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Abstract

This dissertation is devoted to novel computational imaging methods with applica-

tions in remote sensing. Computational imaging methods are applied to three distinct

applications including imaging and detection of buried explosive hazards utilizing ar-

ray radar, high resolution imaging of satellites in geosynchronous orbit utilizing op-

tical hypertelescope arrays, and characterization of atmospheric turbulence through

multi-frame blind deconvolution utilizing conventional optical digital sensors.

The first application considered utilizes a radar array employed as a forward looking

ground penetrating radar system with applications in explosive hazard detection. A

penalized least squares technique with sparsity-inducing regularization is applied to

produce imagery, which is consistent with the expectation that objects are sparsely

populated but extended with respect to the pixel grid. Additionally, a series of

pre-processing steps is demonstrated which result in a greatly reduced data size and

computational cost. Demonstrations of the approach are provided using experimental

data and results are given in terms of signal to background ratio, image resolution,

and relative computation time. The second application involves a sparse-aperture

telescope array configured as a hypertelescope with applications in long range imag-

ing. The penalized least squares technique with sparsity-inducing regularization is

adapted and applied to this very di↵erent imaging modality. A comprehensive study

xi



of the algorithm tuning parameters is performed and performance is characterized

using the Structure Similarity Metric (SSIM) to maximize image quality. Simulated

measurements are used to show that imaging performance achieved using the pro-

posed algorithm compares favorably in comparison to conventional Richardson-Lucy

deconvolution. The third application involves a multi-frame collection from a con-

ventional digital sensor with the primary objective of characterizing the atmospheric

turbulence in the medium of propagation. In this application a joint estimate of

the image is obtained along with the Zernike coe�cients associated with the atmo-

spheric PSF at each frame, and the Fried parameter r0 of the atmosphere. A pair of

constraints are applied to a penalized least squares objective function to enforce the

theoretical statistics of the set of PSF estimates as a function of r0.

Results of the approach are shown with both simulated and experimental data and

demonstrate excellent agreement between the estimated r0 values and the known or

measured r0 values respectively.

xii



Chapter 1

Introduction

1.1 Motivation

This dissertation addresses the challenge of producing high fidelity image representa-

tions in real world sensing applications where the physical realities of the collection

limit the performance achieved through conventional means. High fidelity physics

based models of relevant sensing paradigms coupled with penalized and constrained

least squares statistical estimation methods are utilized to overcome the challenges

present in these real world sensing applications. A least squares based imaging ap-

proach is adapted and applied to three distinct applications including imaging and
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detection of buried explosive hazards utilizing array radar; high resolution imag-

ing of satellites in geosynchronous orbit utilizing optical hypertelescope arrays; and

characterization of atmospheric turbulence through multi-frame blind deconvolution

utilizing conventional optical digital sensors. Very similar approaches are applied to

each application even though di↵erent models are required to accurately account for

the physics associated with the very di↵erent collection modalities.

In the first application described in chapter 2, ground penetrating radar (GPR) is

utilized to create images with the purpose of detecting buried explosive ordinances.

Imaging challenges associated with this application include; limited resolution due to

finite bandwidth and the finite aperture size of the sensor, speckle due to fluctuating

reflectivity over space and time, and side-lobe corruption present as an artifact of

conventional image formation methods. Furthermore, in the forward-looking collec-

tion regime the collection geometry is particularly unfavorable for buried targets due

to the limited signal energy that penetrates the earth compared to the signal energy

that is scattered from the surface.

In the second application described in chapter 3 a hypertelescope imaging system

is utilized to image satellites in geosynchronous orbit from earth. A hypertelescope

refers to a connected array of telescopes whose collected energy is combined coherently

in a central location with the purpose of forming an image whose resolution reflects

the size of the array rather than the size of the individual apertures. The primary
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challenges associated with this application include the extreme sparsity of the array

and the low signal levels inherent with imaging objects in geosynchronous orbit. The

resulting direct images exhibit low SNR and poor PSF characteristics.

In the third application described in chapter 4, multi-frame image collections using

a conventional digital camera in the visible band are utilized to characterize the

levels of turbulence present in the atmosphere between the sensor and a given target

object. The challenge inherent in this application is that the object as well as the

atmospheric turbulence and it’s e↵ects on the PSF in each frame are unknown and

must be estimated jointly.

1.2 Contributions

Published works which were generated as part of this dissertation are listed as follows.

† A. J. Webb, M. C. Roggemann, and M. R. Whiteley, “Atmospheric turbulence
characterization through multi-frame blind deconvolution,” Appl. Opt., Under
Review 2021

† A. J. Webb and M. C. Roggemann, “A penalized least squares technique for
imaging with hypertelescopes,” Appl. Opt., Under Review 2021

† A. J. Webb, T. C. Havens, and T. J. Schulz, “Fast image reconstruction in
forward looking gpr using dual l1 regularization,” IEEE Transactions on Com-
putational Imaging, vol. 4, no. 3, pp. 470–478, 2018

† A. J. Webb, T. C. Havens, and T. J. Schulz, “An apodization approach for
processing forward-looking gpr for buried target detection,” in Proc. SPIE,
vol. 9454, pp. 94540X–94540X–15, 2015
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† A. J. Webb, T. C. Havens, and T. J. Schulz, “Spectral diversity for ground clut-
ter mitigation in forward-looking gpr,” in Proc. SPIE, vol. 9823, pp. 98231M–
98231M–18, 2016

† A. J. Webb, T. C. Havens, and T. J. Schulz, “Iterative image formation for
forward looking gpr,” in Military Sensing Symposium, vol. 1, March 2016

† A. J. Webb, T. C. Havens, and T. J. Schulz, “Gpr imaging with mutual inten-
sity,” in Proc. SPIE, vol. 10182, pp. 101821B–101821B–8, 2017

† J. S. Rice, A. Pinar, T. C. Havens, A. J. Webb, and T. J. Schulz, “Multiple
instance learning for buried hazard detection,” in Proc. SPIE, vol. 9823, 2016

† A. J. Pinar, T. C. Havens, and A. Webb, “Multisensor fusion of flgpr and
thermal and visible-spectrum cameras for stando↵ detection of buried objects,”
in Proc. SPIE, vol. 10182, pp. 101821A–101821A–15, 2017

† J. Burns, M. P. Masarik, I. J. Xique, B. Thelen, and A. Webb, “Comparative
analysis of image formation techniques for flgpr,” in Detection and Sensing of
Mines, Explosive Objects, and Obscured Targets XXII, vol. 10182, p. 1018219,
International Society for Optics and Photonics, 2017
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Chapter 2

Fast Image Reconstruction in

Forward-Looking GPR Using Dual

`1 Regularization

2.1 Introduction

An important goal for the U.S. Army is remediating the threats of buried targets

as these devices cause uncountable deaths and injuries to both civilians and sol-

diers throughout the world. Modern hazard detection is accomplished using multiple

modality sensors whose data are combined in an e↵ort to detect and classify potential
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threats in the presence of noise and clutter. Common modalities utilized for threat

detection have included acoustics, infrared (IR) and visible-spectrum cameras, and

ground-penetrating-radar (GPR) [11, 12, 13, 14, 15, 16].

Radar is a key modality whose strength, in this context, lies in it’s ability to penetrate

into the ground enabling the detection of buried objects. Operational constraints, ex-

pected target types, and environmental considerations dictate the manner in which

GPR is used for hazard detection. Close proximity downward-looking GPR systems

are optimal for buried targets, but in many cases forward-looking systems are prefer-

ential to maintain some stand-o↵ distance from possible threats; even airborne GPR,

and foliage penetrating (FOPEN) radar sensors have been utilized for large scale

mine-clearing e↵orts [17].

Improving the performance of forward-looking GPR (FLGPR) systems has become

an active research topic due to its potential to reliably detect hazards before they

are encountered [18, 19, 20, 21, 22, 23, 24]. Typical stando↵ distances can range

from few to tens of meters. FLGPR has been applied to the detection of side-attack,

surface, and buried devices [25, 26, 27]. Due to system design considerations, modern

FLGPR sensors typically operate in step-frequency collection mode and conventional

image formation processing is accomplished using the back-projection imaging tech-

nique [28]. Imaging limitations include; limited resolution due to finite bandwidth

and the finite aperture size of the sensor, speckle due to fluctuating reflectivity over
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space and time, and side-lobe corruption present as an artifact of back-projection pro-

cessing. Speckle has been exploited as means of di↵erentiating targets from clutter

[29][30]. Side-lobes are controlled to a certain extent through simple integration using

returns collected from multiple platform positions. Further suppression of side-lobes

has been demonstrated using advanced apodization based techniques [5, 31]. Studies

comparing tomographic reconstruction utilizing the Truncated Singular Value De-

composition (TSVD) method to other imaging techniques including backprojection

have shown that TSVD reconstruction performs favorably in terms of both target

resolution and detection performance [32, 33, 34, 35]. FLGPR imaging through com-

pressive sensing has demonstrated reduced system complexity and improved signal to

clutter performance [36]. Other sparsity inducing techniques based on `1 regulariza-

tion have shown promising performance with respect to side-lobe mitigation, clutter

mitigation, and finite resolution [7, 36, 37, 38, 39, 40]. One such approach, originally

introduced by Cetin et al. in the context of synthetic aperture radar (SAR), simulta-

neously balances the `1 regularization of the total energy (TE) and the total variation

(TV) of the magnitude of the image estimate which has the ability to induce sparsity

while maintaining the extended nature of targets [41]. Another approach, introduced

by Wang et al. in the context of 3-D Multistatic imaging introduces the idea of per-

forming reconstruction based on backprojected image data while using mixed norm

regularization [42].

The approach taken here is an adaptation of the methods taken by Cetin and Wang

7



to suit the step frequency FLGPR collection scenario. The approach is extended

by introducing a Doppler signature pre-filter to control side-lobe energy resulting

from bright out-of-scene objects and demonstrate that by reconstructing based on

back-projected image data we enable pre-averaging as a method of further reducing

computational burden. These additions result in a reduction in background energy

and improved computational performance.

The remainder of this chapter is organized as follows. In Section 2.2, we develop the

collected signal model relevant to the step-frequency FLGPR sensor; in Section 2.3

we describe the proposed Doppler filter applied to mitigate side-lobe energy origi-

nating from out-of-scene targets; in Section 2.4 we present the proposed fast image

reconstruction approach; and in Section 2.5 we present a series of results using ex-

perimentally collected data.

2.2 Signal Model

Consider a vehicle mounted FLGPR multi-static array continuously collecting data at

discrete frequency samples as the sensing platform approaches a particular region of

interest (ROI). A single complex data sample is collected at each discrete frequency

and for each bi-static transmitter/receiver pair. In our nomenclature, a single data

frame is defined as a complete set of all discrete frequency samples collected for each

8



and every bi-static transmitter/receiver pair. It is assumed that many data frames

are collected for each ROI. The signal history indexed by the transmitter/receiver

pair p and given as a function of frequency f is given by

sp [f ] =

ZZZ
g(x)

e
�j2⇡ f

c

⇣
R
⇣
x,x

(tx)
p

⌘
+R

⇣
x,x

(rx)
p

⌘⌘

R

⇣
x,x

(tx)
p

⌘
R

⇣
x,x

(rx)
p

⌘ dx dy dz, (2.1)

where x(tx)
p and x

(rx)
p are the position vectors of the pth pair of transmitter and receiver

elements, respectively. The three dimensional complex reflectivity density function is

given by g (x), where x is a position vector in 3-space. The functions R
⇣
x,x

(tx)
p

⌘
and

R

⇣
x,x

(rx)
p

⌘
represent the ranges from the pth transmit and receive element pair to

a point in 3-space. Given the finite resolution of the collection system it is both con-

venient and appropriate to approximate the continuous reflectivity density function

by using a discretized collection of scatterers. In applying this approximation, the

triple integral can be replaced by a single summation, and the continuous reflectivity

density function g (x) is replaced by a discrete reflectivity density function g [xk]. The

approximate signal model is then given by

sp [f ] =
KX

k=1

g [xk]
e
�j2⇡ f

c

⇣
R
⇣
x,x

(tx)
p

⌘
+R

⇣
x,x

(rx)
p

⌘⌘

R

⇣
x,x

(tx)
p

⌘
R

⇣
x,x

(rx)
p

⌘ , (2.2)
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where K indicates the total number of discretized scatterers in the region of interest

and can be succinctly expressed in the form of the matrix-vector product,

s
(p) = �(p)

g. (2.3)

In this representation the signal for a single transmit/receive pair is encoded into the

L⇥1 vector s(p), the discrete reflectivity function is encoded into the K⇥1 vector g(p),

and they are related through a linear transformation represented by the L⇥K matrix

�
(p).

The matrix-vector formulation is extended trivially to produce an expression charac-

terizing the collected data for an entire frame, or even for a set of frames. This is

accomplished through concatenation of both the forward operator and the collected

signal associated with each of the P transmit/receive pairs and then again for the

entire set of transmit/receive pairs for each frame. The resulting expression is given

as

0

BBBBBBBBB@

s
(1,1)

s
(1,2)

...
s
(1,P )

s
(2,1)

...
s
(N,P )

1

CCCCCCCCCA

=

0

BBBBBBBBB@

�
(1,1)

�
(1,2)

...
�

(1,P )

�
(2,1)

...
�

(N,P )

1

CCCCCCCCCA

g, (2.4)
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which we express succinctly as

s = �g, (2.5)

inferring the number of frames through context. In summary, the relevant parameters

characterizing the size and organization of the collected data include the following:

L The number of frequency samples;

P The number of bistatic transmitter/receiver pairs;

N The number of data frames; and

K The number of object samples.

2.3 Doppler Pre-Processing

A common occurrence encountered in FLGPR imaging is the existence of strong

clutter returns from objects including trees, shrubs, and rocks originating from outside

of the ROI. Side-lobes associated with these clutter returns can and often do corrupt

the relevant portion of the formed image. This e↵ect is amplified at the upper end of

the frequency spectrum where sampling of the MIMO array is sparse relative to the

shorter wavelength. These side-lobes are eliminated during reconstruction but only if

the sampled grid extends out to account for the true location of these objects. Large

sample grids are highly undesirable due to the increased computational burden they

11



Figure 2.1: The change in the bistatic collection geometry as the plat-
form approaches a ROI produces a spatially dependent Doppler shift in the
collected signal.

place on the processor. Fortunately this e↵ect can be mitigated, at least partially, by

applying a filter based on the expected Doppler response of objects in the ROI. As

the platform approaches the ROI, the range to relevant objects decreases producing

a Doppler-shifted response. A filter can be constructed, and applied to each bistatic

transmitter/receiver pair, to eliminate data in regions of Doppler space which are

not consistent of objects in the ROI. This is similar in nature to the way stationary

clutter is often filtered in pulse-Doppler radar [43].

At each platform position the phase delay associated with the bistatic propagation

is given by, � = kR, where k is the spatial frequency in units of m�1 and R =

R
(tx) + R

(rx) is the 2-way bistatic range, as illustrated in Figure 2.1 for consecutive

platform positions. At consecutive platform positions, the change in phase associated

12



with a particular scatterer is given by

�� = k (R2 �R1) , (2.6)

where R1 and R2 represent the 2-way bistatic ranges at position 1 and position 2 of

the transmitter/receiver pair. The rate of change in the observed phase over multiple

platform positions is characterized by the spatial Doppler shift and is given, again in

units of m�1 by

kD =
��

�d
=

k

�d
(R2 �R1) , (2.7)

where �d is the distance the platform travels between consecutive frames. It is

noteworthy that in this context Doppler shifts are completely independent of the

actual velocity of the platform.

It is our objective to construct a simple pass-band filter based on the expected spatial

Doppler shift associated with in-lane targets. For the platform illustrated in Figure

2.1 traveling in the +y direction, the maximum spatial Doppler shift associated with

any in-lane target is found by considering the limiting case of a target located at

13



x = 0, y = 1, and is given by

kDmax = lim
y!1

k

�d
(R2 �R1) (2.8)

=
k

�d
lim
y!1

⇣
R

(tx)
2 +R

(rx)
2 �R

(tx)
1 �R

(rx)
1

⌘

=
k

�d
(2�d)

= 2k.

The minimum spatial Doppler shift associated with in-lane targets is found by con-

sidering the boundaries of the image region at the nearest range of interest. The two

relevant points are shown in figure 2.1 as xleft and xright and the bistatic range asso-

ciated with these points is given by, Rleft and Rright. The minimum spatial Doppler

shift observed from in-lane targets is the minimum of the Doppler shift at these two

points and is given by

kDmin =
k

�d
min {Rleft, Rright} . (2.9)

The single transmitter/receiver pair data is collected as a function of the lane position,

y, and the collection frequency, f and is expressed as s (y, f). Through Fourier

transform with respect to the lane position, the collected data is expressed in terms

of spatial Doppler shift and collection frequency as S (kD, f). If we let the center

spatial Doppler be given as kDc = (kDmax + kDmin) /2 and the Doppler bandwidth be

14



given as kDbw
= kDmax � kDmin then the brick-wall bandpass filter given by

H (kD, f) = rect


kD � kDc

kDbw

, f

�
, (2.10)

passes only returns consistent with in-lane targets. The filter is implemented through

Sf (kD, f) = S (kD, f)H (kD, f) , (2.11)

where Sf (kD, f) is the filtered result.

The support bandwidth associated with the spatial Doppler shift is dependent on the

platform spacing between consecutive frames and is given by kbw = 1/�d. Unless �d

is very small, it is likely that aliasing will play a role in construction of the spatial

Doppler filter. The aliased spatial Doppler frequency can be computed from the true

Doppler frequency and the support bandwidth and is given by

kDA = mod

✓
kD �

kbw

2
, kbw

◆
�

kbw

2
. (2.12)

When aliasing occurs, the filter generated in equation (2.10) is simply mapped onto

the supported spatial Doppler axis.
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2.4 Image Formation

Given the signal model described in Section 2.2, the collected data for a single frame

is modeled as

s = �g + ⌘, (2.13)

where g is the true object, � is the forward model, s is the collected data in the fre-

quency domain, and ⌘ is assumed to be a zero-mean additive white Gaussian (AWG)

noise process.

Image reconstruction is accomplished through minimization of the objective function

C (g|s) =
1

N

NX

n=1

ksn ��ngk
2
2 + �E k|g|k

1
1 + �V k|r |g||k

1
1 . (2.14)

The first term of the objective function represents the data fit term measuring the

mean squared error (MSE) between the collected data and the theoretical signal

associated with the object g. The second term is a total energy (TE) regularization

term penalizing the `1 norm of the magnitude of the object. The third term is a

total variation (TV) regularization penalizing the `1 norm of the numerical gradient

of the magnitude of the object. The dual regularization approach is consistent with

the prior belief that objects are sparsely populated but extended with respect to the

sampled grid density. The `1 total energy regularization promotes sparsity in the
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object estimate but has no preference as to the spatial distribution of energy. When

the total energy regularization is applied alone, estimates tend to be composed of a

collection of disjoint impulses. The inclusion of the `1 TV regularization encourages

smooth reconstructions while maintaining a sparse collection of objects. The values

associated with the regularization parameters determine the characteristics of the

resulting image reconstruction and must be chosen to balance data fit against the

sparsity and smoothness of the solution. Increasing the TE regularization parameter

increases sparsity while increasing the TV regularization increases smoothness by

creating flat regions in the solution.

No closed form solution to the optimization problem exists due to the non-linearity

of the `1 norms, thus an iterative solution via convex optimization is required. In

practice, the objective function given in equation (2.14) is costly to minimize due to

the fact that the matrix-vector product, �ng, must be computed at every iteration,

and the size of the matrix, �n is large (LP⇥K). We therefore aim to pre-process the

data in such a way as to minimize the size of this operation.

We recognize that for our frequency domain collection each frequency sample contains

information pertaining to the entire scene which includes everywhere in the beam of

the sensor array. By applying the DFT operator W to transform the data into the

time domain, “range-gating” can be applied to eliminate data relevant to ranges not

associated with the ROI. This idea can be extended to the cross-range dimension by

17



Figure 2.2: By pre-processing the data, the total sampled area can be
reduced through range-gating (center) or imaging (right).

applying a deterministic image formation algorithm to the data. Using this approach

the data can be spatially filtered, as illustrated in Figure 2.2, in an attempt to strictly

retain information relevant to the ROI. The obvious imaging operation is the conven-

tional back-projection imaging operation, which is applied though multiplication of

the transpose of the forward model �T . It should be noted that some loss of informa-

tion should be expected after application of the imaging operator, but in many cases

this is a trade that we will be willing to make in order to yield a reduced problem

size. After application of the backprojection pre-processor to the collected data, and

also including the backprojection operator as part of the forward model, the modified

objective function is given as

C =
1

N

NX

n=1

����T
s�

�
�

T
�
�
K⇥K

g

���
2

2
+ �E k|g|k

1
1 + �V k|r |g||k

1
1 . (2.15)

By pre-computing the net forward operator we have replaced the matrix-vector prod-

uct from one including a LP⇥K matrix to one with aK⇥K matrix. More importantly,

we have drastically reduced the size of K itself by reducing the spatial dimensions of

the necessary image grid.
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Image reconstruction is typically performed on a finely sampled grid with respect to

the conventional image resolution. In contrast, by the Nyquist sampling theorem,

back-projection imaging can be performed on a critically sampled grid without any

loss of information. As such, we now introduce a second back-projection operator

 
T of size Kc⇥LP (where Kc < K) which produces a near-critically sampled image.

A further reduction in data size can thus be achieved by replacing the upsampled

backprojection operator, with it’s near-critically sampled counterpart as is given by

C =
1

N

NX

n=1

��� T
s�

�
 

T
�
�
Kc⇥K

g

���
2

2
+ �E k|g|k

1
1 + �V k|r |g||k

1
1 . (2.16)

Pre-processing the data into the “image” domain enables the potential to average

multiple consecutive frames prior to reconstruction. Pre-averaging of the data may

be desirable to achieve further reduction in computational cost. If the number of

frames is large, it makes sense to apply a pre-averaging operation combining sub-sets

of consecutive images. In matrix notation the pre-averaging operation is a weighted

horizontal concatenation of identity matrices, and is given as

SKc⇥MKc =
1

M

✓
IKc⇥Kc . . . IKc⇥Kc

◆
, (2.17)

where M is the number of frames to be averaged. When the pre-averaging operation

is applied we utilize the multi-frame representation of the signal model as described
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in equation (2.4), such that � is of size MPL⇥K and  is of size MPL⇥Kc . The

aggregate forward operator remains of size Kc⇥K and the new objective function is

given by

C =
1

N

NX

n=1

���S T
s�

�
S 

T
�
�
Kc⇥K

g

���
2

2
+ �E k|g|k

1
1 + �V k|r |g||k

1
1 , (2.18)

where M is the number of frames to include in the pre-averaging operation and N

becomes the number of sets of pre-averaged frames to process.

2.5 Results

The proposed imaging algorithm was demonstrated using experimental data provided

by the U.S. Army Night Vision and Electronic Sensors Directorate (NVESD). Since

2005, NVESD has been integrating sensing technologies to aid the soldier in detecting

buried targets while maintaining Situational Awareness (SA) in route clearance and

convoy escort vehicles. The experimental sensing platform used to collect the data

provided for this work is shown in Figure 2.3. The relevant sensor is an L-band MIMO

array consisting of 384 multi-static transmitter/receiver pairs. The step-frequency

collection system records 2701 complex frequency samples over a bandwidth of ap-

proximately 2.8 GHz. Data collected between 400 MHz and 2.5 GHz was utilized for

in this work. Data for this work was collected by the MIMO array as it slowly travels
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Figure 2.3: Since 2005, the U.S. Army Night Vision and Electronic Sensors
Directorate (NVESD) has been integrating sensing technologies to aid the
soldier in detecting buried targets while maintaining Situational Awareness
(SA) in route clearance and convoy escort vehicles.

down prepared experimental lanes. Lanes are composed of sand and gravel and a

wide variety of targets are buried at shallow depths below the surface (on the order

to a few cm’s). While full polarimetric data is collected, only HH polarized data is

utilized in this work.

In this section we first demonstrate the Doppler pre-filtering process and compare

images with and without Doppler pre-filtering applied to demonstrate removal of

side-lobe energy originating from objects located outside the intended ROI. We then,

utilizing data with the Doppler pre-filter applied, perform a series of image reconstruc-

tions (without pre-averaging) and compare results to conventional back-projected im-

age formation applied to two sample targets. Finally, we compare computation time

and imaging performance with di↵erent levels of pre-averaging applied.
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2.5.1 Doppler Pre-Filtering

A demonstration of Doppler filter pre-processing is illustrated using a particular ROI

selected from the NVESD data set. The Doppler filter is constructed based on a lane

width of 4 m, and an approximate frame-rate of 7 frames/m determining the support

of the spatial Doppler shift. The resulting filter for a particular transmitter/receiver

pair is shown in Figure 2.4a. The input data relevant to the Doppler filter shown

in Figure 2.4a, is found in Figure 2.4b, and shows the original data displayed as

a function of collection frequency and platform distance traveled. The collection

frequency/spatial Doppler frequency representation of the data is produced through

a single FFT in the distance dimension of the data, and is shown in Figure 2.4c.

Finally, through application of equation (2.11), the filtered data is shown in Figure

2.4d.

It should be noted that some accommodations were necessary in order to achieve ac-

ceptable results for our experimental data. Platform velocity naturally varies over the

course of the collection producing an inconsistent spacing, �d, between consecutive

platform positions resulting in phase noise. In order to account for this phase noise

it was necessary to increase the size of the passband region. The results of a brute-

force search determined that expanding the bandwidth of the filter by 40% resulted

in improved post-filter signal to background performance. We further replaced the
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Figure 2.4: The passband Doppler filter (a) is applied to the collected data
(b) in the transform domain (c), resulting in the filtered data (d).

brick-wall filter presented in equation (2.10) with a 6th order passband Butterworth

filter in order to gracefully transition out of the passband region and minimize ring-

ing. It should further be noted that a DC notch filter is also applied in the spatial

Doppler dimension to remove systematic frequency dependent bias.

Figures 2.5a and 2.5b show the spatial Doppler contours of the surface in the region
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(b) Surface Doppler at 3.0 GHz

Figure 2.5: The surface Doppler contours at the lowest frequency (a) and
highest frequency (b) determine which regions pass through or are rejected
by the filter.

of the platform computed at the lowest and highest collected frequencies respectively.

The passband mask mapped onto the ground plane is superimposed onto the Doppler

contour plots clearly illustrating regions where the scattered surface energy is either

passed or rejected by the filter. Based on the passband masks, it is clear that at

the low end of the collected frequency spectrum the spatial Doppler associated with

surface returns is unaliased while aliasing occurs at the higher end of the spectrum.

The presence of aliasing results in out-of-lane regions whose Doppler matches in-lane

returns and as a result are passed through the filter.

Images formed using conventional backprojection processing with and without spatial

Doppler filtering are shown in Figures 2.6a and 2.6b respectively. Each image is

normalized to the peak response and a dynamic range of 15 dB is shown. (This will

continue to be the case for the all images in this section.) Two known targets are
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Figure 2.6: The sample image demonstrates significant reduction in back-
ground energy when comparing before (a) and after (b) Doppler filtering.

identified along with a selected background region with significant corruption. The

peak signal to background ratio is computed for both targets with respect to the

identified background region before and after Doppler filtering by

SBR = 10 log

 
|xpk|

2

1
Nbgd

kxbgdk
2

!
, (2.19)

where, xpk is the peak value of the target, xbgd is the vector of pixel values in the

identified background region, and Nbgd is the number of samples in the background

region. In general the level of improvement is dependent on the level of corruption.

For this particular example the observed signal to background ratio improves from
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5.0 dB to 13.20 dB for the target on the left side of the image and similarly from 7.5

dB to 12.3 dB for the target on the right.

2.5.2 Imaging Results

Two high-contrast targets are chosen for demonstration which will simply be referred

to as Target A and Target B (Note that these are not the targets illustrated in Figure

2.6). Imaging is performed using 30 frames taken at ranges of approximately 6 to 10

m from scene center. Conventional backprojection imaging is applied and compared

to image reconstructions performed using the proposed technique. In all cases the

non-linear unconstrained optimization problem is solved using the limited memory

BFGS method. Processed images of Target A and Target B and are shown in figures

2.7 and 2.8 respectively. The intended targets are easily observed near scene-center.

In both figures, the conventional backprojected images (Figures 2.7a and 2.8a) are

shown next to reconstructions using dual TV and TE regularization (Figures 2.7b

and 2.8b), and reconstructions using the TE regularization alone (Figures 2.7c and

2.8c).

In a fielded system representative training data should be used to optimize the choice

of regularization parameters with respect to detection/classification performance. In

other work, even multiple reconstructions have been considered with the intent of
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Figure 2.7: Target A is imaged using conventional backprojection (a), dual
TV and TE regularization (b) and with TE regularization alone (c).

emphasizing certain features to be used for classification [41]. For the purposes of our

demonstration, regularization parameter selection was done through trial and error.

In the dual regularization case, a grid search was performed and a set of regularization

parameters were hand picked such that resolution was improved but extended objects

remain ”intact” when compared to the backprojected result. In the TE regularization

only case the regularization parameter was hand picked such that extended objects

were reduced to only a few point scatterers. The dual regularized reconstruction is

generated using regularization coe�cients of �TE = 120, and �TV = 20 while the

TE only reconstruction is generated using regularization coe�cients of �TE = 240,

�TV = 0.
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Figure 2.8: Target B is imaged using conventional backprojection (a), dual
TV and TE regularization (b), and with TE regularization alone (c).

Slice plots through the peak target value in the range and cross-range dimensions

allow for easy comparison of the target response and are shown in Figures 2.9 and

2.10 for targets A and B respectively. In both cases, slices are compared between

backprojected images and image reconstructions using dual regularization. The dual

regularization approach demonstrates better resolution when compared to the con-

ventional backprojection. The improvement is dramatic in the cross-range dimension

where the conventional image resolution is large in comparison to the actual object

dimensions, but minimal in the range dimension where the conventional resolution is

small due to the wide-band system.
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Figure 2.9: Slice plots through the peak response of target A in the range
(a) and x-range (b) dimensions allow for easy comparison in the resulting
target resolution.
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Figure 2.10: Slice plots through the peak response of target B in the range
(a) and x-range (b) dimensions allow for easy comparison in the resulting
target resolution.
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Figure 2.11: Image reconstructions of Target A are formed with pre-
averaging of M = 1, 3, 10, and 30 frames.

2.5.3 Pre-Averaging Performance

In this section we include the pre-averaging operation and make comparisons regard-

ing its computational benefits and e↵ects on performance. Reconstruction of Target

A and Target B is repeated with pre-averaging included and the resulting images are

shown in Figures 2.11 and 2.12, respectively. Images are formed with pre-averaging

of M = 1, 3, 10, and 30 frames such that when M = 1 the reconstruction is performed

with no pre-averaging applied and when M = 30 reconstruction is performed after

pre-averaging the entire set of 30 frames. In fact, in can be noted that Figure 2.11a

is identical to Figure 2.7b and that Figure 2.12a is identical to Figure 2.8b.

If we stipulate that the best imaging performance will be achieved in the absence
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Figure 2.12: Image reconstructions of Target B are formed with pre-
averaging of M = 1, 3, 10, and 30 frames.

of pre-averaging then the e↵ects of averaging can be characterized using the mean

squared error (MSE) relative to the image formed with no averaging applied. Image

reconstructions were performed using an o↵-the-shelf 2013 MacBook Pro (Processor:

2.6 GHz Intel Core i5, Memory: 16 GB 1600 MHz DDR3) and the total reconstruction

times were recorded. The average computation time and the e↵ects on performance

are summarized in Figure 2.13. As the number of averaged frames increases the

relative error increases and the computation time decreases. The improvement in

computation time diminishes for higher levels of averaging where the setup time

required to pre-process the data and build the forward operator dominates the solution

of the actual optimization problem.
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Figure 2.13: The performance of pre-averaging is characterized using image
reconstruction time and MSE.
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Chapter 3

A Penalized Least Squares

Technique for Imaging with

Hypertelescopes

3.1 Introduction

Imaging of space-based objects from ground sensors is a highly desirable technical

capability for astronomers and has important applications within the defence com-

munity as well. Practical considerations limit the aperture size of conventional tele-

scopes, which when combined with atmospheric turbulence e↵ects limit the achievable
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angular resolution even in the presence of adaptive optics. Sparse aperture telescopes

represent a viable alternative achieving increased angular resolution by combining

light collected from elements distributed over a wide spatial area. There are two

ways to combine the light collected in this manner: (1) using amplitude interferom-

etery based on the van Cittert-Zernike theorem [44]; and (2) by using a so-called

densifier followed by an imaging lens to form a direct image. The densified hyperte-

lescope concept has demonstrated excellent imaging performance with direct image

formation on targets of interest to the astronomical community and is the relevant

concept in this chapter [45, 46].

Central to the densified hypertelescope concept is a pupil densification transformation.

Pupil densification describes a system where signals collected from array elements

are transported to a central location where they are expanded and combined using

a scaled replica of the actual array (i.e. the densified pupil). The output light

from the densifier represents a generalized pupil plane which will be discussed in

detail in section 3.2. A final image forming lens is used to create the measured

direct image. This approach is distinct from amplitude interferometry, where the

final Fourier transform required to form an image is computed digitally. One practical

implementation of a very large hypertelescope design utilizes optical fibers to carry

the signals collected at each array element to the beam combiner. [46, 47, 48] An

inevitable consequence of sparse aperture sampling is that the array point-spread-

function (PSF) associated with the direct image exhibits enhanced side-lobes which
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are indicative of the placement of the array elements.[49] Densification has the e↵ect

of concentrating light which would be scattered into a very wide angle in image space,

into the center of the image, but at the cost of imposing and envelope function which

makes the measured images be non-shift invariant. However, without densification

the measured images would have very low signal-to-noise ratio, and would also be

corrupted with artifacts from the repetitive nature of the array PSF. As such, a post-

processing image reconstruction step is highly desirable to maximize image quality.

Previous e↵orts relevant to hypertelescope image reconstruction have successfully

demonstrated the ability to partially mitigate the adverse e↵ects associated with the

sparse aperture. Thiebaut and Young present an excellent tutorial paper covering

many techniques applicable to interferometric imaging in general. [50] Aim et.al.

demonstrates the Richardson-Lucy algorithm for hypertelescope imaging specifically

as well as the Image Space Reconstruction Algorithm (ISRA) which finds the maxi-

mum likelihood estimate subject to a positivity constraint based on the model that

the data is corrupted by a Gaussian noise process. [51] Surya proposes a speckle

imaging approach when adaptive phasing of the sub-apertures is not available. [52]

In this chapter, the penalized least squares image reconstruction approach described in

chapter 2 is adapted to densified hypertelescope imaging. The penalized least squares

approach is demonstrated using a variety of regularization parameter configurations

and compared to the conventional Richardson-Lucy deconvolution algorithm which
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has been adapted to the densified hypertelescope paradigm. Image reconstruction

quality is presented in terms of the structure similarity metric (SSIM). [53]

The key findings are as follows; penalized least squares image reconstruction is a ro-

bust approach to mitigating the adverse e↵ects associated with the PSF in sparse aper-

ture imaging; The SSIM metric achieved using the penalized least squares approach is

significantly higher than what is achieved using conventional Richardson-Lucy decon-

volution given a suitable selection of regularization parameters; Many combinations

of regularization parameters can be applied which achieve good results and can be

modified depending on the desired properties of the resulting image reconstruction.

The remainder of this chapter is organized as follows. In Section 3.2 we characterize

the theoretical signal model appropriate for a fibered hypertelescope, in Section 3.3

we present the relevant image reconstruction approaches, and in=n Section 3.4 we

postulate particular hypertelescope design parameters simulate direct images, perform

reconstruction, and asses performance.

3.2 Signal Model

The signal model characterizing the object-image relationship for a variety of hyper-

telescope implementations has been presented previously in the literature [45, 46].
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The version relevant to this work has been presented in [47] and is summarized here.

A conceptual illustration of the densified hypertelescope is shown in figure 3.1. The

densification is quantified by the scale factor relating the collection array and the

densified array and is given by �b = b0

b where b is the baseline associated with the

actual array and b
0 is the baseline associated with the densified array. The hyperte-

lescope samples the incident wavefront using a collection of sub-apertures dispersed

over a large spatial region. Each sub-aperture is coupled to an optical fiber which

Figure 3.1: A conceptual model illustrates the hypertelescope imaging
concept.

transports the collected signal to a densified replica of the array. It is important to

note that the tip of the optical fiber in the collecting telescopes is a strong spatial

filter, so that the field entering each fiber from an array telescope is reasonably mod-

eled as the zero frequency component of the field falling on that aperture. The signal

emitted from each optical fiber in the beam combiner is passed through a collimating
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lens. The wavefront produced by the entire densified array is then passed through a

final imaging lens before detection. The wavefront exiting the densified array can be

visualized as a densified replica of the wavefront sampled by the original collection

array with an an additional weighting applied to each sub-aperture incurred due to

the amplitude distribution pattern produced by the fiber and collimating lens. In our

model it is assumed that the amplitude distribution across the spatial extent of the

collimating lens uniform. As such the amplitude distribution of the signal associated

with each sub-aperture after passing through the fiber and collimating lens is given

by,

 (x, y) = circ

 p
x2 + y2

R0

!
, (3.1)

where R0 is the radius of the collimating lens. An array function characterizing the

placement of the array elements is defined as,

A (x, y) =
NX

n=1

� (x� xn, y � yn) , (3.2)

where the coordinates of the N array elements are given by (xn, yn). The pupil

function for the entire array is then the convolution of the array function with the

amplitude distribution and is given by,

P (x, y) =  (x, y)~A (x, y) . (3.3)
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From the pupil function the object-image relationship can be computed through the

array theorem and is the product of an envelope function which represents the weight-

ing function imposed by the presence of the fiber/collimating lens combination and

an interference function which is a direct consequence of the placement of the array

elements. [54]. The envelope function is the magnitude squared of the Fourier trans-

form of the amplitude distribution function  (x, y), while the interference function

is the magnitude squared of the Fourier transform of the array function A (x, y). A

unique feature resulting from propagation through the fiber is that the tilt associ-

ated with the angle of arrival within each of the sub-apertures is lost. This results

in an envelope function which is independent of the location of the source while the

interference function remains a function of the source coordinates. If we let the vec-

tor ✓ = [✓x, ✓y]
T describe the angular coordinates in object space and the vector

↵ = [↵x,↵y]
T describe the angular coordinates in image space then the object space

coordinates are related to the image space coordinates by ↵ = ✓
�b
. The envelope

function can then be expressed as,

E (↵x,↵y) =

����F { (x, y)}

����
2
�����
kx=

↵x
� ,ky=

↵y
�

(3.4)

while the interference function is given by,

I (✓x, ✓y) =

����F {A (x, y)}

����
2
�����
kx=

✓x
�b�

,ky=
✓y
�b�

. (3.5)
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Upon inspection, the object-image relationship can be expressed as a convolution

between a scaled version of the object with the scaled interference function which is

then multiplied by the envelope function. The signal model for the direct image can

finally be expressed as,

x (↵x,↵y) = E (↵x,↵y)⇥

✓
I (�b↵x, �b↵y)~ g (�b↵x, �b↵y)

◆
, (3.6)

where x (↵x,↵y) is the direct image and g (�b↵x, �b↵y) is the true object evaluated in

terms of the image coordinates scaled by the array densification factor.

For image processing applications it is typically su�cient to consider a discretized sig-

nal model which utilizes a series of linear operators. The two-dimensional discretized

object is represented as a single lexicographically reordered vector g. The convolution

operation is expressed as a matrix-vector multiplication where the convolution kernel

is encoded into a square matrix H. The envelope is applied as a square diagonal

matrix  . Finally, the direct image is represented by the lexicographically ordered

vector x. In it’s discretized form the object image relationship is given by,

x =  Hg. (3.7)

Extensions beyond this linear model may be necessary to account for di↵erences in

the sizes of the object and data vectors due to di↵erences in sample size or di↵erences
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in the spatial extents of the object and data as it is often necessary to account for

objects which extend beyond the field of view of the detector. As such we introduce

a resampling operator B and a truncation operator M. The resampling operator is

applied through a non-square matrix which reduces the sample size through local area

integration (i.e. binning). The truncation operator is a second non-square matrix

which extracts only the samples included within the finite extent of the detector.

After accounting for resampling and truncation the linear model for the direct image

is given by,

x = MB Hg. (3.8)

The collected data will inevitably be corrupted by noise resulting from the photode-

tection process. Contributions to the collected data include the intensity of the light

incident on the detector as well as a read noise contribution intrinsic to the detector

itself. The light intensity is modeled as a Poisson random variable with an expected

value of x, while the read noise contribution is modeled as a zero mean Normal ran-

dom variable variance of �2
R. In the sections that follow we use the variable d to

represent the direct image after accounting for noise.
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3.3 Image Reconstruction

In this section we describe the traditional Richardson-Lucy algorithm as it is applied

to fibered hypertelescope imaging. We then present our novel penalized least squares

(PLS) approach which has been applied previously for image reconstruction in radar

applications and is adapted here for hypertelescope imaging. In this section we express

the forward model by the generic linear operator F. The details describing how the

forward model is implemented will be described in detail in section 2.5.

3.3.1 Richardson-Lucy

Likely the most prevalent approach to deconvolution of images is the Richardson-Lucy

algorithm [55, 56]. The classical Richardson-Lucy algorithm computes the maximum

likelihood estimate of an object which has been blurred by a linear space invariant

convolution and corrupted by a Poisson noise process subject to a positivity con-

straint. The log-likelihood associated with a vector of independent Poisson random

variables is given with constant terms omitted by,

L (g) = d
T log (Fg)� 1

T
Fg. (3.9)
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The maximum likelihood estimate of the object is solved through the constrained

optimization problem defined by,

ĝ = argmax (L (g)) s.t. g � 0. (3.10)

The Richardson-Lucy approach solves the optimization problem iteratively using the

expectation maximization (EM) algorithm which produces the update equation given

by,

ĝk+1 =
ĝk

F
T
1
�

✓
F

T d

Fgk

◆
(3.11)

[57]. An inherent feature of the Richardson-Lucy approach is that as long as the

initial estimate contains values which are all greater than zero, then the estimates

at each iteration will also remain greater than zero, and the positivity constraint is

inherently satisfied.

3.3.2 Penalized Least Squares

Penalized least squares provides a flexible framework which utilizes penalty functions

to mitigate overfitting by encouraging solutions that are consistent with prior expec-

tations. The penalized least squares objective function considered in this chapter is

given by,

O (g) = ||d� Fg||
2
2 + �E||g||

p
p + �V ||rg||

q
q. (3.12)
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Object estimation is accomplished through the constrained optimization problem de-

fined by,

ĝ = argmin (O (g)) s.t. g � 0. (3.13)

In this case, the estimated object, ĝ, is found through convex optimization. The

first term of the objective function represents the data fit term measuring the mean

squared error (MSE) between the collected data and the predicted data based on the

object g. The proposed penalty terms include a total energy (TE ) regularization term

penalizing the `p norm of the magnitude of the object and a total variation (TV )

regularization term penalizing the `q norm of the numerical gradient of the magnitude

of the object. In the absence of regularization, object estimates based on MSE alone

tend to include rapidly fluctuating high energy values which are unexpected, if not

unphysical, yet result in low error in measurement space. Four tuning parameters

exist in equation 3.12 to guide object estimates. The coe�cient �E controls the

weight associated with the TE penalty while p controls the level of sparsity in the

object estimate. Similarly, the coe�cient �V controls the weight associated with the

TV penalty while q controls the level of sparsity in the numerical gradient of the

object estimate.

44



3.4 Results

In this section we postulate a notional hypertelescope design. Direct images are

simulated based on the discussion in section 3.2 and reconstructions are performed as

described in section 3.3. Performance is assessed in terms of the structure similarity

metric (SSIM) which has been shown to align well with subjective measures of quality

associated with the human visual experience. [53].

3.4.1 Simulation

The postulated array consists of 76 apertures arranged in a spoke pattern with a

maximum diameter of 115m. Imaging is performed at a wavelength of 1150nm

resulting in a theoretical angular resolution of approximately 10nRad. Based on this

design the envelope and interference patterns are computed as described in equations

3.1-3.5. The postulated array locations, the resulting interference function, and the

envelope are shown in figures 3.2a, 3.2b, and 3.2c respectively.

The postulated detector is a 20⇥20 array with 12.5nRad pixels and the collected data

is represented by a vector d consisting of 400 samples. Note that we choose a detector

sampling such that the direct image is slightly aliased with respect to the resolution
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(a) (b) (c)

Figure 3.2: The postulated array (a) is shown along with the applicable
interference function (b) and envelope function (c).

dictated by the postulated array. We make this trade in order to increase the per

pixel signal level in order to improve imaging performance of low intensity objects. For

simulation purposes high resolution object representations consisting of (400⇥400)

pixels are utilized resulting in a total of K = 160000 object samples. The object

samples are sampled at rate of 1.25nRad, 10⇥ upsampled with respect to the detector

sampling, and represent an angular area with dimensions that are twice that of the

field of view observed by the detector. As such, in our simulation the convolution

and envelope are expressed as linear operators characterized by H 2 RK⇥K and

 2 RK⇥K respectively. The downsampling operator reduces the sample spacing

from the simulated object spacing of 1.25nRad to the detector spacing of 12.5nRad

and is characterized by B 2 RM⇥K where M = 1600. Finally, the truncation operator

extracts only the samples included in the 20⇥20 detector array and is characterized

by M 2 RN⇥M where N = 400.

A model of the Galaxy 15 telecommunications satellite is chosen for demonstration
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of the proposed image reconstruction algorithms. Representative data is produced

by first simulating the noise-free direct image as defined in equation 3.8 and then

accounting for noise as described at the end of section 3.2. In our model we assume a

relative reflectivity map and set the total photon count based on a visual magnitude

of 8 relative to the sun as described in [58]. Given a bandwidth of (300)nm, a total

aperture area of 30m2, a transmission coe�cient of 0.035, and an integration time of

50ms the total collection results in approximately 225000 photons. The read noise

associated with the detector is modeled as a zero mean Gaussian random variable

with a standard deviation given by � = 8. The relative reflectivity map associated

with the high resolution test object is shown in 3.3a with the relevant field of view

indicated by a dashed yellow line. The resulting simulation of the direct image is

shown in figure 3.3b. Lastly, a resampled version of the pristine reflectivity map is

shown in figure 3.3c where the resampling is done such that the sample rate matches

the rate at which reconstructions will be performed.

(a) (b) (c)

Figure 3.3: The high resolution model of the galaxy 15 telecommunications
satellite (a) is shown along with the simulated test data (b) and an ideal
representation of the object sampled at the reconstruction sampling rate
(c).
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3.4.2 Reconstruction

The classical Richardson-Lucy formulation is derived such that the sample rate of

the object estimate matches that of the collected data. The reconstructed object is

represented by the vector g consisting of K = 1600 samples representing a 40⇥40

grid sampled at 12.5nRad. Note that the object grid is defined with su�cient guard-

band to account for the potential of bright objects outside the field of view of the

detector. The forward model utilized for our Richardson-Lucy reconstructions is then

given by,

F = M Hg. (3.14)

Note the absence of any downsampling operation. The Richardson-Lucy estimate ĝ

of the test object is shown in Figure 3.4a at detector resolution and an upsampled

version is shown in Figure 3.4b for comparison with the penalized least squares re-

constructions below. Upsampling is performed using standard bi-cubic interpolation.

The structure similarity metric computed based on the upsampled Richardson-Lucy

estimate is 0.60.

The presence of regularization in the penalized least squares formulation provides the

opportunity to perform object estimates at an increased sample rate with respect

to the collected data. We choose an object-estimate grid which is sampled at a rate

which is 3⇥ the sample rate of the detector and just over 2⇥ the sample rate associated
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(a) (b)

Figure 3.4: The Richardson-Lucy reconstruction is shown at detector res-
olution (a) and upsampled by 3⇥ for comparison with the penalized least
squares reconstruction (b).

with the theoretical resolution of the array. For penalized least squares estimates, the

object is then represented by a vector g consisting of K = 14400 samples representing

a 120⇥120 grid sampled at a rate of 12.5/3nRad. The downsampling operator B

reduces the sample rate through binning from 12.5/3nRad to 12.5nRad to match

the sample rate of the detector and the truncation operator M once again extracts

only the samples representing the 20⇥20 detector array. The forward model utilized

for our penalized least squares reconstructions has the same terms as the model used

for simulation but di↵ers due to the size of the reconstructed object. The model is

repeated here for convenience,

F = MB Hg. (3.15)
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As discussed in section 3.3 the penalized least squares objective function includes

four parameters that can be adjusted in order to tune the properties of the object

estimate. Here we present a collection of results which utilize di↵erent combinations

of regularization parameters in order to demonstrate the e�cacy of the approach and

how the choice of regularization e↵ects the object estimate.

Our approach is to first choose p and q values and then to perform a brute force

grid search for �TE and �TV values which optimize the SSIM value. We consider a

complete set of permutations of p and q values given that p, q 2 {1.0, 1.5, 2.0}.

The comprehensive results of the grid search for the regularization parameters are

illustrated in Figure 3.5 with the best SSIM values identified. The object estimates

associated with the combination of parameters producing the best SSIM values are

then shown in figure 3.6. The best overall result according to the SSIM value is

achieved when the `1 version of both penalty terms is applied (p = 1, q = 1). The

sparsity inducing properties of the `1 norm applied to both the total energy as well

as the total variation lead to reconstructions which consist of contiguous energy con-

taining regions of finite extent which is often the expectation when imaging objects

in space.

As a general statement as p increases the best reconstructions include more observed

background energy which was suppressed when p was chosen to induce sparsity. Sim-

ilarly, as q increases the best reconstructions contain edges which are less sharp and
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more variability can be seen within distinct regions including the background. For

higher values of p and q the best reconstructions are achieved as �E approaches 0, or

in other words using total variation alone. This is particularly apparent from the plots

in figures 3.5d - 3.5i where the weight associated with the total energy regularization

term e↵ectively goes to zero.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.5: The SSIM values are computed for chosen combinations of p
and q over an exhaustive grid of weight parameters including p = 1, q = 1
(a), p = 1, q = 1.5 (b), p = 1, q = 2 (c), p = 1.5, q = 1 (d), p = 1.5, q = 1.5
(e), p = 1.5, q = 2. (f), p = 2, q = 1 (g), p = 2, q = 1.5 (h), and p = 2, q = 2
(i) (Note all figures are shown on a [0 0.8] color axis) .
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.6: The reconstructions associated with the best SSIM values re-
sulting from the grid search are shown for chosen combinations of p and q
including p = 1, q = 1 (a), p = 1, q = 1.5 (b), p = 1, q = 2 (c), p = 1.5, q = 1
(d), p = 1.5, q = 1.5 (e), p = 1.5, q = 2. (f), p = 2, q = 1 (g), p = 2, q = 1.5
(h), and p = 2, q = 2 (i).

, and p = 2, q = 2 (i) (Note all figures are shown on a [0 1.0] color axis)
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Chapter 4

Atmospheric Turbulence

Characterization through

Multi-Frame Blind Deconvolution

4.1 Introduction

Propagation of light through turbulent media is commonly the dominant mecha-

nism attributed to limiting performance of long range imaging, communication, and

directed energy systems [59, 60]. In optical systems turbulence results in random

fluctuations in space and time of the refractive index which perturbs the phase of the
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wave front arriving at the sensor from an object of interest. Optical systems experi-

ence turbulence as a time varying aberration which degrades the ability to focus light.

Complicated adaptive optics (AO) systems are sometimes used to compensate for the

phase perturbations in real time, improving the instantaneous point spread function

of the atmosphere-telescope system. AO system performance is highly dependent on

the knowledge of the characteristics of the current turbulence environment. In this

chapter we describe a method for simultaneously estimating both an improved image

of the object, and the Fried parameter r0 for the path by processing a set of short

exposure images of the target in the presence of both turbulence and measurement

noise.

Methods used to measure atmospheric turbulence using direct optical measurements

include the di↵erential image motion monitor (DIMM) [61], scintillation detection and

ranging (SCIDAR) [62], path resolved optical profiling (PROPS) [63], and processing

di↵erential tilt measurements combined with analytic path weighting called the de-

layed tilt anisoplanatism (DELTA) method [64][65]. In astronomical applications it

is also possible, at least in principle, to look at a bright star to measure one or more

long exposure images, and use this data to estimate r0. Note that while DIMM, SCI-

DAR, PROPS, and DELTA are powerful methods they require additional hardware,

and the long exposure image method requires a point source target. In this chapter

we present a method for estimating r0 that does not require additional hardware,

or a point source. This method is based upon the multi-frame blind deconvolution
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(MFBD) idea [66], but with unique constraints placed on the point spread function

(PSF) estimates as a function of r0.

Deconvolution in image processing is a classical technique used to remove the blurring

e↵ect of the known point-spread-function (PSF). Blind deconvolution is the process

of removing blur which is incurred from a PSF which in unknown or has unknown

components. Multi-frame blind deconvolution (MFBD) is an approach which exploits

multiple short exposure images of a common object in order to jointly estimate the

object as well as the unique PSF observed at each frame. Previous applications of

MFBD have been developed with the objective of improving image quality in a variety

of applications where the PSF is partially unknown. [66, 67, 68, 69, 70, 71, 72, 73]

In this chapter we use MFBD as a means to estimate the magnitude of turbulence

present over the path which light travels between an object and the sensor. The unique

PSFs which are incurred at each frame fluctuate in a manner which is dictated by

the level of turbulence. Stronger turbulence causes more dramatic fluctuations in the

PSF while mild turbulence conditions cause less change in PSF. Here we exploit the

theoretical relationship between the statistics of the PSF observed over a series of

frames with the strength of the turbulence present in the medium of propagation.

The natural metric to use to characterize the strength of the turbulence is the Fried

parameter, also known as the atmospheric coherence length. As such, a joint estima-

tion strategy is presented where the atmospheric coherence length value is estimated
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along with the common object and the PSF at each frame. Key results are as follows;

a novel technique for estimating r0 from extended targets observed over multiple

short-exposure frames is presented and using the presented technique excellent r0

estimation performance is achieved; additionally highly accurate PSF estimates are

obtained for each frame of the multi-frame processing interval and excellent image

reconstruction performance of the common object is demonstrated.

The remainder of the chapter is organized as follows; in section 4.2 the relevant the-

ory for imagining through turbulence including the so-called ”short-exposure” PSF

statistics is reviewed, in section 4.3 we describe our approach to MFBD with atmo-

spheric coherence length estimation, and in section 4.4 we demonstrate the e�cacy

of the approach on both simulated and experimentally collected data.

4.2 Imaging Through Turbulence

The image formation process is characterized by the convolution of the system PSF

and the object intensity distribution. This can be expressed mathematically as,

µ = h~ x, (4.1)
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where x is the object, h the non-coherent point spread function (PSF), µ is the

noise-free image and ~ represents the convolution operation.

The e↵ects of imaging in the presence of atmospheric turbulence are well studied. The

Generalized Pupil Function (GPF) characterizes the perturbations on the wavefront

caused by propagation through the turbulent atmosphere in addition to the pupil and

is given by,

q = p� e
j�
, (4.2)

where p is the pupil function, � represents the phase induced by the wavefront per-

turbation, and � is the Hadamard product operator. The coherent PSF is given as

a Fourier transform of the GPF and the non-coherent PSF is given as the modulus

squared of the coherent PSF and can be expressed as,

h = |F {q} |
2
. (4.3)

The perturbed wavefront phase at the entrance pupil is well approximated in terms

of it’s Zernike polynomial decomposition such that,

� = Za, (4.4)

where the Zernike components are stored in the columns of the matrix Z and the
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coe�cients associated with each of the Zernike terms are stored in the vector, a.

Statistical models for the perturbed wavefront have been studied extensively and

are given explicitly in terms of the Zernike polynomial coe�cients as a function of

the atmospheric coherence length, r0. [59, 74] The distribution associated with the

Zernike polynomial coe�cients is zero-mean Gaussian with covariance, ⌃a where the

elements of ⌃a are given by,

⌃i,j =
1

r
5/3
0

0.0072D5/3
⇡
8/3(�1)ni+nj�2mi ((ni + 1) (nj + 1))1/2 �mi,mj (4.5)

⇥
� (14/3)� ((ni + nj � 5/3) /2)

� ((ni � nj + 17/3) /2)� ((nj � ni + 17/3) /2)� ((ni + nj + 23/3) /2)

for i�j = even, and zero for i�j = odd. In 4.5, mi and ni refer to the azimuthal and

radial orders associated with the ith polynomial, respectively, mj and nj refer to the

azimuthal and radial orders associated with the jth Zernike polynomial, and �mi,mj

is the Kronecker delta function. It will prove convenient to express ⌃a with the r0

dependence explicitly factored out. We thus define a matrix, C which is related to

⌃a as follows,

⌃a =
1

r
5/3
0

C, ⌃a
�1 = r

5/3
0 C

�1
, |⌃a| =

1

r
N5/3
0

|C|. (4.6)
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4.2.1 Short Exposure PSF Statistics

The so-called short-exposure OTF characterizes the average blur induced by tur-

bulence over a series of short-exposure frames discounting the translational e↵ects

associated with the first two terms in the Zernike decomposition (tip/tilt). [59] The

short-exposure OTF is given by,

H = HATM ⇤HDL (4.7)

where HDL represents the di↵raction limited OTF resulting from the finite size of the

aperture and HATM represents the e↵ects of the atmosphere and is given by,

HATM = e
�3.44

⇣
�fl⇢
D

⌘5/3

1�

⇣
�fl⇢
D

⌘1/3
�

(4.8)

where D is the pupil diameter, fl is the focal length, and ⇢ is the spatial frequency

in units of cycles per unit distance. The short-exposure OTF can naturally be trans-

formed to provide an expression for the short-exposure PSF through an inverse Fourier

transform,

hSE = F
�1

{H} . (4.9)

61



In this work we extend the concept of the short-exposure PSF to consider the short-

exposure PSF covariance, ⌃SE, which we define as the covariance of the PSF in

turbulence discluding the translational e↵ects of the first two Zernike components

(tip/tilt). Because no known closed form expression exists for the short-exposure

PSF covariance Monte-Carlo methods will be used to obtain it. PSF realizations

can be generated based on the theoretical distribution of Zernike coe�cients for a

given value of r0 and a complete relationship between r0 and the short-exposure PSF

covariance can be characterized.

4.3 MFBD with Turbulence Characterization

A classical deconvolution approach given a known PSF is to minimize the mean

squared error between the collected image data, d and the data predicted by the

convolutional forward model applied to an object estimate x. A regularizing function

is typically applied to prevent overfitting to noisy data. A popular choice for the

regularizing function is the `1 norm of the total variation (TV) of the image estimate

which is particularly attractive in this application due to it’s known edge preserving

capabilities.[75] The resulting objective function is given as,

O (x) = kdn � µ (x)k2 + �TV kr2Dxk1 . (4.10)
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where µ is computed from equation 4.1,r2Dx is a two-dimensional numerical gradient

of the object x and �TV is a regularization parameter.

In this application it is our objective to not only estimate the object, but the PSF and

the atmospheric coherence length as well. The PSF under turbulence is expressed

e�ciently in equation 4.3 in terms of the Zernike coe�cients. In order to account

for the additional unknown quantities, additional constraints must also be applied to

avoid convergence to undesirable if not unphysical solutions. It is prudent to constrain

the PSF estimates such that the statistics of the collection of PSFs is consistent with

expectations for some fixed level of turbulence. We choose to apply constraints to the

PSF directly rather than indirectly through the wavefront at the entrance pupil. This

choice is made in order to avoid complications caused by the non-unique relationship

between the wavefront and the PSF. As such we apply a pair of constraints based on

the theoretical PSF statistics associated with the r0 value of the atmosphere. The first

constraint requires that the average PSF taken over the collection of frames match

the theoretical short exposure PSF under a given r0 condition. The second constraint

requires the covariance of the PSF taken over the collection of frames to match the

theoretical covariance under a given r0 condition. Letting, µpsf and ⌃psf represent

the sample mean and sample covariance of the estimated PSFs, the resulting objective
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function is given as,

min
x,a,r0

NX

n=1

kdn � µn (x, a)k
2 + �TV kr2Dxk1

s.t. µpsf (a) = hSE (r0)

⌃psf (a) = ⌃SE (r0)

(4.11)

The quantities to be estimated include the object x, the Zernike coe�cient vector,

a, and the atmospheric coherence length, r0. The constraints are enforced through a

pair of quadratic penalty functions,

P
�
µpsf , r0

�
=

1

�µ

��µpsf (a)� hSE (r0)
��2 (4.12)

and

P (⌃psf , r0) =
1

�⌃
k⌃psf (a)�⌃SE (r0)k

2
. (4.13)

To enforce the constraints, the parameters �µ and �⌃ are evaluated in the limit as

they go towards zero.

4.4 Results

The approach is demonstrated both with simulated and experimentally collected data.

Simulated results enable us to make direct comparisons between estimated r0 values
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and known ground truth while experimental results validate the e�cacy of the ap-

proach in a real-world setting. The system configuration used both for simulation

and experiment is based on an 8 inch aperture, an angular resolution of 5µrad, and a

nominal wavelength of 637nm. Sets of 50 consecutively collected frames are used for

processing. Solution of the optimization problem is achieved using conventional con-

vex optimization routines based on the LBFGS technique. A brute force search based

on the L-curve criterion was used for selection of the appropriate TV regularization

parameters. [76]

The simulated collection scenario was devised using a spoke calibration target. At-

mospheric conditions characterized by r0 values of 3, 5, and 7 cm were considered.

Higher levels of turbulence indicated by lower r0 values result in more blur in the

short-exposure PSF and more uncertainty as indicated in the short-exposure PSF

covariance. The PSF statistics specific for the system configuration considered were

characterized through Monte-Carlo simulation for the three considered values for r0.

The results of the Monte-Carlo simulation are illustrated in Figure 4.1. The plots

in Figure 4.1a show slices through the short-exposure PSF. The plots in Figure 4.1b

show slices through the standard deviation associated with the diagonal terms of the

short-exposure PSF covariance. Note that the PSFs are normalized such that the

peak of the di↵raction limited PSF is unity. The di↵raction limited PSF is included

in Figure 4.1a for reference.

65



(a) Short-Exposure PSF (b) Short-Exposure PSF Standard Deviation

Figure 4.1: One-dimensional plots illustrate the Monte-Carlo generated
short-exposure PSF ((a)) and short-exposure PSF standard deviation ((b))
under the simulated r0 conditions.

A series of images are shown in figures 4.2, 4.3 and 4.4, illustrating the results appli-

cable to a single frame selected from the multi-frame collections for each of the three

turbulence levels considered. The set of images include ((a)) a representative image

frame dn selected from the multi-frame collections, ((b)) the fit term µn for that image

frame resulting from MFBD processing, ((c)) the true PSF used for the simulation of

that data frame, and ((d)) the estimated PSF resulting from MFBD processing. Fi-

nally, The true object is shown in figure 4.5a along with the reconstructions achieved

under the three representative levels of turbulence. The r0 estimates associated with

the three reconstructions are 2.98 cm, 5.04 cm, and 7.12 cm respectively. It should

be noted that some deviation from the true r0 values is expected due to the finite

number of frames used for processing.

A second demonstration illustrates the e�cacy of the approach using experimentally

collected data and validated using the PROPS atmospheric measurement system. [63]

66



(a) data frame (b) data fit

(c) true PSF (d) PSF Estimate

Figure 4.2: A ((a)) representative image frame dn, ((b)) the fit term µn for
that image frame resulting from MFBD processing, ((c)) the true PSF used
for the simulation of that data frame, and ((d)) the estimated PSF resulting
from MFBD processing for an r0 value of 7 cm.

The PROPS system measurements occurred at 1min intervals. The relevant PROPS

measurements to our 50 frame image set recorded r0 values of 3.09 cm and 2.70 cm

with the entirety of the image set collected between the two PROPS measurements.
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(a) data frame (b) data fit

(c) true PSF (d) PSF Estimate

Figure 4.3: A ((a)) representative image frame dn, ((b)) the fit term µn for
that image frame resulting from MFBD processing, ((c)) the true PSF used
for the simulation of that data frame, and ((d)) the estimated PSF resulting
from MFBD processing for an r0 value of 5 cm.

In this experimental collection a target-board was imaged at a range of 1.364 km. A

full sample frame is shown in 4.6a with a chip identified for MFBD processing. A small

chip is chosen both to manage computational burden and to maximize isoplanatism.
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(a) data frame (b) data fit

(c) true PSF (d) PSF Estimate

Figure 4.4: A ((a)) representative image frame dn, ((b)) the fit term µn for
that image frame resulting from MFBD processing, ((c)) the true PSF used
for the simulation of that data frame, and ((d)) the estimated PSF resulting
from MFBD processing for an r0 value of 3 cm.

The sample image chip is shown in 4.6b, and finally the MFBD result is shown in 4.6c.

The estimated r0 value associated with MFBD processing was found to be 2.67 cm

demonstrating excellent agreement with the PROPS measurements.
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(a) Truth (b) r0 = 7 cm

(c) r0 = 5 cm (d) r0 = 3 cm

Figure 4.5: The true spoke target ((a)) and the reconstructions under
r0 = 7 cm ((b)), r0 = 5 cm ((c)) , and r0 = 3 cm ((d)) respectively.
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(a) Full Frame (b) Image Chip (c) Chip Reconstruction

Figure 4.6: The chip taken from the full collected frame ((a)) produces a
sample chip ((b)), corresponding to the MFBD reconstruction ((c)).
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Chapter 5

Conclusions

In this dissertation novel regularized and constrained least squares methods were

adapted and applied to three distinct applications including imaging and detection

of buried explosive hazards utilizing array radar; high resolution imaging of satellites

in geosynchronous orbit utilizing optical hypertelescope arrays; and characterization

of atmospheric turbulence through multi-frame blind deconvolution utilizing conven-

tional optical digital sensors.

In Chapter 2 a least squares image reconstruction technique applicable to FLGPR

imaging was developed with two regularization terms designed to balance the ex-

pectation that targets should be sparsely populated but extended with respect to the

sampled image grid. It was shown that by spatially filtering the collected data through
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a combination of Doppler pre-filtering and deterministic image formation processing,

significant computational savings can be achieved due to the reduced size of the col-

lected data and also the decreased size of the footprint required for a given ROI.

Furthermore, it was shown that image domain reconstruction enables pre-averaging

of the collected data which further reduces computational requirements by reducing

the number of e↵ective frames used during reconstruction. Results were presented,

using experimental data, demonstrating the e�cacy of the proposed algorithm.

In Chapter 3 the penalized least squares image reconstruction technique was adapted

to sparse aperture imaging based on the fibered hypertelescope concept. Demon-

stration of the proposed technique was performed using simulated imagery produced

based on a postulated hypertelescope design and a notional model of the Galaxy 15

telecommunications satellite. Imaging performance was compared to a conventional

implementation of the Richard-Lucy deconvolution algorithm adapted to the fibered

hypertelescope paradigm. Reconstructions using the penalized least squares algo-

rithm compared favorably to Richard-Lucy reconstructions based on evaluation using

the SSIM score. A thorough analysis of the tuning parameters associated with the

penalized least squares technique was conducted. The best results in terms of the

SSIM score were obtained by finding a careful balance between the sparsity inducing

`1 norms associated with the total energy and total variation penalty terms.

In Chapter 4 a least squares imaging approach was developed to address the important
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need to measure and mitigate atmospheric turbulence in optical imaging systems. The

method presented in this work avoids complex sensor and illuminator schemes which

are typically employed for turbulence measurement and instead characterizes the

atmospheric turbulence condition passively through image processing performed on a

sequence of collected image frames. By exploiting the theoretical e↵ects of turbulence

on the PSF of an optical sensor over time we have constructed a pair of constraints

requiring the statistics of the PSF estimates to match expectations for a given level of

turbulence. Results demonstrating the e�cacy of the approach were generated using

both a simulated spoke calibration target and a patch extracted from an experimental

data collection. Accurate r0 estimates were shown for levels of turbulence ranging

from r0 = 7 cm (low) to r0 = 3 cm (high). Furthermore, by accounting explicitly for

turbulence e↵ects in a physics based manner we have demonstrated excellent image

deconvolution performance.
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Appendix A

Mathematical Background

This dissertation presents penalized and constrained least squares computational

imaging methods applied to three unique remote sensing modalities. In this appendix

the Bayesian interpretation for least squares and penalized least squares is described

in the context of image reconstruction.

In section A.1 least squares is derived as the maximum likelihood estimator (MLE)

for a Normally distributed random vector with constant diagonal covariance. In

section A.2 penalized least squares (PLS) is derived as a maximum a posteriori (MAP)

estimator and where penalty functions are based on `1 norms. In each section the

necessary gradients are derived for use in numerical optimization.
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A.1 Probabilistic Interpretation of Least Squares

It is common for measured data to be modeled as a normally distributed random

vector. The familiar pdf associated with a Normally distributed random vector, d

consisting of Nd elements, is given by,

f (d|µ,⌃) =
1q

(2⇡)Nd
|⌃|

e
�1/2(d�µ)T⌃�1(d�µ) (A.1)

where µ and ⌃ are the mean and covariance respectively. If multiple independent

observations are available, such as a multi-frame collection of a common scene, then

the joint distribution associated with the collection of observations is given by

f (d1,d2, ...,dNf |µ,⌃n) =

NfY

n=1

1q
(2⇡)Nd

|⌃n|

e
�1/2(dn�µn)

T⌃�1
n (dn�µn) (A.2)

=

0

@ 1q
(2⇡)Nd

|⌃n|

1

A
Nf

e
�1/2

PNf
n=1(dn�µn)

T⌃�1
n (dn�µn),

where Nf is the number of independent observations.
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The log-likelihood equation associated with such a distribution is then given by,

L (µ,⌃|d1,d2, ...,dNf ) =�
NfNd

2
log (2⇡)�

1

2

NfX

n=1

log (|⌃n|) (A.3)

�
1

2

NfX

n=1

(dn � µn)
T
⌃n

�1(dn � µn).

A.1.1 Constant Diagonal Covariance Assumption

A common assumption simplifying the likelihood expression is that the elements in

the random vector, d are uncorrelated and have a common variance which remains

fixed over the set of observations. In this case, the covariance reduces to a constant

diagonal matrix, ⌃n = �
2
I 8n, and the determinant and inverse can be computed

trivially by recalling that the determinant of a diagonal matrix is the product of the

diagonal terms and the inverse of a diagonal matrix is a diagonal matrix with the

elements inverted. As such,

|⌃n| = �
2Nd , and ⌃

�1
n =

1

�2
I. (A.4)
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The log-likelihood expression associated with such a set of independent random vec-

tors can then be reduced as follows

L (µ, �|x) = �
NdNf

2
log (2⇡)�NfNd log (�)�

1

2�2

NX

n=1

(dn � µn)
T (dn � µn) (A.5)

= �
NdNf

2
log (2⇡)�NfNd log (�)�

1

2�2

NX

n=1

kdn � µnk
2
2 .

Often the expected value of the data is directly dependent on the object of interest,

g, and as such, µn ) µn (g). If only estimation of the object is required then the

terms that are independent of g are unimportant and the least squares estimator is

equivalent to the MLE estimator,

O (g) =
NX

n=1

kdn � µn (g)k
2
2 . (A.6)

If µ is linearly dependent on g as is often the case, then the relationship can be

expressed as a matrix vector product such that µ = Ag

A.1.2 Least Squares Gradient

The gradient of the objective function is required as part of the optimization process.

The expression for the gradient is given here for the least squares data fit term in
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terms of µn (g) as

@O

@g
=

NX

n=1

@

@g
kdn � µn (g)k

2
2 (A.7)

=
NX

n=1

@

@g
(dn � µn (g))

T (dn � µn (g))

=
NX

n=1

@

@g

⇣
dn

T
dn � µn (g)

T
dn � dn

Tµn (g) + µn (g)
T µn (g)

⌘

= 2
NX

n=1

@µn (g)

@g
(µn (g)� dn) .

The gradient with respect to µ (g) then is necessary and must be computed based on

the signal model associated with the measured data. For the linear case, @µn(g)
@g = A

T

and as such,

@O

@g
= 2

NX

n=1

A
T (Ag � dn) . (A.8)

A.2 Probabilistic Interpretation of Penalized

Least Squares

A probabilistic interpretation of the penalized least squares objective function is de-

scribed as follows; Let g represent the object and let the two-dimensional numerical

gradient of the object be given as v = r2Dg. From Bayes Rule, the joint probability
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of g and v given data d can be expanded as

p (g,v|d) =
p (d|g,v) p (g,v)

p (d)
. (A.9)

The relationship between g and its numerical gradient, v, is completely determin-

istic and as such p (d|g,v) = p (d|g) and through the same reasoning p (g,v|d) =

p (g|d) p (v|g,d) = p (g|d). In contrast, in order to simplify the joint probability

distribution, p (g,v) the approximation is made that

p (g,v) = p (v) p (g|v) (A.10)

= p (v) p (g) ,

such that equation A.9 can now be expressed as

p (g|d) =
p (d|g) p (v) p (g)

p (d)
. (A.11)

In order to obtain the `1 norm penalty function it is assumed that the distributions as-

sociated with the object g and it’s numerical gradient v are modeled as iid Laplacians

such that,

p (v) =
NY

i=1

Cve
��TV |vi|, (A.12)

and

p (g) =
NY

i=1

Cee
��TE |gi|. (A.13)
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The denominator is unrelated to g and as such plays no role in the optimization. If

the data term p (d|g) is reduced to the squared error as was demonstrated in section

A.1 then the Log-Likelihood associated with equation A.11 reduces to

L (g|d) = kd� µ (g) k2 + �TEkgk1 + �TV kvk1, (A.14)

and if multiple independent observations are made then the expression can be ex-

tended as in section A.1 such that

L (g|d) =

NfX

n=1

kdn � µn (g) k
2 + �TEkgk1 + �TV kvk1. (A.15)

A.2.1 Total Energy Penalty Gradient

In this section the gradient associated with the total energy penalty term is derived.

The penalty function associated with total energy regularization is given by

P = �TE kgk
p
p , (A.16)

where the Lp norm taken over the entire set of pixels is defined as

kgk
p
p =

KX

k=1

|gk|
p (A.17)
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From this the gradient for any p can be given trivially,

@ kgk
p
p

@g
= p |g|

p�1
, (A.18)

and for the special case of p = 1, the gradient reduces to the ones vector such that

@kgk1
@g = 1.

A.2.2 Total Variation Penalty Gradient

In this section the gradient associated with the total variation penalty term is derived.

If we consider the finite di↵erence in the x and y directions computed using the appro-

priate finite di↵erence matrices, Dx and Dy, then the finite di↵erence approximation

to the gradient vector is given as

rg =

0

BB@
Dxg

Dyg

1

CCA , (A.19)

and the magnitude (2-norm) of the gradient vector for each image sample is then

approximated by

� = |rg| =
q

(Dxg)
2 + (Dyg)

2
. (A.20)
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It will prove convenient to further define

⇠ (g) = (Dxg)
2 + (Dyg)

2
, (A.21)

such that

� =
p

⇠ (g). (A.22)

Finally, the Lp norm taken over the entire set of pixels is

k�kpp =
KX

k=1

�
p
k . (A.23)

Through the chain rule we compute the gradient vector w.r.t. g,

@

@g

⇣
k|rg|k

p
p

⌘
=

✓
@⇠

@g

◆✓
@�

@⇠

◆ 
k�kpp
@�

!
. (A.24)

Evaluation of each of the terms results in,

@⇠

@g
= 2 (diag[Dxg]Dx + diag[Dyg]Dy)

T
, (A.25)

@�

@⇠
=

1

2
diag


1
p
⇠

�
, (A.26)

k�kpp
@�

= p |�|�
�
|�|2 + ✏

� p/2�1
. (A.27)
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such that the final gradient of the T.V. penalty can be reduced as follows

@

@g

⇣
k�kpp

⌘
= 2 (diag[Dxg]Dx + diag[Dyg]Dy)

T (A.28)

1

2
diag


1
p
⇠

�
p |�|�

�
|�|2 + ✏

� p/2�1

= p (diag[Dxg]Dx + diag[Dyg]Dy)
T

diag


1

�

�
|�|�

�
|�|2 + ✏

� p/2�1

= p (diag[Dxg]Dx + diag[Dyg]Dy)
T �

|�|2 + ✏
� p/2�1

= p

⇣
D

T
x

⇣
Dxg �

�
|�|2 + ✏

� p/2�1
⌘
+D

T
y

⇣
Dyg �

�
|�|2 + ✏

� p/2�1
⌘⌘

.
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