561 research outputs found

    Near-Surface Interface Detection for Coal Mining Applications Using Bispectral Features and GPR

    Get PDF
    The use of ground penetrating radar (GPR) for detecting the presence of near-surface interfaces is a scenario of special interest to the underground coal mining industry. The problem is difficult to solve in practice because the radar echo from the near-surface interface is often dominated by unwanted components such as antenna crosstalk and ringing, ground-bounce effects, clutter, and severe attenuation. These nuisance components are also highly sensitive to subtle variations in ground conditions, rendering the application of standard signal pre-processing techniques such as background subtraction largely ineffective in the unsupervised case. As a solution to this detection problem, we develop a novel pattern recognition-based algorithm which utilizes a neural network to classify features derived from the bispectrum of 1D early time radar data. The binary classifier is used to decide between two key cases, namely whether an interface is within, for example, 5 cm of the surface or not. This go/no-go detection capability is highly valuable for underground coal mining operations, such as longwall mining, where the need to leave a remnant coal section is essential for geological stability. The classifier was trained and tested using real GPR data with ground truth measurements. The real data was acquired from a testbed with coal-clay, coal-shale and shale-clay interfaces, which represents a test mine site. We show that, unlike traditional second order correlation based methods such as matched filtering which can fail even in known conditions, the new method reliably allows the detection of interfaces using GPR to be applied in the near-surface region. In this work, we are not addressing the problem of depth estimation, rather confining ourselves to detecting an interface within a particular depth range

    Development of Adaptive Threshold and Data Smoothening Algorithm for GPR Imaging

    Get PDF
    There are many approaches available to separate the background and foreground in image processing applications. Currently, researchers are focusing on wavelet De-noising, curvelet threshold, Edge Histogram Descriptor threshold, Otsu thresholding, recursive thresholding and adaptive progressive thresholding. In fixed and predictable background conditions, above techniques separate background and foreground efficiently. In a common scenario, background reference is blind due to soil surface moisture content and its non-linearity. There are many methodologies proposed from time to time by researchers to solve this blind reference background separation. But challenges still now remain, because there are two major problems in ground penetrating radar imaging such as targets like ground enhances the false alarm and non-metallic target detection, where the threshold decision is a critical task. In this paper, a novel real time blind adaptive threshold algorithm is proposed for ground penetrating radar image processing. The blind threshold was decided to use normal random variable variance and image data variance. Further, the image was smoothened by random variance ratio to image data variance. Experimental results showed satisfactory results for the background separation and smoothening the targeted image data with the proposed algorithm

    Robust Adaptive Detection of Buried Pipes using GPR

    Get PDF
    International audienceDetection of buried objects such as pipes using a Ground Penetrating Radar (GPR) is intricate for three main reasons. First, noise is important in the resulting image because of the presence of several rocks and/or layers in the ground, highly influencing the Probability of False Alarm (PFA) level. Also, wave speed and object responses are unknown in the ground and depend on the relative permit-tivity, which is not directly measurable. Finally, the depth of the pipes leads to strong attenuation of the echoed signal, leading to poor SNR scenarios. In this paper, we propose a detection method: (1) enhancing the signal of interest while reducing the noise and layer contributions, and (2) giving a local estimate of the relative permittivity. We derive an adaptive detector where the signal of interest is parametrised by the wave speed in the ground. For this detector, noise is assumed to follow a Spherically Invariant Random Vector (SIRV) distribution in order to obtain a robust detection. We use robust maximum likelihood-type covariance matrix estimators called M-estimators. To handle the significant amount of data, we consider regularised versions of said estimators. Simulation will allow to estimate the relation PFA-Threshold. Comparison is performed with standard GPR processing methods, showing the aptitude of the method in detecting pipes having low response levels with a reasonable PFA

    Advanced Techniques for Ground Penetrating Radar Imaging

    Get PDF
    Ground penetrating radar (GPR) has become one of the key technologies in subsurface sensing and, in general, in non-destructive testing (NDT), since it is able to detect both metallic and nonmetallic targets. GPR for NDT has been successfully introduced in a wide range of sectors, such as mining and geology, glaciology, civil engineering and civil works, archaeology, and security and defense. In recent decades, improvements in georeferencing and positioning systems have enabled the introduction of synthetic aperture radar (SAR) techniques in GPR systems, yielding GPR–SAR systems capable of providing high-resolution microwave images. In parallel, the radiofrequency front-end of GPR systems has been optimized in terms of compactness (e.g., smaller Tx/Rx antennas) and cost. These advances, combined with improvements in autonomous platforms, such as unmanned terrestrial and aerial vehicles, have fostered new fields of application for GPR, where fast and reliable detection capabilities are demanded. In addition, processing techniques have been improved, taking advantage of the research conducted in related fields like inverse scattering and imaging. As a result, novel and robust algorithms have been developed for clutter reduction, automatic target recognition, and efficient processing of large sets of measurements to enable real-time imaging, among others. This Special Issue provides an overview of the state of the art in GPR imaging, focusing on the latest advances from both hardware and software perspectives

    Feature detection algorithms in computed images

    Get PDF
    The problem of sensing a medium by several sensors and retrieving interesting features is a very general one. The basic framework of the problem is generally the same for applications from MRI, tomography, Radar SAR imaging to subsurface imaging, even though the data acquisition processes, sensing geometries and sensed properties are different. In this thesis we introduced a new perspective to the problem of remote sensing and information retrieval by studying the problem of subsurface imaging using GPR and seismic sensors. We have shown that if the sensed medium is sparse in some domain then it can be imaged using many fewer measurements than required by the standard methods. This leads to much lower data acquisition times and better images representing the medium. We have used the ideas from Compressive Sensing, which show that a small number of random measurements about a signal is sufficient to completely characterize it, if the signal is sparse or compressible in some domain. Although we have applied our ideas to the subsurface imaging problem, our results are general and can be extended to other remote sensing applications. A second objective in remote sensing is information retrieval which involves searching for important features in the computed image of the medium. In this thesis we focus on detecting buried structures like pipes, and tunnels in computed GPR or seismic images. The problem of finding these structures in high clutter and noise conditions, and finding them faster than the standard shape detecting methods like the Hough transform is analyzed. One of the most important contributions of this thesis is, where the sensing and the information retrieval stages are unified in a single framework using compressive sensing. Instead of taking lots of standard measurements to compute the image of the medium and search the necessary information in the computed image, a much smaller number of measurements as random projections are taken. The data acquisition and information retrieval stages are unified by using a data model dictionary that connects the information to the sensor data.Ph.D.Committee Chair: McClellan, James H.; Committee Member: Romberg, Justin K.; Committee Member: Scott, Waymond R. Jr.; Committee Member: Vela, Patricio A.; Committee Member: Vidakovic, Bran

    Integration of ground-penetrating radar and gamma-ray detectors for non-intrusive localisation of buried radioactive sources

    Get PDF
    This thesis reports on the integration of ground-penetrating radar (GPR) and gamma ray detectors to improve the non-intrusive localisation of radioactive wastes buried in porous materials such as soil and concrete. The research was undertaken in two phases. In the first phase, a new non-intrusive technique for retrieving the depth of a buried radioactive source from two-dimensional raster radiation images was developed. The images were obtained by moving a gamma-ray detector in discrete steps on the surface of the material volume in which the source is buried and measuring the gamma spectrum at each step. The depth of the source was then estimated by fitting the intensity values from the measured spectra to an approximate three-dimensional gamma-ray attenuation model. This procedure was first optimised using Monte Carlo simulations and then validated using experiments. The results showed that this method is able to estimate the depth of a 658 kBq caesium-137 point source buried up to 18 cm in each of sand, soil and gravel. However, the use of only gamma-ray data to estimate the depth of the sources requires foreknowledge of the density of the embedding material. This is usually III IV difficult without having recourse to intrusive density estimation methods or historical density values. Therefore, the second phase of the research employed integrated GPR and gamma ray detection to solve this density requirement problem. Firstly, four density models were investigated using a suite of materials and the best model was then used to develop the integration method. Results from numerical simulations showed that the developed integration method can simultaneously retrieve the soil density and the depth and radius of disk-shaped radioactive objects buried up to 20 cm in soil of varying conditions with a elative error of less than 10%. Therefore, the integration method eliminates the need for prior knowledge of the density of the embedding material. This work represents the first time data from these two systems i.e., GPR and gamma-ray detector, will be integrated for the detection and localisation of radioactive sources. Furthermore, the results from the developed methods confirm that an integrated GPR and gamma-ray detector system is a viable tool for non-intrusive localisation of buried radioactive sources. This will enable improved characterisation of buried radioactive wastes encountered during the decommissioning of nuclear sites and facilities

    Novel Methods in Computational Imaging with Applications in Remote Sensing

    Get PDF
    This dissertation is devoted to novel computational imaging methods with applications in remote sensing. Computational imaging methods are applied to three distinct applications including imaging and detection of buried explosive hazards utilizing array radar, high resolution imaging of satellites in geosynchronous orbit utilizing optical hypertelescope arrays, and characterization of atmospheric turbulence through multi-frame blind deconvolution utilizing conventional optical digital sensors. The first application considered utilizes a radar array employed as a forward looking ground penetrating radar system with applications in explosive hazard detection. A penalized least squares technique with sparsity-inducing regularization is applied to produce imagery, which is consistent with the expectation that objects are sparsely populated but extended with respect to the pixel grid. Additionally, a series of pre-processing steps is demonstrated which result in a greatly reduced data size and computational cost. Demonstrations of the approach are provided using experimental data and results are given in terms of signal to background ratio, image resolution, and relative computation time. The second application involves a sparse-aperture telescope array configured as a hypertelescope with applications in long range imaging. The penalized least squares technique with sparsity-inducing regularization is adapted and applied to this very different imaging modality. A comprehensive study of the algorithm tuning parameters is performed and performance is characterized using the Structure Similarity Metric (SSIM) to maximize image quality. Simulated measurements are used to show that imaging performance achieved using the pro- posed algorithm compares favorably in comparison to conventional Richardson-Lucy deconvolution. The third application involves a multi-frame collection from a conventional digital sensor with the primary objective of characterizing the atmospheric turbulence in the medium of propagation. In this application a joint estimate of the image is obtained along with the Zernike coefficients associated with the atmospheric PSF at each frame, and the Fried parameter r0 of the atmosphere. A pair of constraints are applied to a penalized least squares objective function to enforce the theoretical statistics of the set of PSF estimates as a function of r0. Results of the approach are shown with both simulated and experimental data and demonstrate excellent agreement between the estimated r0 values and the known or measured r0 values respectively

    Investigating Key Techniques to Leverage the Functionality of Ground/Wall Penetrating Radar

    Get PDF
    Ground penetrating radar (GPR) has been extensively utilized as a highly efficient and non-destructive testing method for infrastructure evaluation, such as highway rebar detection, bridge decks inspection, asphalt pavement monitoring, underground pipe leakage detection, railroad ballast assessment, etc. The focus of this dissertation is to investigate the key techniques to tackle with GPR signal processing from three perspectives: (1) Removing or suppressing the radar clutter signal; (2) Detecting the underground target or the region of interest (RoI) in the GPR image; (3) Imaging the underground target to eliminate or alleviate the feature distortion and reconstructing the shape of the target with good fidelity. In the first part of this dissertation, a low-rank and sparse representation based approach is designed to remove the clutter produced by rough ground surface reflection for impulse radar. In the second part, Hilbert Transform and 2-D Renyi entropy based statistical analysis is explored to improve RoI detection efficiency and to reduce the computational cost for more sophisticated data post-processing. In the third part, a back-projection imaging algorithm is designed for both ground-coupled and air-coupled multistatic GPR configurations. Since the refraction phenomenon at the air-ground interface is considered and the spatial offsets between the transceiver antennas are compensated in this algorithm, the data points collected by receiver antennas in time domain can be accurately mapped back to the spatial domain and the targets can be imaged in the scene space under testing. Experimental results validate that the proposed three-stage cascade signal processing methodologies can improve the performance of GPR system
    • …
    corecore