168 research outputs found

    Gaussian process regression with automatic relevance determination kernel for calendar aging prediction of lithium-ion batteries

    Get PDF
    Battery calendar aging prediction is of extreme importance for developing durable electric vehicles. This paper derives machine learning-enabled calendar aging prediction for lithium-ion batteries. Specifically, the Gaussian process regression (GPR) technique is employed to capture the underlying mapping among capacity, storage temperature, and SOC. By modifying the isotropic kernel function with an automatic relevance determination (ARD) structure, high relevant input features can be effectively extracted to improve prediction accuracy and robustness. Experimental battery calendar aging data from nine storage cases are utilized for model training, validation, and comparison, which is more meaningful and practical than using the data from a single condition. Illustrative results demonstrate that the proposed GPR model with ARD Matern32 (M32) kernel outperforms other counterparts and can achieve reliable prediction results for all storage cases. Even for the partial-data training test, multi-step prediction test and accelerated aging training test, the proposed ARD-based GPR model is still capable of excavating the useful features, therefore offering good generalization ability and accurate prediction results for calendar aging under various storage conditions. This is the first known data-driven application that utilizes the GPR with ARD kernel to perform battery calendar aging prognosis

    Data-driven nonparametric Li-ion battery ageing model aiming at learning from real operation data – Part A : storage operation

    Get PDF
    Conventional Li-ion battery ageing models, such as electrochemical, semi-empirical and empirical models, require a significant amount of time and experimental resources to provide accurate predictions under realistic operating conditions. At the same time, there is significant interest from industry in the introduction of new data collection telemetry technology. This implies the forthcoming availability of a significant amount of real-world battery operation data. In this context, the development of ageing models able to learn from in-field battery operation data is an interesting solution to mitigate the need for exhaustive laboratory testing

    Data-driven nonparametric Li-ion battery ageing model aiming at learning from real operation data - Part B : cycling operation

    Get PDF
    Conventional Li-ion battery ageing models, such as electrochemical, semi-empirical and empirical models, require a significant amount of time and experimental resources to provide accurate predictions under realistic operating conditions. At the same time, there is significant interest from industry in the introduction of new data collection telemetry technology. This implies the forthcoming availability of a significant amount of real-world battery operation data. In this context, the development of ageing models able to learn from in-field battery operation data is an interesting solution to mitigate the need for exhaustive laboratory testing. In a series of two papers, a data-driven ageing model is developed for Li-ion batteries under the Gaussian Process framework. A special emphasis is placed on illustrating the ability of the Gaussian Process model to learn from new data observations, providing more accurate and confident predictions, and extending the operating window of the model. The first paper of the series focussed on the systematic modelling and experimental verification of cell degradation through calendar ageing. Conversantly, this second paper addresses the same research challenge when the cell is electrically cycled. A specific covariance function is composed, tailored for use in a battery ageing application. Over an extensive dataset involving 124 cells tested during more than three years, different training possibilities are contemplated in order to quantify the minimal number of laboratory tests required for the design of an accurate ageing model. A model trained with only 26 tested cells achieves an overall mean-absolute-error of 1.04% in the capacity curve prediction, after being validated under a broad window of both dynamic and static cycling temperatures, Depth-of-Discharge, middle-SOC, charging and discharging C-rates

    Data-driven nonparametric Li-ion battery ageing model aiming at learningfrom real operation data – Part A: Storage operation

    Get PDF
    Conventional Li-ion battery ageing models, such as electrochemical, semi-empirical and empirical models, require a significant amount of time and experimental resources to provide accurate predictions under realistic operating conditions. At the same time, there is significant interest from industry in the introduction of new data collection telemetry technology. This implies the forthcoming availability of a significant amount of real-world battery operation data. In this context, the development of ageing models able to learn from in-field battery operation data is an interesting solution to mitigate the need for exhaustive laboratory testing. In a series of two papers, a data-driven ageing model is developed for Li-ion batteries under the Gaussian Process framework. A special emphasis is placed on illustrating the ability of the Gaussian Process model to learn from new data observations, providing more accurate and confident predictions, and extending the operating window of the model. This first paper focusses on the systematic modelling and experimental verification of cell degradation through calendar ageing. A specific covariance function is composed, tailored for use in a battery ageing application. Over an extensive dataset involving 32 cells tested during more than three years, different training possibilities are contemplated in order to quantify the minimal number of laboratory tests required for the design of an accurate ageing model. A model trained with only 18 tested cells achieves an overall mean-absolute-error of 0.53% in the capacity curves prediction, after being validated under a broad window of both dynamic and static temperature and SOC storage conditions.This investigation work was financially supported by ELKARTEK (CICe2018 -Desarrollo de actividades de investigacion fundamental estrategica en almacenamiento de energia electroquimica y termica para sistemas de almacenamiento hibridos, KK-2018/00098) and EMAITEK Strategic Programs of the Basque Government. In addition, the research was undertaken as a part of ELEVATE project (EP/M009394/1) funded by the Engineering and Physical Sciences Research Council (EPSRC) and partnership with the WMG High Value Manufacturing (HVM) Catapult. Authors would like to thank the FP7 European project Batteries 2020 consortium (grant agreement No. 608936) for the valuable battery ageing data provided during the course of the project

    Data-driven nonparametric Li-ion battery ageing model aiming at learningfrom real operation data - Part B: Cycling operation

    Get PDF
    Conventional Li-ion battery ageing models, such as electrochemical, semi-empirical and empirical models, require a significant amount of time and experimental resources to provide accurate predictions under realistic operating conditions. At the same time, there is significant interest from industry in the introduction of new data collection telemetry technology. This implies the forthcoming availability of a significant amount of real-world battery operation data. In this context, the development of ageing models able to learn from in-field battery operation data is an interesting solution to mitigate the need for exhaustive laboratory testing. In a series of two papers, a data-driven ageing model is developed for Li-ion batteries under the Gaussian Process framework. A special emphasis is placed on illustrating the ability of the Gaussian Process model to learn from new data observations, providing more accurate and confident predictions, and extending the operating window of the model. The first paper of the series focussed on the systematic modelling and experimental verification of cell degradation through calendar ageing. Conversantly, this second paper addresses the same research challenge when the cell is electrically cycled. A specific covariance function is composed, tailored for use in a battery ageing application. Over an extensive dataset involving 124 cells tested during more than three years, different training possibilities are contemplated in order to quantify the minimal number of laboratory tests required for the design of an accurate ageing model. A model trained with only 26 tested cells achieves an overall mean-absolute-error of 1.04% in the capacity curve prediction, after being validated under a broad window of both dynamic and static cycling temperatures, Depth-of-Discharge, middle-SOC, charging and discharging C-rates.This investigation work was financially supported by ELKARTEK (CICe2018 - Desarrollo de actividades de investigacion fundamental estrategica en almacenamiento de energia electroquimica y termica para sistemas de almacenamiento hibridos, KK-2018/00098) and EMAITEK Strategic Programs of the Basque Government. In addition, the research was undertaken as a part of ELEVATE project (EP/M009394/1) funded by the Engineering and Physical Sciences Research Council (EPSRC) and partnership with the WMG High Value Manufacturing (HVM) Catapult. Authors would like to thank the FP7 European project Batteries 2020 consortium (grant agreement No. 608936) for the valuable battery ageing data provided during the project

    Overview of Machine Learning Methods for Lithium-Ion Battery Remaining Useful Lifetime Prediction

    Get PDF
    Lithium-ion batteries play an indispensable role, from portable electronic devices to electric vehicles and home storage systems. Even though they are characterized by superior performance than most other storage technologies, their lifetime is not unlimited and has to be predicted to ensure the economic viability of the battery application. Furthermore, to ensure the optimal battery system operation, the remaining useful lifetime (RUL) prediction has become an essential feature of modern battery management systems (BMSs). Thus, the prediction of RUL of Lithium-ion batteries has become a hot topic for both industry and academia. The purpose of this work is to review, classify, and compare different machine learning (ML)-based methods for the prediction of the RUL of Lithium-ion batteries. First, this article summarizes and classifies various Lithium-ion battery RUL estimation methods that have been proposed in recent years. Secondly, an innovative method was selected for evaluation and compared in terms of accuracy and complexity. DNN is more suitable for RUL prediction due to its strong independent learning ability and generalization ability. In addition, the challenges and prospects of BMS and RUL prediction research are also put forward. Finally, the development of various methods is summarized

    Comparing Machine Learning Strategies for SoH Estimation of Lithium-Ion Batteries Using a Feature-Based Approach

    Get PDF
    Lithium-ion batteries play a vital role in many systems and applications, making them the most commonly used battery energy storage systems. Optimizing their usage requires accurate state-of-health (SoH) estimation, which provides insight into the performance level of the battery and improves the precision of other diagnostic measures, such as state of charge. In this paper, the classical machine learning (ML) strategies of multiple linear and polynomial regression, support vector regression (SVR), and random forest are compared for the task of battery SoH estimation. These ML strategies were selected because they represent a good compromise between light computational effort, applicability, and accuracy of results. The best results were produced using SVR, followed closely by multiple linear regression. This paper also discusses the feature selection process based on the partial charging time between different voltage intervals and shows the linear dependence of these features with capacity reduction. The feature selection, parameter tuning, and performance evaluation of all models were completed using a dataset from the Prognostics Center of Excellence at NASA, considering three batteries in the dataset

    Robust State of Health Estimation for Lithium-Ion Batteries Using Machines Learning

    Get PDF
    • …
    corecore