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Abstract

Automobile vehicles are an integral part of our lives. They are used in a plethora of applications
such as passenger commuting, goods transportation, travel services, emergency services, delivery
services, etc. Traditional automobile vehicles use hydrocarbon fuels such as petrol or diesel as their
energy source. These types of automobile vehicles are used by the vast majority of the population.

Over the years, usage of these vehicles has raised concerns about air pollution, global warming,
fossil fuel depletion, etc., since these vehicles emit greenhouse gases such as carbon dioxide, nitrous
oxide and methane which are byproducts of the combustion of hydrocarbon fuels that are required
for the vehicles’ movement.

This has led to a boom in the manufacturing of automobile vehicles that run on alternative green
energy that is environmentally friendly. These types of automobile vehicles generally use electrical
energy as the alternative energy which is generally supplied by lithium-ion batteries (LIB).

Lithium-ion batteries have a limited lifetime and can not be used after they have reached their
end of life. Using a lithium-ion battery after it has reached its end of life can lead to serious
consequences and can sometimes cause catastrophic battery explosion. Also, range anxiety among
drivers and potential customers has become a barrier in the sales of electric vehicles. Hence,
accurate prediction remaining useful life of lithium-ion batteries is of utmost importance in the
domain of electric vehicles.

The above mentioned issues can be addressed using accurate RUL prediction models. Thus, as
part of this research, machine learning models such as Support Vector Machine (SVM), Long
Short Term Memory (LSTM) network and Similarity based Model (SBM) are implemented to
predict the remaining useful life of a set of lithium-ion batteries. The effect of resting of batteries
(calendar aging) is also considered. It is observed that the LSTM models perform better than
the SVM models and they take much less time to train than the latter. SBM performs better
than both LSTM models and SVM models and they can be trained faster than LSTM and SVM
models. It is also observed that the resting of batteries impacts their remaining useful life.
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Chapter 1

Introduction

The main area of focus of this research is to predict the remaining useful life (RUL) of a lithium-
ion battery (LIB) onboard an electric vehicle (EV) in real-time. The remaining useful life of a
lithium-ion battery is affected by various factors such as voltage, current, temperature, state of
charge (SOC), state of health (SOH), resting duration, etc. In this research, we implement ma-
chine learning models that predict the RUL of a lithium-ion battery. Additionally, we also show
that duration of rest of a battery has a significant effect on its RUL.

In Section 1.1, we motivate the importance of this study. In Section 1.2, we define the scope of
this study. In Section 1.3, we briefly discuss the research approach and methodology used in this
research. In Section 1.4, we present the outline of this thesis.

1.1 Motivation

Conventional automobile vehicles, also known as internal combustion engine vehicles (ICEV), use
hydrocarbon fuels as their source of energy. These vehicles produce poisonous gases such as carbon
dioxide, nitrous oxide and methane, which are the byproducts of hydrocarbon fuel combustion.
The emission of these gases has raised concerns about air pollution and global warming. Extens-
ive use of these vehicles has also resulted in fossil fuel depletion. Thus, there is huge demand for
automobile vehicles that run on alternative green energy such as electricity.

Electric Vehicles (EVs) are becoming increasingly popular over the years. These vehicles are en-
vironmentally friendly as they run on green energy. Many automobile manufacturers have started
manufacturing electric vehicles and over the years there is a growing demand for electric vehicles.
EVs generally use lithium-ion batteries as their energy source.

When electric batteries are used in real-time, they are subjected to various factors such as temper-
ature changes, load changes, etc., which directly affect their degradation. Lithium-ion batteries
have a limited lifetime and cannot be used after they have reached their end of life. Using a
lithium-ion battery after it has reached its end of life can be dangerous. It can lead to a battery
fire incident or the battery may explode (P. Sun et al., 2020). While most of these fire incidents
are reported to have occurred during the charging of the battery, recently it was reported that
an electric vehicle caught fire while the vehicle was running (Herh, 2021). These battery fires are
lethal to the drivers and the passengers. Additionally, the harmful gases released during these fire
incidents are also poisonous (P. Sun et al., 2020).

Thus, to prevent catastrophic battery failure, accurate and timely prediction of remaining useful
life of a battery in an EV can update the driver and then the driver can take necessary action.

Remaining Useful Life prediction of lithium-ion batteries using machine learning 1



CHAPTER 1. INTRODUCTION

1.2 Scope

In this research, the research problem is to predict the RUL of the LIB in an EV. In this study,
we will implement the following RUL prediction models - Support Vector Regression (SVR), Long
Short Term Memory (LSTM) and Similarity based model (SBM). In this research, we consider
the effects of battery resting (calendar aging) on the RUL of LIBs. The data set used for this
research is having the data of eight LIBs. In this research, we are interested in implementing
RUL prediction models that return the point estimate of the RUL. The models developed in this
research work only on the data set provided by TNO and it may not work for a different data set.

1.3 Research Approach and Methodology

To develop machine learning models to predict the RUL of an LIB onboard an EV in real-time,
relevant battery health indicators and/or stress factors have to be selected from the data set. In
prognostics and health management (PHM), the health indicators of a system, in general, are the
properties of the system through which one can infer the present health of the system. The RUL
of a battery is directly impacted by the health of the battery. In general, a battery with higher
health would generally have a higher RUL as compared to a battery with lower health.

Also, appropriate evaluation metrics have to be selected to evaluate the performance of the machine
learning models. The task of predicting the RUL of LIB on-board an EV in real-time can be
categorized as a regression problem, as the predicted RUL is a continuous value. Hence, evaluation
metrics such as mean absolute error (MAE), mean absolute percentage error (MAPE), root mean
squared error (RMSE) and coefficient of determination (R2) are used to evaluate the different
RUL prediction models that will be implemented as part of this research. Also, the running time
of a model is an extremely important factor as the RUL prediction model will be used in real
time. An ideal RUL prediction model will typically take as less time as possible to generate the
prediction.

1.4 Thesis Outline

This thesis report is organized as follows. Chapter 2 covers preliminaries where we discuss about
the basic working principle of a lithium-ion battery. We also discuss briefly about battery aging,
lithium-ion battery form factors and battery management systems. We also introduce the battery
related terminology that are used throughout this report.

Chapter 3 comprises a literature review on some of the most commonly used lithium-ion battery
(LIB) degradation data sets and basic exploratory data analysis (EDA) is performed on the data
sets. Also, a detailed review on various methods and techniques to predict the RUL of LIBs is
presented. In Chapter 4, we formulate the problem of Remaining Useful Life (RUL) prediction of
lithium-ion battery (LIB) and we pose additional research questions that will be addressed as part
of this research. In Chapter 5, the TNO data set is described in detail. Exploratory Data Analysis
(EDA) is performed on the TNO data set, We then describe the various steps involved in data
cleaning, data pre-processing and feature engineering. In Chapter 6, various machine learning
models to predict the remaining useful life (RUL) of lithium-ion batteries (LIB) are explained.
In Chapter 7, the results obtained from the implemented machine learning models are discussed.
Finally, the conclusions, limitations and future work to be done in this research are discussed in
Chapter 8.

2 Remaining Useful Life prediction of lithium-ion batteries using machine learning



Chapter 2

Preliminaries

A good understanding of the structure and working of a lithium-ion battery is crucial in under-
standing the various factors that affect the RUL of the battery. In this chapter, several definitions
and terminologies related to LIBs are introduced which will be used throughout this thesis. In
Section 2.1.1, we describe the basic working principle of a lithium-ion battery. In Section 2.1.2,
we describe briefly the various LIB form factors. We define various terms and definitions related
to battery in Section 2.1.3. In Section 2.2, we describe regarding battery management systems
(BMS). In Section 2.3, we briefly describe about the aging in lithium-ion batteries.

2.1 Lithium-ion batteries

For an electric vehicle, the battery is the main source of energy. When EVs were first introduced,
they used lead-acid batteries as their energy source. The energy density of a lead-acid battery is
around 30 Wh/kg and in general, a lead-acid battery has a cycle life of around 300 cycles. The
energy density of lead-acid battery is very less when compared to the energy density of gasoline
used in internal combustion engine vehicles (ICEV) which is more than 10000 Wh/kg (Xiong,
2019). Hence, to match the performance of an ICEV, an EV with a lead-acid battery occupies
more space and it also increases the mass of the vehicle. Also, lead-acid batteries result in lead
emissions which are harmful to the environment.

The above shortcomings of a lead acid battery are overcome by a lithium-ion battery. The ad-
vantages of using lithium-ion batteries in EVs are as follows (Xiong, 2019).

1. Lithium-ion batteries (LIB) have very high specific energy (about 200 Wh/kg). It is much
higher compared to lead-acid batteries.

2. Lithium-ion batteries have a longer cycle life (about 2000) than lead acid batteries. LIBs,
when operated under a low depth of discharge, can be cycled more than 2000 cycles.

3. LIBs have a very low self-discharge rate (about 6% - 8%).

4. They are environmentally friendly. They are non-polluting batteries.

5. They have a high working voltage of (about 3.6 V).

6. LIBs can be manufactured in various form factors and thus, they easily meet the battery
layout requirements in EVs. Further details about these form factors are discussed in Section
2.1.2.

7. They can be charged or discharged at any time and this does not affect their performance.
Thus, lithium-ion batteries are memoryless.
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The smallest packaged unit of lithium-ion battery that is manufactured is known as a cell. A
single cell cannot power an EV. Hence, many cells are connected either in series or in parallel to
form a module. Several modules are then connected either in parallel or in series to form a battery
pack. A battery pack can supply enough power to power an EV (Team, 2008).

2.1.1 Functioning of a lithium-ion battery

The basic structure and working of a lithium-ion battery is illustrated in Figure 2.1. Both the
positive electrode and the negative electrode of the battery are immersed in the electrolyte. The
charging and discharging of the lithium-ion battery is achieved by inserting and releasing the lith-
ium ions between the positive and negative electrodes.

Figure 2.1: Illustration of the working principle of a Lithium-ion battery (Xiong, 2019)

During charging, the lithium ions move from the positive electrode into the electrolyte. The lith-
ium ions present in the electrolyte are driven to move toward the negative electrode as the lithium
ions in the electrolyte have a large concentration difference near the positive and negative elec-
trodes. Finally, the lithium ions are embedded in the negative electrode through the separator.
Meanwhile, the electrons in the external charging circuit move from the positive electrode to the
negative electrode to form a current. Reduction occurs at the negative electrode as it receives
electrons and oxidation occurs at the positive electrode as it loses electrons.

The discharging process is the opposite of the charging process. Lithium ions are released from
the negative electrode and are embedded back into the positive electrode. The electrons in the
external discharging circuit move from the negative electrode to the positive electrode through
the load, thereby driving the EV. Oxidation occurs at the negative electrode as it loses electrons,
whereas reduction occurs at the positive electrode since it receives the electrons.
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When a LIB is charged for the very first time, a solid interface film is formed between in the elec-
trolyte near the negative electrode. This film is called solid electrolyte interphase (SEI) film. It
prevents the negative electrode from corrosion and it also prevents the reduction reaction between
the electrolyte and the negative electrode. The SEI film constantly thickens or dissolves over time.
This results in a decrease in the number of lithium-ions and active materials available for recycling.
This is the primary reason for battery capacity decline.

2.1.2 Lithium-ion battery form factors

Lithium-ion batteries that are used in EVs are manufactured mainly in three form factors - cyl-
indrical cell, prismatic cell and pouch cell. Each form factor has its own advantages and disad-
vantages. Different EV original equipment manufacturers (OEM) use different LIB form factors
and no form factor satisfies all the requirements of the OEM. In this section, we briefly discuss
about the different LIB form factors.

2.1.2.1 Cylindrical cell

A cylindrical cell is one of the commonly used lithium-ion battery form factors. It comprises sheet-
shaped anodes, separators and cathodes. All these components are sandwiched, rolled and are
packed within a cylinder-shaped container (Arar, 2020). This form factor of lithium-ion battery
is one of the earliest form factors that was produced in bulk. The structure of a cylindrical cell is
illustrated in Figure 2.2.

Figure 2.2: Structure of a cylindrical cell. Source: (Arar, 2020)

A Cylindrical cell has several advantages. This form factor is well suited for automated manu-
facturing (Arar, 2020). The cylindrical shape of the cell evenly distributes the internal pressure
generated from the side reactions over the cell surface. This feature makes cylindrical cell form
factor withstand a much higher internal pressure while still being intact (Arar, 2020).

The circular cross-section of the cylindrical form factor does not allow to completely utilize the
battery space. Hence, the packing density of this form factor is low. However, because of the
presence of cavities between the cells, this form factor allows for better thermal management.
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2.1.2.2 Prismatic cell

A prismatic cell consists of large sheets of anodes, separators and cathodes sandwiched and rolled
up similar to a cylindrical cell. However, the components of the prismatic cell are fit within a
metallic or a plastic container in cubic form (Arar, 2020). The structure of a prismatic cell is
illustrated in Figure 2.3.

The parts of the separator sheet and electrode that are close to the corners of the cubic container
experience more stress than others. This can lead to damage of the electrode coating and may
lead to uneven electrolyte distribution.

Since the prismatic cells are enclosed within a cubic container, cells of this form factor can be
packed together compactly. Unlike cylindrical cells, prismatic cells completely utilize the battery
space. However, this compact packing requires a complex thermal management system as there
are no cavities between the cells in the pack.

Figure 2.3: Structure of a prismatic cell. Source: (Arar, 2020)

2.1.2.3 Pouch cell

A pouch cell is another commonly used battery form factor. In a pouch cell, the separator layers
and the electrode are stacked atop one another unlike cylindrical cells and prismatic cells where
the anode, cathode and separator layers are sandwiched and rolled up. The contents of the pouch
cell are enclosed within a container that is not rigid. The components of a pouch cell are packed
and sealed within a flexible foil that acts as a cell container. The structure of a pouch cell is
illustrated in Figure 2.4.

Figure 2.4: Structure of a pouch cell. Source: (Arar, 2020)
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Since pouch cells do not have rigid containers, they weigh less as compared to cylindrical cells
and prismatic cells. Pouch cells are prone to expansion during usage as the thin boundaries of the
pouch cell can not withstand the internal pressure created by the gases that are released during
cell operation. This prevents compact packing pouch cells.

2.1.3 Battery related terminology

In this section, we define some of the commonly used battery related terminology.

Beginning of Life (BOL) : The beginning of life (BOL) of a battery is the time point at which
the battery has just started operating.

End of Life (EOL) : The end of life (EOL) of a battery is the time point since the beginning of
life (BOL) of the battery after which the battery does not operate as per its specifications.

State of Charge (SOC) : SOC of a battery is the available capacity of the battery. SOC is
generally expressed as a ratio of the available battery capacity to the maximum capacity. SOC
is computed based on the values of current, temperature and voltage (Omariba, L. Zhang and
D. Sun, 2018).

Depth of Discharge (DOD) : The percentage of the battery capacity that is discharged during
a load cycle is known as depth of discharge (DOD). Typically, DOD is expressed as percentage of
the maximum capacity (Omariba, L. Zhang and D. Sun, 2018).

State of Health (SOH) : SOH of a battery is the ratio of its present maximum charge capacity
to the maximum charge capacity at its beginning of life (Omariba, L. Zhang and D. Sun, 2018).
SOH is computed as shown in equation 2.1

SOH =
Qact

QR
∗ 100% (2.1)

where Qact is the actual capacity of the battery and QR is its rated capacity.

State of Power (SoP) : The state of power (SOP) of a battery is the ratio of peak power to
nominal power (Xiang et al., 2018). The peak power of a battery is defined as the power that the
battery can deliver persistently within the specified voltage, SoC, current and power constraints
for T seconds (Plett, 2004).

Remaining useful life (RUL) : The remaining time or the remaining number of load cycles the
battery has during which it will be able to maintain its operating requirements is known as the
remaining useful life (RUL) of a battery. Alternatively, RUL is also the length of time from the
present time to the end of life (Omariba, L. Zhang and D. Sun, 2018). When the battery is used
in an electric vehicle (EV), the remaining useful life of the battery can also be expressed in terms
of the remaining distance that the battery can power the electric vehicle. RUL of a battery when
expressed as a remaining distance for which it can power an EV before reaching the end of life
(EOL) is known as remaining driving range (RDR). RUL is computed as follows.

RUL = TEOL − Tpresent (2.2)

where RUL represents the current remaining useful life of the battery, TEOL represents the time
at end of life (EOL) of the battery, Tpresent represents the current time instance at which the RUL
is computed.
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2.2 Battery management systems

A battery management system (BMS) is a system present in an electric vehicle (EV) that manages
and ensures proper functioning of the battery. The schematic diagram of a BMS is shown in Fig-
ure 2.5. BMS verifies and ensures the reliability and safety of the battery. It also takes necessary
actions on the battery when it detects irregular conditions. A battery management system con-
tains a sampling unit that is responsible for the collection of battery temperature, voltage, current
and other required information from the battery pack as well as from the individual cells within
the battery pack. BMS also contains several computation algorithms in the control circuit which
estimate the state of health (SOH), state of charge (SOC), state of power (SOP) and remaining
useful life (RUL) of the battery (Xiong, 2019).

Figure 2.5: A schematic diagram of a Battery Management System (BMS) (Xiong, 2019)

Some of the basic functionalities of a BMS are battery state monitoring, data acquisition, en-
ergy management, thermal management, battery state monitoring and battery data management
(Xiong, 2019).

2.3 Battery ageing

Lithium-ion batteries have a limited useful life and they undergo irreversible capacity loss when
subjected to repeated charging and discharging and also when kept idle. The capacity loss of a
lithium-ion battery due to repeated repeated charging and discharging is called as cyclic aging.
The capacity loss of a lithium-ion battery when it is at rest is called calendar aging.

2.3.1 Cyclic Aging

The irreversible capacity loss that a lithium-ion battery undergoes when it is discharged and
charged repeatedly is called cyclic aging. The capacity loss is dependent on the battery’s state of
charge (SOC), voltage, current and temperature. As a result, several factors play a role in this
type of ageing. High operating temperatures speeds up the degradation process (Barré et al., 2013).
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2.3.2 Calendar Aging

Calendar ageing refers to any ageing processes that cause a battery cell to degrade without being
subjected to charge-discharge cycle. It is an important concern in EVs as most of the times the
EVs will be in rest. The growth of passivation layers at the electrode–electrolyte interfaces is the
major cause of calendar ageing (Keil et al., 2016).
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Chapter 3

Literature Review

In this chapter, the literature review regarding this research presented. A brief overview of various
remaining useful life (RUL) prediction methodologies is presented. In section, we review some of
the commonly used publicly available lithium-ion battery degradation data sets.

3.1 Types of RUL prediction data sets

The data used to predict the RUL of a system can be classified into three categories as illustrated
in Figure 3.1 - lifetime data, run-to-failure data and threshold data.

In lifetime data, the probability distribution of the failure times of the system are acquired and it
is used to predict the RUL. Figure 3.2 shows the probability of a battery reaching its end of life
(EoL) given the number of cycles the battery is in operation (Baru, 2018).

Figure 3.1: Plot showing SOH vs Cycles for the LIBs in NASA data set

In run-to-failure data, the entire degradation history from the beginning of life (BoL) to end of
life (EoL) of similar systems are acquired. The RUL of a new test system can be predicted based
on the RUL values of the degradation histories of the systems that resemble closely. Figure 3.3
illustrates the RUL prediction of a test system (highlighted in red) given the entire degradation
histories of similar systems (highlighted in light blue).
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Figure 3.2: Illustration of RUL prediction using lifetime data. Source: (Baru, 2018)

When the run-to-failure data is unavailable and if the failure threshold of the system is known,
then the RUL of such systems can be predicted when the system health indicator value crosses
the known failure threshold. The RUL of a test system can be predicted by forecasting the health
indicator and RUL can be computed as the time taken by the system to reach the failure threshold
from its present state. Figure 3.4 illustrates the computation of RUL using threshold data.

Figure 3.3: Illustration of RUL prediction using run-to-failure data. Source: (Baru, 2018)
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Figure 3.4: Illustration of RUL prediction using threshold data. Source: (Baru, 2018)

3.2 A review of publicly available data sets

There are many lithium-ion battery (LIB) degradation data sets that are publicly available. A
list of publicly available lithium-ion battery data sets are aggregated and reviewed in a review
paper published by Reis et al. (2021). In this section, we review some of the most commonly used
publicly available LIB degradation data sets.

3.2.1 NASA Data set

The lithium-ion battery degradation data set published by NASA Ames Prognostics Center of Ex-
cellence (PCoE) is one of the most commonly used data sets to develop machine learning models
for State of Charge (SOC), State of Health (SOH) and Remaining Useful Life (RUL) prediction.
This data set contains the run-to-failure data of 4 LIBs, which are labeled as B0005, B0006, B0007
and B0018. These batteries were subjected to charging in a constant current (CC) mode at 1.5A.
The charging was performed until the battery voltage reached 4.2 V. Then the batteries were
charged in a constant voltage (CV) mode until the charge current dropped to 20 mA.

This is then followed by discharging, where the batteries were discharged at a constant current
(CC) level of 2A until the battery voltage fell to 2.7, 2.5 and 2.2 V for batteries B0005, B0006 and
B0007 respectively. The impedance values of the batteries were measured through an Electro-
chemical Impedance Spectroscopy (EIS) frequency sweep from 0.1 Hz to 5 kHz. voltage, current
and temperature values for each cycle for each of the batteries were acquired during the experiment.

Frequent charge and discharge cycles of the batteries resulted in accelerated aging of the batter-
ies. The experiments and measuring battery parameters such as voltage, current and temperature
were stopped when the batteries reached their end of life (EOL), .i.e., when the capacity of the
batteries reached 70% of their initial capacity value (from 2Ahr to 1.4Ahr) (Saha and Goebel,
2007). Figure 3.5 shows the capacity degradation of 4 LIBs in the NASA data set.
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Figure 3.5: Plot showing SOH vs Cycles for the LIBs in NASA data set

3.2.2 CALCE Data set

The CALCE data set was published by the Center for Advanced Life Cycle Engineering (CALCE)
at University of Maryland (Pecht, n.d.) and it contains data of several sets of batteries that were
subjected to degradation by repeated charging and discharging.

The data for the first set of batteries were acquired by testing 15 Lithium Cobalt (LCO) prismatic
cells. The cells are grouped into 6 groups based on the experimental conditions. The cells are at
cycled at a room temperature of 23 ◦C. The cells are subjected to diverse range of partial charging
and discharging. The data for this set of cells contains measurements of voltage, current, battery
internal resistance, impedance, discharge capacity and charge capacity. The detailed measurement
data for each battery cycle is stored in a separate file. The measurements from the batteries are
acquired until the batteries end of life, i.e., until they reach 80% SOH.

The second set contains measurements of 12 LCO prismatic cells. The cells have a rated capacity
of 1.35Ah. Similar to the first of cells used in this data set, the second set of cells are also grouped
into 6 groups. The various parameters measured are the same as that of the first set of cells.

The third set contains measurements of 16 LCO pouch cells. The cells have a rated capacity of
1.5Ah. The cells are cycled at controlled temperature range of 23 ◦C to 27◦C. The data for this
set of cells contains the measurements of voltage, current and battery capacity.

3.2.3 Oxford Data set

The Oxford Battery Degradation data set contains measurements of battery aging data from 8
small lithium-ion pouch cells (Birkl, 2017). All the cells used for testing were tested at 40oC. The
required temperature during testing was maintained with the help of a thermal chamber. The cells
under test were exposed to a constant current constant voltage (CCCV) charging profile, followed
by a drive cycle discharging profile. The discharging profile was obtained from the urban Artemis
profile. The measurements were taken every 100 cycles (Birkl, 2017).
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Figure 3.6 illustrates the variation of battery temperature w.r.t time for various battery cycles for a
battery in the Oxford data set. From this figure, it can be observed that the battery temperature
increases when the battery is subjected to repeated charge discharge cycles. This increase in
temperature is an indicator of battery aging (Nuhic et al., 2013). Figure 3.7 shows the graph of
voltage vs time for different battery cycles for a battery in the Oxford data set.

Figure 3.6: Plot of Battery Temperature vs Time of a battery in Oxford data set.

Figure 3.7: Plot of Voltage vs Time of a battery in Oxford data set.
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3.2.4 Toyota Research Institute Data set

This lithium-ion battery degradation data set is published by Toyota Research Institute and it
contains the run to failure (RTF) degradation data of 124 commercial lithium-ion batteries where
each battery contains several lithium-ion phosphate (LFP) / graphite cells. The specifications of
the cell used is shown in table B.2. The batteries were cycled at a constant temperature of 30◦ C
and the temperature was controlled by a temperature chamber.

The main objective behind this data acquisition was to optimize the fast charging of the lithium-
ion batteries. All the cells used to acquire the data are either charged with a single-step or two-step
fast charging policy. The format of the charging policy is ”C1(Q1)-C2”, where C1 and C2 are
the first and second constant current (CC) charging steps and Q1 is the state of charge (SOC) in
percentage at which the currents switch. C2, which is the second current step in the fast charging
policy, ends at 80% SOC followed by constant current constant voltage (CCCV) charging at the
C-rate of 1C. All the cells discharge at a C-rate of 4C (Severson, 2019).

Data generated due to the cycling of the batteries were logged from cycle 2 until the end of life
(EOL) of the batteries. A SOH level of 80% is considered to be the EOL of the battery. The
acquired data contains in-cycle measurements of current, voltage, charge capacity, discharge ca-
pacity and temperature. In addition to the in-cycle measurements, the acquired data contains
the per cycle measurements of internal resistance, capacity and charge time. A plot of discharge
capacity vs cycles for the data set is shown in Figure 3.8

Figure 3.8: Plot of discharge capacity vs cycles of the lithium-ion battery degradation in the
Toyota Research Institute (TRI) data set.

3.3 A review on RUL prediction methodologies

The RUL prediction methodology can be broadly classified into four methodologies: physics-based
methodology, experimental-based methodology, data-driven methodology and hybrid methodology.
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(Ahmadzadeh and Lundberg, 2014). This is illustrated in Figure 3.9.

Figure 3.9: An overview of different RUL methodologies

Physics-based methodology for Remaining Useful Life(RUL) prediction of a system can be used,
given that there is an accurate theoretical model of the system. With a better understanding of
the system degradation, these models can be updated accordingly, which will, in turn, improve
the overall accuracy of the RUL prediction. This approach for RUL prediction is typically used
to model the crack propagation in gears and wear corrosion.

Experimental-based methodology for RUL prediction uses probabilistic models and/or stochastic
models which model the life cycle or the degradation of the system under consideration. One of
the key features of this methodology is that it also considers the data and knowledge regarding the
system gathered by experience. This approach is used to predict the RUL life of systems over a
wide range of domains such as chemical industries, energy industries, manufacturing industries, etc.

Data-driven methodology relies heavily on the data to predict the RUL of the system. This ap-
proach does not require product knowledge to predict the RUL. The performance and accuracy of
the RUL prediction of a system using this approach depends on the quality and quantity of the
available data. This approach leverages data analysis and machine learning techniques to gener-
ate predictions for the RUL of the system. Some of the machine learning techniques used in this
methodology are Support Vector Machines (SVM), Gaussian Process Regressor (GPR), Artificial
Neural Network (ANN), Auto-Regressive Integrated Moving Average (ARIMA) and Decision Tree
Regressor. This methodology can be used to predict the RUL of a wide range of systems such as
batteries, wind turbines. A detailed overview of several existing RUL prediction models based on
the data-driven methodology is presented in Section 3.4

In hybrid methodology, the RUL prediction systems generally make use of more than one RUL
prediction methodology for better performance. However, they are computationally expensive. A
detailed overview of several existing RUL prediction models based on the hybrid methodology is
presented in Section 3.5.

3.4 RUL prediction using data-driven methodology

3.4.1 Non-Probabilistic Models

Non-Probabilistic models are a type of machine learning model and they only return a point
estimate when used for regression. Some of the non-probabilistic models commonly used for
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Remaining Useful Life (RUL) prediction are ARIMA model, Artificial Neural Network (ANN)
models and Support Vector Machine (SVM) models.

3.4.1.1 ARIMA Model

Auto-regressive (AR) based modeling is a non-probabilistic time series model. This model uses a
linear combination of observations from previous time steps as input to predict the future time
step values. The main advantages of the AR model is its low computational complexity and these
models can be expressed using a small number of model parameters.

The AR model is linear while the battery capacity fading process is generally nonlinear. This
can lead to under-fitting, especially for the long-term prediction. To solve this problem, an Auto-
Regressive Integrated Moving Average (ARIMA) framework was proposed that combines the AR
model and the Moving Average method. Instead of using past values of the forecast variable in a
regression, the moving average uses the past forecast errors in a regression-like model.

A group of researchers proposed an RUL prediction for LIBs using ARIMA (Y. Zhou and Huang,
2016). The researchers applied Empirical mode decomposition (EMD) on the SOH time series to
decouple the global trend and the capacity regeneration values. The forecasts were predicted on
each of the decoupled series and the forecasts are then combined to obtain the final result.

3.4.1.2 Artificial Neural Networks

An Artificial Neural Network (ANN) is an ML model in which a group of computational units
called neurons are stacked atop one another to form a layer. A neuron is the basic building block
of a neural network. It typically accepts one or more inputs and produces one or more outputs.
Many such layers are placed one after the other and all the layers are densely connected .i.e., there
is a many to many connections between each neuron in a pair of layers.

In a research conducted by (Jorge et al., 2020), an RUL prediction system using Artificial Neural
Network (ANN) was developed. The system was tested on the battery aging data made publicly
available by the department of chemical engineering of the Massachusetts Institute of Technology
(Severson, 2019).

In another research conducted by (D. Zhou et al., 2020), the authors implemented an RUL predic-
tion system using Temporal Convolution Network (TCN) (Lea et al., 2016). They observed that
their RUL system performed better than the existing systems.

(Khumprom and Yodo, 2019) and team implemented an RUL prediction system for Lithium io
batteries using Deep Neural Networks. (Adib, Angela and Lim, 2020) proposed an RUL prediction
system for lithium-ion batteries that uses a Long Short Term Memory (LSTM) (Hochreiter and
Schmidhuber, 1997) to forecast the RUL of the batteries. (T. Sun et al., 2019) proposed a similar
model that uses Particle Filter (PF) and Multi-Layer Perceptron (MLP), resulting in the PFMLP
model. The researchers then compared the performance of PFELM model, the standard Extreme
Learning Machine (ELM) model and the model using the Bat Particle Filter with Neural Network
(BATPFNN). The researchers concluded that the proposed BATPFNN model outperforms the
standard ELM model and the PFMLP model.

3.4.1.3 Support Vector Machines

Support Vector Machine (SVM) is a non-parametric supervised learning technique. When used
in a classification problem, it performs classification by searching for the hyperplane separating
classes of interest with a maximal margin. When dealing with non-linear features, kernel functions
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are often used in SVM. Kernel functions transform the non-linear features in a low dimensional
space into a linear features in a higher dimensional space. (X. Li et al., 2017) and team developed
an RUL prediction system that uses the SVM model to forecast the RUL.

3.4.1.4 Similarity based models

In the domain of prognostics and health management (PHM), Similarity based models (SBM) are
one the commonly used data-driven models to predict the remaining useful life of a system under
consideration. SBM is widely used to predict the remaining useful life of a test system given that
the run-to-failure (RTF) data of similar systems are available. The data from similar systems are
utilized to create a database of degradation profiles. During the remaining useful life prediction of
a system under test, the degradation profile of the system under test will be matched against the
degradation profiles of the systems available in the database. The actual life of the most similar
systems that match with the system under test will be used in the prediction of the RUL of the
system under test. In this section, we review some of the available literature regarding the use of
similarity based models (SBM) in remaining useful life prediction of lithium-ion batteries.

(S. Kim, N. H. Kim and Choi, 2020) used dynamic time warping (DTW) to augment the existing
run-to-failure (RTF) data. The augmented data is then used to train a neural network model to
predict the RUL of the system under test. When run to failure (RTF) data of similar systems
with different degradation patterns under different failure modes are available, the results show
that the proposed model predicts RUL with better certainty than the neural network models that
predict RUL without data augmentation.

A group of researchers used similarity based data-driven prognostic methodology for predicting
of the fatigue life or remaining life of the structures (Eker, Camci and Jennions, 2014). The
method used was originally developed by (Zio and Maio, 2010). The model was tested on three
data sets - Virkler fatigue crack growth data set (Virkler, Hillberry and Goel, 1979), a drilling
process degradation data set and a sliding chair degradation of a turnout system data set. They
evaluated the RMSE and found out that the model produced lesser RMSE for two out of three
models considered for research.

(Pérez et al., 2018) proposed a similarity based approach for predicting the RUL of lithium-ion
batteries. The research was conducted on the data obtained after cycling Sony US18650 1.4 Ah
LIBs using different discharge rates. They also used Monte Carlo simulations to analyse the
lifespan of batteries which helps to show the usage of the batteries in a more realistic way. The
researchers claim that the suggested SBM technique can be extended to other types of LIBs as
the results are normalized and scaling factors are used.

In another conducted by (Soons et al., 2020), the researchers used a similarity based model to pre-
dict the RUL of a filter in a chemical industry. The data for the research is gathered by Chemelot
Industrial Site. The researchers claim that their model works well even if the operational condi-
tions are unknown.

3.4.2 Probabilistic Models

Probabilistic models represent a set of machine learning models and they return a point estimate
as well as confidence interval when used in regression. Some of the probabilistic models that are
commonly used for RUL prediction are Gaussian Process Regression (GPR) model, Relevance
Vector Machine (RVM) model.
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3.4.2.1 Gaussian Process Regression

Gaussian Process Regressor (GPR) is a kernel based machine learning technique, which can realize
prognostics combined with prior knowledge based on a Bayesian framework and provide variance
around its mean prediction to describe the associated uncertainty. The Gaussian process can be
seen as a collection of a limited number of random variables which have a joint multivariate Gaus-
sian distribution.

In a research conducted by (Jia et al., 2020) and his colleagues, developed an RUL prediction
system using Gaussian Process Regressor (GPR). The dataset used for this research is sourced by
NASA Ames Prognostics Center of Excellence (PCoE) database (Saha and Goebel, 2007). (Liu
and Z. Chen, 2019) also developed an RUL prediction system that uses Gaussian Process Regressor
(GPR) to predict the RUL of LIBs.

3.4.2.2 Relevance Vector Machines

Relevance Vector Machine (RVM) is identical to Support Vector Machine (SVM). When used in
a regression problem, a relevance vector machine returns a point estimate of the prediction as
well as a confidence interval. The RVM employs a Bayesian framework to infer the weights with
which the probability distribution functions (PDFs) of the outputs instead of point estimates can
be obtained.

(Qin et al., 2017) conducted a research where they implemented an RUL prediction system using
Relevance Vector Machine (RVM). The auhors used the Battery dataset published by NASA (Saha
and Goebel, 2007).

3.5 RUL prediction using hybrid methodology

(Wei, Dong and Zonghai Chen, 2018) proposed an RUL prediction model for lithium-ion batteries
(LIB) which uses Support Vector Regressor (SVR) and Particle Filter (PF). (Wu et al., 2019)
developed an RUL prediction model for lithium-ion batteries and it uses Neural Network and Bat
Based Particle Filter. The research shows that the accuracy obtained using the combined model
exceeds the accuracy obtained using either only Neural Network or only Particle Filter(Moral,
1997).

(L. Li et al., 2018) developed an RUL prediction model for lithium-ion batteries and it uses Rel-
evance Vector Machine (RVM) and Particle Filter (PF) and Auto Regression (AR) model. The
implemented algorithm was tested on a private data set as well as on a public data set published
by NASA (Saha and Goebel, 2007). The researchers conclude that the combined Hybrid model
yields effective results.

(Y. Zhang et al., 2019) proposed an RUL prediction model which combines Relevance Vector
Machine (RVM) and Particle Filer (PF). This procedure will significantly reduce the size of the
training data required to train the model. Finally, the researchers use Monte Carlo method to
calibrate the number of particles and to model the noise level of the Particle Filter.

(S. Wang et al., 2021) researched by analyzing, reviewing, classifying and comparing various ad-
aptive mathematical models especially on deep learning algorithms for the task of remaining useful
life prediction. Extreme Machine Learning (EML) models are used for the cycle life prediction of
lithium-ion batteries. EML models possess a single hidden layer as compared to the feed-forward
neural network. Different models such as Extreme Learning Machine (ELM), Deep Convolutional
Neural Network (DCNN), Deep Neural Network (DNN), Recurrent Neural Network (RNN), Long
Short-Term Memory (LSTM), DCNN - Ensemble Transfer Learning (DCNN-ETL), DCNN with
Ensemble Learning (DCNN-EL), DCNN with Transfer Learning (DCNN-TL), Adaptive LSTM
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(ALSTM), ALSTM with an attention mechanism, Average Euclidean distance Stacked Denois-
ing Autoencoder (AED-SDA) and Gated Recurrent Unit kernel - Gaussian Process Regression
(GRU-GPR) models were compared. Evaluation metrics such as Root Mean Squared Error, Max
E, Speed and accuracy for all the above models are compared. They make a careful analysis of
different DL modeling methods for accurate RUL prediction. Their experiments show that the
DCNN-ELM algorithm gave better results than other models.

(D. Wang et al., 2017) proposed a model with non-linear drifted Brownian motion with many
hidden states. The proposed method is more efficient than the models that used particle filtering.
Private data of 26 rechargeable batteries were analysed. The researchers performed the compar-
isons of their proposed model with the standard PF (particle filter) based prognostic method, the
spherical cubature PF based prognostic method and the classic Bayesian prognostic method. They
finally concluded that the proposed model in their research, which is, nonlinear-drifted Brownian
motion with the multiple hidden states has lower average prediction errors than the other models.

(H. Wang, Ma and Zhao, 2019) proposed a model where an improvised version of Wiener pro-
cess model with adaptive drift and diffusion was developed for RUL prediction. They used an
algorithm to eliminate the abnormal monitoring data based on the 3-sigma criterion. They built
a complete framework for online RUL prediction.

(Shen et al., 2021) worked on predicting the RUL of lithium-ion batteries considering the random
variable discharge current. They analysed the impact of the variable discharge current on Li-ion
batteries. They designed a two stage Wiener model to explain the lithium-ion battery degrada-
tion. A widely known open source battery data set by Oxford has been used by the team for their
research. The proposed method’s performance metrics such as RMSE, MAPE, MAE, R-squared
and Absolute Error are calculated and compared with the work conducted by (H. Wang, Ma and
Zhao, 2019) and (D. Wang et al., 2017). The metrics were calculated for the three models taken
for comparison and they were calculated for different failure thresholds of different batteries in the
data set. It was concluded that the proposed model performed better than the models proposed
by (H. Wang, Ma and Zhao, 2019) and (D. Wang et al., 2017).

(X. Xu et al., 2021) proposed an RUL prediction model considering the time varying temperature
condition. The proposed model was developed using the Bayesian framework. The researchers
observed that time-varying temperature condition has a major impact on the discharge capa-
city and aging of a lithium-ion battery. They started by proposing a stochastic degradation rate
model based on the Arrhenius temperature model. Then, using Wiener process, an aging model of
lithium-ion battery was developed. Then, an unbiased estimation method based on maximum like-
lihood estimation (MLE) combined with genetic algorithm (GA) is proposed. Under the Bayesian
framework, the random parameter is updated. Probability Density Function (PDF) of the RUL
for lithium-ion battery under given time-varying temperature condition is derived. Finally, the
performance of the model thus built is evaluated and it was concluded that the model built had
higher accuracy and lesser uncertainty. The data set used to check the performance of the model
is CALCE (Pecht, n.d.).

(Hong et al., 2020) and team used deep learning model to predict the RUL of lithium-ion batteries
in a much faster way. They claim that their model is the first end-to-end deep learning framework
for RUL prediction. Their framework swiftly predicts the battery RUL with only four cycles. It
is 25 times faster than the previous models. They analysed the temporal patterns of terminal
voltage, temperature of the cell and current. The framework proposed is interpretable. They used
dilated CNN for the prediction of RUL. They have used dilated CNN instead of using RNN and its
variants such as LSTM, GRUs because of their limited ability to capture considerably long term
relationships. Whereas dilated CNNs have proven examples where they have robustly captured
long term relationships in a time series data. The researchers used the lithium-ion battery data
set from MIT-Stanford. They built several DL based models such as shallow MLP, MLP, CNN,
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CNN + LSTM and dilated CNN. Dilated CNN performs the best among other models and has
given an error rate of 10.6

(“Remaining useful life prediction of lithium-ion batteries based on Monte Carlo Dropout and
gated recurrent unit” 2021) developed an RUL prediction model for lithium-ion batteries us-
ing Monte Carlo Dropout and GRU. To test the performance of this model, the battery data
set provided by NASA PCoE Research Center is used (Saha and Goebel, 2007). The GRU is
the model is used to overcome the gradient vanishing problem which is generally faced in Deep
Neural Networks (DNN). The dropout is used in the proposed model to overcome the problem
of over-fitting of the data. The performance of the proposed model is compared with two other
models - Back Propogation Neural Network – Particle Swarm Optimization (BPNN-PSO) and
Least Squares – Support Vector Machine (LS-SVM). RMSE, MAE and MAPE of all three models
are calculated. It was found that the proposed model gave better results than BPNN-PSO and
LS-SVM models.

(Zewang Chen et al., 2021) proposed a hybrid model which combines a broad learning system
with a relevance vector machine (RVM) regressor. Empirical mode decomposition (EMD) is used
to extract the features of the data. The training data is then sent into the BLS network, where
multiple prediction starting points are chosen, and the associated prediction data is generated.
To train the RVM, all prediction data is transformed into a matrix. The RVM is used as the pre-
diction layer of the proposed model. The output generated by the RVM is the predicted RUL of
the model. Three different lithium-ion battery data sets are used to check the performance of the
model – NASA battery data set (Saha and Goebel, 2007), CALCE (Pecht, n.d.) and independent
data set. The results suggest that this hybrid technique can forecast lithium-ion batteries with
great precision. It has less errors, higher long-term prediction and generalization capabilities than
a single model. RMSE, MAE and error in RUL are evaluated. The proposed hybrid model gave
better results.

3.6 Conclusions

In this chapter, we reviewed some of the most commonly used publicly available lithium-ion battery
(LIB) degradation data sets. We also reviewed four RUL prediction methodologies - physics-based,
experience-based, data-driven and hybrid methodologies.

Physics-based methodology for RUL prediction of LIB gives accurate predictions provided there
is an accurate model of an LIB capacity degradation. However, in real-time scenarios, the degrad-
ation of LIB in an electric vehicle is affected by various factors and various drive cycle patterns
and a theoretical model can not does not take into account all the important factors that affect
battery degradation. Also, physics-based models rely heavily on the model assumptions. Hence,
we do not prefer physics-based methodology to predict RUL of LIB.

Experimental based methodology for RUL prediction relies on data and knowledge of the system
gained by experience. However, models that belong to this methodology requires expert and the
models verification is performed based on theoretical assumptions. Hence, we do not prefer ex-
perimental based methodology to predict the RUL of LIB.

Hybrid models generate better RUL predictions as they leverage the benefits of more than one
RUL prediction model. However, they are computationally expensive. Hence, we do not prefer
hybrid models.

Data-driven models rely only on the observed system data and it does not make any assumptions
about the underlying system. The effects of various factors that affect the RUL of the system
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are captured in the data and data-driven machine learning models can be developed accordingly
to predict RUL with high accuracy. Based on the literature review, we implement SVR model,
LSTM network and similarity based model to predict the remaining useful life.

Research Gap

Out of the many research articles published on RUL prediction of lithium-ion batteries, very
rarely the articles address about implementing the RUL prediction algorithm in real-time in an
EV. Ideally, an RUL prediction model should start predicting the RUL right after the first charge-
discharge cycle of the battery. Hence, we try to address this research gap as part of this research.

Although, many researchers have used similarity based models to predict the RUL of a variety
of systems, not many research has been published, where SBM is implemented to predict the
RUL of LIBs using dynamic time warping (DTW) distance. In this research work, we also try to
implement a SBM with DTW as the distance metric.
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Problem Formulation

The main research goal of this thesis is to predict the remaining useful life (RUL) of a lithium-ion
battery (LIB) on board an EV in a real-time scenario using the available battery degradation data.
Several factors affect the degradation of a lithium-ion battery.

The first step in predicting the remaining useful life prediction is to identify the factors that affect
the aging of the battery. Temperature, voltage, current, battery internal resistance, rest duration,
depth of discharge (DOD) of the cycle and ambient temperature of the battery are some of the
features that are indicative of battery degradation.

Accurate prediction of remaining useful life (RUL) of lithium-ion battery (LIB) used in an electric
vehicle (EV) can alert the driver and can help prevent possible catastrophic battery failure.

The main research question addressed in this thesis is mentioned below.

How to predict the RUL of a lithium-ion battery onboard an EV in a real-time scenario?

Some additional research questions that can be addressed are as follows:

• Will the prediction model gives better results when the impact of resting (calendar aging)
on battery degradation is considered?

• Can the prediction model implemented return the remaining useful life of the battery in
terms remaining range for which the EV can be driven?

• What are the different model performance criteria to compare different machine learning
models?

• Can the prediction model predict the remaining driving range of electric vehicles that are
subjected to a wide range of drive cycles?
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Feature Engineering

In this chapter, we describe, explore, pre-process and create new features from the TNO data
set. Then, In section 5.1, we briefly discuss the data description of the TNO data set. In section
5.2, we perform an exploratory data analysis (EDA) on the data set. Finally, In section 5.3, we
pre-process and create new features from the TNO data set. These new features, along with the
existing features will be used to build machine learning (ML) models to predict the remaining
useful life (RUL).

5.1 TNO Data set : Data Description

This is a private data set provided by TNO as part of this research. This is a lab-generated data
set and it was acquired by subjecting eight lithium-ion batteries, namely A1, A2, A3, A4, A9, A10,
A11, A12, to diverse charging (load) cycles and discharging (drive) cycles. Generally, batteries are
said to have reached their end of life (EOL), when their capacity value reaches 80% of the initial
capacity (80% SOH). Except for battery A9, all the remaining batteries are cycled starting from
their beginning of life (BOL) until they reach the end of life (EOL). The degradation history data
for each of the batteries in the data set consists of features described in Section 5.1.1.

5.1.1 Data Description

The following are the features that were acquired for each of the cells in the TNO data set.

1. Time is the recorded end time expressed as a time entry.

2. SOC init p is the initial State of Charge (SOC) value based on the SOC vs Open Circuit
Voltage (OCV) relationship. It is expressed as a percentage.

3. SOC avg p is the average State of Charge (SOC) is based on the mean SOC value. It is
expressed as a percentage.

4. SOC end p is the end State of Charge (SOC) value is based on Coulomb Counting (CC). It
is expressed as a percentage.

5. DOD p is the Depth of Discharge (DOD) and it is the difference between the initial SOC
value and the end SOC value. It is expressed as a percentage.

6. T cell min C is the minimum cell temperature of the cycle. It is expressed as degree Celsius.

7. T cell avg C is the average cell temperature of the cycle. It is expressed as degree Celsius.

8. T cell max C is the maximum cell temperature of the cycle. It is expressed as degree Celsius.
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9. T amb avg C is the average ambient temperature of the cycle. It is expressed as degree
Celsius.

10. Crate avg is the average current value of the cycle based on the initial capacity. It is expressed
as per hour.

11. Crate RMS is the root mean square (RMS) current value of the cycle based on the initial
capacity. It is expressed as per hour.

12. Crate max is the maximum current value of the cycle based on the initial capacity. It is
expressed as per hour.

13. Ctp CC As is the constant current part of the charge throughput of the cycle based on
coulomb counting. It is expressed as ampere second (As).

14. Ctp As is the charge throughput of the cycle based on Coulomb Counting (CC). It is ex-
pressed as ampere second (As).

15. Capacity As is the last recorded capacity of the battery. It is expressed as ampere second
(As).

16. FileName is the name of the file that contains data of the cycle measured at a high sampling
frequency.

17. Resistance Ohm is the last recorded resistance at 50% SOC, where the cell temperature is
between 22.5-25.5 ◦C. It is expressed as Ohm.

18. TempCellResistance C is the recorded cell temperature of Resistance Ohm. It is expressed
as ◦C (degree Celsius).

19. Resistance mea Ohm is the last recorded resistance at 50% SOC. Resistance measurement
for LF Test might be extrapolated to get values at 50% SOC. It is expressed as Ohm.

20. TempCellResistance mea C is the recorded cell temperature for during resistance measure-
ment. It is expressed as ◦C (degree Celsius).

21. dist km is the estimated distance traveled based on the charge throughput and total distance
covered. It is expressed as a kilometer (km).

22. Total dist km is the cumulative distance. It is expressed as a kilometer (km).

23. Total Ctp As is the cumulative charge throughput. It is expressed as ampere second (As).

24. duration is the duration of the cycle. It is expressed as a time entry.

25. Total duration is the cumulative duration. It is expressed as a time entry.

In addition to the degradation data of the 8 lithium-ion batteries (LIB), the TNO data set also
contains data acquired at a very high sampling rate during charging and discharging. The acquired
data for every charging instance and discharging instance for all the batteries are saved in separate
.mat files. A .mat file is a binary file used to save and load MATLAB® workspace variables. There
are around 44004 .mat files. Each .mat file contains the following features.

1. Current Cell represents the name of the battery for which the data was acquired.

2. Time represents the time at which a particular sample was measured.

3. Current represents the value of the current measured. It is expressed as ampere (A).

4. Voltage represents the value of the voltage measured. It is expressed as volt (V).
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5. Temperature represents the value of the temperature measured. It is expressed as degree
Celsius (◦C).

6. Temperature shunt represents the temperature of the shunt. It is expressed as degree Celsius
(◦C).

5.2 Exploratory Data Analysis

In this section, we perform exploratory data analysis (EDA) on the TNO data set. As mentioned
earlier, the data set contains the entire degradation history of 8 lithium-ion batteries (LIB), namely
A1, A2, A3, A4, A9, A10, A11 and A12. These batteries are subjected to repeated charging,
discharging and calendar aging until they reach the end of life (EOL). In most research regarding
LIBs, a battery that has been degraded up to 80% SOH is considered to have reached it EOL.
In this research, we consider that a battery has reached its EOL after it has degraded up to 81%
SOH. The battery A9 in the TNO data set is subjected to degradation up to 92% SOH and the
battery has not been degraded up to its EOL. As seen from the Figure 5.1, the SOH of the battery
A9 (highlighted in bold red) is degraded only up to 92% of SOH. Hence, we do not consider the
battery A9 in our research.

Figure 5.1: SOH (%) vs Total distance traveled (km)

Battery Id A1 A2 A3 A4 A10 A11 A12
Maximum value of

Total dist km
before the end of life

58922 55615 88798 159410 178220 95573 90189

Table 5.1: Table showing the maximum Total dist km values of all the cells in the TNO data set.
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5.3 Data Pre-processing and Feature Engineering

5.3.1 Removing unwanted columns

The degradation history of batteries A10, A11 and A12 contained some duplicate features. These
duplicate columns were removed. After the removal of duplicate columns, the degradation histories
of all the batteries contain the same number of features.

5.3.2 Handling the missing values

The data set from TNO does not have any missing values. However, there were some instances of
Inf present in the data set. Inf in MATLAB represents Infinity. These values were replaced by
the average values computed by a moving average window length of 3.

5.3.3 Normalizing the capacity values

The range of values of the feature Capacity As in the degradation histories of different batteries
present in the TNO data set are different. The maximum values of the feature Capacity As for
all the batteries in the TNO data set are shown in Table 5.2.

The Capacity As feature of all the batteries in the TNO data set is normalized such that they range
from 0 to 1. This is achieved using min-max scaling. Min-max scaling is a data pre-processing
technique that scales a given feature such that the scaled feature ranges from 0 to 1. The equation
for min-max scaling is shown in Equation 5.1.

X ′ =
X −Xmin

Xmax −Xmin
(5.1)

where X’ is the scaled feature, X is the input feature, Xmax is the maximum value of the input
feature X and Xmin is the minimum value of the input feature X. After the normalization the
Capacity As values of all cells, they range from [0, 1]. Since during normalization the Capacity As
values are divided by the maximum value, the scaled Capacity As values represent the state of
health (SOH) of the cells.

Battery Id A1 A2 A3 A4 A10 A11 A12
Maximum value of

Capacity As
7231.33 7210.43 7062.24 7004.10 7106.28 7125.06 7047.30

Table 5.2: Table showing the maximum Capacity As values of all the cells in the TNO data set.

5.3.4 Defining a battery cycle

The RUL of a battery is generally expressed in terms of the remaining distance that the battery
can power an EV or in terms of the remaining number of charge-discharge cycles before the battery
reaches the end of life. In this research, we define a battery cycle as the set of events recorded in the
battery history between two consecutive discharge events. For every cell in the data set, each row
in the battery degradation history is marked with its corresponding battery cycle identifier which
is incremented after every cycle. Table 5.3 represents the marking of battery degradation history
with battery cycle identifier. The different measurements in the history data can be grouped by
the battery cycle identifier so that the predicted RUL of the batteries can be expressed in terms
of cycles.
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FileName Battery cycle id
REST 1

Charge 1.mat 1
REST 1

Discharge 1.mat 1
REST 2

Charge 2.mat 2
REST 2

Discharge 2.mat 2
REST 3

Charge 3.mat 3
REST 3

Discharge 3.mat 3

Table 5.3: Table representing definition of a battery cycle defined in this research. (Entries in the
FileName column are changed and only required columns are shown for brevity)

5.3.5 Adding new features

Three new columns are added to the degradation history of each cell. They are voltage, current
and temperature. The values in these columns are filled by average values of voltage, current and
temperature measurements recorded in the .mat files that are referred to in the FileName column
of the degradation history.

Whenever each cell is subjected to rest, it is recorded in the FileName column as REST. The rest
duration of a cell is computed using the duration and the FileName columns and a new feature
rest duration is created.

Figure 5.2: Total distance traveled (km) and RUL (km) for cell A1.

The Total dist km feature in the battery degradation history data set represents the simulated total
distance in kilometers traveled by the EV. Sorting the Total dist km column in the descending
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order gives the remaining distance in kilometers that the battery can power the EV before reaching
the end of life. This is shown in Figure 5.2. The new column created by sorting the Total dist km
is named as rul km.

5.3.6 Feature selection and Aggregation

The RUL of a battery is influenced by various factors. The battery state of health (SOH) and
state of charge (SOC) are some of the important factors that affect the RUL of a LIB (Nuhic et al.,
2013). Hence, we also select SOC and SOH as the input features for our RUL prediction model.
These values are generally computed by the battery management system (BMS). Battery internal
resistance is one of the important health indicators by which we can infer the SOH of a battery.
However, in an EV, battery internal resistance is measured occasionally by subjecting the battery
to impulse tests. Thus the battery internal resistance is not computed frequently. Hence, we do
not choose this feature to develop our RUL prediction model.

SOC of a LIB is dependent on the voltage, current and temperature of the battery (Omariba,
L. Zhang and D. Sun, 2018). Also, we want to consider the effects of calendar aging on the RUL
of the battery. Hence, we also select voltage, current, temperature and resting duration as the
input features for our RUL prediction model. We aggregate the following features by grouping
them by the battery cycle identifier - SOC, SOH, voltage, current, temperature, rest duration and
rul km. The voltage, current, temperature, SOC and SOH values of battery A1 are grouped by
the battery cycle identifier. The resulting features are shown in Figures 5.3, 5.4 and 5.5.

(a) (b)

Figure 5.3: a) Plot of Voltage vs Cycles of battery A1 b) Plot of Current vs Cycles of battery A1.
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(a) (b)

Figure 5.4: a) Plot of SOH vs Cycles of battery A1 b) Plot of SOC vs Cycles of battery A1.

(a) (b)

Figure 5.5: a) Plot of Temperature vs Cycles of battery A1 b) Plot of SOC vs Cycles of battery
A1.

5.3.7 Standard Scaling the features

Standard scaling is a data preprocessing technique that scales a given feature such that the scaled
feature has zero mean and unit standard deviation. The equation to perform standard scaling is
shown in equation 5.2.
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X ′ =
X − µ
σ

(5.2)

where X ′ is the scaled feature, X is the input feature, µ is the mean of X and σ is the standard
deviation of X. When preparing the data to implement gradient descent based algorithms such
as neural networks and distance based algorithms such as k-NN, SVM, etc., standard scaling of
the features is an important step of data preprocessing.

In the case of gradient descent based models, standard scaling the input features ensures that all
the input features have the same step size. This will also ensure that the gradient descends and
converges smoothly and quickly towards the minima and the gradient descent steps for all the
input features are updated at the same rate. The standard scaling of input features also makes
model training faster and it avoids the gradient descent from getting stuck in local minima. In
case of distance based models, standard scaling ensures that all the features have equal influence
on the prediction (Vashisht, 2021).

5.3.8 Summary

After the data is preprocessed using the above preprocessing steps, the data can be fed to RUL
prediction models. We want to test the effect of calendar aging on the batteries. Hence, we define
two sets of inputs - XCA and Xno CA, where, XCA and Xno CA represent the sets of input features
with and without calendar aging effects respectively. The y RUL is the target feature. The input
features present in XCA, Xno CA and y RUL are as shown below.

XCA = {voltage, current, temperature, SOC, SOH, rest duration} (5.3)

Xno CA = {voltage, current, temperature, SOC, SOH} (5.4)

y RUL = {rul km} (5.5)

It is important to note that the input features are the aggregated features that are grouped by
the battery cycle identifier. We use these sets of input features XCA and Xno CA and the target
feature y RUL in the later sections of this report.
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Machine Learning Models

In this chapter, we describe the details of Support Vector Regression (SVR), Long Short Term
Memory (LSTM) Network and Similarity based Model (SBM) to predict the remaining useful life
(RUL) of lithium-ion batteries (LIB). In Section 6.1, we describe the working principle and the
implementation details of the SVR model. In Section 6.3, we elaborate on the LSTM networks
and their implementation details. In Section 6.5, we briefly describe the SBM for RUL prediction.

6.1 Support Vector Machine Regression

Support Vector Machines (SVM) are one of the most often used machine learning models. They
are supervised learning algorithms and hence they can be used to solve problems involving regres-
sion and classification. They were created by (Cortes and Vapnik, 2004). These models identify
some input feature points, also known as support vectors, and try to fit a maximal margin classifier
to categorize the linearly separable labels when used in a classification problem. When the labels
are not linearly separable, the SVM classifier can be trained along with a kernel function that can
classify non-linearly separable labels.

In Support Vector Regression, we construct a generalization bound and aim to optimize it in the
same way as SVMs are optimized for classification. The SVR loss function is an ε-insensitive
function that ignores errors that are within a predefined range of the real values. The variable in
6.1 represents the cost of errors for training observations. The error is zero for the observations
within the ε band.

Given n observations of input and output data pairs belonging to the set D(X, Y ), we want to
predict an output value ŷi (should be equal to yi in the ideal case) corresponding to the input
data vector xi where yi ∈ Y and xi is the input k dimensional vector representing k features
xi = (x1, x2, . . . , xk) such that xi ∈ X.

The mathematical background and equations regarding SVR are obtained from the research work
done by (Cortes and Vapnik, 2004), and (Smola and Schölkopf, 2004). The input x is mapped to
an m dimensional feature space using non-linear mappings known as kernels. The SVR algorithm
then constructs a linear model in this m dimensional space. This can be expressed as below.

f(x, w) =

m∑
j=1

wjgj(x) + b (6.1)

where gj(x) for j = 1, . . .m is the set of non-linear transformations, wj are the weights for each
transformation and b represents the constant term. The loss function that will be minimized
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during the training of SVR is an ε - insensitive loss function. This loss function is denoted by
L(y, f(x, w)) and is defined as:

L(y, f(x, w)) =

{
0 if |y − f(x, w)| ≤ ε
|y − f(x, w)| − ε otherwise

(6.2)

When the input x is mapped to an m dimensional space, the SVR algorithm tries to fit a least
squares regression model. Thus, the loss minimization function from the least squares regression
can be used in this context along with extra variables that represent the slack variables. The
loss function of the least squares regression is ‖w‖2 and the slack variables are ξi, ξ

∗
i . The main

purpose of using the slack variables is to calculate the deviation of training samples outside the ε
- insensitive band. The SVR optimization problem becomes:

minimize 1
2‖w‖

2 + C
∑n

i=1 (ξi + ξ∗i )
subject to y − f(x, w) ≤ ε+ ξ∗i

f(x, w)− y ≤ ε+ ξi
ξi, ξ

∗
i ≥ 0, i = 1, . . . , n

(6.3)

where the parameter C can be chosen to control the model complexity. It can also control the
range of deviations that are allowed, greater than ε, in the objective function optimization. Using
the theory of constrained optimization, this optimization problem can be transformed into a dual
problem and by using the Lagrangian multiplier and the final solution is obtained as below.

f(x) =

n∗∑
i=1

(ai − a∗i ) 〈xi,x〉 subject to ai, a
∗
i ∈ [0, C] (6.4)

where ai, a
∗
i are the Lagrange multipliers, n∗ is the set of input samples that are support vectors,

and 〈xi,x〉 is the inner product of two observations xi and x. The input samples for which exactly
one of the Lagrange multipliers is greater than zero are the support vectors. The inner product
in equation 6.4 is mapped through the kernel function which is defined as:

K (xi,x) =

m∑
j=1

g(x)g (xi) (6.5)

The solution returned by the SVR algorithm is sparse, .i.e., only a few input samples are identified
as the support vectors. ai, a

∗
i will be zero for all the samples which are inside the ε - insensitive

band, as shown in Figure 6.1. The hyperparameters of a SVR model are C, ε and the type of ker-
nel. Some of the commonly used kernels are linear kernel, polynomial kernel, hyperbolic tangent
kernel and radial basis function (RBF) kernel.

Figure 6.1: ε - insensitive band in an SVM. Recreated from (Gelfusa et al., 2015)
.
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6.2 Support Vector Rergression - Implementation

Two sets of experiments were conducted for each cell (except cell A9) in the TNO data set. In
the first experiment, XCA (refer Section 5.3.8) was fed as the input and in the second experiment,
Xno CA was given as the input. In both experiments, separate SVR models were trained for each
cell with yRUL as the target variable. The SVR models were trained on 70% of the degradation
history data of the cell and were tested on the remaining 30% of the data.

The SVR models were trained with automatic hyperparameter optimization. The optimal hyper-
parameters were selected with the help of Bayesian optimization (Snoek, Larochelle and Adams,
2012). Bayesian optimization is a commonly used optimization algorithm to find the global max-
imum or the minimum of a function (Agnihotri and Batra, 2020). The optimal hyperparameters
for the SVR models are listed in Tables 6.1 and 6.2.

The predictions made by the LSTM network models are transformed back by multiplying the
values with their corresponding standard deviation values and adding the mean value.

Battery Id Kernel Polynomial Order Epsilon
A1 Polynomial 2 0.0026
A2 Linear - 0.0955
A3 Polynomial 2 0.0024
A4 Linear - 0.0008
A10 Polynomial 3 0.0009
A11 Polynomial 2 0.001
A12 Polynomial 2 0.04

Table 6.1: Optimal Hyperparameters of SVR models (with calendar aging)

Battery Id Kernel Polynomial Order Epsilon
A1 Polynomial 2 0.0009
A2 Linear - 0.0505
A3 Polynomial 3 0.0019
A4 Linear - 0.0078
A10 Gaussian - 0.0009
A11 Polynomial 3 0.0104
A12 Polynomial 2 0.0405

Table 6.2: Optimal Hyperparameters of SVR models (without calendar aging)

6.3 Long Short Term Memory Network

Long Short Term Memory (LSTM) network is a type of neural network that belongs to the family
of neural networks. It consists of an input signal layer, one hidden layer of LSTM cell and an
output layer that is fed by the output of the cells present in the hidden layer. An LSTM network
typically contains many LSTM cells. The architecture of an LSTM cell is as shown in Figure 6.2.
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Figure 6.2: The architecture of an LSTM cell.

In Figure 6.2, xt is the input signal vector at time point t, Ct−1 and Ct represent the cell states
at time points t-1 and t respectively, ht−1 and ht are the output signals of the cell at time points
t-1 and t respectively, 1 is the bias. The symbol × represents the multiplication of the signals and
the symbol + represents the addition of the signals.

An LSTM cell operates at time point t which is the time point at which the output of the LSTM
cell is generated and the cell also operates at the previous time point t-1 which represents the
previous state of the cell. An LSTM can be mathematically modeled as a function L as shown in
equation 6.6

(ht, Ct) = L(ht−1, Ct−1,xt) (6.6)

where :

• xt is the input signal vector at time point t. This is one of the inputs fed to the LSTM cell.

• Ct−1 is the memory value of the cell at time point t-1. It is also the state of the cell at time
point t-1. This is another input fed to the LSTM cell.

• ht−1 is the output signal of the cell at time point t-1. This is another input fed to the LSTM
cell.

• Ct is the memory state of the cell at time point t. This is one of the outputs produced by
the LSTM cell.

• ht is the output signal of the cell at time point t. This is another output produced by the
LSTM cell.

The outputs generated by the LSTM cell at time point t are again fed back to the same cell as
inputs at time point t+1. The elements of the input vector xt are also fed to the cell at any time
point.
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The multiplication gates in the LSTM cell, denoted by ×, play an important role in the control
of information propagation and output generation. The first multiplication gate from the left
computes the amount of memory from a previous time point to be transferred to the current time
point. This amount of memory from the previous time point that will be propagated to the current
time point is dependent on the values of signal y1. The second multiplication gate controls the
amount of information ct which represents the state of the LSTM cell at the current time point t.
The third multiplication gate computes ht, which is the product of hyperbolic tangent activated
value of the current state of the cell ct and y4.

An LSTM cell can be subdivided into computational units based on the generated intermediate
signals. As shown in Figure 6.2, an LSTM cell can be divided into four computational units. The
intermediate signals y1, y2, y3 and y4 and the output signals ct and ht can be mathematically
represented using weights and vectors. The weights can be expressed using double indices where
the first index represents the identifier of the intermediate signals yi, where i ∈ [1,2,3,4]. The
second index is the symbol of the input signal. For example, w2h represents the weight of the
second gate that takes ht−1 as the input signal. With this notation, the intermediate signals y1,
y2, y3 and y4 can be mathematically represented as below :

y1 = σ(w1hht−1 + w1xxt + w10) (6.7)

y2 = σ(w2cCt−1 + w2hht−1 + w2xxt + w20) (6.8)

y3 = tanh(w3cht−1 + w3xxt + w30) (6.9)

y4 = σ(w4cCt + w4hht−1 + w4xxt + w40) (6.10)

where tanh represents the hyperbolic activation function and σ represents the sigmoid activation
function. The output signal ht and the memory state of the cell Ct are mathematically represented
as below :

Ct = y2y3 + Ct−1y1 (6.11)

ht = (y4)tanh(Ct) (6.12)

Figure 6.3 represents the recurrent operation of the LSTM as a deep feed forward propagation
of signals through time. When an LSTM network is trained, the gradient of the loss function is
computed using back-propagation through time (BPTT). BPTT is realized within a time window
T as illustrated in Figure 6.3 for a given input signal at different time points. The weights and
biases of individual LSTM cells are adapted during network training.

An LSTM network is trained in a supervised mode by giving the network a set of features and
their corresponding labels as inputs. Gradient descent algorithms such as Adam, AdaGrad or
Stochastic Gradient Descent (SGD) are generally used in training. The input vectors are fed to
the LSTM network, then they are processed within the hidden layers and output is computed. A
loss function is generated based on the error between the computed output and the actual output
and the error is then back-propagated through the LSTM network for gradient calculation as part
of gradient descent.
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Figure 6.3: Representation of forward propagation through time in an LSTM network

6.4 LSTM network - Implementation

Two sets of experiments were conducted for each cell (except cell A9) in the TNO data set. In
the first experiment, XCA (refer Section 5.3.8) was fed as the input and in the second experiment,
Xno CA was given as the input. In both experiments, separate LSTM models were trained for each
cell with yRUL as the target variable. The SVR models were trained on 70% of the degradation
history data of the cell and were tested on the remaining 30% of the data.

The architecture of the implemented LSTM network is shown in Figure 6.4. The same architecture
is used for each LSTM model implemented. The LSTM network consists of an input layer. The
input layer is connected to the first LSTM layer which consists of 150 LSTM cells. This LSTM
layer is connected to a dropout layer. Dropout is regularization technique proposed by (Srivastava
et al., 2014) and it is commonly used to prevent deep learning models from overfitting. Dropout
probability is set to 0.1. The dropout layer is connected to a LSTM layer which has 300 LSTM
cells. This LSTM layer is then connected to a dense layer, followed by a regression layer which
generates the prediction.

Two experiments were conducted on the LSTM network. In both experiments, each model is run
for 500 epochs. The learning rate of the model is set to 0.005. The learning rate is multiplied by
a factor of 0.2 after every 250 epochs. The gradient descent during the training procedure of the
models is optimized using the Adam optimizer (Kingma and Ba, 2015).

In the first experiment, which considers the effects of calendar aging, the number of trainable
parameters in the different layers of the network are as follows - the first LSTM layer, the second
LSTM layer and the dense layer had 94200, 541200 and 300 trainable parameters respectively.
The total number of trainable parameters are 635700.
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Figure 6.4: The architecture of the implemented LSTM model for RUL prediction.

In the second experiment without considering the effects of calendar aging, the number of trainable
parameters in the different layers of the network are as follows - the first LSTM layer, the second
LSTM layer and the dense layer had 93600, 541200 and 300 trainable parameters respectively.
The total number of trainable parameters are 635100. The results and performance of the two
LSTM models are discussed in detail in Section 7.3.

The predictions made by the LSTM network models are transformed back by multiplying the
values with their corresponding standard deviation values and adding the mean value.

6.5 Similarity Based Model

There is a category of models that can predict the remaining useful life (RUL) of a test lithium-ion
battery based on the degradation profiles of the lithium ion batteries that are similar. Such models
are called similarity based models (SBM).

The main intuition behind similarity based model for RUL prediction is that systems that have
similar degradation histories have similar RULs. This is evident from Figure 5.1 and Table 5.1.
Cells A1 and A2 have very similar degradation profiles. Cell A1 and A2 reach EOL after powering
the vehicle for 58922 km and 55615 km respectively. A similar pattern can be observed between
cells A11 and A12.

6.5.1 Working principle of a similarity based model (SBM)

In this section, we describe the basic working principle of a similarity based model for RUL pre-
diction.

Let TS = {T1, T2, T3, .....TN} be the library of time series representing the complete degradation
histories of N similar systems namely S1, S2, S3, .....SN . In other words, TS represents the run-to-
failure (RTF) data of N similar systems. Each time series in TS can be univariate or multivariate.
In the context of this research, every element of the set TS represents the SOH degradation curve
of a lithium-ion battery.
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Let TQ be the degradation history of a test system Q. The system Q has not reached its end of
life. We want to predict the RUL of TQ. Let val be the value of the present system health of the
system Q.

For every degradation history Ti in TS where i ∈ [1, N ], let Ti(val) represent the portion of Ti
from its beginning of life (BOL) to val. Since, TS represents the RTF data of N systems, we know
the RUL of these N systems at any value of their recorded system health. Let ySi(val) represent
the RUL of system Si at the system health value of val, where i ∈ [1, N ].

The RUL of the test system Q can be computed using SBM as follows:

1. We have to define a function ”dist” to compute the distance between two degradation his-
tories. If two degradation histories are similar, the dist function should return a smaller
value and it should return a larger value otherwise.

2. Compute the distance between the test degradation history Q and all the degradation his-
tories in the set TS, .i.e,

[di]← dist(Ti(val), TQ(val)),∀i ∈ [1, N ] (6.13)

where [di] represents the list of distances between the test system Q and N training systems.

3. Sort the distances in ascending order. Let [di′ ] be the list of sorted distances where i′

represents the sorted index and i′ ∈ [1,N]. The

4. Select the k smallest distances. This implies that we are selecting k nearest degradation
histories that are similar to the degradation history of Q.

[di′ ],∀i′ ∈ [1, k] (6.14)

5. The RUL of the test system Q that has system health value of val is computed as follows:

yQ(val)← 1

k

k∑
i′=1

ySi′ (val) (6.15)

Here, the RUL of the test system Q is calculated by taking the average of the RUL values
of k systems that are similar to the test system Q. The RUL values of the k similar systems
have an equal weight of 1. Therefore, in the rest of this research, we refer to this strategy of
computing RUL as SBM with uniform weights.

Also, the RUL values of k similar systems that are similar to the test system Q can be
weighted such that the RUL values of the systems that are the most similar to the test
system are given higher weights and the RUL values of the systems that are the least similar
to the test system can be given lower weights. The weighted average of these RUL values
gives the RUL of the test system. This is mathematically expressed as follows:

yQ(val)←
∑k

i′=1 wi′ySi′ (val)∑k
i′=1 wi′(val)

(6.16)

where,

wi′ =
1

di′
(6.17)

In the rest of this research, we refer to this strategy of computing RUL as SBM with inverse
distance weights. SBM with uniform weights is a special case of SBM with inverse distance
weights, when all the k nearest degradation histories are at an exactly same distance from
the query degradation history.
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Earlier, while describing the steps to predict RUL using SBM, we defined a function dist, which is
used to compute the distance between two degradation histories. If the two degradation histories
are of equal length, then pointwise Euclidean distance or absolute distance can be easily calculated.
However, the lengths of two degradation histories will not be equal in most cases. Hence, we have
to define the dist function such that it can compute the distance between two degradation histories
that have different lengths. One of the most commonly used distance functions to compute the
distance between two time series (degradation histories) is Dynamic Time Warping (DTW). The
working principle of DTW is explained in detail in Section 6.5.2

6.5.2 Dynamic Time Warping (DTW)

Dynamic Time Warping is one of the most commonly used algorithms to compute the similarity
between two different asynchronous time series. DTW was first proposed by (Sakoe and Chiba,
1978), where the researchers used it for spoken word recognition. DTW compares two time series
and measures the similarity between them by computing the optimal warping path between them.
DTW has been commonly used in the field of speech recognition, human computer interaction,
data mining and signal processing.

Let X = {x1, x2, ....xN} and Y = {y1, y2, ....yM} be two univariate time series of lengths N and
M respectively. In the context of this research, X and Y represent the degradation profiles of
two lithium-ion batteries. The main idea behind DTW is to compute the optimal warping path
W, between X and Y. Once the warping path is computed, X and Y are extended by warping
non-linearly with respect to time. The similarity between extended X and Y are can be computed
easily as they have an equal number of points after warping.

Given X and Y, the optimal warping path W is expressed as below:

W =

(
Wx(k)
Wy(k)

)
, k = 1, 2, · · · , p (6.18)

where Wx(k) corresponds to an index of X and Wy(k) corresponds to an index of Y. The length
of the warping path W is p.

The computed warping path W satisfies the following conditions. Firstly, all the indices of X and
Y should be used in the warping path W . Secondly, the warping path W should be continuous and
it should be monotonically increasing. Given that the warping path W satisfies these conditions,
the starting point of W has the indices (1,1)T and the ending point of W has the indices (N,M)T .
Along with these conditions, any two adjacent points W (k) and W (k+ 1) in the warping path W
should satisfy the following inequality.

{
Wx(k) ≤Wx(k + 1) ≤Wx(k) + 1
Wy(k) ≤Wy(k + 1) ≤Wy(k) + 1

(6.19)

Hence, W(k+1) can take only the following values : (Wx(k),Wy(k + 1))T , (Wx(k + 1),Wy(k))T

and (Wx(k+ 1),Wy(k+ 1))T . This implies that the warping path W can move either horizontally
or vertically or diagonally and it can never go backward. The DTW algorithm chooses the direc-
tion which has the lowest cost. Also, the length of W .i.e, p ∈ [max(M,N),M +N ].

By using the optimal warping path W, the two input time series X and Y can be extended to two
new time series x̃ and ỹ respectively which are expressed as below :{

X̃ = X (Wx(k))

Ỹ = Y (Wy(k))
k = 1, 2, · · · , p (6.20)
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Now that X̃ and Ỹ are of same length, the pointwise distance between them can be calculated as
follows.

DTW (X,Y ) = D(X̃, Ỹ ) =

p∑
k=1

D (X (Wx(k)) , Y (Wy(k))) (6.21)

In Equation 6.21, D is a distance metric. The following distance metrics are commonly used.

• Euclidean distance, which is computed as the root sum of squared differences between the
points.

D(X̃, Ỹ ) =

√√√√ p∑
k=1

(X̃(k)− Ỹ (k))(X̃(k)− Ỹ (k)) (6.22)

• Absolute distance, which is computed as the sum of absolute differences between the points.
It is also known as the Manhattan distance or city block distance or taxicab distance metric.

D(X̃, Ỹ ) =

p∑
k=1

|X̃(k)− Ỹ (k)| =
p∑

k=1

√
(X̃(k)− Ỹ (k))(X̃(k)− Ỹ (k)) (6.23)

• Squared distance, which is computed as the square of the Euclidean metric.

D(X̃, Ỹ ) =

p∑
k=1

(X̃(k)− Ỹ (k))(X̃(k)− Ỹ (k))) (6.24)

The warping path is computed as follows. Firstly, a cost matrix C(i, j), wherei ∈ 1, 2, ...N and
j ∈ 1, 2, ...M is created. Each element of C(i, j) is computed using equation 6.25.

C(i, j) = D(X(i), Y (j)) + min

 C (i− 1, j − 1)
C (i− 1, j)
C (i, j − 1)

(6.25)

where C(1, 1) = D(X(1), Y (1)). The path with the lowest cost that connects C(1, 1) and C(M,N)
is the optimal path W . The generation of the cost matrix and the computation of the warping
path is usually computed using dynamic programming.

An illustration of DTW is shown in Figure 6.5 a) and Figure 6.5 b). Figure 6.5 a) consists of two
input time series X = [1, 5] and Y = [1, 2, 2, 3, 3]. We can observe that X and Y have different
lengths. When the DTW algorithm is applied on X and Y , the time series X is warped (expanded
in this case) to a time series of length 5 as shown in Figure 6.5 b). After warping, the length of X
and length of Y are equal. Hence, pointwise distance can be calculated on the warped time series.
The DTW distance between X and Y is 6, when Euclidean distance metric is used.
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(a) (b)

Figure 6.5: Plot of two sample time series X and Y a) before DTW b) after DTW.

6.6 Similarity based model - Implementation

Unlike the SVR and LSTM models, XCA and Xno CA are not used as the input features in the
SBM model. We consider the aggregated SOH degradation histories of different batteries as the
RTF data. In the TNO data set, we have 7 batteries that have a complete degradation history
up to their EOL. We predict the RUL of each battery, by considering RTF data of the remaining
batteries in the data set.

Given the degradation history of test battery and the RTF data of similar batteries, we first com-
pute the DTW distance between the degradation history of the test battery from its BOL SOH up
to 95% SOH value and all the other similar batteries in the RTF data whose degradation histories
are also considered from their BOL SOH up to 95% SOH value.

The DTW distances are then sorted in ascending order. The DTW distance between two degrad-
ation histories are smaller if they are similar and the DTW distance is higher otherwise. Based on
the sorted DTW distances, we select the target values of the k most similar degradation histories.
Out of 8 degradation histories in the TNO data set, the RTF data used for SBM has the degrad-
ation histories of only 6 batteries as we exculded the degradation history of battery A9 and we
select a degradation history for testing. Hence, in our SBM model, we can select k from 1,2,3,4,5,6.

Parameters Possible values
k 1,2,3,4,5,6

SOH range 100% to 95%, 100% to 90%, 100%-85%
Weights Uniform Weights, Inverse distance weights

Table 6.3: Parameters and possible values that can be used to obtain the optimal SBM model for
the TNO data set

Based on the sorted DTW distances, we can get the RUL values of the k most similar degradation
histories that have the same system health value as that of the test degradation history. The
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predicted RUL can be computed using a uniform weighted average (equation 6.15) or an inverse
distance weighted average (equation 6.16). The same procedure is repeated by considering each
battery as the test battery. Table 6.3 shows the various hyperparameters that can be used to
obtain the optimal SBM model for the TNO data set. The results and model evaluation metrics
of the SBM model is discussed in Section 7.4.
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Results

In the last chapter, we implemented Support Vector Regressor (SVR), Long Short Term Memory
(LSTM) and Similarity based Model (SBM) to predict the RUL of the batteries. In this chapter,
we present the results obtained from the various machine learning models that were implemented
and we discuss the results. In Section 7.1, we define evaluation metrics which we will use to
evaluate the performance of the RUL prediction models. In Section 7.2, we discuss the results of
the SVR model. In Section 7.3, we discuss the results of the LSTM model. The results of SBM
model are discussed in Section 7.4.

7.1 Model performance metrics

In this section, we discuss some of the model evaluation metrics which are used to evaluate the
performance of the implemented prediction models. There are numerous model evaluation metrics
proposed in the literature, however, each metric has its own merits and demerits to interpret a
model. Thus, we choose some of these model evaluation metrics based on their significance and
explainability of the results.

7.1.1 Mean Absolute Error (MAE)

Mean Absolute Error is computed as the average of the absolute value of the error. MAE is
calculated as follows:

MAE =

N∑
i=1

|yi − ŷi|
N

(7.1)

where yi and ŷi are the actual values of the target and the predicted values of the target respect-
ively, at the ith sample.

7.1.2 Mean Absolute Percentage Error (MAPE)

Mean Absolute Percentage Error (MAPE) is one of the commonly used model evaluation metrics.
MAPE is calculated as follows:

MAPE =
100

N

N∑
i=1

|yi − ŷi|
|yi|

(7.2)
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where yi and ŷi are the actual values of the target and the predicted values of the target respect-
ively, at the ith sample. MAPE is expressed as a percentage. We can observe that, if the actual
value of a target is zero, then MAPE will be infinity.

7.1.3 Root Mean Squared Error (RMSE)

It is one of the most commonly used metric to evaluate the performance of regression and fore-
casting models. As the name suggests, RMSE is the square root of the square of the mean of the
squared errors. The mathematical formula to compute RMSE is given below.

RMSE =

√∑N
i=1 (yi − ŷi)2

N
(7.3)

where y is the actual value of the target and ŷ is the predicted value of the target. N is the length
of ŷ and also y.

7.1.4 Coefficient of Determination (R2)

This metric indicates the goodness of fit of a regression model. In a regression problem, R2 metric
is used to explain how well the regression line fits the input data. When comparing the perform-
ance of two or more regression models, a model with higher value of R2, fits the input data better
than the others. Typically, R2 of a model is in the range [0, 1]. However, in some cases, the R2

metric of a model is negative, which implies that the model has an opposite trend as the input data.

R2 is computed as follows. Let y be the actual target of length N . Let ŷ be the predicted target.
The mean of the actual values is computed as below.

ȳ =

N∑
i=1

yi
N

(7.4)

The total sum of squares is computed as SStot =
∑N

i=1 (yi − ȳi)2. The sum of squares of the re-

sidual is computed as SSres =
∑N

i=1 (yi − ŷi)2. Using SStot and SSres, R
2 is computed as below.

R2 = 1− SSres

SStot
(7.5)

One of the main advantages of using R2 as a model evaluation metric is that it is scale independent.
However, it is sensitive to the variance in the input data.

7.1.5 Model Running Time

Model running time is an important model evaluation metric. Generally, most machine learning
(ML) models take a lot of time and computational resources to generate predictions. In the context
of RUL prediction of lithium-ion batteries in electric vehicles, the ML model to compute the RUL
will be deployed in the control unit of the EV’s battery management system (BMS). The BMS of
an EV is an embedded hardware and has very less computing resources as compared to a personal
computer. Hence the deployed ML model must make use of the computational resources of the
BMS with high efficiency. Hence, an ideal RUL prediction model should take as less time and
consume as less computational resources as possible.
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7.2 Support Vector Regression model

In this section, we present the results obtained using the Support Vector Regression (SVR) model.
Figures 7.1 a) to d) and Figures 7.2 a) to c) illustrate the RUL prediction made by the SVR model
for all the batteries in the TNO data set (except battery A9). Table 7.1 shows the performance
of SVR model to predict RUL for each cell when the effects of calendar aging is considered and
Table 7.2 shows the performance of SVR model to predict RUL for each cell when the effects of
calendar aging is not considered.

For cell A1, both the models with calendar aging and without calendar aging have a decent R2

value of around 90%. However, for the cells A3, A11 and A12, the prediction made by the model
without calendar aging effect do not follow the trend of the actual target values. Hence, the R2

value of these models for cell A3 are negative. The SVR model with calendar aging for cell A3
also has a negative R2 value.

For cell A10, the SVR model with calendar aging effects almost follows the trend of the actual tar-
get values. But the prediction made by the model during the last cycles deviates too much from the
expected target. Hence, the R2 of the SVR model with calendar aging for cell A10 is lesser than
that of the SVR model without calendar aging. For cell A4, the predicted RUL has a slightly sim-
ilar trend to that of the actual target, but the predictions deviate too much from the actual target.

For the batteries A3, A11 and A12, the SVR model without calendar aging effects has a negative
R2 score, which indicates that the model incorrectly fits the data. But, the SVR model with
calendar aging effects has a negative R2 score for only one out of 7 batteries. Thus, the SVR
model with calendar aging effects is a better fitting model than the SVR model without calendar
aging effects.

Battery Id
MAE
(km)

MAPE RMSE R2 MRT(s)

A1 1369.4 99.21 1580.8 0.9074 642.84
A2 3222.1 Inf 3439.5 0.4893 667.97
A3 7744.7 337.44 9785.6 -1.0052 580.56
A4 8630.6 82.11 9968.8 0.4495 534.96
A10 6589.4 518.61 10116 0.5803 1638.71
A11 4209.3 170.67 5255.1 0.4533 468.08
A12 4480.5 225.34 5800.4 0.1152 410.86

Table 7.1: Performance metrics of SVM regression models with calendar aging

Battery Id
MAE
(km)

MAPE RMSE R2 MRT(s)

A1 1447.1 123.30 1681.3 0.8953 721.80
A2 2848.8 Inf 2976.3 0.6176 820.67
A3 20942 750.80 26817 -14.05 593.62
A4 9365.3 94.70 10850 0.3478 650.78
A10 6859.6 144.94 8349.3 0.7141 981.35
A11 15285 625.01 19472 -6.5065 391.99
A12 6042.9 290.19 7644.7 -0.537 470.67

Table 7.2: Performance metrics of SVM regression models without calendar aging
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(a) (b)

(c) (d)

Figure 7.1: RUL prediction of LSTM model for cell a) A1 b) A2 and c) A3 and d) A4

Also, for most batteries (except batteries A10 and A11 ), the model running time (MRT) of the
SVR model with calendar aging effects is lower than the SVR model without calendar aging ef-
fects. Hence, we can prefer the former model over the latter.

In Tables 7.1 and 7.2, the MAPE value for battery A2 is infinity. This is because, the actual value
of the RUL at the last cycle of the battery is zero and while computing the MAPE, the absolute
error term in the numerator is being divided by zero.
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(a) (b)

(c)

Figure 7.2: RUL prediction of SVM Regressor for cell a) A10 b) A11 and c) A12
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7.3 Long Short Term Memory model

In this section, we present the results obtained using the LSTM model. Figures 7.3 a) to d) and
Figures 7.4 a) to c) illustrate the RUL prediction made by the LSTM model for all the batteries
in the TNO data set (except battery A9). Table 7.3 shows the performance of LSTM model to
predict RUL for each cell when the effects of calendar aging is considered and Table 7.4 shows the
performance of LSTM model to predict RUL for each cell when the effects of calendar aging is not
considered.

The R2 of each LSTM model is strictly positive indicating that the model is a good fit for the
data. We can observe that when calendar aging is not considered, the models take longer time to
run as compared when calendar aging is considered. The R2 values for the models with calendar
aging effects are a bit smaller than that of the models without calendar aging.

For battery A3, the MAPE value is 42.30%, which is significantly lesser as compared to the MAPE
values of the LSTM models for other batteries. Overall, if we considering all the model evaluation
metrics in Table 7.3, we can conclude that the LSTM model with calendar aging effects is a better
model than the LSTM model without calendar aging. The RUL predictions made by the LSTM
model are relatively good as compared to the predictions made by the SVR model. Hence, among
SVR model and LSTM model, LSTM is a better performing model.

52 Remaining Useful Life prediction of lithium-ion batteries using machine learning



CHAPTER 7. RESULTS

(a) (b)

(c) (d)

Figure 7.3: RUL prediction of LSTM model for cell a) A1 b) A2 and c) A3 and d) A4.
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(a) (b)

(c)

Figure 7.4: RUL prediction of LSTM model for cell a) A10 b) A11 and c) A12

Battery Id
MAE
(km)

MAPE RMSE R2 MRT(s)

A1 2512.9 194.71 2967.6 0.6737 113.10
A2 1746.4 Inf 2144.3 0.8015 116.26
A3 3152.7 112.13 3731.8 0.7084 84.91
A4 7065.6 112.90 7830.9 0.6603 154.95
A10 7471.3 174.85 8438.4 0.7080 376.51
A11 3260.1 159.65 4157.0 0.6579 77.28
A12 3357.1 163.59 4382.2 0.4950 75.79

Table 7.3: Performance metrics of LSTM models with calendar aging
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Battery Id
MAE
(km)

MAPE RMSE R2 MRT(s)

A1 1817.5 155.70 2198.1 0.8210 125.76
A2 1954.3 Inf 2443.9 0.7422 141.59
A3 1571.3 42.30 1923.4 0.9225 162.76
A4 8246.2 126.09 8874.6 0.5637 319.82
A10 6678.1 161.21 7649.4 0.7600 836.42
A11 3254.4 155.09 4129.2 0.6625 181.22
A12 3468.9 167.16 4530.3 0.4602 196.23

Table 7.4: Performance metrics of LSTM models without calendar aging

7.4 Similarity based model

In this section, we present the results of the similarity based model (SBM). TNO data set is used
to evaluate the performance of the SBM for RUL prediction. Except for battery A9, all the other
batteries are used for training and testing.

In Table 7.7, given k = 1, the weighting scheme is inverse distance weights and the available range
of SOH values is between 100% to 95%, i.e., if very less samples are available in the degradation
history of the test data, the MAPE is higher and it reduces when the battery is nearing its EOL.
The MAPE is 21.9% at 95% SOH and it reduces to 15.7% at 85% SOH. This can be observed for
other values of k. The MAPE is the lowest at 85% SOH.

We can see that when k = 1, the values of MAPE in both tables 7.7 and 7.8, are equal. This is
because, when k = 1, RUL predicted by using the inverse distance weight scheme and uniform
weight scheme is equal. This can be verified from equations 6.15 and 6.16. From Tables 7.5, 7.6,
7.7 and 7.8, we can observe that for k = 1 and at 85% value of SOH of the test degradation
battery, SBM model has the lowest values of MAE and MAPE. Thus, we can conclude that the
optimal SBM model to predict the RUL in the TNO data set is a SBM with k = 1, and at 85%
value of SOH value of the test degradation history.

From the above tables, we can also observe that the MAPE values are lower when the inverse
distance weighting scheme is used as compared to uniform weights. This is because, when an in-
verse distance weighting scheme is used, the less similar degradation histories have lesser influence
on the predicted RUL as compared to a uniform weighting scheme, where all the k degradation
histories have equal influence on the predicted RUL.

Figures 7.5, 7.6 and 7.7 show the boxplots representing the spread of the MAPE for each battery
in the data set, when inverse distance weighting scheme is used. Figures 7.8, 7.9 and 7.10 show
the boxplots representing the spread of the MAPE for each battery in the data set, when uniform
weighting scheme is used. From these figures, it can be observed that, in general, the spread of
the MAPE of the SBM with inverse weighting scheme is less than the spread of the MAPE of the
SBM with uniform weighting scheme.

From Figures 7.5, 7.6 and 7.7, we can observe that for the batteries A11 and A12, the median
value of the MAPE is very less (less than 10%) and the spread of the MAPE is very low. (The
horizontal red line present inside the box of a boxplot, indicates the median value). This implies
that different values of k of a SBM with inverse distance weighting scheme, predicts similar RUL
for batteries A11 and A12. This is also evident from Figure 5.1, as A11 and A12 have a very
similar degradation pattern.
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From Figures 7.5 to 7.7 , we can observe that for the batteries A4 and A10, the median value of
MAPE is around 40%. The main reason for this large MAPE is that there are no degradation
histories in the data set that are very similar to the degradation histories of A4 and A10.

From Figures 7.5 to 7.7 , we can observe that for the batteries A1, A2 and A3, the median value of
their MAPE is less than 15%. This is a reasonably good value of MAPE and since the degradation
histories of batteries A1, A2 and A3 have degradation histories that are similar to them (Refer
Figure 5.1).

One of the main takeaway from the boxplots shown in Figures 7.5 to 7.10 is that the SBM with
inverse distance weights is better than SBM with uniform weights, as in the former, the extreme
degradation histories has less influence on the predicted RUL and in the latter, all the k similar
degradation histories have an equal influence on the predicted RUL.

SBM is an example of instance based learning algorithm (IBL), where the model generates pre-
dictions by comparing the test samples with train samples that are already known. Thus, when
more samples are available, then the SBM model can generate better predictions. The MAPE of
the predicted RUL can be reduced if more degradation histories are available in the RTF data.

The data preparation part for the SBM takes 4.25 seconds. The time taken to compute the DTW
distance between two degradation histories is 9.3ms. The final RUL generation step takes around
2.5ms seconds. The SBM runs faster than the SVR model and the LSTM model.

The best model out of the SVR, LSTM and SBM model is the SBM model with inverse distance
weights with k=1 and the MAPE of the model is 15.70% The optimal parameters k might change
when the RUL is predicted with additional RTF data.

Range of SOH
values considered

k=1 k=2 k=3 k=4 k=5 k=6

100% - 85% 2906.2 3560.6 3630.4 3520.6 3449.8 3387.3
100% - 90% 10643 11282 11301 11518 11303 10931
100% - 95% 17904 18367 19090 17218 17168 16930

Table 7.5: Mean Absolute Error (MAE) values of the similarity based model (SBM) with inverse
distance weights for k=1 to k=6

Range of SOH
values considered

k=1 k=2 k=3 k=4 k=5 k=6

100% - 85% 2906.2 4409.7 5270.0 5635.1 5085.6 4942.4
100% - 90% 10643 13592 16383 17520 15954 15720
100% - 95% 17904 21220 25919 24332 23838 26768

Table 7.6: Mean Absolute Error (MAE) values of the SBM with uniform weights for k=1 to k=6
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Range of SOH
values considered

k=1 k=2 k=3 k=4 k=5 k=6

100% - 85% 15.70643 18.98143 19.36586 18.99714 19.13771 18.88543
100% - 90% 20.40329 20.62886 20.387 21.50329 21.51429 20.91229
100% - 95% 21.98886 20.94329 21.566 19.23043 19.27286 19.04943

Table 7.7: Mean Absolute Percentage Error (MAPE) values of the SBM with inverse distance
weights for k=1 to k=6

Range of SOH
values considered

k=1 k=2 k=3 k=4 k=5 k=6

100% - 85% 15.70643 26.90471 34.587 38.36429 36.49271 38.37414
100% - 90% 20.40329 28.79286 38.55157 43.136 41.01271 46.01614
100% - 95% 21.98886 25.99314 34.49671 34.49929 36.04871 45.04986

Table 7.8: Mean Absolute Percentage Error (MAPE) values of the SBM with uniform weights for
k=1 to k=6

Figure 7.5: Boxplot showing the MAPE grouped by batteries for k=1 to 6. Target is computed
using inverse distance weights (100% - 85% of capacity values used for training)
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Figure 7.6: Boxplot showing the MAPE grouped by batteries for k=1 to 6. Target is computed
using inverse distance weights (100% - 90% of capacity values used for training)

Figure 7.7: Boxplot showing the MAPE grouped by batteries for k=1 to 6. Target is computed
using inverse distance weights (100% - 95% of capacity values used for training)
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Figure 7.8: Boxplot showing the MAPE grouped by batteries for k=1 to 6. Target is computed
using uniform weights (100% - 85% of capacity values used for training)

Figure 7.9: Boxplot showing the MAPE grouped by batteries for k=1 to 6. Target is computed
using uniform weights (100% - 90% of capacity values used for training)
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Figure 7.10: Boxplot showing the MAPE grouped by batteries for k=1 to 6. Target is computed
using uniform weights (100% - 95% of capacity values used for training)

7.5 Review of research questions

In the problem formulation section of Chapter 1, we posed our main research question and other
possible research questions that can be addressed as part of this research. In this section, we
present the research findings for each of these questions.

• How to predict the RUL of a lithium-ion battery onboard an EV in a real-time scenario?

We implemented SVR models and LSTM models to predict the RUL of a LIB, given the
degradation history of the battery. We split the degradation history of each battery in the
data set into two subsets - the training subset and the testing subset. We trained a separate
SVR model and LSTM model for each training subset and we also generated predictions
from the models using the corresponding testing subsets.

We also implemented SBMs to predict the RUL of a LIB. SBMs are instance based learning
(IBL) models and they predict the RUL of a test battery by considering the degradation
histories of similar batteries. This is unlike SVRs and LSTMs where we train using the
training subset of degradation history data of a single battery.

• Will the prediction model gives better results when the impact of resting (calendar aging) on
battery degradation is considered?

We trained SVR models and LSTM models for RUL prediction. We trained the models
without considering the effect of resting (calendar aging) and also with the effects of resting
(calendar aging). We found that for some batteries, including the resting period of the
battery(which is an indicative of calendar aging) as one of the input features, reduced the
error. However, for some batteries, including the resting period increased the error.
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• Can the prediction model implemented return the remaining useful life of the battery in terms
remaining range for which the EV can be driven?

Yes, the implemented models predict the RUL of the LIBs in terms of remaining driving
range (RDR).

• What are the different model performance criteria to compare different RUL prediction mod-
els implemented in this study?

We compared the different RUL prediction models based on the model evaluation metrics
such as MAE, MAPE, RMSE, R2 and model running time.

• Can the prediction model predict the remaining driving range (RDR) of electric vehicles that
are subjected to a wide range of driving profiles cycles?

The implemented RUL prediction model should be able to predict the RDR of an electric
vehicle that is subjected to different driving profiles, given that the degradation history of
the LIB used is preprocessed as suggested in this research. However, this was not tested and
verified as part of this research as the data of LIBs subjected to diverse driving profiles were
not present in the data set.
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Chapter 8

Conclusions

8.1 Concluding Summary

In this section, we present the concluding summary of this research.

Preliminaries

In this chapter, we discussed about the basic working principle and advantages of a lithium-ion
battery. We defined the necessary terminology regarding LIBs. We also discussed briefly about
the various battery form factors, battery management systems and battery aging.

Literature Review

We reviewed some of the commonly used publicly available lithium-ion battery degradation data
sets. We reviewed several research papers regarding RUL useful prediction of LIBs. We concluded
that data-driven methodology based such as SVR, LSTM and SBM are suitable for our require-
ment. We also identified the research gap and we addressed the same.

Feature Engineering and EDA

In this chapter, we preprocessed the data by removing unwanted columns, created new features
from the existing features in the TNO data set.

Machine Learning models

In this chapter, we implemented machine learning models such as SVR, LSTM and SBM. We op-
timized the hyperparameters of the SVR using Bayesian optimization technique. We implemented
an LSTM network to predict the RUL of LIBs. We developed SVR and LSTM models for each
battery in the data set, and we tested the effect of calendar aging on a battery’s RUL. Finally, we
implemented a SBM that uses dynamic time warping as a distance metric to compute the RUL of
LIBs.

Results

In this chapter, we discussed the results of the three models that we implemented as part of this
research.
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8.2 Conclusions

Owing to the increasing popularity of electric vehicles, remaining useful life prediction of lithium-
ion batteries is a crucial task. Predicting the RUL of a lithium-ion battery in an EV is a challenging
problem, as the degradation of a battery is caused by multiple factors such as temperature, vehicle
load, current, voltage, etc.

In this research, we analyzed the data, preprocessed the data and implemented three machine
learning algorithms, namely, Support Vector Regression and Long Short Term Memory Network.
We also tested the effect of calendar aging on the RUL of a battery. In this regard, we conducted
two sets of experiment where in an experiment we considered the effect of calendar aging and
in another experiment we ignored the effects of calendar aging. RUL prediction models that
considered the calendar aging effects performed better than the models that did not consider it.
We also implemented a Similarity based model to predict the RUL. The best SBM model predicted
the RUL with an MAPE of 15.70%. This SBM can be used in an electric vehicle in real-time.

8.3 Limitations and Future Work

Similarity based Model (SBM) which we implemented in Section 6.5 will perform well when more
run-to-failure (RTF) degradation profiles of Lithium-ion Batteries (LIB) are available. However,
the data set used in this research has the run-to-failure degradation profiles of only 8 LIBs, out of
which the degradation profiles of 7 LIBs were considered. This can be overcome by adding more
run-to-failure degradation profiles of LIBs. Additional run-to-failure degradation profiles can be
added either by acquiring data from EVs in real time or by generating synthetic data that re-
semble the original data using neural network models such as Conditional Generative Adversarial
Networks (CTGAN) (L. Xu et al., 2019).

Another limitation regarding the data set is that the data used in this research is a lab generated
data set. Additional data can be included in the data set by acquiring data from the battery
within an actual electric vehicle (EV).

In this research, we have attempted to predict the remaining useful life (RUL) of the Lithium-ion
Battery (LIB) in terms of remaining driving range. In a research conducted by Smuts, Scholtz
and Wesson (2017), Remaining Driving Range (RDR) is influenced by various factors and they
can be broadly classified into the following categories : battery modeling factors, vehicle model-
ing, driving behaviour, route and terrain and environmental factors. Each of these categories has
several factors that affect RDR.

The data set used in this research, contains data only regarding the battery degradation, distance
traveled and duration. The data does not contain a majority of the factors that affect the RDR
as mentioned in (Smuts, Scholtz and Wesson, 2017). In the future, these factors can be measured
from EVs in real time and the existing data set can be extended by adding new battery degrada-
tion profiles along with the data of the various factors that affect RDR.
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Appendix A

System Configuration

A.1 Hawrdware specifications

• Processor : Intel(R) Core(TM) i9-9980HK CPU

• Operating System : Windows 10 Home

• Clock Speed : 2.40GHz

• Number of Cores : 8

• Total RAM : 32 GB

A.2 Software Used

• MATLAB R2021a - Student Edition
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Appendix B

Battery Specifications

B.1 NASA data set

Parameters Values
Nominal Voltage 3.6V
Nominal Capacity 2,850 mAh
Minimum Discharge Voltage 3V 3V
Maximum Discharge current 1C
Charging Voltage 4.2V (maximum)

Charging current 0.5C
Charging Time 3 hours (approx)
Charging Method CC and CV
Cell Weight 48g (approx)
Cell Dimension 18.4mm (dia) and 65mm (height)

B.2 CALCE data set

Parameters Values
Cell Dimensions(mm): 25.85mm(D)*65.15mm(H)
Cell Weight(g): 70
Nominal Capacity: 2300mAh
Voltage(nominal,V): 3.3V
Internal impedance(1kHz AC typical, mΩ): 6
HPPC 10 Sec Discharge Pulse Power 50% SOC: 200W
Recommended standard charge method: 1C to 3.6V CCCV, 45 min
Recommended fast charge Method to 80% SOC: 4C to 3.6V CC,12 min
Maximum continuous discharge(A): 70
Maximum Pulse discharge(10 seconds,A): 120
Cycle life at 10C discharge, 100% DOD: Over 1,000 cycles
Operating temperature range: -30°C to +55°C
Storage temperature range: -40°C to +60°C -40°C to +60°C

Remaining Useful Life prediction of lithium-ion batteries using machine learning 71



APPENDIX B. BATTERY SPECIFICATIONS

B.3 Oxford data set

Parameters Values
Typical Capacity 740 mAh
Nominal Voltage 3.7 V
Max. Current (Charge Condition) 1.48 A
Max. Voltage (Charge Condition) 4.2 V ± 0.03 V
Continuous Current (Discharge Condition) 14.8 A
Peak Current (Discharge Condition) 29.60 A
Cut-off Voltage (Discharge Condition) 4.2 V ± 0.03 V
Cycle Life > 500 cycles
Operating Temperature (Charge) 0 to 40oC
Operating Temperature (Discharge) -20 to 60oC

Table B.1: Battery specifications of the battery used in Oxford data set

B.4 Toyota Research Institute data set

Parameters Values
Typical Capacity 1200 mAh
Nominal Voltage 3.3 V
Max. Current (Charge Condition) 2.0 A
Charge Time 2.0hrs
Max. Voltage (Charge Condition) 4.2 V ± 0.05 V
Max. Continuous Current (Charge Condition) 4 A
Max. Continuous Current (Discharge Condition) 30 A
Min. Voltage (Discharge Condition) 2V
Cut-off Voltage (Discharge Condition) 2.5 V
Temperature (Charge) 0 to 55◦C
Temperature (Discharge) -30 to 55◦C
Temperature (Storage) -40◦C to 60◦C

Table B.2: Battery specifications of the battery used in TNO data set
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B.5 TNO data set

Parameters Values
Typical Capacity 2000 mAh
Nominal Voltage 3.6 V
Max. Current (Charge Condition) 2.0 A
Charge Time 2.0 hrs
Max. Voltage (Charge Condition) 4.2 V ± 0.05 V
Continuous Current (Discharge Condition) 14.8 A
Peak Current (Discharge Condition) 6.0 A at 45oC, 4.0 A at 60oC
Cut-off Voltage (Discharge Condition) 2.5 V
Temperature (Charge) 0 to 45oC
Temperature (Discharge) -20 to 60oC
Temperature (Storage) < 35oC

Table B.3: Battery specifications of the battery used in TNO data set
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