103 research outputs found

    Master of Science

    Get PDF
    thesisComputing and data acquisition have become an integral part of everyday life. From reading emails on cell phones to kids playing with motion sensing game consoles, we are surrounded with sensors and mobile computing devices. As the availability of powerful computing devices increases, applications in previously limited environments become possible. Training devices in rehabilitation are becoming increasingly common and more mobile. Community based rehabilitative devices are emerging that embrace these mobile advances. To further the flexibility of devices used in rehabilitation, research has explored the use of smartphones as a means to process data and provide feedback to the user. In combination with sensor embedded insoles, smartphones provide a powerful tool for the clinician in gathering data and as a standalone training tool in rehabilitation. This thesis presents the continuing research of sensor based insoles, feedback systems and increasing the capabilities of the Adaptive Real-Time Instrumentation System for Tread Imbalance Correction, or ARTISTIC, with the introduction of ARTISTIC 2.0. To increase the capabilities of the ARTISTIC an Inertial Measurement Unit (IMU) was added, which gave the system the ability to quantify the motion of the gait cycle and, more specifically, determine stride length. The number of sensors in the insole was increased from two to ten, as well as placing the microprocessor and a vibratory motor in the insole. The transmission box weight was reduced by over 50 percent and the volume by over 60 percent. Stride length was validated against a motion capture system and found the average stride length to be within 2.7 ± 6.9 percent. To continue the improvement of the ARTISTIC 2.0, future work will include implementing real-time stride length feedback

    UTILIZING OF MEMS SENSORS IN REHABILITATION PROCESS

    Get PDF
    The potential for utilizing of MEMS sensors, especially of accelerometers and gyroscopes is significant. They are used not only in consumer’s electronics, but also in so called wearable sensors that can be worn on body or in part of garment without interrupting comfort of person who is wearing these sensors. In the same time, we are able to collect data about person carrying the device. This paper focuses on analysis of current state of utilizing of MEMS sensors in rehabilitation process or in motion analysis

    Salutogenesis: a new paradigm for pervasive computing in healthcare environments?

    Get PDF
    Salutogenesis is now accepted as a part of the contemporary model of disease: an individual is not only affected by pathogenic factors in the environment, but those that promote well-being or salutogenesis. Given that "environment" extends to include the built environment, promotion of salutogenesis has become part of the architectural brief for contemporary healthcare facilities, drawing on an increasing evidence-base. Salutogenesis is inextricably linked with the notion of person-environment "fit". MyRoom is a proposal for an integrated architectural and pervasive computing model, which enhances psychosocial congruence by using real-time data indicative of the individual's physical status to enable the environment of his/her room (colour, light, temperature) to adapt on an on-going basis in response to bio-signals. This work is part of the PRTLI-IV funded programme NEMBES, investigating the use of embedded technologies in the built environment. Different care contexts require variations in the model, and iterative prototyping investigating use in different contexts will progressively lead to the development of a fully-integrated adaptive salutogenic single-room prototype

    Design and implementation of a low-cost mechatronic shoe for biomechanical analysis of the human locomotion

    Get PDF
    In this paper the development of a low-cost and easy wearable mechatronic system for the measurement of ground reaction forces (GRF) for the biomechanical analysis of the human locomotion is presented. The system consists of an insole, a conditioning device for the signals produced by the sensors applied to the insole and a data acquisition system connected to a USB portable storage. The sensors applied to the insole can measure the reaction forces in the horizontal and vertical directions during locomotion. The prototype was validated by comparing the data from the sensors with the values obtained using a force platform

    In vitro analysis of pyrogenicity and cytotoxicity profiles of flex sensors to be used to sense human joint postures

    Get PDF
    Flex sensors can be usefully adopted as mechanical-electrical transducers to measure human joint movements, since their electrical resistance varies proportionally to the angle assumed by the joint under measure. Over time, these sensors have been investigated in terms of mechanical and electrical behavior, but no reports have detailed the possibility of their adoption not just on top but under the human skin of the joint. To this aim, our work investigated in vitro the pyrogenic potential and cytotoxicity of some commercially available flex sensors as a first step toward the necessary requirements regarding their biocompatibility, to predict possible foreign body reactions when used in vivo. Results demonstrated that some specific flex sensors satisfy such requirement

    Measuring operator’s pain : toward evaluating Musculoskeletal disorder at work

    Get PDF
    Musculoskeletal disorders (MSDs) have affected an increasing number of people in the active general population. In this perspective, we developed a measuring tool taking muscle activities in certain regions of the body, standing posture taking the center of pressure under the feet and feet positions. This tool also comprises an instrumented helmet containing an electroencephalogram (EEG) to measure brain activity, and an accelerometer reporting the movements of the head. Then, our tool comprises both non-invasive instrumented insole and safety helmet. Moreover, the same tool measures muscular activities in specific regions of the body using an electromyogram (EMG). The aim is to combine all the data in order to identify consistent patterns between brain activity, postures, movements and muscle activity, and then, understand their connection to the development of MSDs. This paper presents three situations reported to be a risk for MSDs and an analysis of the signals is presented in order to differentiate adequate or abnormal posture

    Master of Science

    Get PDF
    thesisGait analysis is an important tool for diagnosing a wide variety of disorders, with its increasingly accepted benefits culminating in the widespread adoption of motion analysis laboratories. A modern analysis laboratory consists of a multicamera marker tracking system for 3D reconstruction of kinematics and multiple high-fidelity load transducers to determine ground reaction force and enable inverse-dynamics for biomechanics. There is a need for an alternative motion analysis system which does not require a fixed laboratory setting and is lower in cost; freeing the motion capture from the laboratory and reducing the technology costs would enable long-term, home-based, natural monitoring of subjects. This thesis describes two contributions to the end goal of an inexpensive, mobile, insole-based motion analysis laboratory. First is the application of an inertialmeasurement-unit calibration routine and zero-velocity-update algorithm to improve position and orientation tracking. Second is the development, from basic sensor to prototype, of an insole capable of measuring 3 degree-of-freedom ground reaction force. These contributions represent a proof-of-concept that quantitative gait analysis, complete with dynamics, is possible with an insole-based system

    Risk of falling assessment on different types of ground using the instrumented TUG

    Get PDF
    Degradation of postural control observed with aging is responsible for balance problems in the elderly, especially during the activity of walking. This gradual loss of performance generates abnormal gait, and therefore increases the risk of falling. This risk worsens in people with neuronal pathologies like Parkinson and Ataxia diseases. Many clinical tests are used for fall assessment such as the Timed up and go (TUG) test. Recently, many works have improved this test by using instrumentation, especially body-worn sensors. However, during the instrumented TUG (iTUG) test, the type of ground can influence risk of falling. In this paper, we present a new methodology for fall risk assessment based on quantitative gait parameters measurement in order to improve instrumented TUG test. The proposed measurement unit is used on different types of ground, which is known to affect human gait. The methodology is closer to the real walking environment and therefore enhances ability to differentiate risks level. Our system assesses the risk of falling's level by quantitative measurement of intrinsic gait parameters using fuzzy logic. He is also able to measure environmental parameters such as temperature, humidity and atmospheric pressure for a better evaluation of the risk in activities of daily living (ADL)

    Measuring Gait Using a Ground Laser Range Sensor

    Get PDF
    This paper describes a measurement system designed to register the displacement of the legs using a two-dimensional laser range sensor with a scanning plane parallel to the ground and extract gait parameters. In the proposed methodology, the position of the legs is estimated by fitting two circles with the laser points that define their contour and the gait parameters are extracted applying a step-line model to the estimated displacement of the legs to reduce uncertainty in the determination of the stand and swing phase of the gait. Results obtained in a range up to 8 m shows that the systematic error in the location of one static leg is lower than 10 mm with and standard deviation lower than 8 mm; this deviation increases to 11 mm in the case of a moving leg. The proposed measurement system has been applied to estimate the gait parameters of six volunteers in a preliminary walking experiment
    corecore