.1 Motivation

About 3.3% of chief complaints in hospital emergency departments pertain

to dizziness and vertigo (Newman-Toker et al., 2008). They can be caused

either by a dangerous brain injury (like stroke) or a benign ear problem

(vestibular vertigo). Clinicians in the ED mostly rely on general neurological

tests to identify central signs which makes it challenging to differentiate central

disorders from benign peripheral vestibulopathies (Newman-Toker, 2016).

Further, the rate of misdiagnosis is high, considering the fact that only 19%

of dizzy-stroke patients have focal neurological signs (Kattah Jorge C. et al.,

2009). Although there exists an accurate bedside test (HINTS: Head Impulse,

Nystagmus and Test of Skew) to distinguish diagnosis of stroke in patients

with acute vestibular syndrome, most ED physicians are not familiar with this

test. Hence, automatic medical diagnosis for such patients has the potential

to mitigate the existing high rate of misdiagnosis by aiding to distinguish

between the different causes.
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Benign Paroxysmal Positional Vertigo (BPPV) is the most common cause

of vertigo and dizziness. This condition can be treated and diagnosed us-

ing simple positional tests. Patients suffering from BPPV present vestibular

nystagmus during diagnostic maneuvers such as the Dix-Hallpike (Dix and

Hallpike, 1952) or the Rolling Maneuver (Lanska and Remler, 1997).

Nystagmus can be described as an involuntary and repeated eye move-

ment pattern. It comprises of alternating slow eye drifts in one direction (slow

phases) and rapid saccades in the opposite direction (quick phases). Estima-

tion of velocity of eye during slow phases is crucial for the quantification

of the intensity of the vestibular nystagmus (also called as jerk nystagmus).

Currently, the vestibular diagnostic tests are conducted at bedside, with the

patient wearing an eye tracker (Video Oculography (VOG) goggles) and vi-

sion denied. Hence the readings are also prone to head movement artifacts

apart from general ones like noise, blinks, loss of pupil center etc., which pose

further challenges towards automatic detection of nystagmus.

1.2 Problem Statement

Benign Paroxysmal Positional Vertigo (BPPV) is the most common cause of

vertigo and dizziness. It can be treated as well as diagnosed using simple

maneuvers done by specialists orienting the patient’s head into prescribed

positions. However, dizzy patients visiting the ED have 43% chances of being

misdiagnosed (Brevern et al., 2006).

Employing automatic medical diagnosis could aid ED practitioners in

making better diagnosis, or even helping patients with self diagnosis. Eye
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movement recordings are a crucial aspect to achieve this automatic diagnosis,

especially to aid in automatic detection of nystagmus. One of the most com-

mon software and devices used to record eye movements during these tests

is the ICS Impulse Otosuite (GN OtometricsTM, Taastrup, Denmark) system.

However this software is shown to have low specificity in detecting nystag-

mus. Diagnostic tests having low specificity have higher tendency to classify

patients without disease as positive. In other words, the low specificity of

the software leads to higher false positive cases, creating the need for careful

expert reviewing in each positive case.

The present study explores a method for automatic detection of nystagmus

as a result of BPPV for point-of-care diagnosis in the ED. This paper also

serves to validate one of the most common VOG software and devices em-

ployed by clinicians in the detection of nystagmus, ICS Impulse Otosuite (GN

OtometricsTM, Taastrup, Denmark). Due to the low quality nature of bedside

data recordings from the ED, the current detection algorithm must be robust

to bad data and artifacts in order to offer high sensitivity and specificity.

1.3 Thesis Overview

The succeeding chapter discusses further background and clinical need for

the present study. Chapter 3 on literature review provides an overview of

the existing algorithms published in the literature to detect different eye

movements, with special focus on detection of saccades. The eye movement

data used in present study, its recording, extraction, challenges and other

factors characteristic of this data are briefly described in chapter 4. Chapter 5
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describes in detail the proposed algorithm for automatic nystagmus detection.

Chapter 6 shows the results obtained by using present method. Chapter 7

concludes the dissertation by discussing the custom algorithm and future

steps to be done.
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Chapter 2

Background

2.1 Physiology

2.1.1 Vertigo and Dizziness

Vertigo can be described as the feeling of spinning or lack of balance while

dizziness, a potential symptom of vertigo, can be described as the feeling

of lightheadedness. They remain one of the most frequent complaints in

medicine, affecting upto 30% of the general population (Hannaford et al.,

2005). Affected patients are found to make multiple visits to several specialty

physicians ranging from ENT specialists and neurologists to orthopaedists

(Strupp and Brandt, 2008). The lifetime prevalence of these conditions is found

to be up to 30% (Neuhauser, 2007), with the patient experiencing significant

healthcare burden and psychological impact (Neuhauser et al., 2008). Causes

for these conditions include dangerous brain injury (like stroke) or benign

ear problem (vestibular vertigo). However, the latter is found to be the most

common cause, which moreover is deemed to produce considerable burden

to the affected patients (Neuhauser et al., 2008).
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2.1.2 Vestibular System

Though it is largely believed that humans have only five senses, we are

equipped with numerous other senses that are less known. One of them is

the vestibular system. The human vestibular system allows us to keep our

balance and detect the direction and speed of our head movements. It enables

us to interact with our environment by informing us about the alignment

of our body parts in space. It is located within the human inner ears and

comprises of various elements of which the semi-circular canals and the

otoliths are among the major ones:

• Semi-circular canals: These are tiny, fluid-filled semi-circular tubes in

the inner ear (Figure 2.1) that help sense head rotation. There are 3 semi-

circular canals within each inner ear, corresponding to the 3D world

we live in. The fluid within each of the canals is called endolymph.

During head rotation, the endolymph instead of being displaced simul-

taneously, lags due to its viscous nature. This relative displacement

of the endolymph with respect to the canals pushes the hair cells (sen-

sory receptors of the vestibular systems) that then relay the information

to oculomotor nuclei of the brainstem, which innervate the eye mus-

cles. The stimulation of the oculomotor nuclei in this way produces eye

movements that counteract the direction of head rotation.

• Otoliths: These are formed by calcium carbonate crystals held together

within a gelatinous matrix attached to the hair cells and help sense linear

acceleration of the head (Figure 2.1). Displacement of the head causes
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the otoliths to move which in turn push the hair cells. This movement

of hair cells is sensed by the brain, thereby enabling us to synthesize

information regarding the linear acceleration and the orientation of the

head movement in relation to the direction of gravity.

The Vestibulo-Ocular Reflex (VOR) provides an example of the influence

of the vestibular system (particularly the semi-circular canals and the otoliths)

on eye movements. In order to fixate on an object while the head is moving,

the image of the object has to remain constant on the retina. The linear and

angular acceleration of the head movement are sensed by the canals and

otoliths which then relay this information to the oculomotor nuclei. The

oculomotor nuceli, after thus being stimulated by the vestibular system, cause

the eyes to move opposite to the direction of head movement so that the image

of the object is preserved on the retina. This response is termed VOR.

Figure 2.1: Vestibular System Semi-circular canals and the otoliths (Utricle and
Saccule) of the vestibular system residing inside the inner ear. Reproduced from
Mayoclinic.org (2018), Inner ear and balance.

7



2.1.3 Benign Paroxysmal Positional Vertigo

Some of the otolith crystals can get detached from the gelatinous matrix that

holds them together due to various reasons ranging from ear infection or other

diseases to aging. The detached otoliths often migrate into one of the semi-

circular canals where they are suspended in the endolymph. These suspended

otoliths are also called otoconia. Due to their placement, otoliths are most

often seen to migrate to the posterior canal (Parnes, Agrawal, and Atlas, 2003).

Since otoconia are denser than endolymph, their displacement also causes

the hair cells to move. The presence of these additional signals from the hair

cells causes a disturbance in how the brain interprets rotation of the head,

consequently resulting in vertigo and dizziness. This condition is referred to

as Benign Paroxysmal Positional Vertigo (BPPV).

BPPV is the most common cause of vertigo (Kim and Zee, 2014). The

episodes of vertigo occurring in this condition are brief (less than a minute)

and are provoked by specific positions such as when getting in to bed, rolling

in bed, getting up suddenly, or looking up (Solomon, 2000).

This condition can be diagnosed and treated with simple maneuvers in

which experts orient the patient to prescribed positions. The Epley maneuver

(Epley, 1980; Hilton and Pinder, 2014) is used to treat this condition which

includes expert positioning of the patient’s body in specific orientations to

guide the otoconia out of the semi circular canals. Similarly, the Dix Hallpike

Maneuver (Dix and Hallpike, 1952) shown in Figure 2.2 is the gold standard

in diagnosis of BPPV. This maneuver includes simple steps done by experts

and at the end of it patient shows signs of nystagmus.
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Figure 2.2: The Dix-Hallpike Maneuver Specialist orienting the patient into pre-
scribed positions to move the otoconia within the semi-circular canal which generates
nystagmus in the patient. Otoconia being guided out of the right posterioir semi-
circular canal causes counterclockwise torsional- and upbeat- nystagmus as shown in
D. Reproduced with permission from Kim and Zee, 2014, Copyright Massachusetts
Medical Society.
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2.1.4 Nystagmus

Vestibular nystagmus comprises of pattern of alternative slow eye drifts in one

direction and rapid saccades in the opposite direction. The slow eye drifts are

called slow phases and the rapid saccades are called quick phases. Intensity

of nystagmus is measured by estimating the velocity of the slow phases. A

patient with BPPV can thus be diagnosed by quantifying the intensity of the

nystagmus they show during the Dix-Hallpike maneuver by measuring the

Slow Phase Velocity (SPV).

0

2

4

6

8

E
y
e

 P
o

s
it
io

n

in
 X

 (
D

e
g

)

Quick Phase Slow Phase

32 32.5 33 33.5 34 34.5

Time (s)

-50

0

50

100

150

200

E
y
e

 V
e

lo
c
it
y

in
 X

 (
D

e
g

/s
)

RIGHT

LEFT

RIGHT

LEFT

Figure 2.3: Nystagmus Trace A plot of horizontal eye position and velocity vs. time,
obtained from a patient with nystagmus using the ICS Impulse Otosuite VOG goggles
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2.1.5 Vestibular Function Tests

Vestibular Function Tests (VFTs) are used to assess the health of the vestibular

system. They aid clinicians in identifying the cause of vertigo, dizziness,

headache and other such symptoms in patients. They can also aid in the

discernment between central disorders and vestibular dysfunctions. Different

VFTs are used to assess different components of the vestibular system. General

VFTs broadly consist of the following (as reviewed by Brandt and Strupp,

2005):

• Measurement of eye movements can reveal significant information re-

garding the vestibular functions. Eye movements are generally used

to test canal (and pathways) functions. Two of the most commonly

employed methods are Electronystagmography (ENG) in which eye

position signals are recorded using electrodes and Video Oculography

(VOG) in which eye position traces are obtained from image processing

of eye videos. These are described further in Section 2.2. Video Head

Impulse Test (vHIT) is another VFT in which eye movements are used to

evaluate the vestibular system functioning. vHIT involves use of small,

quick jerks of the head to assess the VOR.

• Measurement of otolith function using Vestibular Evoked Myogenic

Potentials (VEMPs) involves the collection of Electromyography (EMG)

signal evoked in response to acoustic stimuli. There are two different

types of VEMPs - cervical (cVEMPS) and ocular (oVEMPS) - to test the

functionality of the two otolith organs, saccule and utricle. cVEMPS is

used to test saccule and inferior nerve and the EMG is recorded from
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the sternocleidomastoid muscle. oVEMPs tests the utricle and superior

nerve and the EMG is recorded from the extraocular muscles.

• Measurement of spatial perception using Subjective Visual Vertical (SVV)

can help clinicians distinguish between peripheral and central vestibular

or oculo-motor lesions. SVV involves an individual’s ability to discern a

vertical line relative to gravity in the absence of any visual cues and thus

detects abnormalities in subject’s tilt. The clinical SVV test is performed

in a dark room within which subject has to align laser line to their

perceived vertical. The SVV also tests utricle dysfunction and thus can

also be used assessing otolith disorders.

• Measurement of posture using posturography enables clinical quantifi-

cation of patient’s posture and balance. Balance and postural stability

depend on the functionalities the inner ear vestibular system and other

senses like vision, somatosensory and proprioception. Thus, posturogra-

phy can aid in postural research and can also reveal frequency of falls

and side of lesion. Dynamic posturography estimates balance control in

situations intended to isolate factors affecting balance by using a moving

platform beneath the patient. Though this is not considered a VFT, many

clinicians combine posturography with the other VFTs.

The present study focuses mainly on VOG based VFTs. Most commonly used

VFTs that utilize VOG include the Dix Hallpike maneuver. This maneuver is

used in the diagnosis of BPPV and it is classified as a positional test since the

patient’s body is moved from one position to another.
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2.2 Eye Tracking

Eye movements have always been instrumental towards studying human

behavior (Eckstein et al., 2017) as well as diagnosing various physiological

conditions including Schizophrenia and attention deficit disorders (Harezlak

and Kasprowski, 2018). Research in eye movements has been increasing

vastly since the past decade not only for exploring nature of various diseases

but also for probing applications in domains of human computer interaction

and virtual reality. This can be attributed to advances in VOG technology:

their portability, low-cost and ability to record reliable data have made them

ubiquitous. Though other types of eye tracking methods exist, they’ve been

vastly replaced by state-of-the-art VOG technology. These methods include:

• Electro Oculography (EOG): Electrodes placed across subject’s eyes

record voltage differences generated during eye movements due to the

dipole nature of eyeballs (voltage difference between cornea and retina).

However facial/brain activity leads to significant noise and vertical eye

movement recordings are unreliable (Brandt and Strupp, 2005).

• Magnetic Scleral Search Coil: Though this method offers accurate 3D

eye movement recordings, it has limited clinical relevance due to its

semi-invasive nature in which subjects must wear special contact lens

that measures differences in magnetic flux during eye movements.

• Scanning Laser Ophthalmoscope (SLO): Also called as fundus photog-

raphy, this method was previously employed to obtain retinal images by

scanning a laser across subject’s eyes. However, this technique involves

expensive setup and the subject’s head must be fixed to a headrest.
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2.3 Video Oculography

Video Oculography (VOG) is a video based method of tracking eye move-

ments. VOG further includes infrared based benchtop system and infrared

based wearable goggles (Holmqvist et al., 2011). Though there are other

methods of tracking eye movements (scleral search coils and EOG), wearable

VOG goggles would be the most suitable for the current purpose of clinical

diagnosis stated in this paper due to its non-invasive nature and ease of use.

In the present study, patients in emergency departments of hospitals are to

be diagnosed with BPPV. Hence, in order to facilitate accurate point-of-care

diagnosis with minimal user training for data collection, eye tracking goggles

are employed. One of the most common VOG goggles and software employed

in clinics is the ICS Impulse Otosuite (GN OtometricsTM, Taastrup, Denmark)

system (Figure 2.4) (Bell et al., 2015; Roberts et al., 2016; Ross and Helminski,

2016; Otometrics, 2018).

Patients are fitted with the portable ICS Impulse goggles that are equipped

with infrared cameras to image the eyes. Built-in calibration lasers are used

to calibrate the goggles. The Otosuite software then detects the center of the

pupil from which the eye traces are obtained and nystagmus is quantified.

Figure 2.4: VOG Goggles ICS Impulse OtosuiteTM video-occulography goggles used
in the present study to record patient eye movements.
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2.4 Otosuite Software

Data in the present study is collected using the ICS Impulse OtosuiteTM which

is a combination of hardware and software specially devised for vestibular

testing. The hardware includes a pair of lightweight goggles, used to acquire

the eye movement data. The goggles are equipped with an infrared video cam-

era and infrared Light Emitting Diodes (LED). The camera captures infrared

light reflected off of the eyes to output real-time video feed of the eyes.

The software serves two purposes (Figure 2.5). It first extracts the center

of the pupil from the video frames to display real-time eye movement trace.

The software then uses the calculated eye movement trace (raw eye tracking

signal) for nystagmus detection. The device is calibrated using laser targets

projected forward from the goggles. These goggles are also equipped with a

gyroscope and an accelerometer to measure head movements. For the present

study, the raw eye tracking data and the head movement data are used to test

proposed algorithm.

However, this system is found to have low specificity of 63% for nystag-

mus detection (Chang et al., 2019). This can be attributed to several challenges

including low sampling frequency of the goggles (60Hz) and presence of slow

phases affecting computation. Moreover, bedside recordings from patients are

susceptible to more noise and artifacts, than controlled laboratory conditions.

Hence, the present study aims to improve nystagmus detection to aid in

making better diagnosis of dizzy patients. Towards this end, the proposed

algorithm must be able to accurately estimate velocity of slow phases (which
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quantify the intensity of nystagmus) after removing the intermediate quick

phases. This entails robust detection of quick phases which are just rapid

saccades, hence the next chapter explores different saccade (and other eye

movement) detection algorithms published in the literature.

Figure 2.5: ICS Impuse Otosuite SytemTM Components of the VOG system and
their working
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Chapter 3

Eye Movement Detection Methods

Eye movements can be broadly classified into six types: saccades, fixations,

smooth pursuits, optokinetic reflexes, vestibulo-ocular reflex, and vergence

(reviewed in Leigh and Zee, 2015). Most of the algorithms focus on identifying

the first three movements, in both online and offline settings. Moreover,

current state-of-the-art techniques to classify between different eye movements

can be broadly classified into to four types: threshold, probabilistic, statistical

and machine learning based algorithms as described below (Table 3.1).

As mentioned in the previous chapter, in order to estimate the intensity

of nystagmus, velocity of slow phases (SPV) needs to be measured. This

paper aims to first identify quick phases, remove them and then estimate

the SPV from remaining slow phases. The quick phases in nystagmus are

thought to be generated by similar mechanisms as that of saccades. Moreover,

in the Dix-Hallpike maneuver used to diagnose BPPV, there is no stimulus

and the patient being tested is under free viewing conditions in the dark.

Patient can generate different eye movements that can affect the nystagmus

detection. Hence, sections 3.1 and 3.2 describe an overview of the published
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eye movement detection algorithms with special focus on saccade and smooth

pursuit detection methods in free viewing experiments, that do not require

stimulus as input.

Further, section 3.3 provides an overview of previous algorithms used for

detection of nystagmus using eye tracking signals. The methods described in

this section focus on the approaches employed, thus emphasizing on proce-

dures for detecting nystagmus in general.

3.1 Saccade Detection Algorithms

Saccades are the quickest type of movements that humans can perform. These

are rapid eye transitions from one point of fixation to another. Earliest compar-

ison of different types of saccade detection algorithms can be traced back to

the work done by Salvucci and Goldberg, 2000. They presented a comparison

of Velocity Threshold (IVT), Dispersion Threshold (IDT), Hidden Markov

Model (IHMM), Minimum Spanning Tree (IMST) and Area of Interest (IAOI)

methods for the identification of fixations and saccades during an equation

solving experiment involving students. IVT (eg., Barnes, 1981; Erkelens and

Sloot, 1995) and IDT (Widdel, 1984) are threshold based algorithms which

classify saccades and fixations using velocity and dispersion (spread between

consecutive points) thresholds respectively.

IHMM (Salvucci and Goldberg, 2000) detects saccades by modeling eye

movement distributions using a probabilistic approach, which makes it more

robust than the threshold based methods. However, it is limited by the fact that

the user needs to set 8 parameters without which its implementation would
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be difficult. IMST (Goldberg and Schryver, 1995) is based on a graph and

search tree algorithm which clusters the fixation points into one group. IAOI

(Den Buurman, Roersema, and Gerrissen, 1981) classifies by thresholding the

datapoints falling within a target region (area of interest) corresponding to the

visual field. This paper concludes that IHMM and IDT achieve better results

among the compared algorithms.

Komogortsev et al., 2010 also present a similar IHMM algorithm in addition

to Identification by Kalman Filter (IKF) algorithm and compare these with IVT,

IMST and IDT. The IKF models eye movements with position and velocity,

outputting a predicted velocity that is compared with actual eye velocity using

Chi-square test for classification between fixation and saccade. The IHMM

method was shown to reveal higher accuracy of detection.

Nyström and Holmqvist, 2010 proposed an adaptive threshold based al-

gorithm (NH) to distinguish between saccades and fixations. The threshold

is adapted for each window of eye position signal based on the mean and

standard deviation of the samples in that window. More recently, Friedman

et al., 2018 modified the NH algorithm to include median velocity (to over-

come the assumption that velocity samples have normal distribution as in

the NH algorithm) and introduce different velocity thresholds. The paper

presents the modified algorithm to perform better when also compared with

the Identification by Random Forest (IRF) algorithm by Zemblys et al., 2018,

where random forest is a machine learning based technique.

Hessels et al., 2017 proposed the Identification by Two-Means Clustering
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(I2MC) algorithm, which uses unsupervised K-means clustering within win-

dows of the eye velocity signal to obtain clustering weights that are used to

separate between saccades and fixations. This paper also describes interpo-

lation of missing data using Steffen’s method (Steffen, 1990) which is shown

to be more suitable for 1D signals than cubic spline as it reduces edge effects.

Seven other algorithms were used for comparison: CDT (Veneri et al., 2011),

BIT (Lans, Wedel, and Pieters, 2011), HC (Hooge and Camps, 2013), WSJ

(Wass, Smith, and Johnson, 2013), IKF, IMST and NH. The last four were

excluded from final analysis as they did not provide output for high noise

data. Results indicated that I2MC performs better than the rest of algorithms

when applied on data with high-noise.

Andersson et al., 2017 provide a detailed comparison of 10 different eye

movement detection algorithms. Algorithms compared include IHMM,EK

(Engbert and Mergenthaler, 2006), IKF, NH and LNS (Larsson, Nyström, and

Stridh, 2013). Results conclude that LNS algorithm performs better than the

other algorithms and NH is the runner up behind it. However, Pekkanen and

Lappi, 2017 suggested a segmented linear regression approach for denoising

and a Hidden Markov Model based method for classification, NSLR-HMM

algorithm. When compared with the ten algorithms used in Andersson et al.,

2017, the NSLR-HMM was shown to be more accurate than others in detect-

ing saccades, fixations and smooth pursuits. Similarly, recently published

REMoDNaV by (Dar, Wagner, and Hanke, 2019) resulted in higher accuracy

than all the ten algorithms analyzed in Andersson et al., 2017.

Sheynikhovich et al., 2018 present an algorithm using the density based
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clustering approach (Rodriguez and Laio, 2014) by computing correlation

of feature vectors of selected peaks to detect microsaccades. And prior to

that, Otero-Millan et al., 2014 proposed a K-means clustering approach, OM.

The density based clustering approach was shown to obtain better results

when compared against OM and EK. However, this algorithm relies on the

assumption that noise events must be sufficiently different from a typical

microsaccade and for reliable detection, the dataset needs to have sufficient

number of microsaccades to form a cluster. When trying to compare the den-

sity based approach to the IPF algorithm (Daye and Optican, 2014), which is

based on bayesian modeling, Sheynikhovich et al., 2018 have indicated that

"the choice of IPF’s parameters on a per-subject basis is a problem that makes practical

application of this method and its comparison with other algorithms difficult”. Com-

parison with BMD (Mihali, Opheusden, and Ma, 2017), a bayesian algorithm

which provides inference through statistical modeling of eye position via

posterior distribution of events, was stated to be not possible due to different

settings used during eye movement recording.

Though statistical methods like CDT and Mulligan, 2018 use thresholds

for differentiating between fixations and saccades, the data is subjected to

statistical test in order to apply these thresholds. CDT analyse variance and

covariance while Mulligan, 2018 perform t-test within windows while Veneri

et al., 2010 utilize the F-test. Korda et al., 2018 use the largest lyapunov

exponent statsitic and similarly Mould et al., 2012 utilize the gap-statistic.

Recent developments in Machine Learning has seen a surge in its appli-

cation on eye tracking data. Zemblys, 2017 provide an overview of different
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machine learning techniques applied on VOG data. Hoppe and Bulling, 2016

provide one of the initial methods using CNNs for eye movement classifica-

tion, with a resulting accuracy of 75%. Bellet et al., 2018 also proposed a U-Net

(NN used for image segmentation) inspired CNN, called U’n’Eye, for saccade

detection. Startsev, Agtzidis, and Dorr, 2019 presented a CNN-BLSTM based

method for detection of all three types of eyemovements. Recently, Zemblys,

Niehorster, and Holmqvist, 2019 developed gazeNet, by using a Recurrent

Neural Network (RNN) combined with CNN. However, comparison between

the different types of deep learning methods presented needs to yet be studied.

3.2 Smooth Pursuit Detection Algorithms

Smooth pursuit movements allow us to track moving objects over a period,

following different trajectories. Komogortsev and Karpov, 2013 proposed

three threshold based algorithms to identify smooth pursuit in addition to

fixations and saccades. These are: Modified version of IVT Algorithm (IVVT),

Identification by Velocity and Movement Pattern (IVMP) and Identification

by Velocity and Dispersion Threshold (IVDT). Results concluded that IVDT

surpasses the performance of the other two, and that its performance is less in-

fluenced by thresholds. They also introduced ideal behavior scores which are

used in automatic selection of optimal thresholds with an objective function.

However, this method requires annotated data or at least known stimulus

presentation. Larsson et al., 2016 compared IVDT with their multi-modal

event detection algorithm for unconstrained head movements and results

concluded that their algorithm performs better. However, their proposed
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algorithm is also dependent on stimulus trajectory. Similarly, Larsson et al.,

2015 propose a method for high speed eye trackers that was shown to perform

better than the IVDT.

Within the probabilistic methods, recent developments include the Iden-

tification by Bayesian Decision Theory (IBDT) by Toivanen, Pettersson, and

Lukander, 2015 that is presented to identify smooth pursuit in addition to sac-

cades and fixations. In this method, the fixation and saccadic likelihoods are

initialized based on the eye data and are modeled as Gaussian distributions.

When compared to the IVDT algorithm by Komogortsev and Karpov, 2013,

the IBDT was shown to achieve better detection.

Recently proposed MBSDC method by (Wadehn et al., 2019) is based on a

mechanistic model of the eye from the kinematic and neural signals of saccade,

fixation and smooth pursuit. This method was shown to perform similar to

the IRF. However, this method is only applicable to horizontal eye position

and requires higher computational cost due to Kalman filtering involved in

the intermediate steps of linear state space modeling of the eye. Additionally,

REMoDNaV, an adaptive threshold based technique, also detected smooth

pursuits in addition to fixations, saccades and PSOs and was shown to perform

better than the ten algorithms in Andersson et al., 2017.

Startsev, Agtzidis, and Dorr, 2019 proposed a deep learning method using

CNN-BLSTM to detect smooth pursuit in addition to fixations and saccades.

Though this method achieves higher accuracy for smooth pursuit, it still has

34% error rate on the tested data while the LNS was found to perform better

in case of saccades among the comparisons.
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3.3 Nystagmus Detection Algorithms

Allum, Tole, and Weiss, 1975, Baloh, Kumley, and Honrubia, 1976, Ranacher,

1977 and Barnes, 1981 are some of the initial works done on analysis of

nystagmus, most of which required a human operator. These algorithms were

tailored for nystagmus during VOR and OKN stimulation. Rey and Galiana,

1991 presented a method based on autoregressive modeling but it takes in

head position as input for the analysis. Similarly, Arzi and Magnin, 1989

described a fuzzy set approach towards the analysis of nystagmus in VOR

and OKN that is automatic but requires stimulus trajectory.

Juhola, 1988 proposed a nystagmus detection algorithm by using a re-

cursive digital filter. It was shown to function reliably only for slow phase

velocity above 5o/s while filter adaptation was susceptible to artifacts and

noise. Engelken and Stevens, 1989 describe a method based on non-linear fil-

ters of Order Statistics, specifically by using adaptive asymmetrically trimmed

mean-filter that is independent of stimulus projection. This method was based

on the assumption that the eyes spend more time in slow phase than in quick

phase within a window. Juhola, Aalto, and Hirvonen, 2007 used NN in their

method but it is dependent on stimulus trajectory. Similarly, Ranjbaran, Smith,

and Galiana, 2016 use the head position data to model the VOR system and

propose an iterative method that is initialized using K-means.

Roberti, Russo, and Segrè, 1987, Reccia, Roberti, and Russo, 1989, Reccia,

Roberti, and Russo, 1990, Miura et al., 2003, Hosokawa et al., 2004 and Abel,

Wang, and Dell’Osso, 2008 are some works that utilize frequency domain

analyses including Wavelet and Fourier transforms. Spectral analysis for
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nystagmus has not been shown to be reliable as the frequency of quick phases

can highly overlap with that of the noise present in the signal and is most

often based on the assumption that the beats have similar structure.

Pander et al., 2012 proposed a method on ENG signals which are first pre-

processed using myriad, IIR, and FIR filters after which a nonlinear detection

function is computed from the filtered ENG signal. Peaks in the detection func-

tion correspond to quick phases which are detected by adjusting a threshold

using fuzzy clustering. The parameters in this algorithm are voltage depen-

dent and their conversion to degrees for VOG data might be challenging.

3.4 Summary

As described above, eye movement detection algorithms can be broadly classi-

fied into to four types: threshold, probabilistic, statistical and machine learning

based algorithms as shown in Table 3.1. These algorithms were proposed

to detect eye movements such as saccades, fixations and/ or smooth pur-

suit. Table 3.2 shows published works that compare performance of various

state-of-the-art eye movement detection algorithms.

As can be seen, there exists vast range of algorithms implemented using

simple techniques to advanced methods for detection of saccades, fixations

and smooth pursuit. Though advanced techniques might offer better results,

they would need user training in order to set the algorithm parameters that can

achieve the best results. Since eye movements are used by many researchers

not familiar with such advanced concepts, methods based on signal processing

concepts and simplistic approaches could provide a solution. However, they
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must be developed rigorously for accurate detection of eye movements.

Moreover, most of prior methods for nystagmus detection, as seen in

section 3.3, relied on the input of a stimulus or a head movement signal.

However, in contrast to the case for normal subjects, the jerk nystagmus in

BPPV patients occurs in the absence of vestibular or optokinteic stimulus.

Additionally, as will be described in the next chapter, bedside recordings

from patients in the emergency department are susceptible to more noise and

artifacts than under controlled laboratory conditions. This further necessitates

the proposed algorithm to be robust to noise and artifacts.

Type Algorithm

Threshold-
based

• IVT (eg., (Barnes, 1981))
• IAOI Den Buurman, Roersema, and Gerrissen, 1981
• IDT (Widdel, 1984)
• Behrens and Weiss, 1992
• EK (Engbert and Mergenthaler, 2006)
• Berg et al., 2009
• Dorr et al., 2010
• IMSF (Behrens, MacKeben, and Schröder-Preikschat, 2010)
• NH (Nyström and Holmqvist, 2010)
• BIT (Lans, Wedel, and Pieters, 2011)
• HC (Hooge and Camps, 2013)
• WSJ (Wass, Smith, and Johnson, 2013)
• IVVT (Komogortsev and Karpov, 2013)
• IVMP (Komogortsev and Karpov, 2013)
• IVDT (Komogortsev and Karpov, 2013)
• LNS (Larsson, Nyström, and Stridh, 2013)
• Stuart et al., 2014
• LNS15 (Larsson et al., 2015) & LNS16 (Larsson et al., 2016)
• NSLR-HMM (Pekkanen and Lappi, 2017)
• Modified NH (Friedman et al., 2018)
• REMoDNaV (Dar, Wagner, and Hanke, 2019)
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Probablistic/
Bayesian

• Using autoregressive model & Kalman filter (Sauter et al.,
1991)

• IHMM (Salvucci and Goldberg, 2000)
• Using Kalman filter Kumar et al., 2008
• IKF (Komogortsev et al., 2010)
• Tafaj et al., 2012
• Liston, Krukowski, and Stone, 2013
• IPF (Daye and Optican, 2014)
• BMM (Kasneci et al., 2015)
• EM-GMM (Toivanen, Pettersson, and Lukander, 2015)
• IBDT (Santini et al., 2015)
• Using advanced Kalman filter (Toivanen, 2016)
• BMD (Mihali, Opheusden, and Ma, 2017)
• MBSDC (Wadehn et al., 2019)

Statistical

• Using F-test (Veneri et al., 2010)
• CDT (Veneri et al., 2011)
• Using gap-statistics (Mould et al., 2012)
• Using lyapunov exponent (Korda et al., 2018)
• Using t-Test (Mulligan, 2018)

Machine
Learning -

Based

• IMST (Goldberg and Schryver, 1995)
• IHMM (Komogortsev et al., 2010)
• Shape features (Vidal, Bulling, and Gellersen, 2012)
• Vidal et al., 2013
• K-means clustering, OM (Otero-Millan et al., 2014)
• Using SVM & CNN (Anantrasirichai, Gilchrist, and Bull,

2016)
• Using CNN (Hoppe and Bulling, 2016)
• I2MC (Hessels et al., 2017)
• IRF (Zemblys et al., 2018)
• Density based clustering (Sheynikhovich et al., 2018)
• U’n’Eye (Bellet et al., 2018)
• Using CNN-BLSTM (Startsev, Agtzidis, and Dorr, 2019)
• gazeNet (Zemblys, Niehorster, and Holmqvist, 2019)

Table 3.1: Classification of Algorithms Eye movement detection algorithms classi-
fied based on their approach
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Publication Algorithms Compared Result

Salvucci and
Goldberg, 2000

IHMM, IVT, IDT, IMST, IAOI IHMM

Komogortsev et al.,
2010

IHMM, IKF, IVT, IDT, IMST IHMM

Komogortsev and
Karpov, 2013

IVVT, IVDT, IVMP IVDT

Larsson et al., 2015 LNS15, IVDT LNS15

Santini et al., 2015 IBDT, IVDT IBDT

Larsson et al., 2016 LNS16, IVDT LNS16

Mihali, Opheusden,
and Ma, 2017

BMD, OM, EK BMD

Hessels et al., 2017
I2MC, CDT, BIT, HC, WSJ, IKF,

IMST, NH
I2MC

Andersson et al.,
2017

LNS, NH, IHMM, IKF, CDT, BIT, IVT,
IDT, IMST, EK

LNS

Pekkanen and
Lappi, 2017

NSLR-HMM, LNS, NH, IHMM, IKF,
CDT, BIT, IVT, IDT, IMST, EK

NSLR-
HMM

Friedman et al., 2018 Modified NH (MNH), NH, IRF MNH

Sheynikhovich et al.,
2018

Density based clustering (clustDb),
OM, EK

clustDb

Wadehn et al., 2019 MBSDC, IRF IRF

Dar, Wagner, and
Hanke, 2019

REMoDNaV, LNS, NH, IHMM, IKF,
CDT, BIT, IVT, IDT, IMST, EK

REMoDNaV

Startsev, Agtzidis,
and Dorr, 2019

CNN-BLSTM, Dorr et al., 2010, Berg
et al., 2009, LNS15, IVMP, IVDT, IVVT,

IKF, IHMM, IVT, IMST, IDT

CNN-
BLSTM (for
smooth pursuit)

Table 3.2: Comparison of Algorithms Papers that compare different proposed algo-
rithms
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Chapter 4

Data

4.1 Data Resource

Data used in the current study was obtained from an ongoing multi-center

clinical trial, AVERT (Acute Video-oculography for Vertigo in Emergency

Rooms for Rapid Triage) (Newman-Toker, 2014), that compares diagnostic

accuracy and actual clinical outcome between eye movement (VOG) based

diagnosis and standard diagnosis in patients with dizziness and vertigo.

Patients presenting with a chief complaint of acute vertigo or vertigo were

included upon their consent. Patients with critical illness, level-one trauma,

unstable cardiac status, under the age of 18 years old, cranial-cervical trauma,

altered mental status, or pregnancy were excluded.

Data was collected using a portable Video Oculography (VOG) device, ICS

Impulse, with Otosuite software (GN OtometricsTM, Taastrup, Denmark) at

a rate of 60Hz. Eye position was calibrated in the device using laser targets

projected from the goggles to the front. Patients were then subjected to a

battery of VOG tests, including Dix-Hallpike positional test, as listed below:
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1. Latero-pulsion test

2. Gaze tests with fixation: center, downward, leftward, rightward, and

upward gaze

3. Skew deviation test in sitting position

4. Lateral-canal vHIT test

5. Gaze tests without fixation: center, leftward and rightward gaze

6. Head shaking test with vision denied for head-shaking nystagmus

7. Positional tests with vision denied: left Dix-Hallpike test, right Dix-

Hallpike test, left roll test, right roll test

8. Bow-Lean tests: chin-to-chest test and head-extended backwards

9. Skew deviation test in supine position

4.2 Data Extraction

The data of each patient tested was downloaded from the database. This

included the raw eye movement and head movement data, stored in a Comma

Separated Values (CSV) file and the slow phase velocities computed by the

Otosuite software stored in an eXtensible Markup Language (XML) file. There

is a single CSV file for each patient that includes the raw eye position and

head position data for all VFTs performed. The XML files store data in the

form of nodes which can have subnodes to store structured data. XML files

are useful for efficiently storing data having large number of groups or classes.

OtosuiteTM stores the SPV and other related results for all VFTs using this

format. MATLAB has robust in-built functions to read XML files using the

xmlread command. Further code was written to extract the eye position
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data and the final output of software from each of the categorized nodes

(corresponding to the different tests) from the XML files. Extracted data

comprises of:

1. Patient ID

2. Type of test and Test ID

3. Average frame rate

4. Start date and time

5. End date and time

6. Vision denied indicator

7. Raw eye position data for each test (degrees)

• Horizontal (X)

• Vertical (Y)

• Torsional (T)

8. Raw eye position data for each test (pixels)

• Horizontal (X)

• Vertical (Y)

9. Raw head position data in Quaternions for each test (Q1, Q2, Q3, Q4)

10. OtosuiteTM Results (for X, Y and T components) (in Deg/s):

• Slow Phase Velocities

• Peak Slow Phase Velocity (SPV)

• Average SPV

• Maximum SPV

• Minimum SPV

• Peak SPV Time (in ms)
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4.2.1 Head position data

Head position is described using quaternions in the OtosuiteTM system.

Quaternions are a number system beyond the complex number system and

they can be written as follows:

Q = Q1 + Q2i + Q3 j + Q4k

where Q1, Q2, Q3, and Q4 are real numbers and i, j and k represent unit-

vectors along an orthogonal 3D basis (Finkelstein et al., 1962). They are most

commonly used to represent rotations of objects in the 3D world. In this case

head rotation and velocity can be obtained from the raw quaternion data

provided by the OtosuiteTM software.

4.2.2 Torsional data

Apart from horizontal and vertical eye movements, human eyes can also move

in a third component. This is the rotation of eyes about the axis of line of

sight. Such type of rotational eye movements are categorized as torsional

eye movements. Horizontal and vertical eye position data is calculated by

obtaining pupil center from the VOG data. However, pupil center does

not provide torsional information and hence calculating torsional data relies

on other strategies. Obtaining accurate torsional data from VOG is still an

active area of research (Otero-Millan et al., 2015). The torsional data captured

by OtosuiteTM software is shown to be unreliable and hence the torsional

component is excluded from any further computations. Only horizontal (X)

and vertical (Y) components are considered for the proposed algorithm.
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4.3 Manual Labeling

For the present study, data from 103 patients was extracted. These patients

were subjected to the Dix-Hallpike left and Dix-Hallpike right tests along with

the other 8 tests listed in section 4.1. However, not all tests were done in all

patients due to various reasons. In total 1054 test recordings were extracted

from the data of these 103 patients which included 157 recordings of the

Dix-Hallpike tests.

For each of the Dix-Hallpike tests, both horizontal and vertical recordings

were considered. A neurology expert manually visualized all the recordings

and labelled whether nystagmus was present/ absent. Further, the expert

also recorded output from the OtosuiteTM software. Thus, for each of the tests

conducted on each of the patients, manual result and OtosuiteTM software

result were noted in a CSV file. This was used in comparing final results from

proposed custom algorithm and OtosuiteTM software.

4.4 Challenges with Data

As iterated before, due to the bedside nature of the data collection process the

eye tracking data from VOG goggles in the present study are susceptible to

more noise and artifacts than under controlled laboratory conditions. Apart

from blinks (or periods when the eyes are closed), there are other artifacts

present in eye tracking data. Below are some of the challenges that need to be

addressed for an accurate detection of nystagmus from the eye data.
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4.4.1 Missing Data

Eye tracking software can sometimes skip recording video frames and this

could be due to delayed computation by the computer (Figure 4.1). Such

missed frames are often interpolated if they are shorter than a threshold

duration.
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Figure 4.1: Missing data Shaded grey regions represent periods of missing data

4.4.2 Loss of Pupil Center

Sometimes, eye lashes of patients can interfere with the pupil center detection

leading to artifacts in the eye trace. These artifacts most often appear as

high frequency but low amplitude spikes in signal (Figure 4.2) and can often

interfere with saccade detection as they can closely resemble saccades.
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Figure 4.2: Spiky data Shaded grey regions represent periods of loss of pupil center
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4.4.3 Patient Drowsiness

When patient is drowsy, their eye movements follow smooth trajectories as in

Figure 4.3. Since these are low frequency (longer duration than saccades) and

high velocity periods, they’re not detected as quick phases.
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Figure 4.3: Patient Drowsiness Example of eye position signal during drowsy state

4.4.4 Noise

In some cases, eye position data has high noise and it is not possible to identify

any kind of eye movement (Figure 4.4). This may be due to poor illumination,

bad threshold for pupil detection or a pupil that is too small or too large.
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Figure 4.4: Noisy data Example of eye position signal corrupted with noise
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4.4.5 Presence of Slow Phase

Nystagmus is a cyclic eye movement condition composed of alternative quick

phases and slow phases. Quick phases are in the opposite direction to slow

phases. The intermediate slow phases occur with a certain velocity that forms

a non-zero baseline as shown in Figure 4.5. Detection of quick phases in the

presence of such a baseline slow phase velocity (SPV) becomes challenging.
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Figure 4.5: Presence of slow phase Example eye position signal from patient with
nystagmus. Slow phase velocity can be seen as a non-zero baseline.
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Chapter 5

Methodology

The present algorithm consists of four stages: pre-processing (section 5.1),

peak detection and selection (section 5.2), clustering (section 5.3), and final

SPV estimation (section 5.4). Figure 5.1 provides an overview of the steps

involved in each of the four stages of the proposed custom algorithm. Due to

the modular nature of the proposed algorithm, each stage can be improved

independently; changing one stage would not affect any of the subsequent

stages.

Most previous studies combined horizontal (X) and vertical (Y) compo-

nents for saccade detection. However, in the present study computation was

done on the two components separately. This was chosen since nystagmus

can be present in either horizontal component or vertical component or si-

multaneously in both the components. Hence, the X and Y eye velocities

were calculated separately for the present algorithm. Moreover, all the steps

described in the following pages are performed separately on each compo-

nent (without combining X and Y components of eye data) except for in the

pre-processing stage.
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Figure 5.1: Functional Overview of Algorithm Description of steps involved in each
stage of custom algorithm

The raw eye tracking data is first preprocessed to remove noise and cor-

ruptive artifacts that are higher in bedside recordings compared to controlled

laboratory conditions. In order to detect nystagmus, proposed method first

identifies the quick phases, which are then removed to obtain slow phases

from which the SPV is computed that quantifies the intensity of the nystagmus.

Since are generated by similar mechanisms as that of saccades, this method

can also be used for saccade detection. Moreover, use of the algorithm does

not require user training.

Proposed method employs a two-pass system for saccade detection, in
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comparison to the traditional algorithms. From the eye movement recording,

overall velocity peaks are detected and subsequently a subset of them are

selected based on a computed threshold. This selection of peaks is based on

rate factor which is computed from the physiological observation that rate

of saccades is limited to 1-6 per second. The peak selection ensures that data

points are balanced and possess the capacity to form clusters, thus aiding

in the subsequent clustering stage. As can be seen, this is a novel top-down

approach that is robust and easy to implement.

Proposed method incorporated clustering since it is an unsupervised

method and has the promise of robust classification. Clustering techniques do

not require training with data (and consequently eliminating the laborious and

time-consuming process of manual labeling) while also being independent of

the type of eye tracker used for data collection. Most importantly, clustering

does not require user training. In the present study, Spectral Clustering was

chosen for classifying the selected peaks.

5.1 Pre-processing

Eye movement data must be pre-processed before further analysis. The pre-

processing stage aims to remove artifacts and noise in the data. One of the

artifacts, eye blinks, are already processed by OtosuiteTM to output flat periods.

Steps described below are performed to address the challenges listed in section

4.4. For the pre-processing stage, both X and Y components are considered

together since artifacts in one component can affect eye movement recording

in the other component. The samples in these periods identified as bad data
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are removed (labelled as missing data) from the final processed signals.

5.1.1 Interpolation of dropped samples

In order to maximize the amount of eye movement recording available for

nystagmus detection, imputation of dropped frames is performed using inter-

polation. Periods of dropped data shorter than 100ms (6 samples at 60Hz) are

interpolated using Steffen’s method (Steffen, 1990). This method was chosen

and adapted previously by Hessels et al., 2017 and is shown to be better than

cubic spline interpolation as it decreases edge effects.

5.1.2 Removal of out of range eye position/ velocity/ jerk data

Eye position data might also include some abrupt changes that would not be

possible physiologically. These abrupt changes happen due to errors in pupil

tracking and are found more clearly in derivatives of the position signal. In

the present study, velocity and jerk are used. They are defined as below:

Velocity⇒ vx =
dx
dt

vy =
dy
dt

V =
√

v2
x + v2

y

Acceleration⇒ ax =
dvx

dt
ay =

dvy

dt

eleraJerk⇒ jx =
dax

dt
jy =

day

dt
J =

√
j2x + j2y

where,

x = horizontal component of the eye position

y = vertical component of the eye position

t = time in seconds
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First, samples with vx or vy greater than 1000o/s are found. However

it is not sufficient to remove just the samples above this threshold, but also

the entire period of such abrupt changes: beginning from the initial starting

point to the ending point where these abrupt change peaks subside. Thus,

each of these out of range velocity peaks is removed iteratively by finding its

beginning and end points. Next, similarly samples with jerk, J, greater than

5× 106o/s3 are found. Beginning and ending points of each of these out of

range jerk samples are found and removed.

5.1.3 Removal of high fluctuation noise/ software artifacts

As described in section 4.4, sometimes the VOG software can compute incor-

rect pupil center or continuously switch between two possible pupil centers.

This could be attributed to factors such as interfering eye lashes, software

computational error, environmental disturbances etc. These periods of loss of

pupil center can be detected by using the fact that human eye cannot make

more than 15 saccades in a second (Lee, Badler, and Badler, 2002; Møller et al.,

2002).

In the present method, the signal is windowed into periods of 200ms and

the number of eye movement transitions are computed within each of these

windows. Windows that exceed the physiological limit (for 200ms, the eye

can make no more than 3 saccades) contains this type of high fluctuation noise

and are removed accordingly. Eye position data between 34s and 38s in Figure

5.2b shows an example of periods when pupil center is lost and the resulting

processed signal after removing them.
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5.1.4 Removal of data during head movement

Positioning of patient during the Dix-Hallpike test would result in movement

of their head. The eye data collected during head movements must be detected

and removed as head movements would elicit a normal VOR response that

could be interpreted as nystagmus if not removed. in the present study, head

velocity is calculated using quaternion math from the raw head co-ordinates

output by the software that are recorded using an embedded gyroscope on the

VOG goggles. Eye tracking data is removed during head movements greater

than 10o/s and within a window of 400ms before and after such periods.

5.1.5 Removal of periods of good data between bad data

Periods of good data, less than 160ms in duration , in between bad data are

also probably bad data. Hence samples in these periods are removed by

using the closing (morphological) filter. In the image processing domain,

this filter is used to remove small holes in the image. Translated to the one

dimensional signal processing domain, it can be used to remove the small

periods of samples in between missing data (the samples removed due to

being identified as bad data). Using a window of 10 samples i.e., presence

of 10 or less good samples in between periods of detected bad data are thus

removed and labelled as missing data.

5.1.6 Resampling to 500Hz

The cleaned eye position data is then upsampled to 500Hz, taking care that

missing samples do not propagate during the upsampling.
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(a) Example of a pre-processed eye position signal
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(b) Removal of periods with loss of pupil center

Figure 5.2: 5.2a shows example of pre-processed eye position signal in X component
from a patient with nystagmus. 5.2b shows a zoomed in version of the signal in 5.2a
showing periods of high fluctuation noise

Figure 5.2 showing horizontal eye position signal obtained from a patient

with nystagmus (recorded using the ICS Impulse OtosuiteTM system) will be

used as example for subsequent steps throughout this chapter.
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5.2 Peak Detection and Selection

5.2.1 Peak Detection

(a) Subtraction of initial SPV baseline estimate

In order to find velocity peaks and their end points, the eye velocity

of individual components is smoothed over a window of 5 samples

(Engbert and Kliegl, 2003) to suppress noise. Smoothed eye velocity was

obtained for each component separately as below:

vi =
Fs

6
(pi+2 + pi+1 − pi−1 − pi−2)

where,

Fs = sampling frequency (500Hz)

pi = eye position (either horizontal or vertical component) at time i

vi = instantaneous velocity at time i

An initial SPV baseline estimate is then found by iteratively excluding the

highest 5% velocities in a running window of 1s and median filtering the

remaining velocity values within the window. This results in an initial

low pass velocity which is the initial SPV baseline estimate (Figure 5.4).

This low pass velocity estimate is then subtracted from the eye velocity

to give an approximate zero baseline velocity.

(b) Detection of all velocity peaks and their borders

Humans have a physiological limit of at least 30ms time gap between

consecutive saccades (Møller et al., 2002). Hence, all velocity peaks that

are separated by at least 30ms (minimum intersaccadic interval) are
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detected in the velocity obtained from the previous step (Figure 5.5). The

corresponding start and end points of each peak are accordingly found.

5.2.2 Peak Selection

From the detected peaks, median absolute deviation of the prominence (height

of peak velocity from the baseline rather than from zero) of all the peaks is

found. This is multiplied by lambda (λ) (Engbert and Kliegl, 2003) to get

prominence threshold. All the peaks with prominence above this threshold are

counted. This corresponds to approximate rate of saccades, R1. Multiplying

this R1 with a rate factor, F, would give rate, R2 which should include all

the saccades or QPs and an almost equal number of noise peaks (Figure 5.3).

Selected peaks are shown in Figure 5.6.
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Figure 5.4: Initial SPV baseline estimate subtracted for period detection
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Figure 5.5: Peak detection All detected velocity peaks
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Figure 5.6: Peak selection Selected peaks according to R2 and their periods
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5.3 Clustering

5.3.1 Feature Extraction

Different features are computed for each of the selected peaks (described

in appendix). Feature selection was performed initially using Spearmann

Correlation Coefficient matrix, Dunn’s index and Random Forest. Based on

the results of these different methods, three features were selected:

• Prominence of the peak computed as maximum height of the peak from

baseline (prom)

• Difference between peak and median of eye velocity 100ms before/ after

peak to signify noise level around the peak (meddi f f _vel)

• 1st level decomposition co-efficients of discrete wavelet transform (using

10th order Daubechies wavelet, db10, due to its close overlap with a

Gaussian shape) of the velocity at the location of selected peaks (wv)

Logarithm is then applied on the absolute of the extracted feature values. This

is done to make the feature distribution approximating Gaussian and reduce

the skewness and the heavy tails of their distributions. Each of the 3 features

are then normalized using zscoring which brings the mean of each type of

feature to zero and the standard deviation to 1 as shown below:

z =
fi − µ

σ

where z is the zscore of feature value fi, while µ and σ are the mean and

standard deviation of the distribution of feature respectively.
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5.3.2 Spectral Clustering

Data points with similar properties (here, features) group together to form

clusters. Identifying data points belonging to such clusters is referred to as

clustering. Clustering is one of the most widely used unsupervised Machine

Learning techniques in data analysis for applications ranging from biology,

computer science to psychology and commercial marketing.

K-means is one of the traditional clustering algorithms in which distances

from data points to an initial K chosen points (centroids) are computed itera-

tively and all the data points are assigned to their respective nearest centroids

to form K clusters. Centers of these K clusters are then recalculated and

updated iteratively. The goal of K-means is thus to decrease the distance

between data points in a cluster. However, this technique is susceptible to

erroneous results in the presence of low density clusters and not able to detect

non-spherical clusters (Jain, 2010).

To address this shortcoming, Rodriguez and Laio, 2014 proposed a density

based clustering method. This approach includes the calculation of distances

between each data point which are then used to compute density (ρi) of each

point using a Gaussian kernel. Clusters are then identified by thresholding the

distance (γi) of each point to its nearest point with higher density. This thresh-

old distance can be obtained in different ways. Sheynikhovich et al., 2018 first

applied this method on eye tracking data for microsaccade detection by using

a k-dist graph for finding the threshold distance. However, application of this

method on the current data (Punuganti, Tian, and Otero-Millan, 2019) did not

yield satisfactory results due to problems in choosing a threshold distance.
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Moreover, in order to form tighter clusters, the extracted features from

previous step have to be represented in a different dimension. Thus, spectral

clustering was chosen in the present study. This method has shown to out-

perform traditional clustering approaches and is also easy to implement. The

name of this method is derived from spectrum of a matrix, which refers to

the set of the matrix’s eigenvalues.

The main tool needed for spectral clustering is the graph Laplacian matrix,

from the field of spectral graph theory (Luxburg, 2007). Data points can

be represented in the form of a similarity graph, G = (F, E), where F is the

set of data points (here, feature vectors) f1, ..., fn and E represents the set of

edges between each of these data points. An edge between two data points

(also called as vertices of the edge) fi and f j is weighted by the similarity, sij

between them. And the two points, fi and f j are said to be connected if sij

is positive or larger than a threshold. The aim of spectral clustering is then

to find a partition of the graph such that edges between clusters have low

weights. Though there are many algorithms proposed for performing spectral

clustering, the following method proposed by (Ng, Jordan, and Weiss, 2002) is

one of the most commonly employed methods.

A graph should represent local neighborhood relationships of the fea-

ture vectors and this can be done by weighing the edges using a similar-

ity function that itself models local neighborhoods. In the present study,

the edges are weighted using a Gaussian similarity function, s( fi, f j) =

exp(−∥ fi − f j∥2/2σ2), where σ controls for the width of the overlapping

neighborhood between data points.
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We can see that sij ≥ 0 and if sij = 0, then fi and f j are not connected

by an edge. This type of graph is called as fully connected graph and it is

an undirected graph since sij = sji. The weighted adjacency matrix, S, of the

graph and degree of a data point, di are respectively defined as:

S = (sij)i,j=1,...,n

di =
n

∑
j=1

sij

The degree matrix D is diagonal matrix of all the degrees (with d1, ..., dn on the

diagonal). The normalized graph Laplacian (which is also symmetric), L, is

now defined as:

L = D−1/2LD−1/2

Eigenvectors of L are then computed as below:

Lu = Λu

where Λ consist of the eigenvalues. The first k eigenvectors, u1, ...uk L are then

normalized to form clusters. If k > 2, then K-means clustering is applied to

this representation of the original data points in order to find the k clusters.

However, in the present study k = 2, corresponding to cluster formed by

actual QPs and that by noise peaks. These two clusters are separated by a

threshold of 0.

For the present study, any value of σ greater than 3 did not produce

considerable differences in the results, hence a value of 3 was chosen for this

parameter. Figure 5.7 represents the feature vectors using Multi-Dimensional

Scaling (MDS), which is a tool that aids in data visualization. The quick phases
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were manually labeled using a MATLAB labeling tool by the author. As can

be seen, the points corresponding to true quick phases are highly correlated

due to their high velocity, whereas the noise points are scattered without any

correlation. Figure 5.8 shows detected QPs in the eye position trace.
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Figure 5.7: MDS of feature vectors showing detected QPs
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Figure 5.8: Detected QPs in the eye position signal
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5.4 Slow Phase Velocity Estimation

Saccades or quick phases detected from the above step are removed from the

cleaned and resampled velocity signal (i.e., non-smoothed). The resulting

velocity signal represents periods of non-saccadic eye movements. This signal

is median filtered using a window of 1s, taking care that missing data (rep-

resenting the removed bad data) do not propagate (smoothed SPV in Figure

5.9). From this filtered signal, median Slow Phase Velocity (SPV) within each

window of 1s is obtained to get final estimate of SPV signal (Figrure 5.10).

The position of maximum SPV value is then determined. Samples from

either side of this maximum value are averaged (this amounts to averaging

median SPV in window of 3s). However, if both of the samples before and after

the maximum SPV are opposite in sign to the maximum SPV, then then next

maximum SPV is found. This is done since for a recording with nystagmus,

direction of slow phases should not change direction within 1s.
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Figure 5.9: Smoothed SPV Estimate of slow phase velocity
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Figure 5.10: Peak SPV detected from the final SPV trace

5.5 Algorithm Overview

An overview of each of the steps described in the above proposed custom

algorithm is given below. All the thresholds, windows and parameters used

in the current method are listed in Appendix A.

Algorithm Nystagmus Detection

1: procedure DATA PRE-PROCESSING(x, y, t)
2: Clean & resample eye position data to 500Hz
3: end procedure
4: Output: X, Y, T

5: procedure PEAK DETECTION & SELECTION(X, Y, T)
6: for pos = [X, Y] do
7: v← d(pos)

dT ▷ Raw velocity
8: vel ← Smooth(v) ▷ Smoothed velocity
9: peaks.loc← Find local maxima (peaks) in vel2

10: [peaks.start, peaks.stop]← find start & stop of each peak
11: peaks.prom← Find prominence of each peak
12: r ← MAD(peaks.prom)
13: R1 ← peaks.prom > r
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14: R2 ← R1 × F
15: peaks← R2 peaks/s
16: end for
17: end procedure
18: Output: peaks ▷ Selected peaks in X & Y

19: procedure CLUSTERING(peaks)
20: for data = [peaks.X, peaks.Y] do
21: f ← Extract features from data ▷ Features
22: f ← zscore(log(| f |)) ▷ Normalized features

23: S← sij = e
−∥ fi− f j∥

2

2σ2 ▷ Weighted adjacency matrix
24: D ← dij = ∑n

j=1 sij ∀ i = j ▷ Diagonal degree matrix
25: L = D−1/2LD1/2 ▷ Graph Laplacian
26: u← First 2 eigenvectors of L
27: U ← Uij =

uij

∑n
j=1 u2

ij
▷ Normalized eigenvectors

28: labels = U ≥ 0
29: end for
30: end procedure
31: Output: labels ▷ Cluster labels

32: procedure SPV ESTIMATION(X, Y, labels)
33: for pos = [X, Y] do
34: v← Remove QPs using labels
35: spv← Median filter v
36: spv← Median of spv in each s
37: i← location of max spv
38: while spvi−1 × spvi == 1 || spvi+1 × spvi == 1 do
39: SPV ← mean[spvi−1, spvi, spvi+1]
40: end while
41: end for
42: Output: SPVX, SPVY ▷ SPV estimate for X & Y
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Chapter 6

Results

The proposed method was applied to the 157 eye movement recordings of

the Dix-Hallpike (left and/or right) tests recorded using the ICS Impulse

OtosuiteTM software in the AVERT study, recorded from 103 patients. Using

the manual labeling of each of these tests for positive/ negative nystagmus

outcome (as shown in Table 6.1), results from the custom algorithm were

compared against those from the OtosuiteTM software using two methods:

1. Receiver Operating Characteristic (ROC) curves

2. Diagnostic test measures

Both the methods provide an output corresponding to the two compo-

nents of the eye movements (horizontal (X) and vertical (Y) components).

Our custom algorithm outputs either an SPV value for the component or SPV

undefined that indicates that data is too corrupted to be able to output any re-

sult. The OtosuiteTM software outputs either an SPV value for the component

or a value of 9999 that indicates that no nystagmus was identified. In these

cases where OtosuiteTM outputs 9999, the SPV value is taken as zero for the

corresponding component of the eye movement recording.
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Out of the 314 recordings, the custom algorithm was unable to calculate

the SPV in 26 recordings, and thus gave a result of SPV undefined. These 26

recordings comprised of 13 horizontal and 13 vertical cases.

Total X Y
Eye Recordings 314 157 157

Positive Nystagmus 39 23 16
(a)

Total X Y
Eye Recordings 288 144 144

Positive Nystagmus 37 22 15
(b)

Table 6.1: Eye recordings Table (a) shows composition of the total number of eye
recordings while Table (b) shows that of the recordings from which bad cases detected
by custom algorithm are removed (X - Horizontal and Y - Vertical components)

Computation time of custom algorithm ranges from 0.8s (for a 11s record-

ing) to 18.5s (for a 124s recording) on a normal desktop computer (16GB, 3.2

GHz Intel Core i7-8700). These timings are computed for the entire algorithm

that includes the four stages.

6.1 Analysis of ROC Curves

Receiver Operating Characteristic (ROC) curve was developed during World

War II for measuring the ability of Radar to detect enemy objects on battlefield.

It has been adapted since then into various fields for assessment purposes.

A binary classifier can be assessed using the ROC curve by thresholding the

output of the classifier. The ROC curve plots the true positive rate against the

false positive rate obtained after the resulting values output by the classifier

are thresholded at different values. The classifier output values in this case are

the Slow Phase Velocity (SPV) values output by the algorithm. The ROC curve

is thus used to assess how accurately can the algorithm detect a nystagmus

case as the threshold on the estimated SPV output by the algorithm is varied.
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The area under the ROC curve (also called as Area Under Curve (AUC))

is a statistic that is used to interpret the performance of the classifier. Many

fields use this parameter for model comparison. It quantifies the capability of

a diagnostic test to distinguish between positive and negative cases.

Figure 6.1 shows the ROC curve obtained for custom algorithm against

OtosuiteTM software. This curve shows combined result of X and Y compo-

nents for a total of 288 recordings. As can be seen, the Area Under Curve

(AUC) obtained for the custom algorithm for both horizontal and vertical

components combined is 95% which is higher than the AUC of OtosuiteTM

which was obtained as 89%.
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Figure 6.1: ROC curves for both horizontal and vertical tests
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Figure 6.2 shows the ROC curve obtained for custom algorithm and the

OtosuiteTM software when applied on only the 144 horizontal recordings.

Though the most common form of BPPV involves vertical/torsional nystag-

mus, in the present study there were more positive cases in the horizontal

component than in the vertical component. This can be attributed to the

inclusion of non-BPPV patients who might have showed nystagmus due to

conditions other than BPPV. As before, even in the case of horizontal compo-

nents only, the AUC obtained for the proposed custom algorithm is at 95%,

while it is at 90% for the OtosuiteTM software.
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Figure 6.2: ROC curve for hrizontal tests
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Similarly, Figure 6.3 shows the ROC curve obtained for custom algorithm

and the OtosuiteTM software when applied on only the 144 vertical eye move-

ment recordings. Number of positive nystagmus cases in vertical component

are generally lower than in horizontal component. In case of vertical compo-

nent of eye recordings only, AUC for custom algorithm was obtained as 97%

while OtosuiteTM resulted in an AUC of 88%.
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Figure 6.3: ROC curve for vertical tests

Figure 6.4 shows the ROC curve for OtosuiteTM when applied on the 26

cases for which custom algorithm gave an output of SPV undefined. It can be
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seen that OtosuiteTM gives almost random output in these bad cases as per its

AUC which is at 47%. Figure 6.5 represents an example recording where the

custom algorithm gives an output of SPV undefined. It can be seen that the

signal is corrupted and it is impossible to output a result in this recording.
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Figure 6.5: Undefined case by custom algorithm Example of highly corrupted
recording detected by custom algorithm where no SPV could be calculated
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Figures B.2 shows an example eye recording from a patient with nystagmus.

A clear pattern of alternating quick phases and slow phases can be seen from

the nystagmus recording. Figure 6.7 shows eye movement recording from a

patient without nystagmus on the same time scale and degree scale as Figure

B.2. There are clear saccades being made but there is no slow phase (i.e., no

slow eye drift) in between the saccades. Consequently, the recording with

nystagmus is expected to have a higher SPV and the one without nystagmus

a lower estimate of SPV.
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Figure 6.6: Eye recording from patient with nystagmus
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Figure 6.7: Eye recording from patient without nystagmus
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The resulting SPV obtained from the custom algorithm for the above two

examples are shown in Figures 6.8 and 6.9 respectively. The SPV for the

recording with nystagmus (Figure B.2) can be seen to be high, at about 10o/s

from Figure 6.8. And as expected, the SPV of the recording without nystagmus

(Figure 6.7) can be seen to lower, near to 0o/s in Figure 6.9.
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Figure 6.8: SPV of eye position in figure B.2 with nystagmus
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Figure 6.9: SPV of eye position in figure 6.7 without nystagmus
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6.2 Analysis of Diagnostic Test Measures

The efficacy and accuracy of a medical test can be measured by four parameters

as will be described below. Here test specifically refers to the diagnostic tool

used in the diagnosis. In our case, the proposed custom algorithm and the

commercial OtosuiteTM software are the tests being compared.

• Sensitivity of a test is defined as the probability of the test to identify

positive cases among those with the disease.

Sensitivity =
TP

TP + FN

• Specificity of a test is defined as the probability of the test to identify

negative cases among those without the disease.

Speci f icity =
TN

TN + FP

• Positive Predictive Value (PPV) is the probability that patient with a

positive test result truly has the disease.

PPV =
TP

TP + FP

• Negative Predictive Value (NPV) is the probability that patient with a

negative test result truly does not have the disease.

NPV =
TN

TN + FN

where, TP = True Positives, FP = False Positives, TN = True Negatives &

FN = False Negatives
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6.2.1 Both Horizontal & Vertical Recordings

Sensitivity and specificity for custom algorithm when applied on the 314

recordings was found to be at 89% and 86% respectively (Table 6.2). This does

not change when applied on the 288 recordings that exclude the undefined

cases. OtosuiteTM achieves a sensitivity of 89% but a lower specificity of 55%.

Also, OtosuiteTM’s sensitivity increased to 92% (while specificity remained

the same at 55%), when applied on the 288 recordings that exclude corrupted

recordings detected by custom algorithm (Table 6.3). These values are obtained

at a threshold of 5o/s.

PPV and NPV for custom algorithm are found to be 92% and 95% respec-

tively (Table 6.2). While for OtosuiteTM, PPV was found to be at 70% and NPV

at 97% when applied on the complete set of recordings (314 signals). These

values are obtained at a threshold of 10o/s. This shows that custom algorithm

performs better in general as both the PPV and NPV are satisfactory (above

90%) whereas OtosuiteTM has a low PPV even though it has a high NPV.

Sensitivity Specificity PPV NPV

Custom Algorithm 89 86 92 95

OtosuiteTM 89 55 70 97

Table 6.2: Test measures obtained on 314 (157 in each of X and Y) that includes bad
cases detected by algorithm (All values are in percentage)

Sensitivity Specificity PPV NPV

Custom Algorithm 89 86 92 95

OtosuiteTM 92 55 70 97

Table 6.3: Test measures obtained on 288 (144 in each of X and Y) that excludes bad
cases detected by custom algorithm (All values are in percentage)
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6.2.2 Only Horizontal Recordings

Sensitivity and specificity for custom algorithm when applied on the 157

horizontal recordings was found to be at 86% and 84% respectively (Table 6.4).

OtosuiteTM achieves a sensitivity of 91% but a low specificity of 49%. These

values are obtained at a threshold of 5o/s.

PPV and NPV for custom algorithm are found to be 89% and 95% respec-

tively (Table 6.4). While for OtosuiteTM PPV was found to be at 60% and

NPV at 97%. These values are obtained at a threshold of 10o/s. This shows

that custom algorithm performs better in general as all the four measures are

satisfactory (above 80%) whereas OtosuiteTM has lower specificity and PPV

(below 60%) even though it has a high sensitivity and NPV. Also, OtosuiteTM’s

PPV increased to 69% (while specificity and sensitivity remained the same at

49% and 91% respectively), when applied on the 144 recordings that exclude

corrupted recordings detected by custom algorithm (Table 6.5).

Sensitivity Specificity PPV NPV

Custom Algorithm 86 84 89 95

OtosuiteTM 91 49 60 97

Table 6.4: Test measures obtained on 157 horizontal only recordings that includes
bad cases detected by algorithm (All values are in percentage)

Sensitivity Specificity PPV NPV

Custom Algorithm 86 84 89 95

OtosuiteTM 91 49 69 98

Table 6.5: Test measures obtained on 144 horizontal only recordings that excludes
bad cases detected by custom algorithm (All values are in percentage)
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6.2.3 Only Vertical Recordings

Sensitivity and specificity for custom algorithm when applied on the 157

vertical recordings was found to be at 93% and 88% respectively (Table 6.6).

OtosuiteTM achieves a sensitivity of 88% but a low specificity of 60%. Also,

OtosuiteTM’s sensitivity increased to 93% (while specificity remained the same

at 60%), when applied on the 144 recordings that exclude corrupted recordings

detected by custom algorithm (Table 6.7). These values are obtained at a

threshold of 5o/s.

PPV and NPV for custom algorithm are found to be 100% and 95% re-

spectively (Table 6.6). While for OtosuiteTM PPV was found to be at 63% and

NPV at 96%. These values are obtained at a threshold of 10o/s. This shows

that custom algorithm performs better in general as all the four measures are

satisfactory (above 85%) whereas OtosuiteTM has lower specificity and PPV

(below 65%) even though it has a high NPV.

Sensitivity Specificity PPV NPV

Custom Algorithm 93 88 100 95

OtosuiteTM 88 60 63 96

Table 6.6: Test measures obtained on 157 vertical only recordings that includes bad
cases detected by algorithm (All values are in percentage)

Sensitivity Specificity PPV NPV

Custom Algorithm 93 88 100 95

OtosuiteTM 93 60 71 96

Table 6.7: Test measures obtained on 144 vertical only recordings that excludes bad
cases detected by custom algorithm (All values are in percentage)
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Although details of the algorithm employed by OtosuiteTM are unknown,

some of the false positive cases output by OtosuiteTM can be attributed to the

peak SPV being detected during artifacts, periods of head movement or during

patient drowsiness. However, periods of patient drowsiness sometimes also

cause false positives in the custom algorithm. As discussed earlier, OtosuiteTM

also fails to detect recordings with very bad data (e.g., Figure 6.5), which also

contribute to some of the false positives. In few true positive cases, OtosuiteTM

detected the peak SPV at a point where there is no nystagmus, leading to

outputs that are by fluke in such cases.
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Chapter 7

Discussion

7.1 Summary

Even though BPPV is found to be the most common cause of vertigo/ dizzi-

ness, patients presenting with dizziness and vertigo to the Emergency De-

partment (ED) have a high chance of being misdiagnosed (43%). BPPV can

be treated as well as diagnosed using simple maneuvers done by experts.

During the diagnostic maneuver, a patient with BPPV shows nystagmus (an

involuntary eye condition comprising of alternating saccades/QPs and slow

phases). Using VOG goggles to record patient’s eye movements, this condition

can be automatically diagnosed.

Automatic medical diagnosis can aid the ED practitioners in making better

diagnosis. However, currently employed system for nystagmus detection

in patients, the ICS Impulse OtosuiteTM, is found to have low specificity

(Chang et al., 2019). Thus, proposed algorithm aims to improve current state

of automatic nystagmus detection, thereby contributing to automatic medical

diagnosis of dizzy patients and address the issue of high rate of misdiagnosis.
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From our results, it can be seen that proposed algorithm performs better

than OtosuiteTM in detecting nystagmus when applied on 314 patient record-

ings from 103 patients. ROC curves show superior performance of custom

algorithm compared to the OtosuiteTM (Figures 6.1 - 6.4). With diagnostic test

measures (sensitivity, specificity, PPV and NPV) having higher values than

OtosuiteTM overall (Tables 6.2 - 6.7) conveying higher accuracy of nystagmus

detection by the proposed algorithm compared to OtosuiteTM, which tends to

produce more false positives.

The peak SPV corresponding to the nystagmus due to BPPV in the differ-

ent canals can fall into different velocity ranges. While there are reports of

BPPV patients showing SPV as low as 4o/s (Han, Oh, and Kim, 2006) in their

nystagmus, in general, an SPV threshold of 5o/s resulted in better sensitivity

and specificity measurements for the present study. However, the ROC curves

(in Figures 6.1 - 6.3) are not limited to this threshold of 5o/s, as they represent

the overall performance of the algorithm at different threshold values.

The proposed algorithm first identifies and removes the quick phases after

which an SPV estimate is obtained for quantifying the intensity of nystagmus

in the patient. Quick phases are generated by the same mechanisms as that

saccades, and hence this algorithm can also be used for saccade detection.

No prior user experience or user training is necessary for employing the

current algorithm. The proposed algorithm is modular, comprising of four

stages: preprocessing, peak detection and selection, clustering and SPV esti-

mation. Each module can be improved independently, if the user chooses to.

Changing one stage will not affect the subsequent stages.
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The proposed method employs a two-pass system for identifying saccades

in comparison to the traditional saccade detection algorithms. Overall velocity

peaks are detected and subsequently a subset of them are chosen based on

a computed threshold. Peak selection involves the use of rate factor based

on the physiological observation that rate of saccades is limited to 1-6 per

second. The peak selection ensures that data points are balanced and possess

the capacity to form clusters, thus aiding in the subsequent clustering stage.

As can be seen, this is a novel top-down approach that is robust, easy to

understand and implement and unsupervised.

In supervised learning, recent years has seen steady increase in the use of

neural networks or artificial intelligence for purposes of medical diagnosis. As

discussed in chapter 3, various neural networks have been developed for eye

movement detection on eye tracking data. For one thing, comparison between

the different proposed neural networks has not yet been achieved. Further,

application of these networks require laborious and time-consuming manual

labeling of data as they depend on the type of eye tracker used to collect

the data. Current widely used CNN architectures cater to high dimensional

data and hence neural networks have been successful for images i.e., multi-

dimensional inputs. However, successful networks for accurate classification

of 1D signal are yet to be designed.

Clustering is chosen since it is an unsupervised method and has the

promise of robust classification. Clustering techniques do not require model

training and are not dependent on the type of eye tracker used for data collec-

tion. Most importantly, they do not require user training. In the present study,
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Spectral Clustering was chosen for classifying the selected peaks.

Recently developed density based clustering methods are sensitive to pa-

rameters and are highly dependent on the scale of features whereas spectral

clustering is not. Traditional clustering algorithms involve use of euclidean

distance metrics to measure similarity between data points. These types

of distance metrics assume a convex shape to the underlying clusters and

hence traditional clustering algorithms would not yield good results. Spectral

clustering is evolved to find complex clusters in different shapes such as inter-

twined spirals, non-linear or other complex structures. Whereas traditional

methods such as K-means and generative models fail to identify such type

of complex clusters. Moreover, traditional probabilistic clustering algorithms

(e.g., mixture models) involve Expectation Maximization step that needs to

have multiple starting points in order to reach the ideal minima.

Current method does not combine horizontal and vertical components

and this arises from the fact that nystagmus can occur in either component,

independent of the other. However, this separation of components is also

advantageous compared to when methods that combine them since the peak

velocity of a saccade can differ by few samples in these two components.

This difference in location of saccade peak velocity generally arises from

errors in data acquisition and it can be exacerbated by filtering or other signal

processing techniques. This in turn affects the detected beginning and ending

points of the saccade. Thus, it is better to find saccades and their duration in

the relative time reference of the respective components rather than combining

them.
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Bed-side VOG recordings from patients are highly susceptible to artifacts

and different kinds of noise. Most proposed algorithms are typically useful

for laboratory settings where eye movement data is recorded under controlled

conditions resulting in data that is comparatively very low in artifacts and

noise. The fact that current algorithm is able to detect quick phases (which are

nothing but saccades) in non-ideal conditions from patients while being able

to provide accurate detection of nystagmus is promising.

A key feature of the current algorithm is its ability to identify bad eye

movement recordings that are corrupted with artifacts/ noise to such an

extent that it is impossible to provide an outcome even manually. In such

cases, OtosuiteTM gives an almost random output as can be seen by the AUC

of its ROC curve, in Figure 6.4, when applied on the 26 cases which were

detected as bad eye recordings by the custom algorithm.

However, in some cases present algorithm fails to detect few apparent

saccades even though saccades with lower amplitude are detected. This could

be due to the feature engineering. Feature selection needs to be looked into in

future studies on eye movement detection algorithms. Also, current algorithm

would give false positives in high noise eye movement recordings having zero

to very few saccades. This can be attributed to the top-down approach used

for the proposed method. Additionally, detection of periods when patient

becomes drowsy would be highly useful, especially in nystagmus detection

as these periods can lead to a high SPV estimate.
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Below is a summary of the salient points of the proposed method:

1. Separated analysis of horizontal and vertical components ensures robust

saccade onset and offset detection

2. Algorithm is modular, ensuring that different stages can be improved

independently

3. No user training or user experience is necessary for implementation

4. Novel top-down approach and peak selection using rate factor ensures

balanced dataset for clustering

5. Unsupervised method: Clustering does not require any data training or

labeled dataset

6. Two-pass system for saccade detection

7. Can be applied to dynamic as well as static tasks

8. Ability to detect corrupted recordings of data (can distinguish bad data

from good data)

9. Good results even in non-ideal data collection settings: bedside record-

ings from patients are susceptible to more noise and artifacts than con-

trolled laboratory conditions.

10. Most of the thresholds are based on physiological parameters

7.2 Future Work

Future steps for the present study of developing a robust nystagmus detection

method are as detailed below:

1. Procedure for detection of periods when patient is drowsy.
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2. Validation of present algorithm on eye movement data recorded from

other eye trackers.

3. Comparison with current state-of-the-art saccade detection algorithms.

4. Integration of the proposed algorithm with other automatic medical

diagnostic algorithms.
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Appendix A

Algorithm Variables

A.1 Thresholds

Threshold Value Setting

Data Pre-processing

Eye position 1000o When eye position is out of range

Eye Velocity 500o/s When eye velocity is out of range

Acceleration 50000o/s2 When acceleration is out of range

Head velocity 10o/s
When patient’s head is moved

during diagnosis

Saccade rate 15
Physiological limit of max

saccades/s in humans

Velocity (for detecting
software artifacts)

25o/s
To detect software artifacts due to
eyelashes or loss of pupil center

Peak Detection and Selection

Percentage of highest
velocities

5 To estimate initial SPV baseline

Inter-saccadic interval 30ms Physiological limit

Minimum peak
threshold

20o/s
Minimum eye velocity threshold

to select peaks
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Maximum threshold 50o/s
Maximum eye velocity threshold

to select peaks

Minimum R2 3
Minimum number of saccades/s

during free viewing

Maximum R2 15
Maximum number of saccades/s

for humans

Table A.1: Thresholds Different thresholds, their values and settings used in the al-
gorithm. Most of these thresholds are based on physiology of human eye movements
and are hence true for eye recordings.

A.2 Windows

Window Value Setting

Data Pre-processing

Interpolable missing
frames

3
Maximum consecutive number of

missing frames to interpolate

Flat periods 3
Consecutive samples that are

equal in value

Removal of artifacts 200ms
Total number of peaks within this

window indicate presence of
artifacts/ spiky data

Interpolable spikes 1
One-sample spikes in between
good data can be interpolated

Bad data padding 200ms
Padding of data to be removed
around the detected bad data

Head velocity padding 400ms
Padding of data to be removed

around head movement

Peak Detection and Selection

Smoothing velocity 5
Number of velocity samples to

average over for decreasing noise
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Start/end point
detection (or period

detection)
300ms

Window before/ after a peak to
search in for its start/ end points

Peak selection window 1s
Window to select peaks in

according to rate, R2

Feature Extraction

Window before/ after
selected peak

100ms
To compute baseline/ noise

characteristics

Table A.2: Windows Different windows, their values and settings used in the signal
processing of the eye recording data.

A.3 Parameters

Window Value Setting

Peak Detection and Selection

Lambda λ 5
Multiplication factor on MAD to

get peak threshold and R1

Rate factor F 3
Multiplication factor on the

obtained R1 to get R2

Clustering

Sigma σ 3
A measure of spread of

transformed features in during
clustering

Table A.3: Parameters Different parameters, their values and settings used in the
signal processing of the eye recording data.
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Appendix B

Feature Selection

B.1 Using Random Forest

Figure B.1: Feature importance obtained using Random Forest (executed in python)
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B.2 Using Spearmann’s Coefficient Matrix

Figure B.2: Feature importance depicted using Spearmann correlation coefficient
matrix
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