332 research outputs found

    Gain-Scheduled Complementary Filter Design for a MEMS Based Attitude and Heading Reference System

    Get PDF
    This paper describes a robust and simple algorithm for an attitude and heading reference system (AHRS) based on low-cost MEMS inertial and magnetic sensors. The proposed approach relies on a gain-scheduled complementary filter, augmented by an acceleration-based switching architecture to yield robust performance, even when the vehicle is subject to strong accelerations. Experimental results are provided for a road captive test during which the vehicle dynamics are in high-acceleration mode and the performance of the proposed filter is evaluated against the output from a conventional linear complementary filter

    Attitude Determination Using a MEMS-Based Flight Information Measurement Unit

    Get PDF
    Obtaining precise attitude information is essential for aircraft navigation and control. This paper presents the results of the attitude determination using an in-house designed low-cost MEMS-based flight information measurement unit. This study proposes a quaternion-based extended Kalman filter to integrate the traditional quaternion and gravitational force decomposition methods for attitude determination algorithm. The proposed extended Kalman filter utilizes the evolution of the four elements in the quaternion method for attitude determination as the dynamic model, with the four elements as the states of the filter. The attitude angles obtained from the gravity computations and from the electronic magnetic sensors are regarded as the measurement of the filter. The immeasurable gravity accelerations are deduced from the outputs of the three axes accelerometers, the relative accelerations, and the accelerations due to body rotation. The constraint of the four elements of the quaternion method is treated as a perfect measurement and is integrated into the filter computation. Approximations of the time-varying noise variances of the measured signals are discussed and presented with details through Taylor series expansions. The algorithm is intuitive, easy to implement, and reliable for long-term high dynamic maneuvers. Moreover, a set of flight test data is utilized to demonstrate the success and practicality of the proposed algorithm and the filter design

    Tracking Object based on GPS and IMU Sensor

    Get PDF
    Sensor Wahyudi Meita Sukma Listiyana Sudjadi Ngatelan Department of Electrical Engineering Diponegoro University Semarang, Indonesia [email protected] Abstract— Unmanned vehicles required a tracking system to monitor the movement of the object. Tracking system required because the object is controlled remotely and the movement of an object is too far from an operator. This tracking system requires object location and attitude. Global Positioning System (GPS) and Inertial Measurement Unit (IMU) sensor can be used to obtain information about object location and attitude. This IMU consists of some sensors, i.e. accelerometer, gyroscope, and magnetometer. In IMU system, angle data from gyroscope and accelerometer sensor must be combined using a complementary filter because each sensor data still has a noise signal. This paper discusses tracking object using GPS and IMU sensor and then processed by the microcontroller to display in Personal Computer (PC). Object tracking system that designed works well. The result of testing, the average of error for GPS and IMU system, respectively, are 2.67 m and 0.96o

    Keeping a Good Attitude: A Quaternion-Based Orientation Filter for IMUs and MARGs

    Full text link
    Orientation estimation using low cost sensors is an important task for Micro Aerial Vehicles (MAVs) in order to obtain a good feedback for the attitude controller. The challenges come from the low accuracy and noisy data of the MicroElectroMechanical System (MEMS) technology, which is the basis of modern, miniaturized inertial sensors. In this article, we describe a novel approach to obtain an estimation of the orientation in quaternion form from the observations of gravity and magnetic field. Our approach provides a quaternion estimation as the algebraic solution of a system from inertial/magnetic observations. We separate the problems of finding the “tilt” quaternion and the heading quaternion in two sub-parts of our system. This procedure is the key for avoiding the impact of the magnetic disturbances on the roll and pitch components of the orientation when the sensor is surrounded by unwanted magnetic flux. We demonstrate the validity of our method first analytically and then empirically using simulated data. We propose a novel complementary filter for MAVs that fuses together gyroscope data with accelerometer and magnetic field readings. The correction part of the filter is based on the method described above and works for both IMU (Inertial Measurement Unit) and MARG (Magnetic, Angular Rate, and Gravity) sensors. We evaluate the effectiveness of the filter and show that it significantly outperforms other common methods, using publicly available datasets with ground-truth data recorded during a real flight experiment of a micro quadrotor helicopter

    Navigation System Heading and Position Accuracy Improvement through GPS and INS Data Fusion

    Get PDF
    Commercial navigation systems currently in use have reduced position and heading error but are usually quite expensive. It is proposed that extended Kalman filter (EKF) and Unscented Kalman Filter (UKF) be used in the integration of a global positioning system (GPS) with an inertial navigation system (INS). GPS and INS individually exhibit large errors but they do complement each other by maximizing the advantage of each in calculating the heading angle and position through EKF and UKF. The proposed method was tested using low cost GPS, a cheap electronic compass (EC), and an inertial management unit (IMU) which provided accurate heading and position information, verifying the efficacy of the proposed algorithm

    Navigation and autonomy of soaring unmanned aerial vehicles

    Get PDF
    The use of Unmanned Aerial Vehicles (UAV) has exploded over the last decade with the constant need to reduce costs while maintaining capability. Despite the relentless development of electronics and battery technology there is a sustained need to reduce the size and weight of the on-board systems to free-up payload capacity. One method of reducing the energy storage requirement of UAVs is to utilise naturally occurring sources of energy found in the atmosphere. This thesis explores the use of static and semi-dynamic soaring to extract energy from naturally occurring shallow layer cumulus convection to improve range, endurance and average speed. A simulation model of an X-Models XCalibur electric motor-glider is used in combination with a refined 4D parametric atmospheric model to simulate soaring flight. The parametric atmospheric model builds on previous successful models with refinements to more accurately describe the weather in northern Europe. The implementation of the variation of the MacCready setting is discussed. Methods for generating efficient trajectories are evaluated and recommendations are made regarding implementation. For micro to small UAVs to be able to track the desired trajectories a highly accurate Attitude Heading Reference System (AHRS) is needed. Detailed analysis of the practical implementation of advanced attitude determination is used to enable optimal execution of the trajectories generated. The new attitude determination methods are compared to existing Kalman and complimentary type filters. Analysis shows the methods developed are capable of providing accurate attitude determination with extremely low computational requirements, even during extreme manoeuvring. The new AHRS techniques reduce the need for powerful on-board microprocessors. This new AHRS technique is used as a foundation to develop a robust navigation filter capable of providing improved drift performance, over traditional filters, in the temporary absence of global navigation satellite information. All these algorithms have been verified by flight tests using a mixture of manned and unmanned aerial vehicles and avionics developed specifically for this thesis

    Formulation of a new gradient descent MARG orientation algorithm: case study on robot teleoperation

    Get PDF
    We introduce a novel magnetic angular rate gravity (MARG) sensor fusion algorithm for inertial measurement. The new algorithm improves the popular gradient descent (ʻMadgwick’) algorithm increasing accuracy and robustness while preserving computa- tional efficiency. Analytic and experimental results demonstrate faster convergence for multiple variations of the algorithm through changing magnetic inclination. Furthermore, decoupling of magnetic field variance from roll and pitch estimation is pro- ven for enhanced robustness. The algorithm is validated in a human-machine interface (HMI) case study. The case study involves hardware implementation for wearable robot teleoperation in both Virtual Reality (VR) and in real-time on a 14 degree-of-freedom (DoF) humanoid robot. The experiment fuses inertial (movement) and mechanomyography (MMG) muscle sensing to control robot arm movement and grasp simultaneously, demon- strating algorithm efficacy and capacity to interface with other physiological sensors. To our knowledge, this is the first such formulation and the first fusion of inertial measure- ment and MMG in HMI. We believe the new algorithm holds the potential to impact a very wide range of inertial measurement applications where full orientation necessary. Physiological sensor synthesis and hardware interface further provides a foundation for robotic teleoperation systems with necessary robustness for use in the field

    Sensitivity Analyses of Optimized Attitude Estimators Using Sensor Fusion Solutions for Low-Cost MEMS Configurations

    Get PDF
    Since the 1990’s, there has been increased focus on creating navigation systems for small unmanned systems, particularly small unmanned aerial systems (SUAS). Due to size, weight, and cost restrictions, compared to larger more costly manned systems, navigation systems for SUAS have evolved to be quite different from the proven systems of the past. Today, there are many solutions for the problem of navigation for SUAS. The problem has now become choosing the most fitting navigation solution for a given application/mission. This is particularly true for evaluating solutions that are fundamentally different. This research analyses the performance and sensitivity of four sensor fusion solutions for attitude estimation under multiple simulated flight conditions. There are three different hardware configurations between the four estimators. For this reason, each estimator is tuned to be experimentally optimal, as to provide a fair comparison between different estimators. With each estimator tuned to its highest performance, the estimators are compared based on their sensitivity to tuning error, sensor bias, and estimator initialization error. Finally the estimators\u27 accuracy performances are directly compared. This thesis also provides methods to tune different configuration estimators to their individual best performances. These methods show that choosing tuning parameters based on sensor noise covariance, as is typically done in research, does not produce optimal performance for all estimator formulations. After comparing multiple sensitivity and performance properties of the estimators, observations are provided regarding the efficacy of the analyses, including the applicability of the metrics used to determine performance. Some metrics where shown to be misleading for particular estimators or analyses. Ultimately, guidance is given for choosing performance metrics capable of comparing different solutions

    Quantitative Shape Measurement of an Inflatable Rubber Dam Using an Array of Inertial Measurement Units

    Get PDF
    Shape measurement plays an important role in the condition monitoring and operation control of inflatable rubber dams. This paper presents a method to measure the cross-sectional shape of a rubber dam using an array of inertial measurement units (IMUs) placed on the circumference of the dam. Accelerometer and gyroscope measurements are combined using an adaptive complementary filter to determine the tangent angles of the dam circumference. The adaptive complementary filter adjusts the weights of the accelerometer and gyroscope measurements dynamically in order to reduce the uncertainty in orientation estimation due to external acceleration under dynamic conditions. A natural cubic spline that interpolates the measured tangent angles at discrete locations is used to represent the tangent angles along the dam circumference as a continuous function of the arc length. Finally, the cross-sectional shape is reconstructed by integrating the continuous tangent angle function along the circumference of the dam. Experimental assessment of the measurement system was performed on a purpose-built test rig using a digital camera as a reference measuring device. Results under a typical static condition show that the measured and reference shapes agree well with each other, with a similarity index of 3.74%, mismatch distance of the last IMU node being 12.3 mm and relative error of height measurement being -2.44%. Under dynamic conditions, the measurement results deteriorate due to external acceleration, but considerable improvement is achieved in comparison with an accelerometer-only approach. In addition, elimination of faulty nodes from shape reconstruction has negligible influence on the results, suggesting that the measurement system enjoys a high degree of fault tolerance
    corecore