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SUMMARY

This thesis focuses on algorithms to create images of sensed media and to detect

features in those images. We are mostly interested in generating subsurface images

and detecting targets like landmines, tunnels, pipes and so on. Ground penetrating

radar (GPR) and the seismic sensor are the basic sensors used to probe the subsurface

area.

For subsurface imaging we introduce a new data acquisition and imaging method

based on spatial sparsity of the target space, i.e., a small number of point like targets.

We show that the target space image can be constructed using a much smaller number

of non-adaptive linear measurements by solving an ℓ1 minimization problem when the

target space is sparse. This new imaging method creates less cluttered images and

uses fewer measurements which leads to lower data acquisition times. The algorithm

has been developed for both time-domain and stepped- frequency GPRs.

For detecting structures like tunnels or pipes in the subsurface images, the Hough

transform (HT) is a widely used method. The HT uses a parameterized model of each

feature to transform it into a parameter space where detection is easier. Although

the HT is capable of detecting parameterized shapes, it suffers from several problems.

First, the HT can detect only known parameterized shapes. To detect curving

structures partial Hough transform (PHT) was developed. Second, problems of de-

tecting very weak features hidden by high clutter or noise, which can not be directly

detected by the HT, were solved through iterative detection and removal of objects.

A third problem with the HT is its high computational cost. Several existing methods

which were aimed at reducing the computational cost of the HT also suffer a loss in

performance compared to the full HT, or can only be applied to binary images. A

xv



feature detection algorithm based on random sample theory was developed to detect

features in highly noisy images faster than the HT and without the degradation in

performance suffered by existing algorithms.

Most feature detection methods require the existence of a computed image before

doing any kind of detection. However, we were able to combine the compressive

sensing (CS) ideas with the information about sparseness of shapes in the parameter

space to define a new method that can directly form the parameter space result

without creating the target space image using fewer compressive measurements. All

the algorithms developed in this thesis were tested on both computer simulated data

and experimental data to validate their performance.
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CHAPTER I

INTRODUCTION

In recent years, there has been great interest in detecting and imaging subsurface

targets in a wide variety of areas such as civil engineering [43], landmine detection [40,

37, 45], archeological investigations[81] and environmental applications [58]. Various

sensing tools have been used to get better performance in different situations. The

main sensors used are electromagnetic induction (EMI), ground penetrating radar

(GPR), seismic and infrared (IR) sensors. These sensors rely on different operating

principles and provide different levels of information about the sensed medium based

on their capabilities. An EMI sensor is sensitive to conductivity and basically is used

to find objects with metallic content. IR is attractive for its high standoff distance

sensing. Seismic sensors are sensitive to the mechanical properties of objects. GPR

has been shown to be an efficient subsurface imaging tool due to its low cost non-

destructive capability of detecting both metal and non-metal objects. In this thesis

we will be mostly focusing on creating subsurface images and detecting features in

these images using GPR and seismic sensors.

1.1 Subsurface Imaging Sensors

Ground-penetrating radar (GPR) is a geophysical method that uses electromagnetic

radiation in the microwave band of the radio spectrum, and detects the reflected

signals from subsurface structures. GPRs often use bistatic or multistatic antennas.

Bistatic systems use two different antennas separated by a fixed distance, one for

transmitting and one for receiving. A multistatic system is a combination of several

bistatic pairs at varying separations.

In traditional impulse GPR the transmitting antenna radiates short pulses of

1



the high-frequency EM waves into the ground. When the wave encounters a buried

object or a boundary with different dielectric properties it reflects and is received by

the receiving antenna. Another type of GPR which is becoming increasingly popular

is the stepped frequency continuous waveform (SFCW) GPR [59, 75]. A stepped-

frequency signal probes the environment with a discrete set of frequencies. A stepped

frequency GPR has several advantages over an impulse GPR. The main advantage

is the greater measurement accuracy inherent in a frequency domain system. For

example, since it is much easier to synthesize a pure tone at a given frequency than

it is to measure a time delay, the accuracy with which the frequencies are set in the

SFCW GPR is much greater than the measurement times used in an impulse GPR.

The operating frequency range can be adjusted to suit the specific ground conditions.

For example, the low-frequency range can be used for relatively deep targets while

higher frequencies are used for shallow objects. The dwell time at each aperture point

and for each frequency before the GPR steps up the next frequency depends on several

issues, such as the switching time for the sources, time to allow the transmitted signal

to reach the receiver from a chosen maximum range, and time for the receiver to build

up sufficient signal to noise ratio.

The seismic system might consist of an aero-acoustic source and a ground contact-

ing receiver. Seismic waves are sensitive to the differences between the mechanical

properties of an object and the soil. The acoustic source and receiver are scanned

across the surface. The general principle is to send sound energy waves into the

ground, and then interfaces between regions and objects having different mechanical

properties reflect back this energy. The reflected energy is captured by the ground

contacting receivers. Received signals are processed to detect objects, changes in ma-

terial, voids and cracks. Photographs of the sensors used for different experiments

are shown in Fig. 1.
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Figure 1: Photographs of the seismic and GPR sensors used in our experiments [25].

1.1.1 Existing Subsurface Imaging Algorithms

Subsurface imaging algorithms for seismic and GPR sensors are similar and depend on

the data acquisition process. Standard imaging algorithms for both types of sensors

do matched filtering of the measured data with the impulse response of the data

acquisition process for each spatial location. Here we will give a brief summary using

GPR as an example.

As the GPR antenna scans a region, the radar transmits and receives a series of

pulses. Although the response of targets can be quite complex, it can be assumed

that the received signal reflected from a point target at p is a time delayed and scaled

version of the transmitted signal s(t), i.e.,

ζi(t) = As(t− τi(p)) (1)

where τi(p) is the total round-trip delay between the transmitter and the target at

position p for the ith receive aperture point, and A is a scaling factor used to account

for any attenuation and spreading losses.

3



Calculation of τi requires knowledge of the path the wave travels from the trans-

mitter antenna to the target and then to the receiver, as well as the wave velocities in

the media. An example bistatic GPR scenario is shown in Fig. 2(a). At the boundary
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Figure 2: (a) GPR measurement setup showing a bistatic scenario, (b) Impulse
response of the GPR data acquisition process for a single point target.

between two different media (such as air and soil), the propagation direction changes

according to Snell’s law. Taking wave refraction into account is especially critical for

near-field imaging problems such as mine detection since the distance between the

antenna and the target is relatively small. The exact calculation of the refraction

point requires the solution of a 4th degree polynomial. Several approximations to

compute the refraction point are available [62]. After finding the refraction points,

the distances d1:4 shown in Fig. 2(a) are known and the τi times can be calculated as

τi =
d1 + d4

v1

+
d2 + d3

v2

. (2)

The GPR transmissions spanning a region of interest form a synthetic aperture,

whose impulse response follows a spatially variant curve in the space-time domain.

Figure 2(b) shows the response of the GPR synthetic aperture data acquisition process

for a single point target.

Standard imaging algorithms do matched filtering of the measured data with the

impulse response of the data acquisition process (Fig. 2(b)) for each spatial location.
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Time-domain standard backprojection (SBP) [37, 76, 62] can be formulated as follows.

f(xn, yn, zn) =

∫∫

w(ux, uy)d(ux, uy, t)δ(t− τ(ux, uy, zn))dtduxduy, (3)

where d(ux, uy, t) is the measured GPR space-time data, w(ux, uy) is the aperture

weighting function, f(xn, yn, zn) is the created subsurface image, and τ(ux, uy, zn) is

the total time delay from the antenna to the imaging point (xn, yn, zn) and back to the

receiver. Frequency domain imaging algorithms [42, 86] also apply a similar matched

filtering operation in the space-frequency domain. An example of subsurface imaging

is shown in Fig. 3. Figure 3(a) shows the space-time domain raw GPR data taken
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Figure 3: (a) Space-time domain raw GPR data taken over 4 targets. One VS
1.6 and one VS 2.2 antitank mines, one mine simulant and one PMF-1 mine. (b)
Backprojected subsurface image.

over four targets. The buried targets are VS-1.6 and VS-2.2 antitank mines, one mine

simulant and a PMF-1 mine. Hyperbolic signatures of the targets are apparent in the

measured raw data. However, the targets are more clear and visibly quite pronounced

in the backprojected image shown in Fig. 3(b).

1.1.2 Problems with existing imaging methods and proposed solutions

All of the existing imaging algorithms require fine spatial sampling and Nyquist rate

time sampling of the received signals. It is not possible to exploit any prior informa-

tion about the target space with the current imaging method framework. Also, the
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data acquisition times are very high which becomes a bottleneck in most GPR imag-

ing systems. For example, in [24] it is reported that scanning a 1.8×1.8 m2 area with

2 cm spatial resolution and using 401 frequency steps takes approximately 14 hours.

Thus there is a need for a new data acquisition and imaging algorithm that would

decrease the number of measurements without degrading the imaging performance.

In this thesis, we present a novel data acquistion and imaging algorithm for GPRs

that significantly reduces the data acqustion time and creates less cluttered target

space images compared to standard imaging methods. The method depends on a

basic assumption of spatial sparsity. Generally potential targets cover a small part of

the total subsurface volume to be imaged. Thus we exploit a priori information that

the target space is sparse. This fact is not exploited by the standard imaging meth-

ods. Spatial sparsity means that the number of targets is much less than the total

number of spatial positions. Recent results in compressive sensing (CS) [31, 15, 4]

provide the theory of how a sparsely representable signal can be sampled with a very

few measurements and reconstructed. We apply the ideas from CS to the problem

of subsurface imaging and show that less cluttered target space images can be con-

structed using many fewer measurements compared to standard imaging techniques.

This part of the thesis is detailed in Chapter 2.

1.2 Feature Detection Algorithms in Subsurface Images

Feature detection requires the extraction of necessary information about a feature

from an image by means of signal processing tools. It is an important and broad topic

extensively studied in areas like image processing [61, 28], computer vision [23, 61]

and subsurface imaging [51, 29]. This thesis focuses on detection of underground

structures like tunnels or pipes in subsurface images. This is a problem of great

interest in industrial and civil engineering, as well as military applications. Reliable

feature detection in subsurface images with a reasonable false alarm rate is a hard
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problem due to changing environmental conditions. Soil is a complex, lossy, and

very inhomogeneous media. Many of the inhomogeneities in the soil such as layering,

moisture variations, rocks, roots, etc. can cause a sensor to give false alarms. Research

on buried linear object detection has focused on cross bore-hole tomography [84],

neural detection of linear signatures [41], and a variety of techniques applying the

Hough Transform to both GPR and seismic data [87, 51, 29].

In Chapter 3 and 4 varying Hough Transform (HT) algorithms are developed

for subsurface feature detection problem. Partial Hough Transform (PHT) is used

to detect curving structures. Very weak features hidden by high clutter and noise

are detected by iterative detection and removal of objects. Chapter 4 introduces a

new feature detection algorithm based on random sample theory reducing the com-

putational cost of HT without the degradation in performance suffered by existing

algorithms. Finally, Chapter 5 uses ideas from compressive sensing and sparsity of

shapes to define a new method that can directly form the parameter space from a

small number of sensor measurements without forming an image of the medium. Next

we briefly summarize some of the existing feature detection algorithms.

1.2.1 Existing Feature Detection Algorithms

Feature detection in images has been extensively studied and many different kinds of

algorithms have been developed. We will give a brief summary of the major feature

detection algorithms related to our problem in three categories:

1. The Hough Transform (HT) and its variations

2. Random Sample Concensus (RANSAC) Based Algorithms

3. Regularized Feature Detection
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1.2.2 Hough Transform and Its Variations

The Hough Transform (HT) [56], its variants and their generalizations [7, 35, 3, 61]

are the most commonly used methods capable of detecting lines [35], circles [3], or any

other parameterized curve [87]. A good reference for the HT and its generalizations

is given by Illingworth and Kittler [61].

The HT uses a parameterized model of each feature (i.e., lines, curves or planes)

to transform the feature in the original image space into a single mesh point in the

parameter space. The better a feature corresponds to the model, the more values (

also called votes) will be accumulated at a mesh point. Features having votes above

a predetermined threshold are selected as a detection. One way of parameterizing a

line is by selecting its slope m and intercept n values. Using these parameters a line

can be defined as

y = mx+ n. (4)

Using the line parametrization in (4) the HT of an image f(x, y) can be defined as

follows:

f̂(m,n)] =

∫

∞

−∞

f(x,mx+ n)dx. (5)

Each parameter pair (m,n) represents a line in the image. The HT does line

integrals on the image for all possible parameter values. The problem of detecting

a shape in the image domain is transformed into detecting a peak in the parameter

domain by the Hough Transform, which is easy to implement.

Another widely used form of line parametrization was introduced in [35]. A

straight line in a 2D image can be parameterized with (ρ, θ) as

ρ = x cos θ + y sin θ. (6)

The HT with the line representation in (6) is written as

f̂(ρ, θ) =

∫

∞

−∞

∫

∞

−∞

f(x, y)δ(ρ− x cos θ + y sin θ)dxdy. (7)
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Another way of writing (8) is often used for implementation purposes.

f̂(ρ, θ) =

∫

∞

−∞

f(ρ cos θ − s sin θ, ρ sin θ + s cos θ)ds, (8)

where the s-axis lies along the line.

As an example we consider the image in Fig. 4(a) which is formed by summing

the energy values over all depths from backprojected seismic data for the tunnel

detection experiment presented in Chapter 4. Applying the 2D Hough Transform

gives the parameter domain image shown in Fig. 4(b). The two local maxima in the

Hough domain image correspond to the two lines shown in the image space.
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Figure 4: (a) Surface Energy Image and detected lines, (b) Hough Transform of the
image in (a)

From the surface energy image (Fig. 4(a)), the depth information of the tunnel

cannot be obtained. To determine how the tunnel is positioned in 3D world coor-

dinates, a 3D HT should be used. In 3D (e.g., subsurface) images, a line can be

represented by r = r0 + sτ , where s is a free parameter and r0 is an offset vector,

given as r0 = uα + vβ [87]. Here α, β and τ are

τ =













cos θ cosφ

sin θ cosφ

sinφ













α =













− sin θ

− cos θ

0













β =













− cos θ sinφ

− sin θ sinφ

cosφ













(9)

9



In other words, a line in 3D can be specified with the four parameters α, β, u, and v.

A line in the original image corresponds to a point in HT space, where its intensity

is determined by the sum of co-linear points in the image. The 3D Hough Transform

can be formulated as the following line integral:

f̂(θ, φ, u, v) =

∫

∞

−∞

f(sτ + vβ + uα)ds. (10)

Line detection is accomplished by finding local maxima in the HT parameter

space. The 3D results from experimental seismic and GPR tunnel detection data are

given in Chapter 4.

Although the HT is a basic algorithm effective even for very noisy images, it is

not easily implementable because of its high computation time and large memory

requirements. These problems are exacerbated as the dimension of the search space

increases. The computational complexity for the HT for 2D images of size N ×N is

O(N3), and the complexity increases to O(N5) for 3D images.

Various methods have been proposed to decrease the computation requirements

of the HT while computing a transform similar to the HT. The primary ones are

the Probabilistic Hough Transform (PHT) [67], the Randomized Hough Transform

(RHT) [91], and Line Detection using Random Sample Consensus (RANSAC) [38,

70, 21]. Although these methods provide faster solutions than the standard HT, they

suffer in performance compared to the HT in noisy images, or can only be applied to

binary images.

1.2.2.1 Randomized Hough Transform (RHT)

The RHT randomly selects n points from the image, corresponding to the number of

points required to define a given feature, and then uses this subset to solve for the

feature parameters. As an example, since a line can be defined by 2 points, n = 2

in line detection. The corresponding point in parameter space is then increased, and

the process repeated for a predetermined number of iterations. Pseudo code for the
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RHT is given in Table 1.

Table 1: Randomized Hough Transform Algorithm

Randomized Hough Transform (RHT)

While k < kmax

1. Select n-tuple of points from the image randomly

2. Solve for the parameters of the feature which is defined by the selected points

3. Accumulate the corresponding parameter space cell by the image pixel values of the points in 1.

The RHT in its original form [92, 91] is suitable only for binary images, but the

idea can be expanded to all kinds of images. This can be done by increasing the

parameter space cell by the pixel values of the randomly selected points instead of

increasing by one for binary images. Although it has been shown that the RHT

performs faster than the HT [92], for high noise or excessive outlier conditions the

RHT is not robust.

1.2.2.2 Probabilistic Hough Transform (PHT)

The PHT [67] tries to decrease the computational requirements of the HT by randomly

selecting a subset of the original data and applying the HT only to the selected part.

This technique leads to erroneous results for a small subset, and selection of the

optimum subset size requires knowledge of the image. Although the latter problem

is solved by the Progressive PHT (PPHT) algorithm [74], performance is still worse

than the HT. The RHT is suitable for low noise images [68]. For highly noisy images,

the PHT outperforms the RHT; but neither algorithm works very well in detecting

buried features in extremely noisy subsurface images.
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1.2.2.3 Hierarchical Approaches to Hough Transform

In the literature there are also fast HT methods based on a hierarchical division of

parameter space. The fast Hough Transform (FHT) in [69] recursively divides the

parameter space into hypercubes and performs the HT only on the hypercubes with

votes exceeding a selected threshold. The decision on whether a hypercube receives a

vote from a hyperplane depends on whether the hyperplane intersects the hypercube.

The method is applicable only to binary images and selection of the threshold to

prune a hypercube in parameter space is a problem. The adaptive HT in [60] uses an

idea similar to the FHT, but iteratively changes the size of the accumulation array to

reduce memory requirements. The multiresolution HT [2] uses multiresolution images

and accumulation arrays to compute the HT. Although the existing hierarchical HT

methods succeed in decreasing the computational load of the HT, they can be applied

to binary edge images and have problems associated with pruning a parameter space.

1.2.3 Random Sample Consensus Based Algorithms

Random Sample Consensus (RANSAC), introduced by Fishler and Bolles [38], is a

hypothesis generation and verification algorithm for robust estimation of features. As

with the RHT, RANSAC begins by randomly selecting n points from the image to

generate a candidate model of the desired feature, where n corresponds to the number

of points required to define a given feature. RANSAC then classifies all points either

as “inliers” that fall within a certain distance of the candidate model, or as “outliers”

which are discarded. If the number of inliers exceeds a preset threshold, the inliers

are used to re-estimate the feature model. Pseudo code for RANSAC is given in Table

2.

As an example, consider the problem of finding the parameters of a line that

approximates the points in Fig. 5(a). The threshold for the inlier set is selected as

10. At each trial 2 points that define a line are randomly selected and the number
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Table 2: RANSAC Algorithm

RANSAC Algorithm

1. Set k = 0, while k < kmax do the following

2. Randomly select p “white” points from the binary image and generate the candidate model which is

defined by the selected points

3. Determine the number of inlier points n which are within σ distance of the candidate model

4. If number of inliers n is above a preset threshold Tn, re-estimate the model only using inlier points

and terminate

5. k = k + 1

of inlier points, which are within a predetermined distance to the selected line, are

counted. In the cases shown in Figs. 5(b) and (c) the inlier threshold is not exceeded.

However, in Fig. 5(d) the threshold is met and the inlier point set is determined.

A more accurate estimate of the line is obtained by estimating the line parameters

using only the points in the inlier set, excluding the bad effects of outliers as shown

in Fig. 5(e).

RANSAC has been shown to be effective for line detection in binary images [70,

21, 20]. It is a desirable method for its robust and faster estimation results. However,

the distance calculations and the structure of the algorithm in its original form make

it unusable for non-binary images as subsurface images.

1.2.4 Regularized Feature Detection

One of the latest advances in feature detection is to formalize the shape detection

problem within a regularization framework and enhance the performance of a Hough

based feature detector through the incorporation of prior information in the form of

regularization. In [1] several types of regularization, including maximum entropy, ℓp

with p ≤ 1, and log regularization ,are discussed for the problem of line detection.

The regularizers used actually favor sparsity in the parameter space. Although these
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Figure 5: Finding line parameters using RANSAC.

methods increase the computational cost and for some cases don’t guarantee a global

optimum, they generate much cleaner or sparser parameter space results.
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1.2.4.1 Beamlets and Multiscale Image Analysis

For analyzing images in a multiscale framework, beamlets were developed by Donoho

and Huo [30, 32]. Beamlets are line segments and the beamlet dictionary is a dyadi-

cally organized collection of line segments, occupying a range of dyadic locations and

scales, and occurring at a range of orientations. The beamlet transform of an image

f(x, y) is the collection of integrals of f over each segment in the beamlet dictio-

nary; the resulting information is stored in a beamlet pyramid. Figure 6 shows four

beamlets at various scales, locations and orientations.

Figure 6: Four beamlets at various scales, locations and orientations

The beamlets offer an overcomplete representation of shapes since any beamlet

in a stage can be written as a combination of other beamlets in another stage. One

advantage of beamlets is that the chains of beamlets offer sparse approximate repre-

sentations of curves in the image.

Several feature detection algorithms using beamlets have been developed. The

first type of algorithm depends on simple thresholding of the beamlet coefficients

without taking into account interconnections that might exist between the beamlets

15



at different scales and locations. The comparable statistic is

Y = maxTy(b)/
√

L(b) (11)

where Ty(b) is the beamlet transform of the data y and L(b) is the Euclidean length

of the beamlet b. A beamlet is detected whenever Y exceeds a certain threshold.

A second type of algorithm [30] exploits the tree-structure of the recursive dyadic

partitioning (RDP) underlying the beamlet pyramid. Figure 7 gives an example

beamlet RDP and its associated tree structure. To extract multiple line fragments

Figure 7: A beamlet decorated recursive dyadic partition (BD-RDP) (right) and its
associated tree structure (left).

a search for a beamlet RDP solving an optimization problem is done. Each dyadic

square S is associated with a quantity CS defined as

CS = max
b∼S

T (b)/ℓ(b)1/2 (12)

where T (b) is the beamlet coefficient associated to beamlet b, ℓ(b) is the length of b,

and b ∼ S means that the beamlet b is associated to S. Then the partition over all

recursive dyadic partitions P , that maximizes the complexity-penalized energy

J(P ) =
∑

S∼P

C2
S − λ#P (13)
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is obtained as the resultant feature where #P gives the number of partitions. Using

this type of optimization or other algorithms that take into account neighboring

beamlets, connectedness and directional continuation, beamlets can find lines, curves

or regions in the images [32, 30].

In this thesis we develop methods to connect regularized feature detection to

the problem of sparse signal representation and adaptive representation of signals

in terms of the elements from an over-complete dictionary of possible features in a

compressive sensing framework. Thus linear or curving features in subsurface images

could be detected using a small number of measurements from the sensors.

1.3 Contributions and Organization of The Thesis

This thesis focuses on algorithms to create images of sensed media and to detect

important features in the created images. In Fig. 8, a graphical outline of the thesis

is given in which the major contributions are highlighted. These are discussed in this

section. The figure should give the reader an overall picture of the results presented

in the later chapters of the thesis.

Chapter 2 develops a new subsurface imaging method based on spatial sparsity

of target space, i.e., a small number of point like targets. It is shown that the

target space image can be constructed using a much smaller number of non-adaptive

linear measurements by solving an ℓ1 minimization problem, if the target space is

sparse. This new imaging method creates less cluttered images and uses many fewer

measurements which should lead to lower data acquisition times. The algorithm is

developed for both time-domain and stepped-frequency GPRs.

Chapter 3 introduces solutions to two problems associated with the HT. The first

one is that the HT can detect only known parameterized shapes. To detect curving

structures, the partial Hough transform (PHT) is developed. Secondly, problems like

detecting very weak features hidden by high clutter or noise which cannot be directly
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Figure 8: Thesis outline. New contributions are shown in the rectangular boxes.

detected by the HT are solved through iterative detection and removal of objects.

Chapter 4 introduces a new feature detection algorithm suitable for gray-scale

images (i.e., computed subsurface images) using adaptive random sample theory.

The developed method creates random hypothesis features by an adaptive sampling

scheme and tests them to select candidate features in the image. The selected candi-

date features are then re-estimated within a smaller search space. Results show that

the proposed algorithm can detect features accurately and much faster than the HT

without the degradation of existing faster HT variants.

Chapter 5 introduces a new method based on compressive sensing for finding pa-

rameterized shapes in images. The method exploits the sparseness of parameterized

shapes in the HT domain and uses a very small number of linear measurements of

the image. Joint detection of different features can be done by using an extended
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dictionary of possible shapes. This method requires the measurement of linear pro-

jections of the image. In the second part of the chapter, ideas from the subsurface

imaging presented in Chapters 2 are combined with the developed compressive feature

detection method using the compressive sensing framework to directly find the shape

parameters from the minimal number of raw sensor measurements without forming an

image of the subsurface area. Finally, Chapter 6 summarizes the main contributions

of this thesis and discusses future directions for this research.
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CHAPTER II

COMPRESSIVE SENSING FOR SUBSURFACE IMAGING

USING GPR

Ground Penetrating Radars (GPR) image subsurface structures by transmitting elec-

tromagnetic waves into the ground and processing the reflections [26]. The traditional

impulse GPR is a commonly used type of GPR due to its simple design and low cost

[27]. It radiates a sequence of short pulses and processes the reflections. Another type

of GPR that is becoming increasingly popular is the stepped-frequency continuous-

wave (SFCW) GPR [59, 75]. A stepped-frequency signal probes the environment with

a discrete set of frequencies. The main advantage of a SFCW GPR is the greater mea-

surement accuracy inherent in a frequency domain system and the flexibility to adjust

the operating frequency range to suit the specific ground conditions.

For both types of GPR the total subsurface response, formed from a combination

of the responses from all reflectors within the medium, can be inverted using vari-

ous imaging algorithms; e.g., time-domain Standard Backprojection (SBP) [37], and

Fourier domain Synthetic Aperture Radar (SAR) image formation techniques [86, 42].

All of these algorithms require fine spatial sampling and Nyquist-rate time sampling

of the received signals, or a high number of frequency measurements. Then they per-

form matched filtering with the impulse response of the data acquisition process to

form an image. Most of the existing imaging algorithms don’t use any prior knowledge

about the image such as the spatial sparsity of targets.

The theory of compressive sensing (CS) enables the reconstruction of sparse sig-

nals from a small set of non-adaptive linear measurements by solving a convex ℓ1
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minimization problem. In this chapter we present a data acquisition and imaging al-

gorithm for Ground Penetrating Radars (GPR) based on CS by exploiting sparseness

in the target space, i.e., a small number of point-like targets. First we give a brief

summary of CS theory that will form the basics of the imaging and feature detection

algorithms in this chapter, as well as Chapters 6 and 7. Then we present the impulse

and stepped-frequency versions of the compressive subsurface imaging.

2.1 Compressive Sensing

Conventional sampling for 2D imaging problems acquires vast amounts of data which

requires high acquisition rate and needs to be compressed for compact storage, rapid

transmission or easier processing. Signals can be compressed if they can be approx-

imated using a linear combination of a small set of some transform basis vectors

(wavelets, DCT, Fourier, etc.). In conventional compression algorithms signals are

sampled above the Nyquist rate, their transforms are computed and the large coef-

ficients with their locations are retained to represent the signal. Even though only

a small set of transform coefficients are used, the whole signal is sampled and its

transform is computed. This is a potential time and energy waste. Compressive

Sensing (CS) answers the question of whether we can measure the most informative

part of the signal directly. CS takes non-traditional samples using randomized pro-

jections and shows that a signal having a sparse representation in some basis can be

reconstructed from a small set of non-adaptive linear measurements.

Let’s consider a signal x of length N . The signal x is called K-sparse if it can be

written as

x =
K

∑

i=1

wiψi, (14)

where the wi are weighting coefficients and ψi the basis vectors. We can write the
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sparse signal x in matrix notation

x = Ψw. (15)

where Ψ is the sparsity basis whose columns are filled by ψi and w is the weighting

vector.

In compressive sensing, rather than sampling a signal at its Shannon-Nyquist rate,

linear projections y(m) =< x, φT
m > of the signal onto a second set of basis vectors,

φm, m = 1, 2, ...M , are measured. Here fewer measurements, M < N , are used

compared to the dimension of the signal x. In matrix notation we measure

y = Φx. (16)

In the case of M < N , the recovery of x from the measurements y is ill-posed.

However, compressive sampling theory tells us that if the matrix ΦΨ has the Re-

stricted Isometry Property (RIP) [16, 5] then it is possible to recover x exactly from

O(K log(N)) measurements by solving the following ℓ1 minimization problem [15, 31]

min ||x̂||1 s.t. y = ΦΨx̂. (17)

The optimization problem in (17) can be solved via linear programming techniques.

The basic issue is to design a stable measurement matrix Φ such that the infor-

mation in any K-sparse signal is not corrupted by the dimensionality reduction of

Φ from N to M dimensions. Let A = ΦΨ and AT , T ⊂ {1, ..., N} be the M × |T |

sub-matrix obtained by extracting the columns of A corresponding to the indices T .

The K-restricted isometry constant δK of A is the smallest quantity such that

1 − δK ≤ ‖Av‖2

‖v‖2

≤ 1 + δK (18)

for all subsets T with |T | ≤ K and coefficient sequences vj where j ∈ T [17]. This

property essentially requires that every set of columns with cardinality less than K
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approximately behaves like an orthonormal system. In [16] it is proved that when x

is K-sparse and δ2K + δ3K < 1, then the solution of (17) is exactly equal to x.

A surprising but powerful choice for the measurement matrix Φ is a random ma-

trix. For example, sampling N vectors on the unit sphere of RM independently and

uniformly at random. The property in (18) will hold for K = O(M/ log(N/M)) with

probability 1−O(exp−γN) for some γ > 0 [17]. It has been shown that a random mea-

surement matrix Φ whose entries are i.i.d. Bernoulli or Gaussian random variables

will satisfy the RIP with any fixed basis Ψ like spikes, sinusoids, wavelets, Gabor

functions, curvelets, etc. [5]

The theory of CS is not limited just to the recovery of sparse signals. In general,

signals can be compressible, which means the sorted magnitudes of the transform

coefficients decay rapidly to zero. Compressible signals can be well approximated as

sparse. For an arbitrary signal x ∈ RN let xK be its best K-sparse approximation.

It is shown in [12] that if the RIP holds, the recovery error is not much worse than

‖x−xK‖ℓ1 . Moreover, the recovery procedure is robust with respect to measurement

errors. Adding a perturbation ǫn to the measurements will not induce a recovery error

of more than a small constant times ǫn [13]. For the case of noisy measurements, new

reconstruction programs that relax the data fidelity term are available [34, 55, 12, 14].

One form comes from constraining the energy of the reconstruction error as

min ‖x‖1 s.t. ‖y − Ax‖2 < ǫ. (19)

For the program in (19) it is shown in [12] that the reconstruction error is finite and

the reconstruction is stable. This is a second-order cone program (SOCP). A much

easier linear program for noisy reconstruction is the so-called Dantzig selector [14],

which requires that each element of the residual vector be within the noise level and

that the residual vector not correlate well with the columns of A. It is formulated as

min ‖x‖1 s.t. ‖AT (y − Ax)‖∞ < ǫ. (20)
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The CS theory has found a variety of very interesting applications including image

reconstruction[36], medical imaging [72], radar imaging [6], source localization [19, 46],

and coding[18]. This chapter explains the application of CS theory to subsurface

imaging using GPR measurements.

2.2 Compressive Subsurface Imaging Using Impulse GPRs

As the impulse GPR antenna scans a region, the radar transmits and receives a series

of pulses. Although the response of targets can be quite complex, we assume that the

received signal reflected from a point target at p is a time delayed and scaled version

of the transmitted signal s(t), i.e.,

ζi(t) = As(t− τi(p)) (21)

where τi(p) is the total round-trip delay between the transmitter and the target at

position p for the ith aperture point, and A is a scaling factor used to account for any

attenuation and spreading losses. Calculation of τi(p) and its use in existing imaging

methods are explained in Chapter 1. We approach the subsurface imaging as a

dictionary selection problem where we can compute the image within a regularization

framework and take into account any possible prior information.

2.2.1 Creating a dictionary for GPR data

A discrete inverse operator can be created by discretizing the spatial domain target

space and synthesizing the GPR model data for each discrete spatial position. The

target space πT is a subset of the product space [xi, xf ]× [yi, yf ]× [zi, zf ], which must

be discretized to generate the target space dictionary. Here (xi, yi, zi) and (xf , yf , zf )

denote the initial and final positions of the target space to be imaged along each axis.

Discretization generates a finite set of target points B = {π1,π2, . . . ,πN}, where N

determines the resolution and each πj is a 3D vector [xj; yj; zj]. Finally, we define

the vector b to be a weighted indicator function of the targets, i.e., a nonzero positive
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value at index j if b selects a target at πj.

Using (21) and (2) the signal at the GPR receiver can be calculated for a given

element of B. For the ith aperture point, received data can be written as

ζi =

[

ζi (t0) , ζi

(

t0 +
1

Fs

)

, . . . , ζi

(

t0 +
Nt − 1

Fs

)]T

, (22)

where Fs is the sampling frequency, t0 is an appropriate initial time, and Nt is the

number of temporal samples. This allows us to write a linear relation between the

target space indicator b and the model data at aperture i as

ζi = Ψib (23)

where Ψi is of size Nt ×N .

The matrix Ψi is the dictionary (or, sparsity basis) corresponding to all possible

target points B, when the GPR is at the ith aperture point. The jth column of Ψi in

(23) corresponds to (πj) being selected in b, and can be written as

[Ψi]j =
s(t− τi(πj))

‖s(t− τi(πj))‖2

. (24)

Thus each column has unit norm and is independent of A in (21); only the time delay

is needed. The dictionary formation is illustrated in Fig. 9.

Figure 9: Creating the GPR data dictionary. The antenna is at the ith aperture
point. Vectors next to the target space and the GPR model data represent the
vectorized forms of the target space and the model data, respectively.
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2.2.2 Compressive Sensing Data Acquisition

Standard GPR receivers sample the received signal (22) at a very high rate Fs. Here

we present a new data acquisition model based on compressive sensing (CS) which

would require many fewer samples to construct the target space image when the

target space is sparse. In the spirit of CS a very small number of “random” mea-

surements carry enough information to completely represent the signal. We define

a measurement as a linear projection of the signal onto another vector. In the gen-

eral case, measurements of a signal x can be written as y = Mx where M is the

measurement matrix. When M is the identity matrix, standard time samples of the

signal are obtained. Figure 10 illustrates the standard and compressive sensing data

acquisition models. In compressive sensing (CS), we measure linear projections of ζi

Figure 10: Standard time samples vs. compressive samples of the a signal.

onto a second set of basis vectors φim, m = 1, 2, ...M which can be written in matrix

form for the ith aperture point as

βi = Φiζi = ΦiΨib. (25)

where Φi is an M ×Nt measurement matrix and M ≪ Nt.

We will study several types of measurement matrices. Entries of the Type I ran-

dom matrix are drawn from N (0, 1). Type II random matrices have random ±1

entries with probability of 1
2
, and a Type III random matrix is constructed by ran-

domly selecting some rows of an identity matrix of sizeN which amounts to measuring
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random space-time domain points. Selecting different types of measurement matri-

ces impacts the imaging performance, but it will also result in different hardware

implementations. For example, the system described in Fig. 11 could be used to

implement the Type I and II measurement matrices. Microwave mixers can be used

for the multipliers and low-pass filters can be used for the integrators. The system

requires real-time generation of the signals φim, m = 1, 2, ...M . The switching rate

of the signals will be near the Nyquist rate. A GPR intended to find small shallow

targets like anti-personnel landmines would have a maximum frequency in the 2 to 6

GHz range, while a GPR intended to find larger and deeper targets such as tunnels

would have a much lower maximum frequency in the 10 to 100 MHz range. It is

difficult with current technology to generate the signals for the Type I measurement

matrix at these rates, but it is relatively straight forward to generate the signals for

the Type II measurement matrix; particularly if pseudo-random binary sequences are

used since they can be generated by a state machine at the required rates. In fact, a

more traditional GPR that uses pseudo-random binary sequences has been built [79].

(a) (b)

Figure 11: (a) Data Acquisition for GPR at one single aperture point, (b) One
possible compressive sensing implementation at the GPR receiver.

A sensor based on the Type III measurement matrix would be very easy to imple-

ment since it would only require relatively minor changes to the sequential-sampling
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systems used in most commercial GPRs [26, 63]. If the sampling system were changed

from sequential to random, the system would directly measure the compressive mea-

surements βi. Random sampling is well understood and has some timing advantages

over sequential sampling[39, 63]. Depending on the structure of Φi, other analog

implementations could also be used [6, 90]. The effects of using different types of Φi

is analyzed in Section 2.2.8.

2.2.3 GPR Imaging with Compressive Sensing

For imaging, we use L aperture points and form a “super problem” with the ma-

trices Ψ = [ΨT
1 , . . . ,Ψ

T
L]T , and Φ = diag{Φ1, . . . ,ΦL}, and the selection vector

β = [βT
1 , . . . ,β

T
L]T . The result of the CS theory is that the target space indicator

vector b can be recovered exactly from M = C (µ2(Φ,Ψ) logN)K measurements β

with overwhelming probability [15], by solving an ℓ1 minimization problem

b̂ = argmin ‖b‖1 s.t. β = ΦΨb. (26)

The quantity µ(Φ,Ψ) is the coherence between Φ and Ψ defined as in [15].

The optimization problem in (26) is valid for the noiseless case because it uses

an equality constraint. If the GPR signal is noisy, i.e., ζN
i (t) = ζi + ni(t), then the

compressive measurements βi at the ith aperture position have the following form:

βi = Φiζi = ΦiΨib + ui (27)

where ui = Φini ∼ N (0, σ2) and ni is the concatenation of the noise samples at

aperture point i which is assumed to be N (0, σ2
n). Since Φi is deterministic, we have

σ2 = (
∑Nt

n=1 φ2
imn)σ2

n. Hence, if we constrain the norm of the φim vectors to be one,

then σ2 = σ2
n.

It is shown in [12, 14, 55, 34] that stable recovery of the sparsity pattern vector b

is possible by solving a modified convex optimization problem,

b̂ = arg min ‖b‖1 s.t. ‖AT (β − Ab)‖∞ < ǫ1 (28)
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where A = ΦΨ. Another possible solution comes from constraining the ℓ2-norm of

the error in the measurements to be less than some ǫ.

min ‖b‖1 s.t. ‖β − Ab‖2 < ǫ2 (29)

Although the target space images can be created using (28) or (29), the ℓ1 minimiza-

tion in (28) is a linear program and easier to implement while (29) is a second-order

cone program (SOCP) [9]. The optimization problems in (26), (28) and (29) all

minimize convex functionals, so a global optimum is guaranteed.

For the numerical solution of (28) or (29) a convex optimization package called

ℓ1-magic [78] is used. The convex optimization programs use interior point methods

that depend on iterations of Newton’s method. For optimizing (28) or (29), the cost1

is O(N3) with the observation that the number of iterations typically stays quite low,

almost independent of the size of the problem [71, 9]. A theoretical worst case bound

on the number of iterations is given as O(
√
N) [71]. The computational complexity

is higher than that of backprojection which has a complexity of O(NL) where L is

the total aperture number. However, the benefit is generality, sparser images as well

as a low number of measurements in both time and spatial domains.

2.2.4 Selection of Algorithm Parameters

An important part of the proposed subsurface imaging system is the selection of two

algorithm parameters: the spatial grid density, N , and the regularization parameter,

ǫ in (28) or (29), which controls the tradeoff between the sparsity of the solution and

how well the solution fits the data.

Since discrete spatial positions are used to create the sparsity dictionary, the

estimates of the target locations are confined to the selected grid. Increasing N makes

the grid uniformly very fine, but it also increases the complexity of the algorithm. Our

method is suitable for multiresolution grid refinement. Initially a coarse grid might

1We assume ML ≤ N

29



be used to obtain an approximate knowledge of possible target locations. Later the

grid can be made finer around regions of interest where better precision is required.

Making the initial grid too coarse might introduce substantial bias in the estimates.

Our results indicate that using a 0.5 − 1 cm depth resolution usually suffices.

Selecting a proper regularization parameter ǫ is also very important. If ǫ is not

set properly, then (28) either will not fully reconstruct the sparsity pattern vector

and will lose some targets (underfitting), or it tries to explain a significant portion

of the noise by introducing spurious peaks. When the noise statistics of the data

are known, a “good” choice of ǫ can be made, e.g., for additive white Gaussian noise

(WGN) with variance σ2 selecting ǫ =
√

2 logNσ makes the true b feasible with high

probability [14].

In most cases the noise statistics are unknown and need to be estimated. We

use an automatic method for selecting the regularization parameter ǫ based on cross-

validation (CV) [8] that doesn’t require any knowledge or estimate of the noise statis-

tics. The method depends on separating the measurements into estimation and CV

sets. The compressive imaging method is applied to the estimation data set with an

initial selection of ǫ and then the method’s result is tested on the CV data set. As the

algorithm iterates the prediction performance in the CV set increases with decreasing

ǫ. When the method starts to overfit the estimation data set which means estimating

part of the noise, performance in the CV set decreases. Further decrease in ǫ is not

beneficial and the algorithm should be terminated.

The CV based algorithm consists of the following steps:

(i) Initialization: Set ǫ = α‖AT
EβE‖∞, b̂ = 0 and i = 1. An initial ǫ that allows

the method not to overfit the data can be selected by setting α = 0.99. Note that for

α > 1, automatically b̂ = 0 is the minimum ℓ1 norm solution.

(ii) Estimation: Apply (28) to get an estimate of target locations b̂
(i)

using AE.

(iii) Cross-Validation: if ‖AT
CV (βCV −ACV b̂

(i)
)‖∞ < ǫ then set ǫ = ‖AT

CV (βCV −

30



ACV b̂
(i)

)‖∞, else terminate the algorithm.

(iv) Iteration: Increase i by 1 and iterate from Step (ii).

2.2.5 Discussion

The theory of compressive subsurface imaging outlined in Section 2.2 is based on

two important assumptions; namely, that the speed of propagation in the medium is

known and that potential targets are positioned at discrete spatial points. However,

in most subsurface imaging problems these assumptions are not always valid. The

propagation velocity may only be known approximately, and targets will generally not

fall on the grid. These problems also affect current subsurface imaging algorithms.

The presented algorithm can handle these kinds of non-ideal situations.

When the true velocity of the medium is not known, it is not possible to locate the

target at its true location. The CS method can generate focused target space images

when the propagation velocity is unknown. To test the CS method’s performance a

simulated GPR data set from a single point target at (x, z) = (0,−8) cm is generated

using a true propagation velocity of v = 2×1010 cm/s. The test data is used to image

the target space with assumed velocities varying from 1×1010 cm/s to 3×1010 cm/s.

For each assumed velocity 100 independent images are computed with different noise

realizations (SNR = 10 dB) and with different random measurement matrices at each

time.

It can be observed in Fig. 12 that although the estimated depth of the target is

changing as the velocity changes, the CS method could still generate focused images.

The average distance of the estimated target point from the true target position is

shown in Fig. 13 as a function of the assumed velocity. When the assumed velocity

is the same as the true velocity for the medium the target is imaged as a single

point at its correct position as shown in Fig. 12(c). The distance of the estimated

target position from the correct target position increases as the assumed velocity is
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Figure 12: Average of the 100 independent imaging assuming the propagation ve-
locity is (a) 1 × 1010 cm/s, (b) 1.5 × 1010 cm/s, (c) 2 × 1010 cm/s, (d) 2.5 × 1010

cm/s.
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Figure 13: Distance of the estimated target point from the true target location as
a function of the assumed velocity.

further from the true velocity of the medium. It is important to note that the CS

method locates the x axis of the target correctly while the unknown velocity affects

the depth estimate only. The reason for the depth shift is that the optimization in
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(28) matches the measured data “best” with the given constraint using a dictionary

element corresponding to a target at another depth. Figure 14(a) shows the model

GPR data from a target at (x, z) = (0,−8) using v = 2× 1010 cm/s, while Fig. 14(b)

shows the model GPR data from a target at (x, z) = (0,−4) using v = 1×1010 cm/s.

The similarity of these dictionary elements in two different dictionaries explains the

results in Fig.12
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Figure 14: Model GPR data (a) for a target at (x, z) = (0,−8) using v = 2 × 1010

cm/s and (b) for a target at (x, z) = (0,−4) using v = 1 × 1010 cm/s.

To determine the amount of depth shift consider a single homogeneous medium

where targets and antenna are both in the same medium. The total time delay for

two points targets p1 and p2 shown in Fig. 15 are τ1 =
2
√

(xA−x1)2+(zA−z1)2

v1
and τ2 =

2
√

(xA−x2)2+(zA−z2)2

v2
, respectively. It can be noted that if x1 = x2 then it is possible to

Figure 15: Two point targets in a homogeneous medium.

get τ1 = τ2 for all antenna positions (throughout the full scan) if |zA−z2| = v2

v1
|zA−z1|.
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This means that if the target space was homogeneous, applying our method with an

unknown velocity v2 that is different from the true velocity v1 will result a target space

image with only p2 instead of the correct target position p1, since the measured data

can be exactly matched using the element of the data dictionary corresponding to p2.

Since the results in Fig. 12 are from a 2-layer medium (air and soil), we don’t observe

this exact representation ; but similarly we observe focused images with sparsely

selected target points.

The effect of the unknown velocity mismatch on the created images is also ana-

lyzed. Three different double differentiated Gaussian pulses with center frequencies of

1.5 GHz, 4.5 GHz, and 7.5 GHz are tested. Note that the pulse with center frequency

1.5 GHz is the widest pulse. Then normalized variability of the generated images as

a function of the assumed velocity is shown in Fig. 16. It is observed interestingly
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Figure 16: Normalized variability of the created images as a function of assumed
velocity for three different transmitted pulses. The true velocity is taken as v =
2 × 1010 cm/s.

that variability doesn’t increase monotonically as the velocity mismatch increases,

but it has ups and downs. We believe this is because some dictionary elements at

certain velocities have very close representations to the data for the true velocity. It

is also observed that using shorter pulses (i.e., higher center frequency)increases the

variability of the images.
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The “target off the grid” problem can be addressed with the constraints in (28)

and (29) since they allow nonidealities. The terms in the Dantzig Selector constraint

(28), AT β and AT A are actually auto-correlations of the transmitted signal s(t). For

AT β we get a column vector whose n-th element is R(τi(πn), τ(πT )), where R is the

autocorrelation of the signal s(t) at two time delays corresponding to targets at πn

and πT . Here πn is the nth discrete position and πT is the true target position. For

the matrix AT A, the element in the n-th row and r-th column is R(τi(πn), τ(πr)).

The autocorrelation of s(t) affects the resolvability of two targets and the handling

of nonidealities. If s(t) doesn’t decorrelate quickly two close targets might not be

resolved while nonidealities would be handled easily since the correlation AT β will

still be high even in the presence of velocity perturbations, or when the target is off

the grid. In the other extreme case where the autocorrelation of s(t) only peaks at

zero lag, i.e. s(t) is an impulse, resolvability of targets will increase while the ability

to handle nonidealities will decrease. The tradeoff between the resolution and ability

to handle nonideal conditions is actually an open waveform design problem.

The bottom line of this analysis is that the Dantzig Selector constraint, with a

well-chosen ǫ and s(t), will allow the matching of targets at their closest grid positions.

Then the ℓ1 minimization of the selector vector b will tend to pick the signals whose

autocorrelation is large. Equation (28) does this selection to minimize the ℓ1 norm of

b, giving a sparse solution satisfying the constraint.

2.2.6 A Simulated Imaging Example

A test example will illustrate the ideas presented in the previous section. A 2D

slice of the target space of size 30 cm × 30 cm dimensions containing three randomly

placed point targets is used. The true target space distribution is shown in Fig. 17(a).

Targets are simulated as point targets and the space-time response is generated in

MATLAB [52]. For this example a bistatic antenna pair with antenna height of 10 cm,
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Figure 17: (a) Target space, (b) Space-time domain GPR response, (c) Compressive
measurements at each aperture point, (d) The least-squares solution, (e) Solution
obtained with the proposed method using (28), (f) Solution obtained with standard
time-domain backprojection algorithm.

transmitter-receiver distance of 5 cm, and dry soil with permittivity ε = 4 is used.

The noisy space-time domain response of the target space is shown in Fig. 17(b).

The signal-to-noise ratio (SNR) for this example is −5 dB. Instead of measuring the
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space-time domain response at each aperture position, twenty inner product mea-

surements are formed at each aperture point making 600 measurements in total for

30 aperture points. This is much less than the 512× 30 raw space-time domain mea-

surements (Fig. 17(c)). The inner products can be written as the product of the

time-domain response with rows of a random matrix Φi of size 20 × 512 whose en-

tries are drawn independently from N (0, 1/
√

512). These 600 measurements are the

only information used to sense the target space area. The number of targets is not

assumed to be known.

The sparsity pattern vector for the 30 × 30 target space has length 900 and we

have 600 measurements which results in an underdetermined system of equations,

β = Ab. One possible feasible result is the least squares solution, b̂ = AT (AAT )−1β.

The target space image for this is shown in Fig. 17(d). Although the solution is

feasible in the sense that it satisfies the compressive measurements, it gives no sensible

information about possible target positions.

For target space imaging, the Dantzig selector (28) is used with cross validation

to select a proper ǫ and a stopping condition. While 500 measurements are used for

imaging in (28) 100 measurements are used for CV. Figure 17(e) is obtained as the

target space image. The result from Fig. 17(d) is used as a feasible starting solution

for convex optimization.

It can be seen that the actual target positions are found correctly, and the ob-

tained image is much sparser compared to the standard backprojection (SBP) result

in Fig. 17(f), even though the backprojection result is obtained using all of the space-

time data. Both of the images in Fig. 17(e,f) are normalized to their own maxima

and are shown on the same 40-dB scale. The convex optimization result has less

clutter in the image since the problem forces a sparse solution through the ℓ1 norm

minimization.

As a further test, the target space image was formed 100 times by selecting an

37



independent random measurement matrix at each time and applying the proposed

algorithm. It is observed that the algorithm introduces no bias to the target position

estimates and any random measurement matrix works equally well satisfying the

minimal measurement number.

2.2.7 Performance in Noise

To analyze performance versus noise level, the algorithm is applied to GPR data with

SNRs from −25 dB to 15 dB. At each SNR level, the space-time domain GPR data of

a single target is corrupted by zero-mean WGN with an appropriate variance. The

Dantzig selector (28) is used to construct the target space image. This procedure is

repeated 50 times with random initialization of the noise each time. For each SNR

level the variance of the target locations is calculated and plotted in Fig. 18(a) for

SBP and the proposed method with a varying number of measurements2. SBP re-

quires all the space-time domain data which consists of 220 measurements for each

aperture. It has lower variance values for low SNRs since it uses many more mea-

surements, but for moderate and high SNRs the proposed method results in much

lower variances. The variance of SBP is nearly flat for moderate to high SNRs where

it reaches its resolution limit. Our method provides much lower variances indicating

a super-resolution property, which has also been observed in similar sparse signal

reconstruction applications [33, 73].

The normalized variance on the constructed images for the tested methods is

plotted on Fig. 18(b). Smaller image variance is an indication of a correctly re-

constructed and sparse image. The proposed method has lower variance than SBP

for SNRs greater than −20 dB and with increasing measurements variance decreases

faster. The fact that the proposed method favors sparse solutions explains the smaller

image variance.

2To obtain the plot in Fig. 18(a) we used a grid size of 0.01 cm to get estimates not limited to a
coarse grid.
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Figure 18: (a) Variance on target positions vs. SNR. (b) Variance on the created im-
ages vs. SNR. Comparison with variance of SBP and the proposed method. M is the
number of measurements at each aperture for the proposed algorithm. SBP measures
the full space-time domain data which has 220 measurements for each aperture.

2.2.8 Effect of the Measurement Matrix Φ

The results shown in Fig. 17 use a measurement matrix whose entries are drawn from

a normal distribution. Here the effects of using six different types of measurement

matrices are analyzed. Type I-III are as defined in Section 2.2.2.

Types IV, V and VI are random matrices that lie between Types II and III. At

each aperture a random subset of the data is selected and projected onto vectors

having random ±1 entries with probability of 1
2
. Type IV uses 50% of the data, type

V 10%, and Type VI 2%. Each matrix is normalized to have unit norm columns.

An average mutual coherence µ(Φ,Ψ) is found for each type of measurement ma-

trices Φ and the GPR sparsity dictionary Ψ over 100 randomly selected measurement

matrices. The mutual coherence values tabulated in Table 3 show that the required

number of compressive measurements will be similar if Type I or II matrices are used,

although Type II is slightly better than Type I. Using a Type III matrix will require

approximately (9.82/3.15)2 ≈ 9 times more compressive measurements for the same

imaging performance. Although Type III requires many more measurements, it has

a simpler data acquisition implementation (See Section 2.2.2). Types IV–VI show

the tradeoff between the required number of samples and the simplicity of the data
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Table 3: Mutual Coherence for Different Types of Measurement Matrices

Type I II III IV V V I

µ 3.76 3.15 9.82 3.62 4.56 7.54

acquisition process.

A Monte-Carlo simulation is done to test the performance of the proposed method

as a function of the number of compressive measurements for each random matrix

type. Each random matrix is tested with noisy GPR data having 3 targets at SNR =

10 dB. The Monte-Carlo simulation uses 100 trials and each trial uses a different

random measurement matrix to generate the compressive measurements. Then the

target space image is constructed using (28).

Figure 19 shows the variance from 100 trials versus the number of measurements

for the six different measurement types defined above.
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Figure 19: Variance vs. Measurement number for different types of random matri-
ces. Legend indicates the measurement matrix type.

While Types I, II, IV and V require a similar number of measurements, Type III

and VI random matrices require many more measurements to obtain a similar level

of performance which is expected from the mutual coherence given in Table 3.
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2.2.9 Random Spatial Sampling

The convex optimization problem in (28) solves for the target space using measure-

ments from different aperture positions jointly. As long as the total number of mea-

surements is greater than the minimum required for correct reconstruction, the num-

ber of spatial aperture positions can be reduced. Figure 20 shows the reconstruction

results from randomly sampled spatial positions. In Fig. 17, 20 compressive mea-

surements at 30 spatial positions were used. This example uses 15 randomly selected

aperture points out of a total of 30 and at each aperture point also 20 compressive

measurements are taken. The actual target space is the same as Fig. 17(a). The

space-time domain response is shown in Fig. 20(a). The skipped aperture positions

are shown with black stripes. The compressive measurements at the selected aperture

positions are shown in Fig. 20(b). Convex optimization and standard backprojec-

tion results are shown in Figs. 20(c) and (d). The CS result is a slightly degraded

compared to using the full aperture; however, the backprojection result is severely

degraded compared to the full aperture result.

To test how much further the random spatial sampling can be reduced a Monte-

Carlo simulation was performed. Noisy GPR data for three point targets are gen-

erated for 30 aperture points with SNR = 10 dB. The target space is constructed

using the compressive measurements with a varying number of aperture points from

1 to 30. A subset of aperture points are randomly selected and the target space

is reconstructed with (28) using only the measurements from the selected aperture

points. This procedure is repeated 100 times with random aperture selections at each

time. Two cases are tested. In Case 1 M = 10 measurements are taken at each used

aperture which makes 300 total measurements when the full aperture is used. In Case

2 the number of total measurements is kept at 300, i.e., when 15 aperture points are

used M = 20 in Case 2 while Case 1 still takes M = 10 measurements. Table 4

shows the variance for a varying number of aperture points comparing two cases of
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Figure 20: (a) Space-time domain response of the target space to the GPR data
acquisition process at randomly sampled spatial aperture positions, (b) Compressive
measurements at the sampled aperture positions, (c) Target space image obtained
with the proposed method, (d) Target space image obtained with time domain back-
projection.

Table 4: Image variance with varying number of spatial samples for time domain
GPRs

Reduced Spatial Sampling Test

No of Apertures 30 20 10 5 3 1

Case 1 0.07 0.14 0.40 0.91 1.07 1.26

Case 2 0.07 0.12 0.22 0.48 0.66 1.38

Backprojection 0.13 0.43 0.71 0.91 1.03 1.19

the proposed method with the backprojection.

Table 4 shows that the proposed method is less effected by the reduced number

of spatial samples compared to backprojection. While decreasing the number of

apertures from 30 to 20 increases the variance of the proposed method doubles from
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0.07 to 0.14, the variance of backprojection results increase by more than 3 times from

0.13 to 0.43. Using one third of the spatial points is still enough for the proposed

method to generate correct target space images. Further decrease in the number of

spatial points increases the variance of the results substantially. In Case 2 where the

number of compressive measurements taken at each used spatial point are higher than

Case 1, similar performances can be obtained with lower number of aperture points.

Here the tradeoff is between the number of aperture points used and the complexity

of data acquisition process at each aperture point.

2.2.10 Experimental Results

The proposed algorithm is tested on the experimental GPR data collected from a

model mine field at the Georgia Institute of Technology [24]. The GPR antenna

has a multistatic configuration as shown in Fig .21(a) consists of a linear array of

resistive-vee antennas. The resistive-vee is chosen because it can radiate short pulses

and has a low radar cross section [66, 65]. There are two transmitters (T1, T2) and

four (R1, R2, R3, and R4) receivers in the array; they combine to form eight bi-

static separations ranging from 12 cm to 96 cm in 12 cm increments. A microwave

absorber is strategically placed on the array to reduce coupling between antennas

and reflections between the array and the ground. The array is scanned over a 1.8 m

× 1.8 m region by an automated positioner in 2 cm increments. At each position, a

vector network analyzer measures the 401-point frequency response of each pair over

the frequency range from 60 MHz to 8.06 GHz. Microwave switches make it possible

for one analyzer to obtain data from all eight pairs. A test PC controls this entire

process. A diagram of the multistatic GPR is shown in Fig. 21(b).

Laboratory testing has been conducted in a wedge-shaped tank, filled with damped

compacted sand, which was chosen as a soil substitute because it can be dug up,

refilled and repacked to obtain the same soil conditions with fairly good repeatability.
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(a) (b)

Figure 21: (a) Phtograph of the experimental GPR system, (b) A diagram of the
multistatic GPR system with the switching network.

Various targets like inert anti-tank and anti-personnel mines, or clutter like rocks,

coke cans, sticks etc. can be buried at different depths in 1.8 m × 1.8 m scan region.

Here we give results for two scenarios.

GPR Air Results: This section presents CS imaging of a 1′′ diameter metal

sphere held in the air at a height of 36.5 cm on a styrofoam support. The experimental

setup is shown in Fig. 22(a). Since the GPR antenna and the target are in air, the

wave speed is known to be c = 3 × 108 m/s. The raw data measured by the T1-R1

pair over the target for a 2D slice is shown in Fig. 22(b). Since the CS measurement

system is not yet built in hardware, standard space-time domain samples are obtained

and the compressive measurements are created offline. Ten measurements are taken

at each of the 70 aperture points for a total of 700 CS measurements. Random Type I

measurement matrices are used. Two different case of Φi are tested. Fig. 22(c) shows

the actual compressive measurements when a different random Φi is used at each

aperture i, where Fig. 22(d) uses the same Φi for all i. Using the same measurement

matrix at each aperture will reduce the memory requirements and will be much easier

to implement.

For CS target space reconstruction, the Dantzig Selector (28) is used with ǫ =
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(a) (b)

(c) (d)

Figure 22: (a) Experimental setup for GPR Imaging,(b) Space-time domain mea-
sured GPR Response of a 1′′ metal sphere in air. (c) Compressive measurements of
the space-time domain data shown in (b) when different Φi is used at each aperture
i and (d) when same Φi is used at each aperture i.

0.5‖AT β‖∞ = 1.34 × 10−4 for the measurement sets shown in Fig. 22. The result

of the Dantzig Selector for Figs. 22 (c) and (d) are shown in Figs. 23(a) and (b),

respectively. The target is 1′′ sphere and its bottom is positioned at a height of

36.5 cm. While both measurement sets can construct a sparse representation of the

target space successfully, it is seen that using different Φi at each aperture has the

potential of extracting more information about the target space for the same ǫ level.

The results of the proposed algorithm are compared with the standard backprojection

algorithm which uses the whole space-time domain data (Fig. 22(b)). Figure 23 shows

that proposed method does a much better job at creating a less cluttered and sparser

target space image than the backprojection result shown in Fig. 23(c). Note that
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while backprojection uses a total of 15,400 standard time domain samples, CS uses

only 700 compressive measurements. All images are shown on a 30-dB scale and are

normalized to their own maxima.

(a) (b) (c)

Figure 23: (a) Target space image found with CS imaging method using the mea-
surement set in Fig. 22(c), (b) Target space image found using the measurement set
in Fig. 22(d), and (c) Target space image found with standard time domain backpro-
jection.

Buried Target Results: This part presents CS imaging of buried multiple tar-

gets such as antipersonnel and antitank mines, metal spheres, nylon cylinders and

mine simulants. A picture of the buried targets is shown in Fig. 24(a) [49]. Figure

24(b) shows the burial locations, types and depths of the targets. The phase centers

of the antennas are elevated 27.8 cm. The T1-R1 pair data which has a transmitter

receiver distance of 12 cm is used. Figure 25 shows a line scan at x = 0 over four

buried targets. The hyperbolic responses of the targets can be seen on the space-time

domain data. Ground reflections are removed by time-gating. The speed of the wave

in the soil is taken as v = 3 × 108 m/s for both the proposed method and the SBP.

When SBP is applied to the space-time domain data target space, the image shown in

Fig. 25(b) is obtained. The image is normalized to its maximum and shown in a 30-dB

scale. Although the 4 targets are clearly seen, the image is highly cluttered. Applying

the proposed method using (28) with 15 compressive measurements at each aperture

point results the target space image in Fig. 25(c). Type I measurement matrices

46



(a) (b)

Figure 24: (a) Picture of the buried targets, (b) Burial map of targets in sand. The
numbers in parentheses are the buried depths of the targets.

were used to create the compressive measurements. Figure 25(c) is also normalized

to its own maximum and shown in the same scale as the backprojection image. The

proposed method can generate a much sparser and less cluttered target space image

while finding the targets correctly. This shows that the proposed method has good

performance even in the cases where the algorithm assumptions are not exactly valid,

e.g., when the wave velocity is known approximately or the targets are not exactly

point targets at discrete grid positions.

(a) (b) (c)

Figure 25: (a) Space-time domain GPR data for the x = 0 cm line scan of the
burial scenario shown in Fig. 24. Image of the target space slice obtained by (b)
backprojection and (c) compressive sensing.

Each line scan of the experimental data is imaged with both the proposed method

and backprojection. The resultant images are put together to create a 3D image of the
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subsurface. Figure 26 shows the topview of the scan area when the energy along the

depth axis is summed to the surface created (a) with the backprojection and (b) with

the compressive sensing. The proposed method uses 15 compressive measurements

at each aperture point. Both results are shown on a 30-dB scale image. Actual

target locations with corresponding sizes are also drawn on the images. It can be

seen that both methods have similar imaging performance but the proposed method

creates a much sparser image than the backprojection method. Although most of

the targets are imaged correctly, the deep metal sphere and M-14 mine are missed in

both methods.
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Figure 26: The surface energy image created by (a) Backprojection,(b) Compressive
sensing. (c) 3D isosurface (-30dB) image of the selected region in (b) by dashed lines.

To show the spread of the targets in depth a 3D isosuface image is shown in

Fig. 26(c). The isosurface image shows the selected region from Fig. 26(b) which

includes two shallow TS-50 mines, one shallow mine simulant and one deep VS-1.6

mine. All targets are clearly seen at their corresponding depths.

2.3 Random Sampling for Stepped Frequency GPRs

Another type of GPR that is becoming increasingly popular is the stepped frequency

continuous waveform (SFCW) GPR.[59, 75]. A stepped frequency signal probes the

world at a discrete set of frequencies. A stepped frequency GPR has several ad-

vantages over an impulse GPR. The main advantage is the greater measurement
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accuracy inherent in a frequency domain system. For example, since it is much easier

to synthesize a pure tone at a given frequency than it is to measure a time delay,

the accuracy with which the frequencies are set in the SFCW GPR is much greater

than the measurement times used in an impulse GPR. This results in the SFCW

GPR having much greater phase stability than an impulse GPR. The SFCW GPR

also has a greater dynamic range and lower noise due to the higher mean power and

narrow IF bandwidth of the SFCW system. The filtering used can greatly reduce

the interference from nearby transmitters such as RF communication links. A SFCW

GPR can also be programmed to skip over a defined frequency band so that it will

not interfere with instruments on sensitive frequency bands. The operating frequency

range can be adjusted to suit the specific ground conditions. For example, for the

low frequency range can be used for relatively deep targets while higher frequencies

are used for shallow objects [75].

Although SFCW GPRs have very good properties, they are not used as widely

in commercial systems [57, 85, 10]. One important reason for this is its high data

acquisition time. The time allowed at each aperture point and for each frequency

before the GPR steps up the next frequency depends on several issues. These include

the switching time for the sources, time to allow the transmitted signal to reach the

receiver from a chosen maximum range, and time for the receiver to build up sufficient

signal to noise ratio. For example in [85] it is reported that the built SFCW GPR can

take measurements as a rate of 25/sec. The system uses the frequency band 1-3 GHz

and takes 400 measurements at each aperture point. With this measurement rate,

the system can be scanned at a speed of 1.8 kph with a 2 cm spatial increment which

is too slow for some applications. For such applications, it is important to increase

the speed of the system without degrading its performance.

The total subsurface frequency response formed from a combination of responses
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from all reflectors within the medium can be inverted using various imaging algo-

rithms. One type transforms the measured frequency data to time domain signals by

applying the IFFT to each A-Scan measurement and then applying the time domain

backprojection (SBP) method [37, 76] (See Ch.1.1.1) to create an image of the target

space. Frequency domain imaging algorithms [42, 86, 80] directly uses the SFCW

data to create the target space image. The current imaging algorithms basically per-

form a matched filtering operation with the impulse response of the data acquisition

process to form the images.

This section a novel data acquisition and imaging algorithm for SFCW GPRs

based on random selection of measured frequencies that significantly reduces the data

acquisition time and creates less cluttered target space images compared to standard

imaging methods [42, 86, 80]. In addition to random sampling in the frequency domain

also the spatial aperture can be sampled randomly without degrading the created im-

age significantly. Additional random spatial sampling introduces more savings in data

acquisition times. Another important property of the proposed method is its ability

to resolve closely spaced targets that can not be resolved by the standard migration

methods. The increased resolution is because the proposed method doesn’t perform

a match filtering operation which itself results the resolution limit, rather it tries to

explain the measurements using several elements from a dictionary of measurements.

Next we develop the theoretical basis and show simulated and experimental data

results.

2.3.1 Theory of Compressive Imaging for SFCW GPRs

As the SFCW GPR scans a region, at each scan point it transmits a continuous

sinusoidal signal sequentially changing frequency. The transmitted signal for the l-th

frequency, fl = f0 + l∆f can be written as

ET = A exp−j2π(f0+l∆f)t = A exp−jwlt (30)
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where l = 0, 2, ...L − 1 with L being the total number of frequency steps, ∆f the

frequency step interval and f0 is the initial frequency. A is the strength of the trans-

mitted signal.

In the case of a mono-static GPR antenna in a homogeneous medium with a single

target at distance R, the received signal can be written as

ER =
A

R4
σ expj(2kR−wlt) (31)

when the signal in (30) is transmitted. In (31) σ is the scattering cross section and k

is the propagation constant.

Figure 27: GPR measurement setup showing a bistatic scenario.

However, a two-layer scenario as shown in Fig. 27, where a bistatic GPR sensor

is situated at a known height from the ground/air interface with buried targets is a

more general and realistic one. According to the ray theory view of wave propagation,

the transmitted signal follows the path in Fig. 27. The received signal for a single

target at position p when the GPR is at aperture i can be written as

ER = A′σ expj(k1(d1+d4)+k2∗(d2+d3)−wlt) = A′σ expjwl(t−τi(p)) (32)

where k1 and k2 are the propagation constants in air and soil, respectively. The

same received signal is also written in (32) in terms of the total time delay τi(p) =

(d1 + d4)/v1 + (d2 + d3)/v2, where v1 and v2 are the propagation velocities in air and

soil.
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To incorporate any prior information about the target space into the estimation

of unknown spatial image, we would like to relate the measurements linearly to the

spatial domain as

d(ux, uy, f) = Ψg(x, y, z) (33)

where g(x, y, z) is the target space, d(ux, uy, f) is the space-frequency measurements

and Ψ is the operator defining the transform between the two spaces. In practice we

have a discrete version of (33) in which a sampled g is related to the observed discrete

(noisy) frequency data through a linear discrete operator (i.e. a matrix Ψ ).

2.3.1.1 Creating a dictionary for frequency domain GPR data

To create the forward model Ψ, the target space πT which lies in the product space

[xi, xf ] × [yi, yf ] × [zi, zf ] must be discretized. Here (xi, yi, zi) and (xf , yf , zf ) denote

the initial and final positions of the target space to be imaged along each axis. Dis-

cretization generates a finite set of target points B = {π1,π2, . . . ,πN}, where N

determines the resolution and each πj is a 3D vector [xj; yj; zj]. For any discrete

target position the model frequency data for each frequency step and each aperture

point can be calculated using (32) with σ = 1. For example, when the GPR is at the

ith aperture point, the jth column of Ψi which corresponds to a target at πj can be

written as

[Ψi]j = A′ exp−jw(t−τi(πj)) (34)

Repeating (34) for each discrete possible target position creates the dictionary Ψi of

size L×N when the GPR is at the ith aperture point.

The received signal at the ith aperture point for multiple targets can be written

as

ζi =
P

∑

k=1

A′(πk)σk exp−jw(t−τi(πk)) (35)

assuming that the targets do not interact so superposition is valid. The received

52



signal from multiple targets can be written in terms of the dictionary as

ζi(f) = Ψib (36)

where b is a weighted indicator vector, i.e. if there is a target at πj, the jth index of

b should be nonzero. Our goal is to find b which is actually an image of the medium.

2.3.1.2 Random Frequency Sampling

Standard SFCW GPRS measures all L frequencies at each aperture point, hence

the dimension of ζi is L × 1. We present a new data acquisition model based on

compressive sampling (CS)[31, 15, 4] which would require many fewer samples to

construct the target space image b, if the target space is sparse. We measure a

random subset of M frequencies, where M < L at each aperture point. In matrix

form the new measurements βi can be written as

βi = Φiζi = ΦiΨib. (37)

where Φi is an M × L measurement matrix constructed by randomly selecting some

rows of an l×L identity matrix, which amounts to measuring random frequency points

at aperture i. This has a direct implication of reducing the data acquisition time by

a factor of L/M for SFCW GPRs. Note that Φi which defines the measurements

might be different for each aperture point. The effects of selecting same or changing

Φi for each aperture will be discussed in Section 2.3.4

2.3.1.3 Compressive GPR Imaging

For imaging we use K aperture points and form a “super problem” with the combined

matrices Ψ = [ΨT
1 , . . . ,Ψ

T
K ]T , and Φ = diag{Φ1, . . . ,ΦK}, and the measurements

β = [βT
1 , . . . ,β

T
K ]T . The result of the CS theory is that the target space indicator

vector b can be recovered exactly from M = C (µ2(Φ,Ψ) logN)K measurements β

with overwhelming probability [15], by solving the ℓ1 minimization problem

b̂ = argmin ‖b‖1 s.t. β = ΦΨb (38)
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where µ(Φ,Ψ) is the coherence between Φ and Ψ defined as in [15].

The optimization problem in (38) is valid for the noiseless case because it uses

an equality constraint. If the GPR signal is noisy, i.e., ζN
i (t) = ζi + ni(t), then the

compressive measurements βi at the ith aperture position have the following form:

βi = Φiζi = ΦiΨib + ui (39)

where ui = Φini ∼ CN (0, σ2) and ni is the concatenation of the noise samples at

aperture point i which is assumed to be CN (0, σ2
n), i.e.,a complex normal distribution.

Since Φi is deterministic, we have σ2 = (
∑Nt

n=1 φ2
imn)σ2

n. Hence, if we constrain the

norm of the φim vectors to be one, then σ2 = σ2
n.

It is shown in [12, 14, 55, 34] that a stable recovery of the sparsity pattern vector

b is possible by solving a modified convex optimization problem,

b̂ = arg min ‖b‖1 s.t. ‖AT (β − Ab)‖∞ < ǫ (40)

where A = ΦΨ. Solution by constraining the ℓ2 norm of the reconstruction error as

in (??) is also possible. The ǫ parameter can be selected by cross-validation similar

to impulse GPR case (See Section 2.2.4).

2.3.2 Simulated Example for SFCW GPR Imaging

First, we give a test example to illustrate the random frequency sampling idea. Let’s

assume a 2D homogeneous target space of size 30 cm × 30 cm containing three ran-

domly placed point targets. A bistatic antenna with a 5 cm transmitter-receiver

distance at a height of 10 cm collects frequency domain measurements at frequen-

cies 100 MHz to 10 GHz with 100 MHz frequency steps. Thus at each aperture point

the GPR collects 100 frequency measurements. The true target space image and

the noisy space-frequency domain measurements are shown in Figs. 28 (a,b). The

signal-to-noise ratio (SNR) for this example is 0 dB.

Instead of measuring all 100 frequencies we only use a random subset of 20 fre-

quencies at each aperture. The randomly measured frequencies are indicated by black
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Figure 28: (a) Target space, (b) Noisy space-frequency domain target space response
at SNR = 10 dB for 30 aperture points, (c) Black points indicate the randomly
measured frequencies when 20% of the total frequencies are used, (d) Frequency
domain backprojection image using all the space-frequency domain data from (b), (e)
Frequency domain backprojection method using only the randomly selected 20%, (f)
Solution obtained with the proposed method using (40).

points in Fig. 28(c). If we had measured all the space-frequency domain data and ap-

plied frequency domain backprojection we would obtain the image show in Fig. 28(d).
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The three targets can be seen clearly with small ‘blobs’ around the correct target po-

sition. If we apply frequency domain backprojection to the randomly selected data,

the created target space image is severely degraded as shown in Fig. 28(e). For the

proposed method solving (40) using the randomly selected data generates the target

space image shown in Fig. 28(f). For the numerical solution of (40) a convex opti-

mization package called CVX [44] was used. The proposed method finds the correct

target positions with less clutter since the convex optimization program forces sparse

solutions. All the target space images in Fig. 28(d,e,f) are normalized to their own

maxima and are shown on the same 30 dB scale. As seen from the results while using

a small number of frequencies, the proposed method could generate a less cluttered

image that is better than the backprojection method using all the frequency data.

As part of the testing, the target space image was formed 100 times by selecting

an independent random measurement matrix at each time and applying the proposed

algorithm. It is observed that the algorithm introduces no bias to the target position

estimates. Likewise any random subset of frequencies works equally well as long as

it contains more than the minimal number of measurements. The performance of

the algorithm in varying noise levels and the effect of using a different number of

frequencies are discussed next.

2.3.3 Performance in Noise

The noise level effects the estimated target positions and the created subsurface im-

ages. To analyze this effect two simulations are done. First, the frequency domain

GPR data for a single point target is generated. SNRs from −25 dB to 15 dB are

tested and at each SNR level, 50 different trials with using additive independent zero

mean complex white gaussian noise (CWGN) with corresponding variance at each

trial. The target space is constructed by CS algorithm using (40) and the BP with

with varying number of frequency measurements at each aperture. For each SNR level
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the variance of the estimated target locations is calculated and plotted in Fig. 29(a)

for BP and the CS method3. It can be observed that the CS method using the

same number of frequency measurements has smaller variances than the BP method.

BP’s variance for moderate to high SNRs doesn’t change too much due to the res-

olution limit it can achieve. Our method provides much lower variances indicating

increased resolution, which is also observed in similar sparse signal reconstruction

applications [33, 73] and discussed for our method in Section 2.3.5.
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Figure 29: (a) Target position variance vs. SNR. (b) Variance of the created images
vs. SNR. Comparison between variances of BP and the CS method. M is the number
of frequencies used.

Secondly, we looked into the effect of noise on the created images. For this,

frequency GPR data is generated for three random point targets and corrupted with

additive CWGN. After 50 trials, Fig. 29(b) shows the normalized variance of the

constructed images changing with SNR level. Smaller image variance is an indication

of both a correctly reconstructed and sparse image. The CS method has much lower

image variance than BP using the same number of measurements. This is because our

method favors sparse solutions. This also indicates that our method is more robust

compared to BP when the frequency measurements are selected at random.

3To obtain the plot in Fig. 29(a) we used a grid size of 0.01 cm to get estimates not limited to a
coarse grid.
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2.3.4 Random Spatial Sampling

A joint convex optimization problem using frequency measurements from different

aperture points is solved in (40) to create the target space image. The measured

aperture points might be at random, and the selected spatial positions can be reduced

to a minimal number required for correct target space reconstruction. In Fig. 28, 20

frequency measurements at 30 aperture points were used. In this example the same

data set is used, but now 20 random frequencies are measured at only 10 of the 30

randomly selected aperture points. The measured space-frequency points are shown

in Fig. 30(a). It can be observed that while reducing spatial samples highly degrades

the backprojection image, the proposed method could still generate a comparable

image to the full aperture case.
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Figure 30: (a) Space-time domain response of the target space to the GPR data
acquisition process at randomly sampled spatial aperture positions, (b) Compressive
measurements at the sampled aperture positions, (c) Target space image obtained
with the proposed method, (d) Target space image obtained with time domain back-
projection.

To better compare the effect of reduced random spatial sampling on the proposed

method and the frequency domain backprojection a Monte Carlo simulation is per-

formed. Noisy GPR data of three point targets are generated for 30 aperture points

with SNR = 10 dB. The target space is constructed using a subset of the random

frequency measurements while varying the number of aperture points from 6 to 30.

A subset of aperture points is randomly selected and the target space is reconstructed
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Table 5: Image variance with varying number of spatial samples for stepped-
frequency GPRs

Reduced Spatial Sampling Test

No of Apertures 30 20 10 6

Case 1
CS 0.020 0.048 0.083 0.167

BP 0.745 0.868 0.976 1.072

Case 2
CS 0.020 0.040 0.083 0.135

BP 0.745 0.778 0.801 0.824

with (40) using only the measurements from the selected aperture points. This proce-

dure is repeated 100 times with random aperture selections at each time. Two cases

are tested. In Case 1, M = 20 out of 100 frequencies are measured at the selected

aperture points, which makes 600 total measurements when all 30 aperture points

are used. In Case 2 the number of total measurements is kept at 600, i.e., when 15

aperture points are used M = 40 in Case 2, while Case 1 still takes M = 20 measure-

ments. Table 5 shows the normalized variance versus the number of aperture points,

for two cases of the proposed method and backprojection.

It can be observed from Table 5 that decreasing number of aperture increases

the variance of the target space image for both algorithms, even in the case where

total number of frequency measurements are fixed (Case 2). But the new CS method

(CS) has much lower variance than the backprojection (BP) method using the same

measurements. This means that the CS method is more robust to the random se-

lection of frequencies or aperture points. In comparing Case 1 & 2, increasing the

number of measurements at each aperture point doesn’t decrease the variance for CS

significantly, but additional measurements reduces the variance for BP. This shows

that additional measurements beyond a minimum required number is not significant

for the CS method and can be skipped.
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2.3.5 Increased Resolution Property

One of the important properties of the CS method is its ability to resolve closely

spaced targets that cannot be resolved by the standard migration methods. The

range resolution for an SFCW GPR can be given by ∆R = c/(2L∆f) where ∆f

is the frequency step, L is the number of frequency steps and c is the speed of the

wave in the medium. To analyze the increased resolution property, a simulation is

done. First, two point targets in air are assumed at positions (0,45) cm and (0,55) cm

with a separation of 10 cm in height. The GPR antenna scans the region (−30,30) cm

along the x axis in 2 cm steps and at each aperture point collects data from 3 GHz to

5 GHz in ∆f = 20 MHz increments at N = 100 frequency steps. For this simulated

case, the range resolution is 7.5 cm. Figures 31(a) and (b) show the target space
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Figure 31: Increased resolution property results: (a) Backprojection (b) compressive
sensing images when source separation is 10 cm. (c) Backprojection (d) compressive
sensing images when source separation is 5 cm.
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constructed using the BP and the CS method respectively. Although the CS method

creates a much sparser target space, both methods could resolve the two targets. If

the two targets are put closer at (0,45) cm and (0,50) cm with a separation of 5 cm

which is smaller than the resolution limit at the used bandwidth, Figs. 31(c) and

(d) are obtained as the target space images from BP and CS, respectively. While

the BP cannot resolve the two targets because they merge into a single peak, both

targets can be seen clearly resolved at their correct positions with the CS method.

This is because the CS doesn’t perform a matched filtering operation which itself

results the resolution limit, rather CS tries to explain the measurements using several

elements from a dictionary of measurements. The sparsity information about the

image yields this increased resolution similar to observations done in other sparse

signal reconstruction applications [33, 73].

2.3.6 Effect of Bandwidth

The bandwidth of the measured frequency spectrum is an important parameter in the

SFCW GPRs. It is observed that the proposed method can generate sparse target

space images even using small bandwidths where standard imaging methods fail to

generate a focused image. To see the effect of bandwidth the following test is done.

A sample target space containing two point targets at (10,37) and (−10,37) is imaged

using bandwidths of 1, 3 and 7 GHz. One hundred trials are made and at each trial

a random half of the frequency points for each bandwidth case is randomly measured

with random WGN noise added to the measurements at an SNR of 10 dB. The mean

of the generated target space images using backprojection and the proposed method

are shown in Fig. 32. While increasing the bandwidth results in more focused images

for BP, the CS method is more robust to change in bandwidth and could find the

sparsest image even for low bandwidth case of 1 GHz.
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Figure 32: Comparison of effect of the used bandwidth on the target space image
created by both backprojection and the proposed method. (a), (b) and (c) are target
space images created by BP at bandwidths of 1[3.5-4.5], 3[2.5-5.5] and 7[0.5-7.5] GHz
respectively. (d),(e) and (f) are target space images created by PM at bandwidths of
1, 3 and 7 GHz respectively.

2.3.7 Experimental Results

The proposed algorithm is tested on the experimental SFCW GPR data collected

from a model mine field at the Georgia Institute of Technology [24, 47]. The GPR

antenna [64] consists of 8 bistatic pairs having varying transmitter-receiver distances,

but for the results shown in this section only the data from the closest bistatic pair

is used. The GPR sweeps 401 equally-space frequency points from 60 MHz to 8.06

GHz. For comparison reasons the full space-frequency domain data is measured

and the random frequency selection results are created by only using the selected

measurements. We only used the data from 500 MHz to 8.06 GHz which corresponds

to 379 frequency points since the low frequency information suffered from interference.

The data is publicly available online at http://users.ece.gatech.edu/wrscott/

in Matlab format files. Two scenarios are tested.

GPR Air Results: This section presents imaging of a 1′′ diameter metal sphere
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held in the air at a height of 36.5 cm on a styrofoam support. The experimental setup

is shown in Fig. 33(a). Since the GPR antenna and the target are in air, the wave

speed is known to be c = 3× 108 m/s. The GPR scans the region in 2 cm increments

at a constant height of 90.8 cm above the ground level. The metal sphere is positioned

at x = 0 cm. The magnitude of the raw frequency domain data measured over the

target for a 2D slice is shown in Fig. 33(b). Note that this data contain the reflection

from the sphere as well as the surface of the sand.

If we had measured the all the space-frequency data and imaged the target space

using BP we would obtain the top figure in Fig. 33(c). Instead of using all the space-

frequency data, only 30 out of 379 frequency points are randomly selected at each

aperture to be used for imaging. This gives more than a factor of 10 savings in data

acquisition time if we only measure these frequencies. Applying backprojection to this

randomly sampled data results the middle image which is severely degraded compared

to the top image. However the CS method using the same randomly selected data set

generates the bottom image shown in Fig.33(c). It can be seen that a sparse image

with much less clutter than BP, consisting of several point targets near to the top

of the metal sphere which explains the measured data well enough with maximum

sparsity is generated.

Another scheme for reducing the number of measurements would be uniform sam-

pling over the bandwidth with a low number of frequency steps. Backprojection and

the CS method are applied to the data which uses only 30 frequencies uniformly sam-

pled over the full bandwidth at each aperture point. The BP image shown in top

of Fig. 33(d) is a more focused image than the one created using randomly selected

data, however still it is more cluttered than the full data BP or the CS-processed

image shown in bottom of Fig. 33(d). While the BP image varies significantly with a

change in the subset of frequencies, the CS method is more robust to the frequency

selection.
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Figure 33: (a) Experimental setup for GPR Imaging,(b) Magnitude of the space-
frequency domain measured GPR Response of a 1′′ metal sphere in air. (c) Top image
uses all space-frequency data and generated by backprojection. Middle and bottom
images are random frequency selection results generated by backprojection and CS
method. (d) Uniform frequency selection results. Circle on the images indicates the
true location and size of the sphere.

Buried Target Results: As an experiment, two anti-personal TS-50 mines and

a nylon cylinder is buried in a sandbox at varying depths. The targets are buried at

different y locations, but share the same x coordinates. The SFCW GPR measures

a line scan over the targets. The phase centers of the antennas are elevated 27.8 cm.

The transmitter-receiver distance for the used pair is 12 cm. The spatial step size

for GPR is 2 cm. Figure 34(a) shows the experimental setup and the actual target

positions with corresponding estimate sizes. At each point 379 frequency points are

measured. The magnitude of the measured raw frequency domain data is shown in

Fig. 34(b).

The frequency domain BP result using all the space-frequency data is shown in

Fig. 34(c). The three objects can be seen in the migrated BP image. The CS method
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Figure 34: (a) Experimental setup for buried target imaging,(b) Magnitude of the
space-frequency domain measured GPR Response of 3 buried targets Target space
image obtained with (c) BP and (d) compressive sensing.

uses 100 random frequency points instead of 379 and yields the target space image

in Fig. 34(d). Note that the refections in Fig. 34(b) are mostly due to the reflection

off the surface with only a minor part due to the mines. Both methods are pulling

these small mine reflections out of the larger surface reflection. In the CS result all

the targets can be seen with less clutter in the image. Both Figs. 34(c) and (d) are

normalized to their own maxima and are shown on a 30 dB scale.

2.4 Conclusions

In this chapter a novel data acquisition and imaging algorithm for both impulse

and stepped frequency GPRs based on compressive sensing was demonstrated. The

new method exploits prior knowledge of the sparseness in the target space. An ℓ1

minimization convex optimization problem is solved with a small number of random

compressive measurements taken at randomly chosen aperture points to reconstruct
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the target space image. Results from simulated and experimental GPR data show

that extremely sparse images can be obtained with the proposed method compared

to standard backprojection imaging algorithms.
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CHAPTER III

HOUGH TRANSFORM BASED FEATURE DETECTION

The Hough Transform (HT) [56], its variants and their generalizations [7, 35, 3, 61]

are the most commonly used methods capable of detecting parameterized shapes in

images. However, there are several challenges associated with applying the HT to

subsurface images. One is that very weak objects like tunnels may be hidden by high

clutter and noise which would not allow a simple thresholding algorithm to detect the

features. This low SNR problem is very common in GPR or seismic subsurface images.

Another challenge is that the subsurface features don’t have known parameterized

shapes, which decreases the effectiveness of the HT algorithm. Although this thesis

doesn’t provide a comprehensive solution for curving features, in this chapter we

concentrate on detection and provide solutions to the above mentioned problems

based on the HT. A detailed explanation of HT is given in Section 1.2.2.

3.1 Iterative Detection of Linear Objects in GPR and Seis-

mic Images

Hough transform applications mostly involve taking the 2D and 3D Hough transforms

of backprojected GPR and seismic images followed by a detection algorithm which

uses simple thresholds. The main drawback of this type of detection technique is that

very weak linear objects like tunnels may be hidden by high clutter and noise. For

example, the presence of tunnels at shallower depths may mask the signature of a

deeper tunnel (with a lower returned power level) or a small clutter object like a coke

can with a high returned power can dominate the parameter space of the HT.

This section provides a HT based iterative method that finds and removes linear

objects one by one at each iteration. In this way, even weaker linear objects are
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revealed and detected. Contrary to the typical iterative algorithms for GPR imag-

ing [29] that invert the detected point in Hough space and enlarge the area around

this line to find an estimate area for the linear object, we use the signature of a rect-

angular object in Hough space to directly remove the corresponding rectangular area

from the image.

The presented iterative linear object detection algorithm can be summarized with

the following steps:

1. Apply HT as given by (5) to the backprojected image

2. Find the maximum point in parameter space

3. Estimate the width and length of the linear object area from the HT signature

and the image space.

4. Remove the estimated linear object

5. If the termination criterion (Section 3.1.2) is not met, then go to 1, else termi-

nate.

3.1.1 Estimating Linear Object Area

To find the area of the linear object we need to estimate both the length and width

of a rectangular area that corresponds to the linear object for that iteration. The

algorithm is developed using a slope and intercept formulization of the HT as in (4).

The length of the object can be estimated by analyzing the pixel values along the

main target line corresponding to the selected maximum point in parameter space.

The intensity values of the pixels along the line can be represented as a 1D function

(Fig. 35(d)) and the object length can be identified by setting a threshold (e.g., 50%

of the peak value) along the line.

The HT of nearly rectangular shapes is a diamond-shaped area in parameter

space [50]. The spread of this area on the n-axis is used to determine the upper and
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Figure 35: (a) Simulated linear object signature in seismic or GPR backprojected
images, (b) Hough Transform of the image,(c) Estimation of y-crossing values for
upper and lower bound lines, (d) Linear object length estimation

lower boundary lines for the area to be removed. Figure 35(c) shows the values of the

HT of the image in Fig. 35(a) at m = mmax for all n values. Setting up a threshold

determines the y-crossings for the upper and lower bound lines of the linear object

area. We denote those values as nl and nu and 1/e of the maximum value is used as

the threshold for the results shown in Section 3.1.3.

The lines that correspond to the slopes and intercepts (mmax,nl) and (mmax,nu),

along with the length and starting point of the linear object will bound the area

to be removed at that iteration. The estimated area is removed by zeroing out the

corresponding data values and then the Hough transform of the new image is taken

to find any remaining linear objects (unless the termination criterion is met).
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3.1.2 Termination Criterion

An important aspect of the iterative detection process is defining the termination

criterion. The algorithm should stop when there are no extended linear objects left

in the image. In such a situation the image consists of only noise, so the HT of the

image consists of many smaller local maxima, rather than a prominent maximum.

Using this property, when there are more than a selected number of comparable local

maxima (we used five), the iteration is terminated.

3.1.3 Simulation Results

Linear objects like tunnels and pipes appear as “blobs” in GPR and seismic images [29,

51, 48]. For simulated images these blobs are generated by selecting random blob

lengths and amplitudes as well as random inter-blob distances. For illustration a

simulated image with two tunnels is generated. The main target lines for the tunnels

are m1 = −1, n1 = 90 and m2 = 2 and n2 = −30. The signal amplitudes for Tunnels

1 and 2 are 2 and 100, respectively; thus Tunnel 2 has a signal level 50 times higher

than that of Tunnel 1. White Gaussian noise (WGN) with mean 0 and variance 1 is

added. The resultant image is shown in Fig. 36(a).

The HT that corresponds to the image in Fig. 36(a) is shown in Fig. 36(b). Note

that the signature of the lower power level tunnel cannot be seen in the HT image.

It is very hard for non-iterative detection algorithms to find the lower power tunnels

since they are masked by noise and other tunnels. When the first iteration of the

algorithm is applied, Tunnel 2 is removed and the new image for the second iteration

is obtained (Fig. 36(c)). Fig. 36 (d) shows the HT of the image in Iteration 2. Notice

how the peak for Tunnel 1, masked in Fig. 36(b), can now be clearly seen in Fig. 36(d).

When the new tunnel area is estimated and removed from the image, Fig. 36(e) is

found as the Iteration 3 image. Now, a significant peak is not present. Rather, 68

comparable local maxima are found, and the algorithm is terminated.
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Figure 36: (a) Simulated image with two Tunnels, (b) Hough transform of image in
(a), (c) Iteration 2 Image, (d) Hough transform of image in (c), (e) Iteration 3 image,
(f) Hough transform of image in (e).

In the second simulation, 3 small clutter objects are introduced to the image

which has two linear objects. Clutter could be any small object like coke cans, land

mines etc. Simulated clutter is positioned at (20 : 26, 60 : 66), (85 : 91, 80 : 86) and

(80 : 86, 10 : 16) in x and y dimensions with highest signal value 100, 50 and 50,

respectively. Main line for the two linear objects are positioned to be at m1 = 0,

n1 = 50 and m2 = 1, n2 = −10 with signal values 4 and 10. Note that the clutter

values are much higher than the linear objects. White Gaussian noise (WGN) with
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mean 0 and variance 1 is added to the image. The resultant image is shown in

Fig. 37(a) and the HT of this image is given in Fig. 37(b).

The HT domain image includes some lines and focused points. Note that a point

like object in the image appears as a line in the HT and a line in the image domain

appears as a focused point in the parameter space. The iterative object removal

strategy is applied to the HT domain image shown in Fig. 37(b). The first detected

and removed object is the linear object at m2 = 1, n2 = −10 with signal value 10.

This object is detected first even though it has a much lower signal values compared to

the clutter objects because the summation over the linear object actually results in a

higher value for it in the parameter space. The linear object is removed and procedure

is reapplied. The second iteration image and its HT are shown in Figs. 37(c)-(d). Note

that the focused point due to the removed object is absent in the HT image. At this

iteration stage the maximum point in the HT corresponds to the line that passes

through two of the clutter objects and both of those objects are removed. In the

third iteration one linear object and one clutter object are left. Accordingly, the

HT image includes one line and one focused point. This iteration removes the linear

object and only 1 clutter object is left for iteration 4. After iteration 4 all detected

objects are removed and the image in Fig. 37(i) is obtained. Now the HT domain

does not contain any dominant targets and the iteration is stopped. Tunnels which

have much lower returned power compared to clutter objects could be successfully

detected.

3.1.4 Experimental GPR and Seismic System for Detecting Tunnels

To investigate the potential for new feature detection algorithms an experimental

setup using co-located GPR and seismic sensors have been built [82]. These sensors

were chosen because they sense very different physical properties and are compatible

with simultaneous operation. The seismic sensor is sensitive to the differences between

72
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(c) (d)
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Figure 37: (a) Simulated image with two Tunnels and 3 clutter objects, (b) HT of
image in (a), (c) Iteration 2 Image, (d) HT of image in (c), (e) Iteration 3 image,
(f) HT of image in (e), (g) Iteration 4 image, (h) HT of image in (g), (i) Iteration 5
image, (j) HT of image in (i)
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the mechanical properties of a tunnel and the soil while the GPR is sensitive to the

dielectric properties. The loss mechanisms in the soil for the electromagnetic (EM)

and the seismic waves are also very different, making it less likely to have prohibitive

losses for both wave types in a given soil type.

The GPR sensor was described in Section 2.2.10. The seismic sensor shown in

Fig. 1 consists of an aero-acoustic source and a ground contacting receiver. The

acoustic source is a 13 cm speaker with a closed box, and the ground-contacting

receiver is an accelerometer that is coupled to the ground with a biasing force provided

by a tail mass through a spring. The speaker and accelerometer are scanned across

the surface using the positioning system. The speaker is excited with a 4 s chirp with

frequency content from 100 Hz to 8 kHz.

Two different experimental scenarios have been investigated with scale models of

linear structures in an experimental model sandbox filled with nearly-homogeneous

sand as shown in Fig. 48(a). A scale model for a tunnel is buried within a 1.8 m x

1.8 m region in the center of the tank. The tunnel is 10cm in diameter and is buried

approximately 58 cm deep (the depth varies from 53 to 63 cm), making about a 20

to 1 scale model for a shallow tunnel just big enough for a man to slide through. The

sensors are scanned over this region with a three degree-of-freedom positioner. To

investigate a more difficult configuration, three PVC pipes with diameters of 1.27 cm,

2.54 cm, and 5.08 cm were buried with variable depths in the model as shown in

Fig.48(b) for the second scenario.

The presented method is applied on the experimental data obtained from the

scenario shown in Fig. 48(a). Figure 39(a) shows the surface energy image of the

seismic sensor, where the energy of the 3D image is summed on depth axis up to the

surface. The linear feature at y = 22 is the image of a drainage pipe. The other linear

object is the reflection image of the sloped bottom of the sandbox in the laboratory.

When the HT of the seismic surface energy is taken Fig. 39(b) is obtained. The two
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(a) (b)

Figure 38: (a) Model of the sand tank with one 4” tunnel buried approx 58 to 60
cm deep from the surface. (b) Layout of the three buried PCV pipes. The targets
are a 2” pipe buried approx 30 cm deep, a 1” pipe buried diagonally from the surface
down to 60 cm, and a 0.5” pipe buried approx 60 cm deep. The coordinates of the
axes are the same as the coordinates in (a).

linear objects appear as two peaks in the parameter space.

The first iteration finds and removes the buried pipe. The image at Iteration 2 is

shown in Fig. 39(c). The HT of Fig. 39(c) has only one significant peak, which corre-

sponds to the sloped part of the sandbox (Fig. 39(d)). When the second linear object

is also removed there are no more targets left in the image, therefore no significant

peaks remain in parameter space and the iteration process is terminated.

The surface energy image for the GPR is shown in Fig. 40(a). Unlike the seismic

case, the sloped part of the sandbox bottom is not clearly seen in the surface energy

image of GPR. This is due to the fact that the mechanical contrast between the

sandbox bottom and the sand is much higher than the dielectric differences between

the two and this mechanical contrast appears in seismic image.

The tunnel is clearly seen in the GPR image but the strength of the response to

the tunnel is seen to be much stronger for 1 < x < 50. Although not verified, one

explanation of this might be that water collected in that portion of the tunnel since

it is the deepest part. Applying the HT for the first iteration Fig. 40(b) is obtained.

There is only one dominant peak in the parameter space which corresponds to the
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Figure 39: (a) Experimental seismic surface energy image, (b) HT of image in (a),
(c) Iteration 2 Image, (d)HT of image in (c), (e) Iteration 3 image, (f) HT of image
in (e).

dominant linear object in the GPR image. When the object area is found and removed

from the energy image Fig. 40(c) is obtained. The HT of the Iteration 1 image doesn’t

have a dominant peak and the iteration is stopped.

3.2 Detecting Curved Buried Features Using Partial Hough

Transforms

Line detection techniques can be extended to the detection of curves using the gen-

eralized Hough Transform (GHT) [35, 88, 54]. Previous work on curve estimation

using Hough transforms has focused on the detection of parameterized curves, such
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Figure 40: (a) Experimental GPR surface energy image, (b) HT of image in (a), (c)
Iteration 2 Image, (d) HT of image in (c).

as circles in images [35], or hyperbolas and other parameterized curves [88, 54]. The

HT has been successfully applied to detect buried linear features [51, 48], assuming

that the buried object (e.g., a tunnel, or pipeline) is linear over the distance of in-

terest. However, it is not reasonable to assume that buried objects are always linear

over long distances, so the GHT fails to detect curving features when the actual curve

parametrization is not known. The presented method in this section applies the HT

with line parametrization, in (5), to smaller batches of an image and tries to estimate

the curving structure from linear segments obtained from different batches.

Our problem can be stated as estimating a curving function f(n) from partial

linear approximations. An illustration of the problem and the approach taken are

shown in Fig. 41. Assume we have an image of size L × L and the HT is applied

on batches of size M × L, where M ≪ L. For batch i, if a line is detected in the
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Figure 41: Estimating a curve from partial linear approximations

parameter domain a linear approximation is obtained as

f̂i(l) = mil + ni, (41)

where i ≤ l ≤ i + M − 1 for i = 1, 2, 3, ...L −M + 1 and (mi, ni) are the slope and

intercept values of the detected line. In this way L −M + 1 linear approximations

of the curving function f(n) are obtained. These partial linear approximations can

be seen in Fig. 41. For each point n the estimate can be found as the average of the

linear approximations for that point:

f̂(n) =












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n

n
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1
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1
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L
∑
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(42)
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There may be no line detections in some batches. This is not a problem since the

estimator only uses the average of detected lines for estimating the position of curve

at one point. For a curve to end, or not be detected, at least M consecutive batches

should not have any line detections.

Selection of the batch sizeM is critical. On one hand, increasingM might decrease

the advantage of coherent summation over lines if the tunnel is curving; on the other

hand decreasing M might cause missed detections in Hough space because of the

adding up of only a small number of signal values while not getting enough incoherent

averaging of the noise. The optimal batch size should be selected to maximize the

probability of detection (PD) of a line in the batch [51]:

PD = Q

(

Q−1(PFA) − µmin(M,RS)√
Mσ2

)

, (43)

where µ is average signal value, σ2 the noise variance and RS the maximum Hough

votes from the curving structure in the batch. The HT implementation finds the line

with the most votes from the curve. Note that without discretization all lines are

tangent to a curve at one point only. Most votes come from the lowest sloped part of

the curve; in a second-order curve, f(x) = ax2+bx+c, the number of Hough votes can

be approximated as RS ≈
√

(2/a). The optimal batch size M should maximize (43).

Since the Q-function gives the area in the tail of a Gaussian function and Q−1(PFA)

is positive for all PFA, an optimal M must satisfy

M∗ = arg max
M

µmin(M,RS)√
Mσ2

⇒ M∗ = RS. (44)

From (44) it can be seen that the optimal batch size should be equal to the maximum

number of Hough votes, RS. Since RS depends on the curvature, a, this varies

from curve to curve. However, an average value of the curvature can be selected for

detecting the structure in images.

To test the proposed algorithm a tunnel described by the curve parametrization

y = 40 + 0.01(x − 100)2 at a depth of 20 cm is simulated. A two-layer model with
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dry soil type is used. The system parameters are antenna height 10 cm, transmitter-

receiver distance 10 cm, and antenna step size 2 cm (100 total steps are simulated).

The tunnel is formed with point-like targets at each x position on the specified curve

and depth. For the simulated tunnel response, a data cube is obtained. Clutter is

assumed to be zero-mean additive white Gaussian noise (WGN). This clutter model is

added to the raw tunnel data. The signal-to-noise ratio (SNR) is defined as the ratio

of the maximum signal power in the image to the average noise variance. Figure 42

shows results from the HT (line parametrization) and the proposed partial Hough

Transform (PHT) algorithm on a surface energy image.
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Figure 42: (a) Processing results with HT and PHT detected for the noise-free case.
(b) Detected structures for HT and PHT on a 20-dB surface energy image.

As seen in Fig. 42, the HT incorrectly finds a line nearly tangent to the curving

structure, but the proposed algorithm finds the curve correctly. In the PHT algorithm,

M = 20 is used as the batch size.

To compare the performance of the algorithm for varying parameters, a mean

square error metric is defined as

MSE =
1

N

√

√

√

√

N
∑

n=1

(f(n) − f̂(n))2, (45)

where N is the total number of points. For the case in Fig. 42, the MSE for the HT

and proposed algorithm are 31 cm and 0.88 cm, respectively.
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Another simulation was performed to observe the effect of SNR and batch size.

At each SNR and batch size, the algorithm is run and the MSE is computed. This

procedure is repeated 100 times and the average MSE value is obtained for each SNR

and M . The figure of merit 1/MSE is plotted in Fig. 43 for each SNR and M .
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Figure 43: 1/MSE for varying SNR and batch size values.

From Fig. 43, it can be observed that there is an optimum batch size (i.e., 15–20)

that gives better performance for nearly all SNR. This optimum batch size is also

very close to the approximate Hough vote for the curvature, RS ≈
√

(2/0.01) ≈ 14.

For low SNRs, the MSE increases for all batch sizes and the dependence on batch

size is less important.
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CHAPTER IV

DETECTING IMAGE FEATURES USING ADAPTIVE

RANDOM SAMPLE THEORY

Feature detection is the extraction of necessary information about a feature from

an image by means of signal processing tools. It is an important and broad topic

extensively studied in areas like image processing [61, 28], computer vision [23, 61]

and subsurface imaging [29, 89].

The Hough Transform (HT) [56], its variants and their generalizations [7, 35, 3, 61]

are the most commonly used methods capable of detecting lines[35, 23], circles[3], or

any other parameterized curve[88, 87]. The HT uses a parameterized model of each

feature to transform the feature in the original image space into a single mesh point

in the parameter space. The better a feature corresponds to the model, the more

values (votes) will be accumulated at a mesh point. Features having votes above a

predetermined threshold are selected as a detection.

Although the HT is effective even in very noisy images, it is not easily imple-

mentable because of its high computation time and large memory requirements. These

problems are exacerbated as the dimension of the search space increases. For exam-

ple, while the order of operations for detecting lines in 2D is O(N3), this increases to

O(N5) for detecting lines in 3D images.

Various methods have been proposed to decrease the computation requirements of

the HT, the primary ones being the Probabilistic Hough Transform (PHT) [67], the

Randomized Hough Transform (RHT) [92, 91], and Line Detection using Random

Sample Consensus(RANSAC) [38, 70, 21]. More detailed information about these

methods are given in Chapter 1. Here we briefly review them.
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The PHT uses only a randomly selected subset of edge points in the image as input

for the HT; however, this technique leads to erroneous results for a small subset, and

selection of the optimum subset size requires knowledge of the image. Although the

latter problem is solved by the Progressive PHT (PPHT) algorithm, performance is

still worse than the HT.

The RHT randomly selects n pixels, solves for the feature parameters and then

increases the value of the parameter space cell by one. Using a many-to-one map-

ping and randomization saves on memory requirements as well as computation time.

The RHT is suitable for low noise images [68]. For highly noisy images, the PHT

outperforms the RHT, but neither algorithm works very well in detecting features in

extremely noisy images.

The methods based on hierarchical division and pruning of the parameter space,

like the fast HT (FHT) [69] or the Adaptive HT [60], recursively divide the parameter

space into hypercubes and perform the HT only on the hypercubes with votes ex-

ceeding a selected threshold. More robust methods [77, 11] that propagate the error

to the parameter space have also been developed. Although the existing hierarchical

HT methods succeed in decreasing the computational load of the HT, they can only

be applied to binary edge images.

To improve the robustness of feature detection, the RANSAC [38] algorithm was

proposed. In RANSAC n edge points are randomly selected, and data lying within

a defined distance from the line are classified as ‘inliers’ with the remaining data

marked as ‘outliers.’ If the number of inliers is larger than a certain threshold, the

feature parameters are re-estimated using only the inliers. In this way, the effect of

misleading outliers is mitigated. Furthermore, the memory requirements are much less

for the RANSAC algorithm since an accumulator array is not utilized. RANSAC has

been shown to perform line detection faster than the HT [70]. Small improvements for

increasing RANSAC’s performance are proposed in [21, 20] for line detection problem.
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Prior research has established an extensive basis for faster and robust feature de-

tection. However, some of the existing methods can only be applied to binary images.

The methods applicable to grayscale images have degraded performance compared to

the HT. Our goal is to detect features in highly noisy grayscale images robustly and

faster than the HT without the sacrificing performance. Our motivation is detection

of buried linear structures, such as tunnels or pipes, in subsurface images generated

from ground penetrating radar (GPR) or seismic sensor measurements. This is a

problem of great interest in industrial/civil engineering and military applications and

has been attacked by many researchers [89, 29, 82, 41]. Typically the presence of

subsurface structures is visually masked in these images by noise and clutter, ren-

dering their detection impossible without the implementation of feature detection

algorithms. Adapting the subsurface images by binarization to existing methods us-

ing edge detection may seem like a viable solution, but in fact the loss of important

data degrades the performance of the algorithm. Especially in high noise images it

is even not possible to create edges since the features are completely hidden under

severe noise.

The proposed adaptive ransom sample theory (ARST) method creates random

hypothesis features and tests not only the selected feature, but also the region around

it, to look for acceptable shapes. Contrary to choosing n random points to define a

feature and solving for its parameters, the parameters are randomly selected from the

parameter space distribution. The information obtained from each randomly selected

feature is used to update this distribution, which reduces the total required number

of random trials. The selected features are re-estimated within a smaller search

space with a more accurate algorithm like the HT. Results show that this two-stage

algorithm decreases the total computation time by limiting the search space over

which the HT is performed to smaller spaces by randomly choosing probable areas

without degrading the performance of the HT. The proposed algorithm is described
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in Section 4.1. Simulated and experimental results from subsurface seismic and GPR

images are given in Section 4.2.

4.1 Feature Detection by Adaptive Random Sample Theory

The basic idea of the adaptive random sample theory (ARST) algorithm is to first

find rough areas or volumes in the image that possibly include features and then

search only these rough regions with a more accurate algorithm like the HT. Reducing

the search space of the HT decreases the computation time, while still maintaining

detection performance at a level comparable to that of the full HT.

The feature to be detected is denoted by a set of parameters P = (p1, p2, ..., pn),

where each parameter pi has limits defined by Ri. For example, a line in 2D is denoted

by two parameters, (ρ, θ), as ρ = x cos θ + y sin θ and the ranges of these parameters

are

Rρ : −rmax < ρ < rmax

Rθ : 0 < θ < π

(46)

where rmax =
√

s2
x + s2

y and sx and sy are the dimensions of the image. The line

parametrization in 3D can be done by 4 parameters as described in Section 1.2.2 and

[87]. A step by step description of the algorithm follows:

4.1.1 Algorithm Steps

The ARST method has two stages: the first stage searches for approximate candidate

features, while the second stage refines the estimate of the features.

Stage I (Candidate Model Selection)

(i) Generate a candidate feature by randomly sampling the current parameter distri-

bution F . Thus, (p1, p2, ..., pn) ∼ F k during iteration k. The parameter distribution

F can be initialized as uniform over the parameter space. The randomly selected

feature is denoted by P = (p1, p2, ...pn) and the parameters P make it possible to
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instantiate the feature in the image.

In RANSAC and RHT, random features are selected by randomly choosing n edge

points from the image and solving for the parameters (p1, p2, ..., pn). While this might

be time efficient for binary images where edge points do not constitute a major part

of the image, for gray-scale and higher dimensional images, this requires a significant

amount of computation. Our method avoids these ineffiencies by directly sampling

from the parameter space.

(ii) Calculate a feature indication metric CS using the image data within a dis-

tance σ of the selected feature. For subsurface images the high reflected power from

the subsurface targets is an indication of target presence, thus CS is calculated by

summing up the pixel values for the defined region. In this way, the algorithm is

made robust against discretization errors or measurement errors within the region.

For binary images CS is the number of edge points within the distance σ, analogous

to RANSAC’s step in which the number of inliers within a distance of the selected

line is counted. For road network extraction in SAR images, CS can be calculated as

in [22] where the road is darker than its neighbors and has smaller pixel values.

Figure 44(a) shows the strip summation region for the line with parameters (ρ, θ).

All the lines with parameters (ρ± ∆ρ, θ ± ∆θ) as shown in Fig. 44(b) where

∆θ = arctan 2(σ−σ∗)
rmax

∆ρ = σ∗

(47)

lies totally in the strip image region, where σ∗ is shown in Fig. 44(b).

For small ∆θ, the shape in the parameter domain for the strip region becomes a

diamond, where ∆θ = 2σ
rmax

and ∆ρ = σ. The small ∆θ approximation also puts an

upper bound on the σ parameter. For ∆θ < π/6, the σmax
∼= rmax/4. Selection of σ

parameter effects the run time of the algorithm and optimally selecting it is discussed

in Section 4.2.1.

(iii) If the feature indication metric CS from Step (ii) is less than a threshold
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(a) (b)

Figure 44: (a) Randomly selected strip region, (b) Parameter space corresponding
to the strip region in (a).

Ts indicating that none of the features in the parameter space corresponding to the

randomly selected strip region can be accepted as features; then the parameter space

is updated as in Step (iv). If CS ≥ Ts then the randomly selected (ρ, θ) is added to

the candidate feature list (CFL) and the parameter space is again updated as in Step

(iv). Increase iteration index k by 1.

(iv) Update the parameter distribution as follows

F k+1 = F k

F k+1(p1 − ∆p1 : p1 + ∆p1, ..., pn − ∆pn : pn + ∆pn) = 0

F k+1 = F k+1
∑

F k+1

(48)

In (48) F k is the parameter distribution at the kth iteration. The initial distribu-

tion is selected as uniform over the parameter range if there is no a priori knowledge

of the possible features. After updating the parameter distribution, increment k and

go to Step (ii).

(iv) Stop after kmax trials.

Stage II (Refine The Estimate) For each candidate feature in the CFL, the

search space for the ith candidate is defined as Si = (pi,1−∆pi,1 : pi,1 +∆pi,1, ..., pi,n−
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∆pi,n : pi,n + ∆pi,n) . Apply the HT only over Si to find a better estimate of the

features in that region. Note that this stage also enables multiple features within a

region to be resolved and successfully detected. For example, if two lines are close to

each other Stage I selects only one random feature in that region. To the extent that

the HT can resolve multiple features, all can be detected.

4.1.2 Selection of Algorithm Parameters

Selection of the parameter σ is important because it determines the number of trials,

kmax, and the search space, ∆(p1, ..., pn), in Stage II. The relative size of σ with respect

to the size of the image, rmax, is a crucial parameter. Selecting a very small σ/rmax

ratio will increase kmax and reduce ∆(p1, ..., pn). In the limit σ → 0, the algorithm

approaches the RHT. Conversely, when the ratio σ/rmax increases, ∆(p1, ..., pn) will

increase, while the value of kmax will decrease. In the limit σ → rmax, the number

of trials in Stage I will be 1, making the candidate model selection stage useless and

reducing the proposed method to the HT applied in Stage II to the whole image.

Once σ/rmax is selected, ∆(p1, ..., pn) can be computed as follows.

2D Line Detection 3D Line Detection

∆θ = arctan 2σ
rmax

∆θ = arctan 2σ
rmax

∆ρ = σ ∆φ = arctan 2σ
rmax

∆u = σ

∆v = σ

(49)

Let kmax be the number of trials required to have at least one feature within the

∆(p1, ..., pn) vicinity of the true feature parameter with probability q. If the selected

parameters fall beyond ∆(p1, ..., pn), the feature cannot be correctly detected since
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Stage II only searches for features within ∆(p1, ..., pn) of the selected feature param-

eters. If a non-adaptive scheme is used and parameters are randomly chosen from a

uniform distribution the probability that all selections are outside of the ∆(p1, ..., pn)

vicinity after kmax trial is

1 − q =









n
∏

i=1

R(pi) − 2n
n
∏

i=1

∆pi

n
∏

i=1

R(pi)









kmax

(50)

In (50) n denotes the number of parameters representing the feature. Thus n = 2 for

a line in 2D and n = 4 for a line in 3D. Also, R(pi) denotes the range of the parameter

pi. From (50) the number of trials for picking a random feature within ∆(p1, ..., pn)

with probability q is

kmax =
log (1 − q)

log





n
∏

i=1

R(pi)−2n
n
∏

i=1

∆pi

n
∏

i=1

R(pi)





(51)

In the adaptive selection of parameters, at each trial part of the distribution of

size ∆p1×∆p2...∆pn is taken out. The probability 1−q, which is equal to not getting

any random selection in the ∆(p1, ..., pn) vicinity of the true feature parameter in kmax

trials, can be given as

1 − q =

n
∏

ℓ=1

|Rℓ| − kmax2
n

n
∏

ℓ=1

∆pℓ

n
∏

ℓ=1

|Rℓ|
. (52)

As an example, consider a 2D image of size 100×100. Using a resolution of 1 in ρ

and 1◦ in θ results in 50912 line summations for HT. If σ = 10 is selected, then from

(49) ∆ρ = 10 and ∆θ = 8◦. A detection probability of q = 0.99 requires a minimum

of only 157 strip summations for Stage I, while Stage II requires to make 320 line

summations for the selected Si. In total the computational load of HT is decreased

and results indicating this are given in section 4.2.1 and 4.2.2.

Selection of the optimal threshold Ts is a hard problem. Depending on the image

type, the accepted feature criteria and knowledge of the image statistics, a suboptimal
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Ts can be selected. For the problem of feature detection in subsurface images, the

noise statistics (µn, σ
2
n) of the image would have to be estimated from the image itself.

The feature detection of an SNR level greater than m
SNR

would use a threshold Ts

that should be selected as

Ts = m
SNR

σ2
nsi +N

pix
µn (53)

where N
pix

is the number of pixel points added in the summation region of the selected

feature.

4.2 Results

To illustrate how the proposed algorithm works, a 101 × 101 image with two linear

structures having the parameter values ρ1 = 70, θ1 = 65◦ and ρ2 = 20, θ2 = 120◦ is

created. The image is shown in Fig. 45(a). Zero-mean white Gaussian random noise

(WGN) is added to the image with signal-to-noise ratio (SNR) of 0 dB . Figure 45(b)

shows the synthetic linear structures with noise added. Note that the linear features

cannot be visually seen and are masked by the noise.
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Figure 45: (a) Two Linear features, (b) Detected lines from Stage I (random selec-
tion) and Stage II (refined by the HT) of the proposed algorithm on the noisy image
of SNR 0 dB.

The distance parameter σ is chosen as 10. Number of random trials, kmax, is

calculated using (52). The candidate features obtained from Stage I of the algorithm
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are shown in Fig. 45(b) with dashed lines. These candidate features are refined in

Stage II by applying the HT within a vicinity (∆ρ,∆θ) of the parameters of the

selected lines as pictured in Fig. 44(b). The refined lines are shown by solid lines in

Fig. 45(b). The true parameters with the ones obtained from stage I and stage II of

the algorithm are listed in Table 6.

Table 6: True and Detected Target Parameters

2D Line Detection Results

Targets Target 1 Target 2

Parameters ρ θ(o) ρ θ(o)

True Parameters 70 65 20 120

Random Selection 76 59 27 116

Refined by HT 70 64 19 120

4.2.1 Performance of the algorithm for different σ values:

The parameter σ, as discussed in Section 4.1.2, determines the other algorithm pa-

rameters like kmax and ∆(p1, ..., pn). In this section we analyze the effect of σ on the

run time of the algorithm using a Monte-Carlo simulation and select the σ that min-

imizes the total run time. A 2D image of size 100× 100 containing a linear structure

with parameters (ρ, θ) = (70, 65◦) with SNR = 10 dB is generated.

For various σ values, the algorithm was run 100 times and the elapsed times for

Stage I and II were recorded. Increasing σ will decrease the number of trials by (52).

Although (52) is not a closed form expression it can be seen from number of trials

for the nonadaptive case (51) that the time for Stage I of the algorithm decreases

logarithmically with σ. This can also be observed in Fig. 46(a) where the average run

time for Stage I of the algorithm obtained from the simulations is shown.

The parameter space defined in (49) searched by HT in Stage II of the algorithm

increases quadratically with σ. This indicates a quadratically increasing run time as

observed in Fig. 46(b). Note that this quadratic increase is for only line detection in
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2D images. From (49) it can also be observed that for 3D images the search space

increases with as σ4.

The combination of these two effects yields the total average run time shown in

Fig. 46(c). For the total run time of the algorithm a σ/si value that minimizes the

average run time can be found, and σ/si = 0.1 is selected as the optimum parameter

for line detection in 2D images.
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Figure 46: (a) Average run time of stage I of the algorithm versus σ/si where si is
the size of the image and 100 for this simulation. (b) Average run time of stage II of
the algorithm, (c) Total average run time of the algorithm.

4.2.2 Performance of the proposed method for varying SNR

The detection performance and average running time of the presented ARST algo-

rithm for varying levels of SNR are now compared to the HT, RHT and PHT for 2D

images. Two versions of the RHT and PHT algorithms with low (RHTL, PHTL) and

high (RHTH, PHTH) number of trials and data percentage are used for comparison.

At each SNR value, all the algorithms are run 100 times with random noise added

to the original signal each time. The detected target parameters and the run time of

the algorithms are noted. To fairly compare the detection performance and the run

times for all algorithms, the same parameter resolution is used. That is, rρ = 1 and

rθ = 2◦. The ARST algorithm uses a σ/si = 0.1 ratio. The PHT uses 50% and 5%

of the data for the PHTH and PHTL results; RHT uses 105 and 104 random point

selections for RHTH and RHTL, respectively.
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Table 7: Average Run Times (secs) of the Algorithms in 2D

ARST HT RHTH RHTL PHTH PHTL

1.72 16.13 4.47 0.44 7.75 0.77

The probability of detection (PD) for all algorithms is shown in Fig. 47. Figure 47
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Figure 47: Probability of detection (PD) vs. SNR for the compared feature detection
algorithms.

shows that the ARST and the HT have nearly the same performance for all SNR

values while the PHT and RHT algorithms have much lower PD. Here the advantage

of the ARST lies in the average run time. The average run times of the algorithms are

given in Table 7. It can be seen that while the ARST has the same performance level

as the HT, the average run time is nearly ten times less than the HT. The algorithms

RHTL and PHTL can run faster than the proposed ARST method, but they have

much worse detection performance. Even the PHTH and RHTH algorithms which

have higher average run times than ARST have worse detection performance. So the

proposed method combines the fast running time of a random selection method with

the best possible detection performance of the HT.

4.2.3 Experimental Data Results in 3D

To investigate the potential for new feature detection algorithms an experimental

setup using co-located GPR and seismic sensor was built [82, 83]. Two different
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experimental scenarios have been investigated with scale models of linear structures

as shown in Fig.48. More detail about the tunnel experiments is given in Chapter

3.1.4.

(a) (b)

Figure 48: (a) Model of the sand tank with one 4” tunnel buried approx 58 to 60
cm deep from the surface. (b) Layout of the three buried PCV pipes. The targets
are a 2” pipe buried approx 30 cm deep, a 1” pipe buried diagonally from the surface
down to 60 cm, and a 0.5” pipe buried approx 60 cm deep. The coordinates of the
axes are the same as the coordinates in (a).

For both scenarios Fig. 49 shows the isosurface images for the backprojected sub-

surface GPR sensor data [25]. Both HT and the ARST algorithms are applied to the

3D subsurface images. A resolution of 2◦ for (θ, φ) and 0.02 m for u and v are used

for both algorithms. The proposed method used σ = 0.15 m. The detected lines for

both algorithms are shown in Fig. 49 . The detected line parameters and the total

run times of the algorithms are listed in Table 8. It can be observed that the ARST

method can find the buried features much faster but as accurately as HT.
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Table 8: Experimental Results with 3-D Data Comparing the ARST to the HT

Sensors Scenario 1 Scenario 2

Algorithms ARST HT ARST HT

θ (◦) 96.68 96 (40.1, 44.5 ,86.7) (40, 45, 85)

φ (◦) 0.08 0 (-4.4, 8.7, -1.3) (-3,9,0)

u 0.162 0.15 (-85.2, -16.71, 55.99) (-80, -16, 56)

v 0.620 0.62 (35.28, 35.79, 65.22) (32, 36, 64)

Time (s) 1.44 × 103 5.74 × 104 1.78 × 103 5.79 × 104

(a) (b)

Figure 49: (a) 3D iso-figures at -15 dB of the 4” tunnel using the GPR sensor
measurements. Dashed and solid lines show the detected lines for HT and ARST
method respectively.
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CHAPTER V

COMPRESSIVE SENSING OF PARAMETERIZED

SHAPES

The problem of detecting parameterized shapes, e.g., lines or circles, arises in many

diverse areas of image processing, computer vision and pattern recognition. As ex-

plained in Chapter 1, the Hough Transform (HT) [56] and Generalized Hough Trans-

form (GHT) [88] are well-known methods to detect lines and other parameterized

shapes in an image. Both transforms convert the problem of finding spatially spread

patterns in the image space into detecting (sparse) peaks in the parameter space. In

other words, the GHT is a sparse representation of the shapes in an image.

We have shown in Chapter 2 that using the ideas from compressive sensing (CS)

a sparse signal can be constructed from a small number of “random” projections. In

this section, we show that the parameterized shapes in an image can be found from

only a small number of random projections of a gray scale image. For example, a new

camera architecture that directly acquires random projections of an image without

collecting every pixel has been demonstrated [36]. In standard CS techniques [13] the

compressive measurements of the image are used to create the image itself using an

assumption of the image is sparse in the wavelet domain or some other domain [36].

We show in Section 5.1 that the random projections of an image,e.g., acquired by a

camera [36] could be used to form the sparse GHT representation of an image. We

also show that it is possible to detect a variety of shapes such as lines, circles etc.

jointly using the same CS framework along with an overcomplete representation of

the shapes.

Standard techniques for detecting parameterized underground structures like pipes
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or tunnels usually involve two stages. First, the raw data collected by a sensor such

as a Ground Penetrating Radar (GPR) is inverted to form an image of the subsurface

area (See Chapters 1 and 2 for different imaging methods). Second, the image is

searched for parameterized shapes like lines using an algorithm such as the GHT.

The application of the CS idea to this problem is not immediately apparent since

it would seem to require the formation of a 3D subsurface image using the data

collected from the probing sensor, followed by random projections of the 3D image.

In the second part of this chapter we exploit the sparsity of shapes in the parameter

domain and combine the image formation and feature detection steps using the CS

framework to find the shape parameters directly from the raw sensor measurements.

In addition to skipping the image formation step, the CS processing can be done

with a minimal number of raw sensor measurements. The utility of this CS-based

method is demonstrated for finding buried linear structures in both simulated and

experimental GPR data.

5.1 Shape Detection using Compressive Sensing

The GHT can be written as

R(π)[f(x, y)] =

∫

f(ϕx(ξ,π), ϕy(ξ,π))dξ (54)

where π is an p-dimensional vector defining the curve parameters and ϕx(ξ,π) and

ϕy(ξ,π) are functions that define the specific curve. The GHT transforms from the

2D (x, y) image space to the p-D parameter space defined by π.

In order to express the image in terms of an overcomplete dictionary of pos-

sible shapes, we must discretize the parameter vector π along each of its p di-

mensions. Then we can enumerate a finite set of possible parameter vectors P =

{π1,π2, . . . ,πN}, where N depends on the discretization that we pick. Finally, we

define the vector p to be an indicator and weight function, i.e., the kth element of p

is nonzero if we want to select (and weight) parameter πk.
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Now we are ready to create the overcomplete dictionary by using the inverse

relation between the parameter space selector p and the image f , which can be

written as

f = Hp (55)

where H is, in some sense, an inverse GHT operator. The L × L image must be

concatenated into a length-L2 vector f . Each column of H is one possible param-

eterized shape in the image domain, i.e., the kth column of H corresponds to the

shape with parameters πk. The matrix H is called the sparsity basis because we

can represent the image using a small number of columns from H . We say that the

image is K-sparse if its GHT has no more than K nonzero peaks, or, equivalently,

the vector p has no more than nonzero elements.

Consider our K-sparse signal p of length N as our parameter space signal where

the image f is represented as in (55). In CS rather than sampling all the pixels in

the image f we measure linear projections of f into a second set of basis vectors

φm, m = 1, 2, ...M . Here many fewer samples than the size of p are taken, M ≪ N .

In matrix notation we measure

y = Φf = ΦHp (56)

Here y is the only information we have about the image. The result of CS theory is

that the sparse parameter domain signal p can be recovered exactly from

M = C
(

µ2(Φ,H) logN
)

K (57)

CS measurements y by solving an ℓ1 minimization problem as

p̂ = argmin ‖p‖1 s.t. y = ΦHp (58)

with overwhelming probability [15], where µ(Φ,H) is the coherence between Φ and

H defined as in [15]
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The optimization problem in (58) is valid for the noiseless case. For noisy images,

the compressive measurements will be in the form

y = Ap + z zk ∼ N (0, σ2) (59)

where A = ΦH . It is shown in [12, 14, 55, 34] that instead of (58) relaxed convex

optimization problems as

min ‖p‖1 s.t. ‖AT (y − Ap)‖∞ < ǫ1 (60)

or

min ‖p‖1 s.t. ‖y − Ap‖2 < ǫ2 (61)

will result in the sparsest parameter domain p, allowing errors between the measure-

ments and our model.

The optimization problems in (58) and (60) can be solved by linear programming

techniques, while (61) is a second-order cone program. Since all of these minimize

convex functionals, a global optimum is guaranteed.

5.1.1 Selection of Algorithm Parameters

Selection of the grid density N in the parameter space, as well as the regularization

parameter ǫ1,2 used in (60) and (61), is very important. Our shape parameter esti-

mates are confined to the selected grid. While increasing N makes the grid uniformly

very fine, it also increases the complexity of the algorithm. Our method is suitable

for multiresolution grid refinement. Initially a coarse grid might be used to obtain an

approximate knowledge of possible target locations. Later the grid can be made finer

around regions of interest where better precision is required. Using a very coarse grid

that wouldn’t represent the possible shapes in the image would introduce substantial

bias to the parameter estimates.

The regularization parameter controls the tradeoff between the sparsity of the

solution and how well the solution fits the data. When the noise statistics of the data
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are known, a “good” choice of ǫ can be made, e.g., for additive white Gaussian noise

(WGN) with variance σ2, selecting ǫ =
√

2 logNσ makes the true b feasible with high

probability [14]. When the noise statistics are unknown ǫ can also be selected using

cross-validation (CV) [8] as discussed in Chapter 2.

5.1.2 Detecting Linear Structures

An important application of shape detection is detecting linear structures in images.

Figure 50(b) shows a noisy gray-scale image with 3 lines having the parameters ρ =

[−3, 21,−27] and θ = [33, 132, 153] degrees. The true lines are given in Fig. 50(a).

The image is 50 × 50, i.e., 2500 pixel values. For detecting lines in the image only

400 projections (compressive samples) of the image with random Gaussian vectors

are used. The compressive samples, y, of the noisy image are shown in Fig. 50(c).

We assume that these samples are the only information we have about the image and

our goal is to find the linear structures in the image. One possible reconstruction is
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Figure 50: (a) Image showing true line locations, (b) Noisy image with additive
white Gaussian noise (σ = 0.5), (c) Compressive measurements, (d) Parameter space
image obtained with ℓ2-norm minimization, (e) Hough Transform using all the image
pixels, (f) ℓ1-minimization using the Dantzig Selector.
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to find the parameter space image which has minimum ℓ2-norm and also satisfies the

compressive measurements.

The result is the parameter space image shown in Fig. 50(d). This solution is a

feasible solution because it satisfies the constraint y = Ap, but this parameter space

image doesn’t give any reliable information about possible line locations.

If the problem stated in (60) is solved, the parameter space image shown in

Fig. 50(f) is obtained. It can be seen that the resultant image is sparse with 3

peaks corresponding to the true line parameters. If we had the entire image and had

applied the standard Hough transform to the original image we would obtain the im-

age in Fig. 50(e). Even though the Hough transform image shows 3 significant peaks,

it is more noisy, and it requires L2 measurements ( i.e., all the pixels in the image).

5.1.3 Joint Detection of Circles and Lines

The standard Hough Transform calculates the votes for each parameter space value.

To detect circles in an image, a HT with circle parametrization should be taken and

the peaks in the parameter space should be searched. The same procedure should

be repeated for the same image for detecting lines by creating a separate parameter

space using line parametrization. Having different shapes in the image might be

problematic since line pixels will contribute votes for circle parameters or vice versa.

The CS shape detection algorithm can also be applied as two separate problems;

one for line and the other for circle detection. These two separate problems are shown

in Fig. 51.

Instead of solving two separate problems, a joint problem combining the line and

circle dictionaries can be solved. The joint problem is illustrated in Fig. 51. We can

relate the image f to the parameter space of lines and circles by using an overcomplete
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Figure 51: Joint Line and Circle Detection

dictionary of shapes.

f =

[

H l Hc

]







pl

pc






⇒ y = Φf (62)

where H l and Hc are the sparsity bases and pl and pc are the parameter spaces for

line and circle respectively. The sparse parameter space (pl pc) can be reconstructed

from compressive measurements y using one of the convex optimization problems

presented in Section 5.1. Note that our measurements y don’t change with the kind

of problem we are solving. The same measurements can also be used to get different

information about the image. Any better representation or dictionary can be used

to get better feature detection results using the same measurements. In other words,

they are future proof.

Figure 52 shows a noisy gray-scale image containing two circles with centers at

(10,−6) and (−18, 4) and radii 22 and 28, respectively, and two lines with parameters
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ρ = [−3, 21] and θ = [33, 132]. Only 500 compressive measurements are used. The

joint optimization problem is solved using (67) and the resultant joint parameter

space is shown in Fig. 52(d). The first two peaks in the resultant parameter space

correspond to the two lines in the image, and the last two peaks are represents the

two circles.

X

Y

−50 0 50

−50

0

50 0 1000 2000 3000 4000 5000 6000
0

1

2

3

4

5

6

7

8

Parameter Index

Lines

Circles

(a) (b)

Figure 52: (a) Noisy image with additive white Gaussian noise (σ = 0.2), (b) Results
from ℓ1-minimization of the Dantzig Selector.

5.1.4 Performance in Noise

To analyze the performance of the CS shape detection with varying noise levels, the

algorithm is applied to images with SNRs from −25 dB to 10 dB. At each SNR level

one random linear structure is corrupted by WGN with zero mean and corresponding

variance. Parameters of the linear structure are found using (67). This procedure is

repeated 50 times with random initialization of the noise at each time and correct

detections are counted. The detection ratio vs. SNR plot for different compressive

measurements is shown in Fig. 53(a).

It can be observed that proposed algorithm detects shapes in very noisy images

using a small number of measurements and increasing the number of measurements

increases the detection ratio for the same SNR value.
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Figure 53: Detection ratio vs. SNR. K is the number of random projections.

5.1.5 Test on Number of Compressive Measurements

For exact recovery of K-sparse signals the required number of compressive measure-

ments is given by (57). This quantity depends on the mutual coherence between the

sparsity basis and the random projection matrix used. Here three different types of

random matrices are tested (see Fig. 54). The entries of the Type I random matrix

are drawn from N (0, 1). The Type II random matrix has random ±1 entries with

probability of 1/2, and the Type III random matrix is constructed by randomly se-

lecting some rows of an identity matrix of size N which amounts to measuring random

pixels of the image at each measurement. Each matrix is normalized to have unit

norm rows.

The average mutual coherence between the random matrices and the sparsity

basis for a line are µ1 = 5.2751, µ2 = 5.0059 and µ3 = 12.7500 for Type I, II and III

random matrices, respectively. This means that the required number of compressive

measurements to detect a shape will be similar if Type I or II matrices are used. Using

Type III matrix will require approximately 6.5 times more compressive measurements

for the same detection capability.

A Monte-Carlo simulation is done to test the required number of compressive

measurements for each random matrix type. Each random matrix is tested with 1,
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2 and 3 shapes in the image. Figure 54 shows the detection ratio versus the number

measurements.

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

Meas. #

D
e

te
c

ti
o

n
 R

a
ti

o

Type I

Type II

Type III

Figure 54: Detection ratio vs. measurement number for varying types of random
matrices (Solid, dashed and diamond marked dotted lines correspond to 1, 2, and 3
targets respectively).

It can be observed that the required number of compressive measurements in-

creases for all types of random matrices when used with an increasing number of

targets. While Type I and II random matrices require similar numbers of measure-

ments, Type III random matrices require many more measurements to detect the

same number of targets as expected from the mutual coherence values given above.

5.1.6 Detecting Buried Pipes in Seismic or GPR Images

We applied the CS shape detection to the problem of finding linear structures in

GPR or seismic images. Since the algorithm uses random projections of the images,

the sensor data is first inverted to create an image of the subsurface. Although the

CS shape detection idea can be extended to 3D images, for now only results for 2D

images are generated. Figure 55(a) shows a backprojected seismic surface energy

image taken over a single buried pipe [82] (See Section 4.2.3). The standard HT of

the image is shown in Fig. 55(b). The two peaks in Hough domain correspond to the

two linear structures in the image.
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Figure 55: (a) Experimental Backprojected Seismic Image, (b) Hough Transform
of the backprojected image, (c) Compressive measurements created by projections of
the image in (a) to random Gaussian vectors, (d) The least squares solution.

Instead of using the whole image, 400 compressive samples of the image with

random Gaussian vectors are taken for the CS shape detection algorithm. The mea-

surements are shown in Fig. 55(c). The least squares solution with the compressive

measurements are given in Fig. 55(d). Although it has higher values close to the true

parameter cells, the resultant parameter space is much more cluttered than the HT

result.

CS shape detection using the same measurements gives the parameter space shown

in Fig. 56. A much cleaner and sparser image than the standard HT is obtained with

two peaks only. This way there is no need to search for local maxima in the HT domain

to detect the lines. The parameters of the two detected peaks are ρ = [−10, 82] and

θ = [87, 93]. The corresponding lines are drawn on the original image in Fig. 55(a).
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Figure 56: Parameter space created by the CS shape detection algorithm.

Although the resultant parameter space is much sparser than the HT result, we

had to compute the subsurface image and then took a small number of projections

which seems unnecessary. The next section remedies this nonideal situation by using

small number of raw sensor measurements to directly estimate the buried structure

parameters.

5.2 Shape Detection Using Compressive Sensor Measure-

ments

Although (55) relates f to p, we cannot directly image the target space but can

only sense it through sensors like GPR or seismic. To be able to linearly relate p to

the sensor measurements ζ, we need the relation between ζ and f . Such a relation

depends on the data acquisition process and the target models, and is created by

discretizing the target space and synthesizing the GPR model data for each discrete

spatial position. Thus, we assume that the targets are combinations of point-like

reflectors at discrete spatial positions and these reflectors do not interact so super-

position is valid. Representing structures like tunnels with a combination of point

reflectors strictly speaking is incorrect, but is done for simplicity. The received data

for a point reflector can be easily calculated [53]. The point-like target assumption

is not crucial. If the received data can be calculated for other types of target models
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like cylinders, then the CS-based ideas presented in this thesis can still be used.

As an example, we develop the f -ζ relation for GPR. The GPR transmissions

spanning a region of interest form a synthetic aperture, whose impulse response fol-

lows a known curve in the space-time domain. Although the response of actual targets

might be more complex, we assume that the received signal at the receiver antenna

reflected from a point target at r is a time-delayed and scaled version of the trans-

mitted signal s(t). Thus, the received signal at the GPR receiver antenna can be

written as ζi(t) = As(t− τi(r)) where τi(r) is the total round-trip delay between the

transmitter and the target at position r for the ith aperture point, and A is a scaling

factor used to account for attenuation. In our modelling of the received GPR signal,

the parameter τi is very important and its calculation requires knowledge of the wave

velocities in both media as shown in Fig. 57, where the distances d1:4 are used to find

τi = (d1 + d4)/v1 + (d2 + d3)/v2.

(a) (b)

Figure 57: (a) Bistatic GPR measurement scenario, (b) Data Acquisition for GPR
at one single aperture point.

To generate the dictionary for the GPR data, the target space κ which lies in

the product space [xi, xf ]× [yi, yf ]× [zi, zf ] is discretized. Here xi, yi, zi and xf , yf , zf

denote the initial and final positions of the target space to be imaged along each
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axis. Discretization generates the set of possible target points B = {κ1,κ2, . . . ,κNT
},

where NT determines the resolution in the target space and each κj is a 3D vector

[xj; yj; zj].

Using the above model the signal at the GPR antenna can be calculated for a

given element of B. This allows us to write a linear relation between the target space

indicator b and the measured data at aperture i as

ζi = Ψib (63)

where the vector b is a weighted indicator function, i.e., a non-zero positive value at

index j if b selects a target at κj. In (63), the jth column of Ψi is

[Ψi]j =
s(t− τi(πj))

‖s(t− τi(πj))‖2

. (64)

Note that when constructing Ψi with (64) each column has unit norm and the spread-

ing factor A doesn’t need to be known; only the time delay needs to be calculated.

Using (55) and (63) the measured data can be represented as ζi = ΨiHp. In the

spirit of CS [15, 31], a small number of “random” measurements can carry enough

information to reconstruct a signal. Rather than sampling ζi at a high sampling

rate, we measure linear projections of ζi onto a second set of basis vectors φim, m =

1, 2, ...M which can be written in matrix form for the ith aperture point as

βi = Φiζi = ΦiΨiHp. (65)

The GPR is not directly measuring ζi but only taking inner products of it with the

rows of the Φi matrix. The inner product operation can be implemented as shown

in Fig. 57(b). Depending on the structure of Φi, other implementations can also be

used [6, 90].

The result of the CS theory is that the sparse parameter space vector p can

be recovered exactly from M = C (µ2(Φ,ΨH) logN)K CS measurements β with
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overwhelming probability [15], by solving the following ℓ1 minimization problem

p̂ = argmin ‖p‖1 s.t. β = ΦΨHp (66)

where µ(Φ,ΨH) is the coherence between Φ and ΨH defined as in [15]. The nota-

tions are β = [βT
1 , . . . ,β

T
L]T , Ψ = [ΨT

1 , . . . ,Ψ
T
L]T , and Φ = diag{Φ1, . . . ,ΦL}. The

optimization problem in (66) is valid for the noiseless case.

Since the GPR signal is generally noisy, we use the stable recovery procedure

in [12] that obtains the sparsity pattern vector p by solving the following convex

optimization problem

p̂ = arg min ‖p‖1 s.t. ‖AT (β − Ap)‖∞ < ǫ (67)

where A = ΦΨH .

5.2.1 Simulation Results

A test example will illustrate the ideas presented in the previous section. A 2-D slice

of the target space containing two linear structures with line parameters (ρ1, θ1) =

(−5.2, 44) and (ρ2, θ2) = (2.5, 116) is shown in Fig. 58(a). The GPR scans the region

with 2 cm spatial resolution at 20 aperture points. Standard time domain GPRs would

measure the noisy target space response shown in Fig. 58(b). The signal-to-noise ratio

(SNR) is 10 dB. Targets are simulated as a combination of independent point reflectors

and the GPR data is generated in Matlab [52]. To detect the linear features existing

methods invert the data to create an image of the target space, and then search the

image for features using the HT. The target space image formed with time domain

backprojection is shown in Fig. 58(c). The parameter space formed by applying the

HT to Fig. 58(c) is shown in Fig. 58(d). Although two peaks corresponding the two

targets can be seen, the target space is cluttered since the HT has limited resolution.

Our CS-based method doesn’t require sampling of all the space-time domain data.

Instead of measuring the space-time domain response at each aperture position, 20
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Figure 58: (a) Target space, (b) Noisy space-time domain GPR response, (c) Stan-
dard time-domain backprojection algorithm image, (d) HT of the image in (c).
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Figure 59: (a) 400 CS measurements, (b) Solution obtained with the proposed
method using (67).

inner product measurements are formed at each aperture point making 400 mea-

surements in total for 20 aperture points. This is much less than the 512 × 20 raw
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space-time domain measurements used to make the image in Fig. 58(c). The inner

products can be written as the product of the time-domain response with rows of

a random matrix Φi of size 20 × 512 whose entries are drawn independently from

N (0, 1/
√

512). These 400 measurements, shown in Fig. 59(a), are the only infor-

mation used to sense the target space area. The number of linear structures is not

assumed to be known. The parameter space image created with (67) from the com-

pressive measurements is shown in Fig. 59(b). The CS-based method is able to find

the line parameters correctly and directly using a very small number of compressive

raw measurements without the image formation step. Also, since the algorithm favors

sparse solutions, the resultant parameter space is much sparser than the HT image.

5.2.2 Experimental Results

An experimental scenario has been investigated with scale models of linear structure

in an experimental model sandbox [82] filled with nearly-homogeneous sand as shown

in Fig. 60(a). In this case, a scale model for a tunnel is buried within a 1.8 m ×

1.8 m region near the center of the tank. The tunnel is 10 cm in diameter and is

buried approximately 58 cm deep to give a 20:1 scale model for a shallow tunnel just

big enough for a man to slide through. The GPR sensor scans the region with 2 cm

spatial resolution, collecting data in the frequency domain. However, for this paper,

we inverse transform to create the equivalent time-domain measured data, and at each

aperture point we create 20 compressive measurements as projections of the received

time-domain responses onto a different random Gaussian measurement matrix.

Figure 60(b) shows the 2-D slice of the backprojected image along the tunnel

created using all the space-time domain samples. Solving for the line parameters by

the proposed method using the small number of compressed measurements results

in the parameter space in Fig. 60(d). The corresponding line is also plotted on the

backprojected image. The tunnel could be detected and its parameters are found
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Figure 60: (a) Model in the sand tank of a 10 cm tunnel buried approximately 58–
60 cm deep from the surface, (b) Backprojected image using all the space-time raw
GPR data. The line drawn is obtained from (d). (c) HT of the image shown in (b),
(d) Parameter space obtained by the proposed method.
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using a much smaller number of measurements and without the need of creating the

image itself.
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CHAPTER VI

CONCLUSIONS

The problem of sensing a medium by several sensors and retrieving interesting features

is a very general one. The basic framework of the problem is generally the same

for applications from MRI imaging, tomography, Radar SAR imaging to subsurface

imaging, even though the data acquisition processes, sensing geometries and sensed

properties are different. In this thesis we tried to introduce a new perspective to

the problem of remote sensing and information retrieval by studying the problem of

subsurface imaging using GPR and seismic sensors.

In Chapter 2 we have shown that if the sensed medium is sparse in some domain

(i.e., small number of targets) then it can be imaged using many fewer measurements

than required by the standard methods now. This leads to much lower data acquisi-

tion times and better images representing the medium. We have used the ideas from

Compressive Sensing, which show that a small number of “random” measurements

about a signal is sufficient to completely characterize it, if the signal is sparse or com-

pressible in some domain. Although we have applied our ideas to the GPR subsurface

imaging problem, our results are general and can be extended to other remote sensing

applications.

A second objective in remote sensing problems is information retrieval which in-

volves searching for important features in the computed image of the medium. In this

thesis we focus on detecting buried structures like pipes, and tunnels. in computed

GPR or seismic images. The problem of finding these structures in high clutter and

noise conditions, and finding them faster than the standard shape detecting methods

like the Hough transform is analyzed in Chapter 3 and 4.
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One of the most important contributions of this thesis is in Chapter 5, where the

sensing and the information retrieval stages are unified in a single framework using

compressive sensing. Instead of taking lots of standard sensor measurements to com-

pute the image of the medium and look for the necessary information in the computed

image, a much smaller number of compressed measurements in the form of random

projections is taken. The data acquisition and information retrieval stages are unified

by using a data model dictionary that connects the information to the sensor data.

In this way the information is obtained from a small number of compressed sensor

measurements, when the information can be represented sparsely in some domain as

in the problem of detecting buried structures.

Future work will include application of sparsity and remote sensing ideas presented

in this thesis for the problem of subsurface imaging to a more general framework and

different types of problems.
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