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Abstract: Lithium-ion batteries play an indispensable role, from portable electronic devices to electric
vehicles and home storage systems. Even though they are characterized by superior performance
than most other storage technologies, their lifetime is not unlimited and has to be predicted to
ensure the economic viability of the battery application. Furthermore, to ensure the optimal battery
system operation, the remaining useful lifetime (RUL) prediction has become an essential feature of
modern battery management systems (BMSs). Thus, the prediction of RUL of Lithium-ion batteries
has become a hot topic for both industry and academia. The purpose of this work is to review,
classify, and compare different machine learning (ML)-based methods for the prediction of the RUL
of Lithium-ion batteries. First, this article summarizes and classifies various Lithium-ion battery RUL
estimation methods that have been proposed in recent years. Secondly, an innovative method was
selected for evaluation and compared in terms of accuracy and complexity. DNN is more suitable for
RUL prediction due to its strong independent learning ability and generalization ability. In addition,
the challenges and prospects of BMS and RUL prediction research are also put forward. Finally, the

development of various methods is summarized.

Keywords: Lithium-ion batteries; battery management system; remaining useful lifetime prediction;
machine learning

1. Introduction

With the development of the electrification era, the vigorous advancement of new
energy vehicles, and the Internet of Things, the importance of energy storage system
performance has become prominent. Lithium-ion batteries stand out among various energy
storage solutions due to their high energy density, high power capability, and low self-
discharge rate [1,2]. At the same time, this also puts forward higher requirements and
challenges for the development of battery management technology. A comprehensive
battery management system (BMS) should include the following functions: battery data
collection, battery status determination and prediction, charge and discharge control, safety
protection, thermal management, balance control, and communication [3].

The accuracy of state estimation is an important criterion for evaluating the perfor-
mance of BMS. A high-performance BMS can make the energy storage system operate
reliably and extend the battery lifetime [4]. The optimized BMS should provide multi-task
processing capabilities, which can make various tasks work together. At the same time,
a real-time operating system is introduced to monitor system parameters and status in
real-time so that the system can be adjusted in time.

However, the lifetime of everything is limited, and Lithium-ion batteries are no
exception. The price and aging of Lithium-ion batteries are the two main factors that
hinder their acceptance in a wider range of applications [5]. The performance of Lithium-
ion batteries will decrease with calendar aging and cycle aging, due to various aging
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phenomena [6,7]. Battery aging will increase operating costs, reduce the equipment service
life, and affect the safe operation of equipment [8-10]. Generally, when the capacity drops
to 80% of the initial value, the battery reaches the end of its service life [11]. The remaining
useful lifetime (RUL) is defined as the amount of operation time in a certain application
until the battery reaches the predefined end-of-life criterion; it represents the period from
the present observation to the end of life (EOL) [12-14].

The aging mechanism of the battery is affected by the battery material and the internal
chemical reaction during charging and discharging. Battery aging is a complex process of
change and presents a highly non-linear trend [15,16]. In actual operation, factors such as
operating temperature, charge/discharge rate, and environmental stability will affect the
aging process, thereby affecting the battery lifetime [11,17,18].

Therefore, how to accurately predict the RUL under complex working conditions is
an important issue to be solved urgently. In the context of industry, RUL predicts that
it can reduce investment costs and improve profitability [19,20]. In the academic world,
improving the prediction accuracy of RUL can make predictive adjustments to the use of
the energy storage system in advance, so that the system can operate safely and stably, and
extend the service life of the battery [21,22].

RUL prediction methods can generally be divided into three categories: model-based
methods, data-driven methods [23], and hybrid methods [24]. Among them, model-based
methods usually include physical models, electrochemical models, and so on. The elec-
trochemical model uses detailed mathematical models to accurately express the internal
chemical reaction process of the battery [25-27]. Therefore, these methods will also bring
about problems such as high complexity and high calculation cost while achieving high
estimation accuracy. In addition, to complete the parameterization process of the electro-
chemical model, it is usually necessary to disassemble the battery, which will bring great
inconvenience in the actual application process [28,29]. A Lithium-ion battery is a highly
complex electrochemical power system. When performing RUL prediction for Lithium-
ion batteries, model-based methods are usually complicated and difficult to implement,
while data-driven methods are more suitable for estimating the RUL of Lithium batteries,
especially in the case of a large number of historical data applications [30-32]. Therefore,
data-driven prediction methods have attracted much attention.

Among the data-driven methods, ML integrates human knowledge into a machine to
achieve previously unavailable functions and performance, and it promotes the interaction
between humans and ML systems, making ML decisions understandable to humans [33,34].
When ML technology is applied to predict the RUL of Lithium-ion batteries, it also has
the potential of high prediction accuracy and high calculation efficiency [35]. The work
in [23] reviewed different methods of Lithium-ion battery RUL prediction, including model-
based, data-driven, and hybrid methods. The work in [31] reviewed the application of
adaptive filter technology, artificial intelligence technology, stochastic technology, and
other related technologies in the prediction of the RUL and state of health (SOH) of
electric vehicle batteries. The work in [36] reviewed the use of adaptive methods in the
construction of battery aging models, including different characteristics that affect the
ability of the model to update itself. This work also classifies the adaptive aging models
of Lithium-ion batteries and defines different evaluation criteria in terms of accuracy and
computational cost to judge the performance of the model. In [37], the author reviewed
the application of ML in energy storage systems. Energy storage devices include batteries,
capacitors/supercapacitors, and fuel cells. The work in [38] reviewed the application of
intelligent algorithms for battery technology in electric vehicles and evaluated the functions,
structure, configuration, accuracy, advantages, and disadvantages of smart algorithms in
battery state estimation. The work in [39] paid more attention to the cost-effectiveness and
feasibility of the practical application of data-driven methods in the field of Lithium-ion
battery health estimation and lifetime prediction. The main ideas of these review papers
are shown in Table 1.
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Table 1. The main idea of related review papers.

Literature No. Method Application Scenario Contribution
Model—l?ased The prediction of the RUL of Reviews recent advan.ces in
[23] Data-driven o . . model-based, data-driven, and
. Lithium-ion batteries .
Hybrid methods hybrid approaches
Adaptive filter technique Identifies the classifications,
[31] Intelligent techniques The RUL and SOH prediction  characteristics, and evaluation
: Stochastic technique for electric vehicle batteries processes with advantages and
Other techniques disadvantages for EV applications
Battery aging model Classifies adaptive Lithium-ion
[36] Adaptive method yagmg battery aging modeling methods
construction . .
and defines evaluation methods
Energy storage devices and
[37] ML systems (batteries, Classifies and briefly describes
capacitors/super-capacitors, application examples
fuel cells)
. . Evaluates the functions, structure,
. . Battery state estimation in . .
[38] Intelligent algorithms . . configuration, accuracy, advantages,
electric vehicle .
and disadvantages
The feasibility and
[39] Data-driven methods Lithium-ion battery health cost-effectiveness of improving

assessment and life prediction  battery health in practical
applications

These reviews mainly focus on how to apply model-based methods to SOH, RUL
prediction, and how to apply data-driven methods to the joint prediction of SOH and
RUL. Few comments have focused on the application of the ML method in Lithium-
ion battery RUL prediction. To make up for this research gap, the author consulted
216 papers, selected 75 papers based on the ML classification for RUL prediction demand,
and reviewed the support vector machine, Gaussian process regression, extreme learning
machine, deep neural network, and recurrent neural network. A new standard is proposed
to evaluate and compare the methods proposed in the literature, starting from the two
general directions of accuracy and robustness, to emphasize the detailed information,
advantages, and limitations of these methods.

The remainder of this article is organized as follows. Section 2 introduces the basic
principles of the support vector machine (SVM), Gaussian process regression (GPR), ex-
treme learning machine (ELM), deep neural network (DNN), and recurrent neural network
(RNN) and their application in Lithium-ion battery RUL prediction. Section 3 compares the
aforementioned ML methods from the perspective of accuracy and algorithm parameters.
Section 4 presents the challenges and prospects for RUL prediction. Section 5 concludes
this work.

2. Machine Learning for RUL Prediction

The ML method is the preferred method for predicting RUL when historical life cycle
data are available [33,34]. Figure 1 shows the basic workflow of introducing ML in the
process of predicting RUL. First, collect raw data that can be directly measured by the
battery, such as operating temperature (T), charge/discharge current (I), and operating
voltage (V), as inputs for the ML model. Secondly, perform preprocessing operations such
as denoising on the original data and extracting the feature vector representing the aging
behavior. The feature extraction step seriously affects the RUL estimation performance.
Finally, the trained ML model will simulate the relationship between the characteristic
value and the battery RUL and realize the prediction of the RUL.
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Figure 1. The basic workflow of applying ML to RUL prediction.

2.1. Support Vector Machine

Support vector machines (SVM) have received widespread attention due to their
strong advantages in processing small training data sets. SVM is a kernel-based non-
parametric ML technology. When the size of the training data set increases, the number
of support vectors will increase accordingly. In a complex system, this method can be
modeled according to the characteristics of the system and can provide sufficient data
support, so it has the characteristics of high flexibility [40].

SVM uses two parallel hyperplanes to clearly classify linearly separable data sets.
Equation (1) is the decision boundary between two parallel boundaries, where w is the
weight and b is the deviation parameter vector. The distance between the decision boundary
and each hyperplane is suitable for the standardized data set. SVM introduces the hinge
loss function based on the hyperplane to reduce the classification error on the linear
inseparable data set.

wix+b=0 (1)

_ A al Tk L oae. b 2
y(X)_Nn;]w (xzrx])+ ( )
wg(x) +b=0 3)
k(xi,x;) = 9(xi) o (x)) (4)

The problem becomes the function y(x) in the minimization Equation (2), where n
represents the number of samples and A represents the regularization parameters. Specif-
ically, SVM can also use the kernel function to transform the input low-dimensional
vector into a high-dimensional feature space, and then use the hyperplane to separate the
data, thereby applying the kernel method (the decision-making boundary element has
Equations (3) and (4) as shown above, where ¢ is the mapping function). The structure of
the support vector machine algorithm is shown in Figure 2.
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Figure 2. The structure of the support vector machine algorithm.

When SVM is used as a continuous value regression tool, it is called support vector
regression (SVR). SVR needs to find a hyperplane, similar to SVM. The difference is that
SVM needs to find a hyperplane with the largest gap. In SVR, a threshold ¢ needs to be
defined, and only the loss of the data points in the strip area as shown in Equation (5) is
calculated, and then the points outside the area are regressed.

ly(x) —y| > e 5)

Regression is achieved by searching for the smallest marginal fit. SVR is one of
the most commonly used regression methods at this stage. In the regression model, the
convexity solution of SVR can be obtained by constructing the Lagrangian loss function. At
the same time, the mapping function can be used to convert a low-dimensional nonlinear
input space into a high-dimensional linear feature space and a nonlinear regression problem
into a linear problem. The SVR algorithm proposes a non-parametric regression method,
which can be updated through model retraining. Because of its ability to describe the
non-linear correlation of input and output data, SVR is suitable for health diagnosis and
prediction tasks.

To enhance the stability and robustness of SVR, decrement and increment strategies
are used to integrate large-scale training samples to train SVR, and at the same time,
uncorrelated data are denoised. However, while enhancing the performance of the model,
the calculation time and complexity are increased. Patil et al. [41] used the feature vectors
extracted from the voltage and temperature curves as the input data set for RUL prediction
and built a prediction model based on SVR. The root means square error (RMSE) of the
model is 0.357%. When the confidence interval is 95%, the upper and lower errors are 7.87%
and 10.75%, respectively. Zhao et al. [42] calculated the battery capacitance, by varying the
different time intervals of the same voltage difference during the charging and discharging
process, and combined it with the method of processing the data set when the feature
vector is selected to improve the accuracy of SVR. The maximum RMSE of this method is
1%. Du et al. [43] established an SVR-based RUL prediction model for Lithium-ion batteries
using six sets of coupled stress experimental data; the relative error of the RUL prediction
for 600 cycles is below 5%.

When the SVM method performs RUL prediction, the activation function is usually
selected as the radial-based kernel, the training algorithm is the logistic regression function
margin, the hyperparameter adjustment methods are the regularization factor, the SVM
type regression, and the kernel parameter.
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2.2. Gaussian Process Regression

The prediction part is added to the prior knowledge based on the Bayesian framework.
Such a kernel-based ML method is Gaussian process regression (GPR). GPR uses the
average forecast variance to describe the associated uncertainty. The structure of the
GPR algorithm is shown in Figure 3. The GPR model is flexible, non-parametric, and
probabilistic. It can be updated through online retraining and has been widely used
in prognostic analysis. GPR was used in the initial stage to predict the decay trend of
battery internal resistance, and the decay of battery internal resistance is the main factor
in the decrease of battery capacity [44]. Therefore, GPR is gradually being applied to the
prediction of battery RUL. The attenuation of capacity is a very complicated non-linear
process. It is affected by many uncertain environmental factors and working conditions.
The improper operation will also lead to the rapid attenuation of capacity. Thus, a single
covariance function will lead to unreliable predictions for nonlinear mappings with multi-
dimensional input variables. Therefore, an anisotropic kernel with a high-level structure
should be constructed, and the training part of GPR should be started by obtaining the
training data set and then initializing the hyperparameters. GPR uses the conjugate
gradient method to determine the optimal value of the hyperparameters, which will lead
to a decrease in the negative marginal log-likelihood function. Finally, RUL is estimated by
Equations (6) and (7), which can be expressed as:

o = kI (K+c7,%l) 7ly (6)

¥, =tk K (K 021) 'k, @

where j1, is RUL estimation; k. = [k(x1,x«),..., k(xn, x*)]T; kisx = ks(x4, x4); the kernel
matrix is denoted as K, the output of the trained data set is y, I is the identity matrix, and
the inverse matrix is determined by the marginal log-likelihood function, and its gradient
is K + 021

Hidden layer
Input layer Output layer

Figure 3. Gaussian process regression algorithm structure diagram.
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Although GPR can predict nonlinear systems, as the complexity of prediction in-
creases, the accuracy of GPR will drop rapidly [45]. To solve this problem, GPR introduced
anew covariance function and a mean function based on the zero mean function and the di-
agonal covariance squared exponential function [46,47]. The performance of GPR is highly
sensitive to the covariance function, so proper kernel selection and hyperparameter opti-
mization can avoid the problem of excessive sensitivity. To improve ground-penetrating
radar, one method is to minimize the negative impact of logarithmic marginal probabil-
ity [48,49]. It is usually necessary to inverse the covariance matrix to train GPR, which will
increase the calculation time and complexity of the algorithm and increase the memory
requirements [50]. To solve the problems of long calculation time and high complexity,
various sparse methods based on the use of a subset of the training sample size have
been developed.

GPR is suitable for processing complex regression problems with high dimensionality,
small sample size, and nonlinearity [48]. Yu et al. [51] improved the mixed Gaussian process
function regression method, combined with the wavelet denoising data processing method,
and used the improved method to predict the RUL of Lithium-ion batteries. The accuracy of
this method can reach 2.2%. Compared with the original method, the accuracy is increased
by 4.5%. The relative prediction errors of this method are all less than 7%. Li et al. [52]
deeply analyzed the changing trend of some incremental capacity and extracted four key
feature vectors based on the relationship between capacity change and battery aging. The
extracted feature vector will be used as the input data of the Gaussian process regression,
and a multi-time scale short-term battery aging model will be constructed using GPR with
kernel correction. The mean average error (MAE) and RMSE of this method are both less
than 26 cycles. Li et al. [53] combined the characteristics of the equivalent voltage change
and the corresponding capacity change with the dual Gaussian process regression model
to predict the battery health status. Using this method to estimate the long-term health
status of the four batteries, the predicted RUL error is less than 23 cycles.

When selecting the GPR method for RUL prediction, the activation function is usually
a kernel function, the training algorithm is a squared exponential kernel or Marginal log-
likelihood function, and the hyperparameter adjustment methods are the input dimension
length scale and latent function values.

2.3. Extreme Learning Machine

With the development of battery RUL prediction technology, extreme learning ma-
chines have also been applied in this field. ELM can randomly select hidden layer unit
settings. When the single hidden layer feedforward neural network (SLFN) is determined,
ELM can analyze the output weight of SLEN. Because of its fast learning speed and high
prediction accuracy, ELM has been widely used in single-step and multi-step prediction
algorithms. In the process of state estimation for nonlinear complex systems, ELM has
strong flexibility, scalability, and high learning performance, which can quickly approach
the real value. ELM is a member of ML, and its structure is usually divided into three
layers, namely the input layer, hidden layer, and output layer, as shown in Figure 4.

During the data input process, ELM randomly assigns the input weight. When
the data are transmitted between the input layer and the hidden layer, the hidden layer
deviation is also set randomly, and the input weight and the hidden layer deviation do not
need to be adjusted after setting. When the data pass through the hidden layer and enter
the output layer, the connection weight will be determined by solving the equation once.
Since the connection weight does not need to be adjusted iteratively, ELM can perform
fast convergence. In Figure 4, x; represents the input layer, and y; represents the output
layer. The mathematical expression output by the hidden layer is represented by the
following equation:

lel Bifi(x;) = 21111 Bif (aix; +b;) =t;,j=1,2,...,N ®)
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T eyt = bkl =l N ©)

f(ai-xj+1b;) =
x =[x, %X, xiN]T is the input weight vector, b; is the hidden layer deviation, N is
the hidden neuron, the weight vector of the i-th hidden node and the input node and
the output weight of the output layer neuron are denoted as a; = [a;1,45, ..., aiN]T and
B; = [Bi1, Bi2, - - -, /BZN]T, respectively. The activation function is f(x) (e.g., sigmoid, tanh,
linear, etc.).

Hidden layer
Input layer
P v Output layer
Sflaix+b1)
Y
flaxx+b2)
ﬂan—1X+bn 1)
Yn /—»
\f(anX‘an)

Figure 4. Extreme learning machine algorithm structure diagram.

Zhu et al. [54] developed and optimized the ELM, integrated the gray wolf optimiza-
tion (GWO) into the ELM algorithm, and improved the weight and threshold of the ELM
to form a new DGWO-ELM algorithm. The minimum RMSE of this algorithm can reach
0.43%. Fan et al. [55] also focused on the combination of the hybrid gray wolf optimizer
(HGWO) algorithm and ELM and added an attention mechanism to optimize the forgotten
online sequential extreme learning machine (FOS-ELM). The RMSE of the improved hybrid
method can reach 0.0121.

Guo et al. [56] combined RVFL and ELM to obtain a new hybrid data-driven SOH and
RUL joint state estimation model. To quantitatively evaluate the RUL prediction interval,
the author developed an uncertainty management method based on bootstrap to improve
the accuracy of prediction. Compared with the latest learning algorithm, this method
improves the robustness of the model and reduces the prediction error.

When ELM is used as the RUL prediction method, the activation function is usually
selected as sigmoid, the training algorithm is a linear system function, and the hyperpa-
rameters are adjusted through hidden neurons.

2.4. Deep Neural Network

Unlike the single-layer feedforward neural network (SLFNN) structure of the standard
ANN model, the DNN model contains multiple hidden layers. In the DNN algorithm,
a functional relationship is established between the input vector and the output vector
through nonlinear calculations. In the calculation process, the function parameters are
calculated by a certain method. The DNN contains multiple hidden layers, as shown in
Figure 5.

y = £(x) = fa( W3 fa(Wox + b0) + 1) (10)

£ = fa(WEFa(WEs - fo (Wi x4 00) ) + 1) an
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SLFNN is shown in Equation (10), where the input data are x, the output data are
y, the activation function is denoted by f;, and the weight and deviation are W and b,
respectively. In the training process, the real value is approached by continuous iterative
updating of W. The He method is usually used for initialization. DNN can be described by
Equation (11).

The 1st The Nth
hidden layer hidden layer

Input layer

Output layer

Figure 5. Deep neural network algorithm structure diagram.

In [57], Ma et al. introduced a transfer learning method based on the DNN method.
To select the battery with the most similar performance to the target battery as a reference,
the average Euclidean distance-based (AED) method with transferable measurement char-
acteristics is used to select in the historical database. Then, the data are used as the input
vector to train the prediction model based on the stacked denoising autoencoder (SDA),
and finally the RUL of the target battery is obtained. The improved method can increase the
prediction speed by nearly 30%. Hong et al. [58] proposed a new DNN prediction model for
the long prediction period of Lithium-ion battery RUL. The model uses an end-to-end deep
learning framework to achieve the goal of completing RUL predictions through short-term
measurements. The average absolute error rate of this method reaches 10.6%. In [59], the
author applied DNN to predict the RUL of Lithium-ion batteries in the field of electronic
vehicles. The capacity was predicted using 11 extracted features, and two DNNs were
trained. One DNN performed statistical analysis on the capacity attenuation of impedance
attenuation as the degree of deterioration increased, and the other DNN obtained the
probability prediction based on the capacity attenuation trend to improve the predictive
accuracy of the remaining service life. The RMSE of this method is approximately 3.59%.

When DNN is used as an RUL prediction method, the activation function is usually
selected as sigmoid or ReLU, the training algorithm is gradient descent, backpropagation
through time, and the hyperparameters are adjusted through hidden layers.

2.5. Recurrent Neural Network

Recurrent neural networks are widely used to process time-series data because of
their time series memory. RNN is an SLFNN, with a classic three-layer model structure.
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According to time changes, the time series variables at each moment are used as the input
of RNN. Through training, RNN can predict the changing trend of input variables [60].
Among the many RNN architectures, the long and short-term memory (LSTM) algorithm is
the most representative [44,61]. LSTM has a forget gate that can filter low-correlation inputs
and enhance strong-correlation inputs. In this way, the problem of vanishing and exploding
gradients can be solved [62]. Compared with the traditional RNN algorithm, LSTM is
more suitable for scenarios that require long-term prediction and has better robustness and
accuracy [63].

Figure 6 shows the typical structure of an RNN. For an input sample x = [x1,x2,...,xn,]
where N denotes the sequence length, RNN calculates the hidden state vector sequence
h = [hy, hy, ..., hy,] and outputs the sequence y = [y1, V2, . .., yN,| through iteration of the
Equations (12) and (13), from t = 1 to N.

hi = H(Wyxi + Wighi—1 + by,) (12)

Y = Whyht + by (13)

where the weight and bias are W and b, respectively. The weight before the input layer and
the hidden layer is represented by W, and the bias vector and the nonlinear activation
function of the hidden layer are by, and H, respectively.

y(1) y(® y(t+1) y(n)

I I I I

h(l) e h(t) —_— h(t+1) | h(n)

I I 1 I

x(1) x(t) x(t+1) x(n)

Figure 6. Recurrent neural network algorithm structure diagram.

Wu et al. [19] applied the bat particle filter (Bat-PF) to optimize the neural network
algorithm. The formed NN+Bat-PF model uses Bat-PF to recursively update the model
parameters. The error of predicting RUL is two cycles in 500 prediction cycles, and the
width of the probability density function (PDF) is 35 cycles. She et al. [7], based on the
radial basis function NN model, used the incremental capacity analysis method to analyze
the battery capacity aging trend, and the RUL was predicted based on the relationship
between the capacity and the remaining service lifetime of the battery. The prediction
accuracy of this method and MAE are 90% and 4.00%, respectively. To realize the online
estimation of the RUL of Lithium-ion batteries, Wu et al. [64] used the importance sampling
(IS) method to process historical data sets. The feature vector is selected as the input of the
feedforward neural network (FFNN), and 40 hidden layer neurons are used for training.
This improved online estimation method has an error of less than 5% in actual operation.
For online RUL estimation, Zhang et al. [65] combined the incremental capacity analysis
method while simplifying the ANN model. There are only two neurons in the input layer
of the simplified ANN model. The maximum MAE of this method is four cycles, and the
maximum RMSE is six cycles.

Based on the RNN structure, an LSTM architecture is used. The RNN algorithm uses
the backpropagation method for training, but this method usually brings about the problem
of gradient explosion or disappearance. LSTM uses memory cells instead of hidden nodes
to solve this problem. Figure 7 shows the structure of a single LSTM memory cell. At each
time step, the storage unit is accessed, updated, and cleared by multiple gates. The input
vector of the LSTM unit at time ¢ is x;, the hidden state is expressed as h, c; is the unit
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memory, the weight matrix and bias parameters are W and b, respectively, the activation
function of the input gate is i, the activation function of the forgetting gate is f;, and the
activation function of the output gate is o;. When new input data are fed into the cell,
the information is accumulated to the memory cell if the input gate i; is activated. The
previous cell state c;_1 can be “forgotten” if the forget gate f; is on. The output gate o;
determines whether the newest cell output c; can be propagated to the final status h;, and
‘H is implemented as:

it = o(Wyixt + Wiihy_1 + Weici—1 + b;) (14)
ft= 0<foxt + Wipht—1 + Weper1 + bf) (15)
ct = frcp—1 + irtanh(Wyext + Wychy 1 + be) (16)

0t = U(onxt + Wiohi—1 + Weoct + bo) (17)

hy = ortanh(cy) (18)

where o represents the logistic sigmoid function, Wj; denotes the hidden-input gate matrix,
and Wy, is the input/output gate matrix. The LSTM algorithm structure is shown in
Figure 7.

NV ¥ %

Input . Output
Gate i Gate Ot
Cell
N ht
Xt —; tanh ct —»{tanh —
Forget
fi Gate

Xt
Figure 7. LSTM algorithm structure diagram.

Li et al. [66] proposed an Elman-LSTM method. This method combines the time
memory of LSTM and the advantages of the Elman neural network and introduces the
empirical mode decomposition algorithm into it. The relative prediction errors of this
Elman-LSTM method are 3.3% and 3.21%, respectively. Qu et al. [67] combined a simple and
easy-to-implement particle swarm optimization algorithm with LSTM training and further
introduced an attention mechanism to achieve the effect of joint state estimation of SOH
and RUL. The average error of this method is —3 and the RMSE is 0.0362. Cui et al. [68]
introduced the unscented Kalman filter (UKF) algorithm based on the neural network
framework of LSTM and NN, forming a new data-driven hybrid model method. The
average error of this method is 5. Yang et al. [69] combined the optimized bidirectional
long short-term memory network (Bi-LSTM) with the convolutional neural network, which
is the same neural network algorithm. The minimum error of this hybrid neural network
algorithm is 1.04%. Chinomona et al. [70] proposed a forward feature selection algorithm
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that uses a combination of RNN and LSTM to completely select the best feature set.
Using partial charge/discharge data, the RMSE and MAE of this method are 0.00286 and
0.00222, respectively.

Ma et al. [71] combined the convolutional neural network with the LSTM method and
merged the resulting hybrid method with the false nearest neighbor (FNN) method. The
accuracy of this method is 98.21%. Qiao et al. [72] combined the empirical mode decom-
position method suitable for processing nonlinear non-stationary signals with DNN with
nonlinear system prediction advantages and LSTM with temporal memory characteristics
to predict RUL. Compared with traditional methods, the algorithm’s MAE and RMSE,
which are 75% and 90.8%, respectively, significantly decrease. The standard deviation of
this method is 1.36626. Li et al. [73] designed a variant of LSTM called AST-LSTM NN.
AST-LSTM NN has many-to-one and one-to-one mapping structures. This method predicts
that the absolute error of RUL is 0.0831. Liu et al. [74] combined the advantages of LSTM
and GPR. LSTM can accurately predict the long-term dynamic trend of capacity degra-
dation, and the prediction deviation caused by capacity regeneration can be accurately
captured by GPR. The RMSE and maximum error of the LSTM+GPR model are 0.0032 and
0.6%, respectively. Parker et al. [75] proposed a many-to-one framework based on LSTM to
adapt to various input types. The mean absolute percentage error (MAPE) of the proposed
model is 63.7% higher than that of the traditional method.

When RNN performs RUL prediction, the activation function is usually selected as
sigmoid, the training algorithm is gradient descent, backpropagation through time, and
potential overfitting problems are solved through hyperparameter adjustment. Among
them, the activation function of the LSTM algorithm is usually selected as sigmoid and
tanh, the training algorithm is gradient descent, backpropagation through time, and the
hyperparameters are adjusted through hidden neurons.

3. Comparison

Even if the working conditions remain the same, Lithium-ion batteries will not neces-
sarily show a linear degradation behavior (e.g., capacity fade, resistance increase, power
decrease, etc.) during their life. Therefore, the ideal RUL prediction method should be
able to consider these nonlinear behaviors. If the prediction method only focuses on mini-
mizing the error, it may lead to the problem of overfitting. The accuracy of data-driven
methods depends on the correct adjustment of hyperparameters. The training data can
contain valuable measurement noise indicators. Therefore, the forecasting method should
consider uncertain factors. The performance of various RUL prediction methods can
be evaluated from the following aspects: (1) activation function; (2) training algorithm;
(3) hyperparameter adjustment; (4) uncertainty management; (5) robustness. These aspects
are shown in Table 2.

Choosing an appropriate amount of data is essential to obtain a satisfactory RUL
estimation result. In actual operation, online learning is more practical. In this case, the
scale of training vectors gradually increases over time, and a large number of data sets
may cause a huge computational burden. Considering the limited memory and computing
power, it is necessary to know the complexity of the input and output vectors and the
algorithm structure of each method. The accuracy of the RUL estimation greatly depends
on collecting the relevant data. Normally, the original data will be normalized to shorten
the training time and improve the performance of the algorithm. The following factors can
be considered to evaluate the performance of various RUL prediction methods: (1) input
features and output; (2) structure; (3) data calculation. These factors are shown in Table 3.



Electronics 2021, 10, 3126 13 of 18

Table 2. Summaries of the different criteria used for accuracy assessment defined in this section.

Method Activation Function Training Algorithm Hype‘r parameter Uncertainty Robustness
Adjustment Management
- Regularization Hich
. . - ig
. - Logistic regression factor
SVM ) Radial based and functional - SVM type - Not probabilistic robgstness
kernel . ; against small
margin regression insf
- Kernel parameter deviations
- Squared . .
Kernel exponential kernel ~ ~ }nputthdlmlensmn Related to th
- erne . Marginal ength scale ) s - elated to the
GPR function loglriilelihoo d - Latent function Probabilistic selected kernel
function values
- Appropriate
) . value of
ELM Sigmoid ?&Eﬁ;ﬁ;}’swm Hidden neurons Not probabilistic hidden
neurons
Si d - Gradient descent Depends on
1§mol - Backpropagation i ilisti the number of
DNN propag Hidden layers Not probabilistic
RelU through time hidden layers
- Gradient descent Potential Potential
RNN Sigmoid - Backpropagation overfitting Not probabilistic overfitting
through time problems problems
Si d - Gradient descent Stable
LSTM 1grﬁ101 - Backpropagation Hidden neurons Not probabilistic long-term
tan through time forecast
Table 3. Summaries of the different criteria for computational complexity evaluation defined in this section.
Method Input Features and Output Structure Data Calculation
- Feature vector = [I(t), V (¢), T (¢), SOC (t), ) . .
SVM Cap (1)] - Radial-based kernel function Exliqnintlagunctlon,l
B Output = [RUL ()] multiply and accumulate
- Feature vector = [I (), V (t), Cap (£)] . . - Exponential function,
GPR - Output = [RUL (#)] B Single hidden layer multiply and accumulate
- Feature vector = [I (¢), V(¢), T (£), R (), PR (¢), B . .
aa Gl - Singe idden e Eopenntal ucton
- Output = [RUL (£)]
_ Feature vector = [I(t), V (), T (¢), Cap (1] - Exponential funFtions,
DNN ) Output = [RUL (8] - Multiple hidden layers vector and matrix
operations
- Feature vector = [I (¢), T (¢), SOC (), R/C (¢), ) ) - Exponential functions,
RNN Cap (£)] - Single hidden layer vector and matrix

- Output = [RUL (#)] - Prediction window operations

- Exponential functions,
vector and matrix
operations

LSTM - Feature vector = [I (), V (t), Cap ()]

- Output = [RUL (#)] - Prediction window

Based on the previous summary, the advantages and disadvantages of the proposed
methods are compared, as shown in Table 4. Faced with computational challenges, sparsity
may become a key function to solve the problem of excessive input data. SVR becomes
a sparse algorithm due to its sensitive loss function. SVM has satisfactory performance
in nonlinear and high-dimensional models, can deal with local minima and small sample
sizes, and has a short calculation time. However, it cannot express uncertainty due to
its difficulty with calculating kernel and regularization parameters. GPR is not a sparse
model, but different data processing methods can be used to reduce the training data size.
Due to the non-parametric nature and execution probability of the GPR method, it has
better robustness and computational efficiency prediction capabilities. Since the covariance
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provided by GPR shows excellent uncertainty management capabilities, it has strong
flexibility and adaptability when dealing with high-dimensional and small sample data
sets. However, when it is applied to high-dimensional space, the efficiency is reduced, the
kernel function seriously affects the performance, and the amount of calculation is large.
ELM has better scalability and generalization performance, simple structure, and low
computational complexity. Furthermore, its accuracy is determined by the value of the
hidden neuron. DNN has a strong independent learning ability and generalization ability
and high algorithm accuracy, suitable for nonlinear and complex systems. Its performance
depends on the number of hidden layer neurons and the number of input historical data; it
needs enough training data, the structure is complex, and the memory consumption is large.
RNN has high prediction accuracy, is suitable for nonlinear and complex systems, and has
strong long-term RUL prediction capabilities. However, its uncertainty management ability
is poor and there is a problem of overfitting. LSTM has satisfactory results under long-term
dependence, and the computational intensity of the online phase is low. However, this
method has a lengthy and complicated training process and requires expensive equipment

to accelerate training.

Table 4. Advantages and disadvantages of the different ML techniques used for RUL prediction.

Method Advantages Disadvantages
Satisfactory performance in non-linear and
high-dimension models.
Capable of dealing with the local minimum, Kernel and regularization parameters are difficult to
SVM non-linear, and small sample size problems calculate ) )
The global optimal solution can be obtained Low expression of uncertainty
High prediction accuracy Kernel functions need to satisfy the Mercer criterion
Less prediction times
Non-parametric
Provi'des covaria'n.ce to generate uncertainty level Performance is highly affected by kernel functions
Easy interpretability of features Low efficiency in high dimensional spaces
GPR Processes high-dimensional and small sample data High computational load with large data sets
sets . » Hyperparameter adjustment is complex
Strong flexibility and adaptability Lack of sparseness
Non-parametric
High scalability ) )
ELM Strong generalization performance The value of the hidden neuron determines the
Low computational complexity accuracy
Fast learning
Strong independent learning ability The number of hidden layers and past inputs
Suitable for non-linear and complex systems determmes p'er'forman.ce.
DNN Better generalization capability Requires sufficient training data
High algorithm accuracy Complex structure i
Large memory consumption
. o High risk of overfitting
ngh prediction accuracy Lack of uncertainty management capabilities
RNN Suitable for non-linear and For.nplex systems Accuracy depends on the training process
Strong long-term RUL prediction ability Requires expensive processing unit
Large memory consumption
Has satisfagtory outcomes under long-term Long and complex training execution
LST™M dependencies

Low sensitivity of online calculation

High cost of accelerated training

4. Challenges and Prospects

ML is the preferred method of using historical data sets generated by cycles to predict
future development trends. Among them, DNN has a strong independent learning ability
and generalization ability, which makes DNN more suitable for RUL prediction. Due to
the excellent adaptability of ML, it is suitable for strongly non-linear systems and fits the
true trajectory of the system by automatically optimizing model parameters. However, its
accuracy relies on a large amount of historical data inputs to train the algorithm, which is
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also its inevitable limitation. In actual operation, a large amount of training data inputs
will increase the calculation time and computational complexity, and it is also easy to cause
data overfitting. There needs to be a balance between using ML algorithms to improve the
accuracy of prediction and computational complexity.

With the emergence of more and more battery state estimation methods, combined
with the application of actual operating systems, online state estimation methods will
become the trend of future development. BMS will also be upgraded from a traditional
offline system to an online management system. In terms of the types of battery state
estimation methods, single state estimation will also be upgraded to joint state estimation.
In actual operation, there is a coupling relationship between the battery states, and the
joint state estimation has better practicability and higher accuracy. It can be expected
that multi-state collaborative real-time online management solutions based on artificial
intelligence will become the future development direction.

ML algorithms are consistent with the latest developments in artificial intelligence.
The future direction of data-driven Lithium-ion battery RUL prediction will focus on
developing hybrid ML models that are widely applicable to multiple types of prediction
data. Real-time online ML battery management solutions based on big data and cloud
computing platforms are expected to become the main method for future Lithium-ion
battery RUL predictions.

5. Conclusions

This paper reviews the ML-based RUL prediction methods for Lithium-ion batteries,
which are proposed in the literature. An innovative standard is defined to evaluate
the accuracy and computational cost of the RUL prediction method. From the above
comparison, from the perspective of computational complexity, SVM, GPR, and ELM
have the characteristics of simple structure and small calculation amount, but they are
more suitable for calculation problems with small sample sizes. From the perspective of
prediction accuracy, DNN, RNN, and LSTM all have good performance and are suitable
for nonlinear complex systems, such as Lithium-ion batteries. Among them, RNN has a
relatively poor ability of uncertainty management, and LSTM has a long and complicated
training process and requires expensive equipment to accelerate training. In summary,
DNN has a strong independent learning ability and generalization ability, making DNN
more suitable for RUL prediction.
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