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Abstract 

Since the 1990’s, there has been increased focus on creating navigation systems for small unmanned 

systems, particularly small unmanned aerial systems (SUAS). Due to size, weight, and cost restrictions, 

compared to larger more costly manned systems, navigation systems for SUAS have evolved to be quite 

different from the proven systems of the past. Today, there are many solutions for the problem of 

navigation for SUAS. The problem has now become choosing the most fitting navigation solution for a 

given application/mission. This is particularly true for evaluating solutions that are fundamentally 

different. 

This research analyses the performance and sensitivity of four sensor fusion solutions for attitude 

estimation under multiple simulated flight conditions. There are three different hardware configurations 

between the four estimators. For this reason, each estimator is tuned to be experimentally optimal, as 

to provide a fair comparison between different estimators. With each estimator tuned to its highest 

performance, the estimators are compared based on their sensitivity to tuning error, sensor bias, and 

estimator initialization error. Finally the estimators' accuracy performances are directly compared. 

This thesis also provides methods to tune different configuration estimators to their individual best 

performances. These methods show that choosing tuning parameters based on sensor noise covariance, 

as is typically done in research, does not produce optimal performance for all estimator formulations. 

After comparing multiple sensitivity and performance properties of the estimators, observations are 

provided regarding the efficacy of the analyses, including the applicability of the metrics used to 

determine performance. Some metrics where shown to be misleading for particular estimators or 

analyses. Ultimately, guidance is given for choosing performance metrics capable of comparing different 

solutions. 
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1. Introduction - Attitude Estimation for Small Unmanned Applications 

Navigation systems are a fundamental component of the growth in autonomous systems. Navigation 

systems provide a system with its position, velocity, and attitude (PVA) [1][2]. These systems continue to 

evolve as new problems or industry demands arise. Current industry demands include making smaller, 

less expensive, more accurate, and more reliable solutions for guidance, navigation, and control (GN&C) 

for many kinds and sizes of air/water/space craft. With these much lighter, smaller, and cheaper 

sensors, also came a new set of solutions to the navigation problem, particularly attitude determination. 

Solutions for determining attitude of spacecraft, commercial/military aircraft, missiles, submarines, and 

other large and/or higher cost applications have existed for decades. Capabilities and limitations of 

different solutions are well known throughout those industries. Size, weight, and/or cost preclude these 

solutions' use for small and/or inexpensive autonomous systems. 

Sensors, a fundamental component of navigation systems, are inherently different between small lower-

cost unmanned systems, and larger higher-cost systems. Due to this fundamental difference, some small 

unmanned systems attitude solutions have been developed independent of previous proven solutions. 

Previous proven attitude solutions for larger systems came from the Inertial Navigation Systems (INS) on 

board the vehicle, which contained only rate gyros and accelerometers for sensors. The concept of 

inertial navigation is to navigate without the need for any manmade references external to the vehicle 

itself. The INS sensors available to smaller low cost systems are much lower quality, therefore noisier. 

The smaller, low-cost solutions tend toward utilization of dissimilar additional sensors to address sensor 

quality/noise issues. Such dissimilar sensors include: magnetometers, infrared sensors, air data sensors, 

GPS, and cameras. These problems with the new, small, low cost systems require new sensor 

configurations and solutions. This is not to say that small unmanned systems were developed 
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completely independent of prior solutions; It is just to identify the fundamental differences between the 

problems. 

Just as proven past solutions have not been adopted for these smaller low-cost systems, neither have 

their proven evaluation criteria. Without agreed upon performance and evaluation criteria, the best 

solutions to this new navigation for small unmanned systems problem cannot yet have been agreed 

upon. Like in the earlier days of previous navigation systems, multiple configurations have been, and are 

continuing to be developed. Also, like during the refinement of Inertial Navigation Systems, conflicting 

performance analyses and results emerged [3][4]. An interesting few lines from the "Foreward" in [4] 

illustrates history's repetition with the new generation of solutions to the latest navigation problem: 

During this time [1971] different general configurations produced systems with very different 

types of performance, although with the same basic components. Accordingly, a common basis 

for meaningful comparison of the performance of these systems was lacking, and discussions by 

proponents and opponents of a given configuration generated more heat than light. This book... 

is the first definitive attempt that successfully provides a basis for a realistic comparison of 

performance of various inertial system configurations... The solution is not a simple, rule-of-

thumb technique... 

-Walter Wrigley, Sc. D 
Professor of Instrumentation and Astronautics 

Educational Director, Charles Stark Draper Laboratory 
Massachusetts Institute of Technology 

 

This analysis will evaluate only solutions that utilize only small low-cost sensors. It will also focus on 

methods of evaluation for these types of solutions, as to contribute toward a comprehensive common 

basis upon which to compare solutions. 
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1.1. Problem Statement: 

The following is a list of Problem Statements addressed in this thesis. 

1. Currently, there are many solutions to the problem of attitude estimation for small low-cost 

solutions. A good “fits all solution”, or single “industry standard” does not exist. 

Evidence in [5] shows that a COTS solution does not perform as well as other algorithms-- including 

extremely simplified open source solutions. In order for an “industry standard” solution to exist, a 

robust, comprehensive, and common metric must be created in order to conclusively compare 

solutions. 

2. There are apparently conflicting conclusions from different research groups [3]. 

It is hypothesized, by the author, that this is due to inconsistent testing methods, and even 

inconsistent solutions between the groups. Processes, algorithms, and test methods of these 

complex systems are not always detailed enough to enable replicable consistent baselines between 

researchers. 

3. Researchers do not often provide insight to performance vs. complexity. 

Additional complexity comes with potential unintended consequences and cost; therefore 

complexity should provide additional value in the form of performance. Additionally, it is valuable to 

know what performance "bare minimum" or simple solutions provide for the same reason it is 

valuable to know when you can use a tape measure vs. micrometer. 
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1.2. Objectives: 

The following solutions toward each Problem Statement are the objectives of this thesis. 

1. Solutions toward Problem Statement #1: 

a. Produce sensitivity analyses highlighting conditions that provide insight to behaviors and 

performance of different attitude estimation solutions. 

b. The intent is for these analyses to contribute toward a robust, comprehensive, and common 

metric for determining performance of attitude estimation. An agreed upon metric would 

enable conclusive comparisons of solutions, and identification of industry top performers. 

2. Solutions toward Problem Statement #2: 

a. In order to contribute to replicability in future work, processes, algorithms, and test methods 

will be more detailed as to be replicable. 

b. It will be demonstrated that each solution is optimized, prior to evaluation against other 

solutions, in order to ensure that no sub-optimally tuned solution is compared to a more 

optimally tuned solution. 

3. Solutions toward Problem Statement #3: 

a. Estimators with different levels of complexity will be compared to each other to provide insight 

to performance vs. complexity. 

  



 

5 
 

1.3. Literature Review 

1.3.1. History of Navigation Systems 

1.3.1.1. Early Navigation 

Navigation, for quite some time, was defined as the determination of position and velocity with respect 

to some reference(s) [4]. Navigation has been, and continues to be a foundational component of many 

human advances. The oldest, and most basic, navigation problem humans encountered was how to get 

from their initial position to a desired destination within their line of sight. This problem quickly became 

more complex when destinations were no longer in line of sight. There are many large areas on Earth in 

which humans would have no line of sight references upon which to depend (i.e. deserts and oceans). 

Compasses were able to solve this problem up to a certain distance, depending on the skills of the 

human navigator. Navigation across Earth's most vast reference-less areas, though, required celestial 

navigation. Celestial navigation, or astronavigation, utilizes position of celestial bodies such as the sun 

and stars with respect to the observer to determine the observer's location on Earth. 

Thus far, humanity's ability to navigate Earth was either limited (i.e. the compass/navigator), or 

depended on line of sight of Earth based or celestial references. Visibility, time of day/night, and time 

required for humans to make calculations limited navigation capability for many years. In the mid 1800s 

the gyro was first used as an inertial reference. Though, it was not until 1908 that the gyrocompass was 

invented—motivated by interference of magnetic compasses due to metal ships and the potential for 

submarine use in WWI. Multiple inventors came forward with the first gyrocompasses in 1908 [6], [7]. 

These gyrocompasses, though a fundamental step toward inertial navigation, did not provide position or 

velocity-- necessary components of a navigation system. 
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1.3.1.2. Inertial Navigation 

The gyrocompass was the first inertial reference technology. In the 1910s, Sperry created the first 

gyroscopes that could indicate attitudes of bodies [6]. Other technologies were needed in order to 

navigate, though, as gyroscopes do not provide position or velocity. This was solved by radio navigation, 

which utilized radio signals from known locations on Earth to determine position and velocity. All of 

these technologies began to contribute to a system's ability to navigate autonomously, and quickly. 

Radio navigation, though, was limited due to radio range and had a significant disadvantage in WWII-- 

being detectable by enemies. 

Inertial navigation had significant motivation from the development of submarines and airplanes. Due to 

the dynamics of these vehicles, the term "navigation" began to incorporate not just position and 

velocity, but also attitude (PVA) [1][2]. Inertial navigation enables a vehicle to determine its PVA without 

use of any manmade references external to the vehicle itself—such that a vehicle can navigate without 

detection [8]. 

The first use of inertial navigation was the German V-2 missile in 1942 [7][8]. Early inertial navigation 

utilized gimbals and gyroscopes to directly determine attitude and accelerometers (integrated 

computationally) to determine velocity and position. Determining position and velocity in this manner is 

known as Dead Reckoning (DR). This type of configuration is known as gimbaled or stabilized. It should 

be noted that there are multiple classifications/configurations of gimbaled, or stabilized, INS with names 

both based on their physical configuration or the analytical means by which they determine PVA from 

their components [4][9][1] . For the purpose of this analysis, though, these will all be classified as one 

type of INS (gimbaled/stabilized) with the uniting characteristic that they measure attitude directly. This 

configuration matured to have high enough performance to be used in the Apollo's Inertial Navigation 

System (INS) [10] for man's first mission to the moon in 1969. 
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Though the gimbaled systems were well proven, the need for smaller, lighter, more reliable, and 

cheaper sensors drove the need for what is now known as Strapdown INS. Strapdown systems are 

mounted with respect to the vehicle's body. Strapdown systems do not measure attitude directly, nor 

do they measure acceleration with respect to the Earth (i.e. North and East) as the gimbaled systems 

did. Given that desired states are not directly measured, Strapdown INS required significantly more 

computations. Though computationally more complex, Strapdown INS were considered better overall 

due to their ability to decrease the size, weight, and cost while increasing reliability of INSs. Though a 

Strapdown INS was patented in 1956, due to the limitations of digital computers, they were not practical 

until the 1970s [4][1]. 

It is at this point in the chronology that the transition from gimbaled INS to Strapdown INS occurs and, 

for unrelated reasons, the INS problems of spacecraft diverge somewhat from that of aircraft. The 

sensors available to aircraft vs spacecraft, and the equations of motion are different enough that the INS 

configurations are not necessarily the same for the two applications, though they share similar 

components. For example, spacecraft have alternative methods to directly measure PVA such as star 

trackers and use of advantageous properties of their particular dynamics that are not relevant for 

aircraft. Because of these differences, the developments of INS for, or in relation to, spacecraft will not 

be reviewed any further. 

Also around the time that Strapdown INS were gaining popularity in the 1970's [2], the Global 

Positioning System (GPS) was established. GPS was an amazing breakthrough in that it was a solution to 

the original navigation problem (position and velocity) without the use of more complicated to use and 

range limited radio navigation systems of the time. Like INS, the theory supporting GPS originated 

decades before, and implementation came when technology caught up. GPS has quite an interesting 

origin story. It was discovered somewhat accidentally in 1957 by a few employees at Johns Hopkins 
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Applied Physics Lab (APL). They wanted to see if they could pick up on signals Sputnik, the first 

manmade satellite, launched by Russia in 1957 was sending. Further intrigue allowed them to use the 

Doppler effect to estimate the position and velocity of the satellite. Inverting that process produces the 

fundamental concept of GPS [11]. 

Strapdown INS are typically comprised of rate gyros and accelerometers [9]. Given that Strapdown 

Systems measure gyro rate, each of their PVA outputs have an additional source of error— the 

integration of gyro drift. Gimbaled systems were susceptible to gyro drift, but their gyros measured 

attitude directly so the measurement errors were not increased by integrating input errors. Therefore, 

the success of strapdown systems is highly dependent on accurate body gyro measurements. There 

were multiple gyro technologies that were developed and used in different Strapdown INS 

configurations [9]. The Ring Laser Gyro (RLG), though, has been the most commonly used of these 

technologies since the 1990's [1]. Due to their standardization in INS, there is much documentation on 

RLG technologies [1][9]. For the purpose of this study, the most important characteristic of the RLG is its 

extreme accuracy for sensing gyro rates. 

It's worth noting that, though INS have become extremely accurate, their DR solution for position and 

velocity and/or the accuracy of position or velocity of a target (i.e. runway or aircraft carrier) typically 

require the aid of additional sensors. This type of INS is known as aided-INS. Aided-INS utilize man made 

references external to the vehicle to aid navigation—typically position and velocity. Typical aiding 

sensors include radio, radar, and GPS.  

1.3.1.3. Navigation for Small Unmanned Aerial Systems 

In the 1990's the demand for unmanned systems, particularly small unmanned aerial systems (SUAS) 

began to emerge as supporting technologies came to maturity. The standard INS of the day, due to the 
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RLGs' size and cost, had limitations precluding use in SUAS applications. SUAS navigation research and 

development sought solutions to the size and cost problem in Micro Electro-Mechanical Sensors 

(MEMS). At the heart of a typical MEMS INS is an Inertial Measurement Unit (IMU) that, like its INS 

ancestors, consists of rate gyros and accelerometers. MEMS IMUs typically have 3 orthogonally aligned 

gyros and 3 orthogonal accelerometers. MEMS, though, have significantly more noise than sensors used 

in larger more expensive INS. Particularly, MEMS gyros have much more drift—on the order of degrees 

per second per second. Each output of PVA calculations is highly dependent on gyro rate, and highly 

affected by the integration of the drift error. Therefore MEMS based navigation has new or different 

problems compared to navigation systems of the past.  

1.3.2. Current State of Attitude Solutions for SUAS 

Solutions to the navigation problem for SUAS typically include additional sensors to supplement the 

noisy IMU. Typical sensors include one to three axis magnetometers, infrared sensors, air data sensors, 

GPS, and cameras. Unlike navigation solutions of the past, navigation for SUAS frequently utilizes non-

inertial sensors to calculate, or aid in calculation of, attitude. Previously, the INS system generated 

attitude calculations and the INS was only aided in position and velocity calculations. This paradigm is 

not true for the SUAS navigation problem. This is not to say that an INS determination of attitude is not 

possible for small unmanned systems. IMU/magnetometer and IMU/airspeed sensor configurations 

have shown to provide attitude solutions complying with the definition of inertial navigation; though, 

these attitudes are not typically of sufficient accuracy for adequate DR of position and velocity. 

Currently there are many partial and full navigation solutions for SUAS. There are four fundamental 

components to these new solutions, particularly for the new attitude solutions: the sensors, the 

mathematical formulations by which the sensors and vehicle dynamics relate, the filter, and the 
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computer/processor through and upon which the solution is implemented. Since these analyses are 

done in simulation, only the former three will be reviewed. 

There are many terms used w.r.t. the small unmanned systems navigation problem and its solutions. For 

clarity, some of these terms will be related to the three fundamental components of interest of the new 

navigation solution described in the paragraph above. Specifically, "Sensor Fusion" and "State 

Estimation" (or "State Estimator") will be defined. 

"Sensor Fusion" is a high level term that describes, generically, the combination of sensor data [12]. That 

is "Sensor Fusion" encompasses all of the terms described thus far as well as additional components and 

topics not covered in this thesis. A "State Estimator", or more generically "Estimator", combines the 

mathematical formulations and the filter(s) that operate on the sensors. Perhaps the simplest distinction 

between "estimator", "formulation", and "filter" is the example where states or solutions of interest are 

directly measurable by multiple sensors. In this case, "estimator" and "filter" are interchangeable, as 

there are no formulations by which to relate desired states to measurements. It is only in this form that 

filter theory can prove a filter to be an optimal estimator (see Section 2.2: Non-Linear Estimation) 

1.3.2.1. Sensors 

Sensors typical of SUAS attitude solutions are reviewed in this section. They are qualitatively ordered, 

based on the author's knowledge, from most to least successful or frequently implemented for attitude 

estimation. This qualitative ordering does not account for success or popularity in the estimation or 

measurement of position or velocity, as that is not the focus of this study. Only the following sensors are 

used in estimators in this analysis: IMU, GPS, and airspeed sensor. 
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1.3.2.1.1. Sensors Used for Estimators in this Analysis 

The most common sensor used for attitude estimation, like previous INS, is the Inertial Measurement 

Unit (IMU). An IMU typically consists of 3 orthogonally aligned accelerometers and 3 orthogonal rate 

gyros. The IMU is used for most attitude estimation solutions as it provides direct measurement of body 

dynamics and, likely, because it is such a fundamental component of the previous proven INS attitude 

solutions. The IMU's main disadvantage is the gyro drift typical of the rate gyros used in the smaller 

IMUs. 

The Global Positioning System (GPS) utilizes known position and velocity of satellites to triangulate the 

"unknown" position of GPS receivers on Earth. GPS's main advantage is that it directly solves the original 

navigation problem by directly providing position and velocity. Additionally GPS, alone, can be used to 

produce a rough low frequency attitude estimate that can help compensate the IMU's gyro drift [13]. 

GPS's main disadvantages are the availability and integrity of its calculation of position and velocity. GPS 

requires a strong signal to the satellite which is not always available indoors for low cost GPS, though 

this problem has had great improvement in recent years. The integrity problem, ironically, has only seen 

improvement by fusing IMU measurements with GPS measurements to provide better position and 

velocity estimates when the GPS signal is degraded. GPS calculation of position and velocity can be 

affected by buildings, trees, or the vehicle body interference between the satellite and the receiver. 

Additionally GPS signals are susceptible to jamming and spoofing, which has been a concern for military 

applications and is becoming more of a concern for civil applications. 

There are multiple air data sensors typical of today's aircraft. Total and static pressure measurements 

are more typical for navigation solutions. Static pressure measurements provide a good low frequency 

measurement used for determining altitude. The combination of total and static pressure 

measurements provides an airspeed measurement. A Pitot-static tube and two pressure sensors, or a 
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single differential pressure sensor, provide the system with the airspeed measurement. The main 

advantages of this sensor are: provides indication of airspeed, which is a fundamental measurement for 

determining body forces for a fixed wing aircraft. Additionally, when in no wind this sensor provides 

measurement of total velocity, and can be coupled with instantaneous rotation rate of the gyros and 

accelerometer measurements to produce an attitude estimate via estimation of the gravity vector (see 

Section 3.2 Airspeed Aided Inertial Attitude Extended Kalman Filter) [14]. The main disadvantage of 

these sensors is that they are only valid at higher airspeeds. In the case of quad copters or vertical 

takeoff and landing (VTOL) SUAS, these sensors do not always provide valid measurements. 

1.3.2.1.2. Other Sensors 

Cameras capture images and video by recording light reflection from objects. Recent advances in 

artificial intelligence and machine vision have increased the versatility of the camera as a sensor. These 

new algorithms are enabling cameras to possibly be staged to replace multiple other sensors such as 

airspeed measurement devices, radio navigation arrays, and LIDAR. Applied solutions are emerging in 

this area at a significant rate; however, camera based solutions have one major disadvantage. That 

disadvantage is that since their "measurement" of anything is based on machine vision or image 

processing algorithms that do not have an easily quantifiable a priori error or error rate. Quite a few 

accidents have occurred recently in the autonomous automobile industry due to unforeseen failure 

modes of camera based algorithms in the autopilots.  

Magnetometers have the ability to measure angles relative Earth's magnetic poles, directly. Multi-axis 

magnetometers have the ability to measure attitude, assuming a proper calibration of the sensors, and a 

general knowledge magnetic field in the vicinity of the vehicle. Given the lack of direct measurement of 

attitude of Strapdown systems, and the gyro drift problems of SUAS applications, a direct attitude 

measurement is quite appealing. The primary disadvantages to this sensor are the limited accuracy, 



 

13 
 

dependence on knowledge of the local magnetic field (a function of position and altitude), and 

interference due to metals and electricity in the vicinity of the vehicle. The latter of the disadvantages 

was what led to the pursuit of the gyrocompass many years before. 

Infrared sensors utilize the reflection of heat and light off of the Earth's surface to provide a rough 

measurement of attitude. Their primary disadvantage is error due to inconsistent ground reflections. 

These inconsistencies come from different materials on Earth's surface (i.e. grass, concrete, or water). 

These different materials' reflection properties present a problem not many people have seen as worth 

pursuing. Horizon sensors were explored in the early days of SUAS for simple, rough, low-cost attitude 

stabilization [15]. 

1.3.2.2. Estimation 

As stated previously, estimation requires combining the mathematical formulations and the filter(s) that 

operate on the sensors such that they produce estimate(s) of desired states. This requires both 

formulation and filtering. The following subsections will give a brief overview of formulations and filters 

for small unmanned systems. 

1.3.2.2.1. Formulations 

There are many formulations used to solve the navigation problem for small unmanned systems. 

Generally, researchers aim to solve for or estimate vehicle position, velocity, pitch/roll, yaw, gyro bias, 

or any and all combinations of these. There is a broad range of complexity and recursion between all the 

formulations. For example, some aim to solve for only pitch and roll using only the IMU; while others 

aim to solve for all states using a suite of sensors. Often, results highlight the comparison between 

filters, and do not discuss as much the impact of the filter inputs--the formulations. The focus on filters, 

without attention to filter inputs, is contributing to conflicting comparison results [3]. Regardless, the 

formulation is a significant part of the estimator or solution and should be carefully considered in 
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comparison just as much as, if not more than, the filters that provide the estimate or solution output. A 

good cross section of solutions utilizing IMU, GPS, and/or airspeed sensors exists within a few cited 

works that contain comparisons [2][5][14]. 

1.3.2.2.2. Filters 

There are many filters for which to integrate into the estimation solution. For particular formulations, 

estimators can perform identically using multiple filters [16][3]. Filters typical of attitude estimation for 

small unmanned systems include: Complementary Filters (CF), Extended Kalman Filters (EKF), Unscented 

Kalman Filters (UKF), H-Infinity (H∞), Particle Filters (PF), and Information Filters (IF).This analysis will 

only include solutions from the first three. 

1.3.2.2.2.1. Complementary Filter 

The complementary filter, as the name implies, involves combining two complementary inputs as to 

produce a filtered output. An explicit example is provided in the Complementary Filter Theory Section. 

Complementary filters are single input, single output (SISO), but can still be used to estimate multiple 

states individually [17]. Complementary filter analyses are traditionally done in the frequency domain. 

After the discovery and successful implementation of the EKF, CFs became less popular due to the 

potential advantages of the EKF. However, recently, likely motivated by simplicity for small unmanned 

systems, CFs are being revisited and are producing promising results [17][18][19]. 

1.3.2.2.2.2. Extended Kalman Filter 

The Extended Kalman Filter gained massive popularity after its use on the Apollo program in 1960s [20]. 

The Kalman Filter, the EKF's predecessor, has been proven to be an optimal estimator from multiple 

criteria [2]. The KF, though, was limited to linear applications. The EKF is the evolution of the KF for non-
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linear systems. Though the optimal estimation proofs do not hold true for the EKF, it remains a widely 

used filter in aerospace and other industries. 

Kalman Filters are essentially a combination of measured and predicted values. These predicted values 

come from the propagation of the states of interest through a system model. In order for states to be 

propagated through a non-linear system model using a KF, the equations must be linearized. This 

linearization step is what differentiates the KF from the EKF. 

EKFs have been implemented in many estimation solutions with success. Though, multiple problems 

have been reported with EKFs. Some of these problems have been solved, but were typically application 

(or formulation) specific solutions [2]. It is worth noting, w.r.t. attitude estimation, that the application 

that gained the EKF its fame included a direct measurement of the state being estimated—attitude. 

There are pseudo attitude calculations from accelerometers or GPS that can be used, but these are not 

always used by the estimators that utilize EKFs. Also, these are estimated attitudes themselves. This is 

all to say that the formulation supporting the estimator that gained the EKF its fame is not the same as 

the formulation being used with EKFs for small unmanned systems. Additionally, the EKF assumes a 

normal Gaussian distribution for noise. These are not guaranteed properties of MEMS sensors. 

Furthermore, the noise properties of an input to a filter that is not a direct measurement, are not the 

same as the noise properties of the sensors. That is, the sensors and their noise have been propagated 

through formulations prior to input to the filter. This is a fundamental architectural difference between 

typical attitude estimators for small unmanned systems, and the original implementation of the EKF for 

attitude estimation on the Apollo. 

1.3.2.2.2.3. Unscented Kalman Filter 

In 1997, the Unscented Kalman Filter was introduced as a new non-linear estimator. In order to predict 

states and covariance, the EKF approximates the non-linear system by linearizing the system model. The 



 

16 
 

UKF, instead, approximates the Gaussian distribution of the estimate and covariance, then propagates 

thesigma points through the nonlinear system model to predict states and covariance [21]. 

There are many theoretical advantages to the UKF over the EKF. Particularly, the UKF does not require 

linearization of the system model, which becomes worse of an approximation as the system dynamics 

become more nonlinear. Additionally, the UKF does not make assumptions about the sensor or process 

noise, as it calculates mean and covariance based on statistical distributions. 

Some have reported superior results with the UKF compared to the EKF, but the opposite is also true. 

This is likely due to differences in the formulations that were combined with the filters for the 

estimators. When all else is held constant, the filters have been shown to perform similarly [3]. 
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2. Theory 

Firstly, a distinction of terminology should be made with respect to "Filter" vs. "Formulation". The 

different filter theories exist on their own without regard to attitude estimation. These same filter 

theories are also used for estimation of other parameters in fields such as engineering, medicine, and 

finance. "Formulation", in this text will refer to the equations of motion (EOM), assumptions, and 

implementation of the chosen sensor inputs for the attitude estimation problem. "Estimator", in this 

text, will refer to the filter/formulation fusion solution. 

2.1. Coordinate Frames and Rotational Kinematics 

The formulations in this document primarily use three coordinate systems: Inertial Frame, Vehicle 

Frame, and Body Frame. A Wind frame is used in one of the formulations (Airspeed Aided EKF); This will 

be discussed in Section 3.2. All coordinate frames used are right hand orthogonal frames. 

Inertial (Earth) Frame: 

The inertial frame is an Earth-fixed frame with an origin at the point at which the flight begins. The 

coordinate frame axes are such that the x-axis points North, the y-axis points East, and the z-axis points 

"down" toward the center of the Earth. This system is commonly referred to as NED (North, East, Down). 

This frame will enable measurement of the vehicle position, velocity, and acceleration w.r.t. Earth. It is 

possible to use this frame, without another frame whose origin is w.r.t. the center of the earth, 

longitude, and/or latitude because the Airlib simulation environment model (see Section 4.1) is defined 

in this inertial frame.  

Vehicle Frame: 



 

18 
 

The vehicle frame maintains the same orientation, or axis-alignment, as the inertial frame, but its origin 

is at the center of gravity of the vehicle. This frame enables measurement of vehicle attitude angles 

w.r.t. Earth (since the vehicle frame remains aligned with the inertial frame). 

Body Frame: 

The body frame's origin, like the vehicle frame, is at the center of gravity of the vehicle. Though, its axes 

are aligned with the vehicle's body. The x-axis points from c.g. to the aircraft nose, the y-axis points from 

the c.g. to the right wingtip, and the z-axis points from the c.g. down (90deg from the x and y axes, as to 

maintain a right handed coordinate system). This frame enables measurement of accelerations and 

rotations from on-board the vehicle. 

It should be noted that, in other analyses, researchers can align the body from such that the x-axis 

points aft and the z-axis points up. The body axes relative to the accelerometer alignment is an 

important relationship to keep in mind. This affects the majority of transformation matrices used in 

attitude estimation problems. 

Wind Frame: 

The wind frame is oriented along the airspeed vector as it interacts with the body. For an aircraft, forces 

on the body (and acceleration of the body) are solely a function of the body's interaction with the air 

around it (i.e. aerodynamic lift). The previous statement neglects buoyancy, assuming the aircraft 

density is significantly denser than air. 

Interactions of Frames: 

The inertial, vehicle, and body frames are depicted in Figure 2-1, below. The vehicle to body relationship 

is shown more clearly and with more detail in Figure 2-2, below. Figures depicting this relationship have 

been generated by many people—some much better quality and more intuitive than others. One of the 
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more intuitive ones is reused for Figure 2-2. In Figure 2-2, x|y|z are the vehicle frame and x"|y"|z" are 

the body frame. The wind frame is defined only relative to the body. The wind and body frames are 

depicted in Figure 2-3, below. Table 2-1 and Figure 2-4 "Relation of Coordinate Frames", below, show 

the parameters that relate each frame to the others. 

 
Figure 2-1: Inertial, Vehicle, and Body Frames; Source: (Modified from) [14] 
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Figure 2-2: Vehicle and Body Frames; Source: [22] 

 
 

 
Figure 2-3: Wind and Body Frames; Source:[23] 
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Figure 2-4: Relation of Coordinate Frames 

 
 

Table 2-1: Relation of Coordinate Frames 

Frame 
Parameters Defined in 
Frame 

Parameter Description 

Inertial 
position and velocity of 
vehicle 

Position of vehicle relative starting point 
(origin of inertial frame) 

Vehicle 
yaw (ψ), pitch (θ), and roll (ϕ) Orientation angles (attitude) of body frame 

relative vehicle frame 

Body 
p, q, and r Rotation rate of body, in body frame 

ax, ay, and az Acceleration of body, in body frame 

Wind 

Airspeed (Va) Vector along which the body moves through 
the air 

Angle of attack (α) and angle 
of sideslip (β) 

Angles of Va w.r.t. body x-y plane and y-z 
plane, respectively 

 

Measurements, for the most part, are made in the body frame, as that is where the sensors and 

computations are made. Though, parameters such as attitude and position, which are measured in the 

vehicle and inertial frames respectively, are desired for inertial navigation. GPS measurements can 

provide inertial measurements irrespective of body and vehicle frames and parameters-- for the most 

part (i.e. if vehicle attitude blocks satellite line of site). Still, though, attitude measurement/estimation is 

an important part of an INS. Therefore, in order to fuse measurements, transformations must be 

possible between the coordinate frames. 
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Transforming between inertial and vehicle frames is a direct translation, as the coordinate systems are 

aligned. Translating between the vehicle/body and body/wind, though are dependent on rotations 

between frames. These relationships are described below. 

Vehicle to Body: 

As shown above in Figure 2-2, there are three independent rotations translating a vector from vehicle to 

body, or vice versa. These three rotations can be performed mathematically using three rotations 

matrices. These rotation matrices are combined to form the Direct Cosine Matrix (DCM) as shown in 

Equation 1, below. 

DCM = [
1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ

] [
cos θ 0 −sin θ
0 1 0
sin θ 0 cos θ

] [
cosψ sinψ 0
− sinψ cosψ 0
0 0 1

] 

(1) 

= [−

c(ψ)c(θ) s(ψ)c(θ) −s(θ)

s(ψ)c(ϕ) + c(ψ)s(θ)s(ϕ) c(ψ)c(ϕ) + s(ψ)s(θ)s(ϕ) c(θ)s(ϕ)

s(ψ)s(ϕ) + c(ψ)s(θ)c(ϕ) −c(ψ)s(ϕ) + s(ψ)s(θ)c(ϕ) c(θ)c(ϕ)
] 

 

A common implementation is the one that transforms body accelerations to accelerations in the vehicle 

frame. Since the vehicle frame is aligned with the inertial frame, one can use the vehicle acceleration to 

determine inertial translation and velocity. Equations 2 and 3 show how the DCM is applied to transform 

the acceleration measured in the body frame into the vehicle frame and vice versa. 

 [

ax
ay
az
]

body

= DCM[

ax
ay
az
]

vehicle

 (2) 

 [

ax
ay
az
]

vehicle

= DCMT [

ax
ay
az
]

body

 (3) 

where the inverse of the DCM is equal to its transpose due to the DCM being orthogonal: DCM−1 =

 DCMT. 
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Another vehicle to body translation of great importance for attitude estimation and INS is the 

translation of body rotations (p,q,r) to Euler angle rates. Attitude, in Euler angles, could then be 

calculated from the integration of Euler angle rates. Intuitively, one might infer that the DCM can be 

used for this purpose. This is not the case. The author has identified two "quick" and more intuitive, 

respectively, rationales as to why this is not the case. The first rationale comes from [14], who define a 

separate coordinate frame for each Euler rotation, stating that each Euler angle is represented in a 

different coordinate frame. The second rationale comes from the fact that the DCM translates vectors 

from one frame to another and the proof that rotations (i.e. p, q, and r) are not vectors because they are 

not commutative [24]. Regardless, a different set of equations is used to transform body rotations to 

vehicle rotations. Equation 4 (below) shows how the rotation matrices from Equation 1 (above) are used 

to relate body and Euler rotation rates. Equation 5 inverts the transformation matrix of Equation 4. This 

form transforms body rotation rates (as would be measured by a gyroscope) into Euler rotation rates, 

which can be easily integrated to Euler angles. 

[
p
q
r
] = [

ϕ̇
0
0

] + [
1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ

] [
0
θ̇
0
] + [

1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ

] [
cos θ 0 sinθ
0 1 0

−sin θ 0 cos θ
] [
0
0
ψ̇
] 

(4) 

= [
1 0 − sinθ
0 cosϕ sinϕ cosθ
0 −sinϕ cosϕ cos θ

] [

ϕ̇

θ̇
ψ̇

] 

 

 [

ϕ̇

θ̇
ψ̇

] = [

1 sinϕ tanθ cosϕ tan θ
0 cosϕ − sinϕ
0 sinϕ sec θ cosϕ secθ

] [
p
q
r
] (5) 
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Wind to Body: 

Similar to body/vehicle transformations, wind/body transformations can be made using rotation 

matrices. Equation 6, below, shows the individual rotation matrices for α and β, as well as the final 

rotation matrix for transforming wind to body. A typical implementation of the wind to body 

transformation is airspeed translated into body x, y, and z coordinates. These individual body 

components of airspeed are typically expressed as u, v, and w, respectively. This transformation is 

shown below in Equation (7. 

Rw
b = [

cos α 0 −sin α
0 1 0
sin α 0 cos α

] [
cos β − sinβ 0
sinβ cosβ 0
0 0 1

] 

(6) 

= [

cosα cos β −cos α sinβ − sin α
sinβ cos β 0

sinα cos β sinα sinβ cos α
] 

 

[
u
v
w
] = [

cos α cos β −cos α sinβ − sinα
sinβ cos β 0

sinα cos β sinα sinβ cosα
] [
Va
0
0
] 

(7) 

= Va [

cos α cos β
sin β

sin α cos β
] 

where airspeed is represented as [
Va
0
0
], because airspeed is defined as the airflow along the wind axis. 

2.1.1. Quaternion Rotations 

Euler angles are typically used to represent attitude, as they are intuitive and relatively easy to 

represent visually. Euler angles, though, have a singularity condition when the x-y and y-z planes align 

(when pitch is 90 degrees). At this point, the system loses observability of one degree of freedom (yaw). 

For example, if an aircraft is pitched 90 degrees, then rotates 90 degrees about its x-axis, then pitches 

back down to 0 degrees pitch, the airplane will have rotated 90 degrees in yaw. Following such a 
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condition mentally makes sense, but cannot be achieved by Euler angle transformations. Referring back 

to Equation 5, above, the sec θ terms are undefined at θ = 90, driving ψ̇ undefined. 

The concept of gimbal lock is another good way of visualizing the loss of observability of an axis. 

Recalling the concept of how gimbaled INS determine attitude, from Section 1.3.1.2 "Inertial 

Navigation", a stabilized platform would remain stationary within the gimbal with the gimbal mounted 

to an aircraft. When the aircraft attitude changed, the rings of the gimbal would move about the 

stabilized platform (right image of Figure 2-5, below). When the rings line up, they form a plane (left 

image of Figure 2-5, below). Any rotation in that plane is not observable by the gimbal. 

 

Figure 2-5: Gimbal Lock Example; Source:[25] 

 

A four axis gimbal can overcome gimbal lock as long as the outermost ring's rotation axis is constantly 

driven 90 degrees from the inner most ring [9]. Figure 2-6, below, shows a 4 axis gimbal in gimbal lock 

because the 4th axis is not driven 90degrees from the innermost ring. Though this does not directly 

translate to quaternion kinematics, it is a visual example of how the addition a 4th degree of freedom 

resolves the problem that a 3 axis gimbal has observing 3 degrees of freedom at all angles. Quaternions 

utilize a 4th degree of freedom to represent the 3 degrees of freedom of attitude. 
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Figure 2-6: 4 Axis Gimbal; Source: [26] 

 

A quaternion rotation, most simply, is a single rotation (ε) about a vector (η⃑ ). If the vector, (η⃑ ) is not 

parallel to any of the body/vehicle axes, this single rotation, (ε), can rotate the body/vehicle about 

multiple body/vehicle axes. A quaternion, in its most general form, is as shown in Equation 8, below. 

 q̂ = [

q0
q1
q2
q3

] =  [

cos(ε/2)
sin(ε/2) ∙ η1
sin(ε/2) ∙ η2
sin(ε/2) ∙ η3

] (8) 

 
where: 

 

 
η⃑ = [

η1
η2
η3
] (9) 

 ‖q̂‖ =  q0
2 + q1

2 + q2
2 + q3

2 = 1 (10) 

  

Due to the fact that ‖q̂‖ is a unit scalar, this property allows quaternion rotations to be normalized. This 

normalization can be used to remove calculation error—a known source of drift for INS. Quaternions 

can be converted to Euler angles using Equation 11, below. 
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ϕ = tan−1 (
2(q0q1 + q2q3)

q0
2 + q3

2 − q1
2 − q2

2) 

θ =  sin−1(2(q0q2 − q1q3)) 

ψ = tan−1 (
2(q0q3 + q1q2)

q0
2 + q1

2 − q2
2 − q3

2) 

 

(11) 

Equation 3 and 5, in quaternion form, are represented in Equations 12 and 13, respectively below. 

 

[

ax
ay
az
]

vehicle

= [

q1
2 + q0

2 − q2
2 − q3

2 2(q1q2 − q3q0) 2(q1q3 − q2q0)

2(q1q2 + q3q0) q2
2 + q0

2 − q1
2 − q3

2 2(q2q3 − q1q0)

2(q1q3 + q2q0) 2(q2q3 + q1q0) q3
2 + q0

2 − q1
2 − q2

2

] [

ax
ay
az
]

body

 
(12) 

 

[

q0̇
q1̇
q2̇
q3̇

] =
1

2
[

0 −p
p 0

−q −r
r −q

q −r
r q

0 p
−p 0

] [

q0
q1
q2
q3

] (13) 

 

 

2.2. Non-Linear Estimation Filters 

This section will describe each type of filter used in an estimator in the analyses to follow. This section 

will intentionally not dive into the fundamental relationships between the filters, as it is not directly 

applicable to these analyses. However, this information is likely a helpful source of intuition for the 

estimator designer. This type of fundamental comparison and understanding was of much interest prior 

to the final choice of attitude estimation for the Apollo mission. Higgins and Brown [16][27] provide 

thorough references. 

2.2.1. Complementary Filter 

A standard simple complementary filter is shown in Figure 2-7, where "τ" (Tau) is the time constant of 

the filter. In this figure, two direct measurements of signal "a" are combined to form an estimation of 

"a". If one measurement has high frequency noise, and the other has low frequency noise, they can be 

filtered using a low pass filter and high pass filter, respectively. The ideal complementary filter is such 
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that its two components complement each other. Stated otherwise, the two frequency domain filter 

equations add up to 1. The CF, as shown below, tracks the higher frequencies more as Tau increases and 

the lower frequencies more as Tau decreases. 

 

Figure 2-7: Standard Simple Complementary Filter 

 

A typical application of a complementary filter is shown in Figure 2-8, below. This figure shows two 

measurements; one a direct measurement of state "a", and the other a measurement of the rate of 

change of "a". Atypical application would be where "a" is vertical speed, as measured by a static port on 

an aircraft and "a_dot" is the acceleration as measured by an accelerometer. The static port is accurate 

over a long period of time, but cannot detect rapid changes. The accelerometer is able to detect rapid 

changes (high frequency), but will be subject to random walk over time, as its signal must be integrated 

in order to compute a velocity. This typical application applies a low pass filter to the static pressure 

vertical speed measurement, since it is accurate over a long period of time (low frequency), and a high 

pass filter to the accelerometer to filter out the low frequency random walk. 
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Figure 2-8: Complementary Filter Typical Application 

Note that in Figure 2-8 the high pass filter is applied after the integrator. That is to say that the filter is 

not applied directly to the measurement. There are implementations, especially in the open source 

community, that apply filters directly to the measurement as to "[filter the noise of the sensor]". This 

kind of implementation may work after tuning, but does not preserve the observability of all 

frequencies. Careful consideration would be needed if implementing a filter this way with the intent of 

creating a complementary filter. 

2.2.2. Extended Kalman Filter 

The Extended Kalman Filter theory presented in this text, unlike traditionally presented, will start at the 

filter output equation and work backward. Typical presentations of this theory start with linear systems 

and probability theory, then introduce the Kalman Filter. The author's intent is to start with the 

application as it is likely the most familiar subject to a reader. 

The EKF estimate (output of interest of EKF: 𝑥+), that is to be compared to truth, is calculated as shown 

in Equation 14, below. 

 x̂+ = x̂− + K(z − h(x̂−, u)) 
(14) 

Where z and u are measurements 



 

30 
 

 

Equation 14 described in pseudo equation form is: 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 + 𝑔𝑎𝑖𝑛 ∗ (𝑒𝑟𝑟𝑜𝑟)⏟          
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛

 

 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 + 𝑔𝑎𝑖𝑛 ∗ (𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡1 − ℎ(𝑥−,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡2))⏟                            
𝑒𝑟𝑟𝑜𝑟

 

The pseudo equation explains that the EKF estimate being sought can be most simply thought of as the 

previous estimate plus some correction. The correction is an error multiplied by a gain. The error is the 

difference between a direct measurement (measurement 1) of states (z) and a calculation of those same 

states (h). "h" is a function of the estimate (𝑥−) and measurement2 (u). 

Now that the essence of the EKF output is explained, the full EKF algorithm will be presented in Figure 

2-9, where equation "4)" (within the figure) is the equation just described above. 

 

Figure 2-9: EKF Equations 

 

Thus far 𝑥+, 𝑥−, 𝑧, 𝑦, and 𝐾 have been introduced from the EKF input/output perspective of, 

generally, what they are how they create an estimate. Now, how to calculate each of these variables 
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must be explained. Equation "1)" (within Figure 2-9) is the standard equation for a linear system 

expressed in discrete form. Systems, though, are often non-linear, and the EKF was designed for use 

with non linear systems; therefore for non-linear systems: 

 ẋ =  f(x, u) → Ax + Bu⏟    
linearized

 
(15) 

 y = h(x, u) → Cx + Du⏟    
linearized

 
(16) 

 

where:  

 A = 
∂f

∂x
 (17) 

 
C =  

∂h

∂x
 (18) 

 

 

It should be noted that "h" in Equation "4)" (within Figure 2-9 above) can be calculated directly or 

calculated as: 

 h = Cx 
(19) 

 

Q and R are the process and measurement noises, respectively. R is traditionally chosen to be an identity 

matrix multiplied by the covariance of the sensor noise. Q requires tuning. Many different methods and 

approaches exist for choosing Q depending on the application. 
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Both P and x̂ are calculated using the above defined variables. They do, though, require initial values for 

the first timestep of the algorithm. If the initial states to be estimated (x̂0) are well known, P0 can be an 

n by n zero matrix. 

2.2.3. Unscented Kalman Filter 

The Unscented Kalman Filter equations are known for being less intuitive than those of the EKF, 

especially from a perspective of direct application to attitude estimation. Equating the UKF equations to 

that of the more intuitive EKF equations, the UKF equations are presented in a comparable pictorial 

below in Figure 2-10.  

 

Figure 2-10: UKF Equations 

where: 

 ηi
m = ηi

c =
1

[2(L + λ)]
 

(20) 

 η0
m =

λ

L + λ
 (21) 

 η0
c =

λ

L + λ
+ 1 − α2 + β (22) 

 λ = α2(L + κ)2 
(23) 
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“L” is the number of states in the estimate (i.e. length of x̂).α, β, and κ are tuning parameters. Per [28], 

the values of these parameters are: 

0.001 < α < 1           β = 2 is optimal for Gaussian noise                 κ = 0 for most applications 

Like for the EKF, Q and R are the process and measurement noises, respectively. They are traditionally 

chosen in the same manner as for the EKF. 
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3. Attitude Estimation Formulations 

The following subsections will provide descriptions of implementations. Each Filter/Formulation will be 

presented as explicitly as possible. This is done to help achieve reproducibility of the experiments 

herein.  

3.1. Complementary Filter ("Method 1") 

The Complementary Filter Solution is fundamentally a combination of two different estimates of Euler 

angles from the IMU only. The most fundamental CF application would be one in which two direct 

measurements of a desired parameter are combined. However, aside from spacecraft or indoor limited 

systems, typically systems do not have a direct measurement of Euler angles; Therefore, estimates must 

be used in place of direct measurements. 

The complementary solution implementation is most simply depicted in block diagram form, as shown 

in Figure 3-1. The first estimate of Euler angles comes from the integration of the gyro rotation rates 

(top path in figure). The second estimate comes from the trigonometric angles between a pseudo 

gravity vector and the aircraft body z-axis (bottom path in figure). The integration of the gyro rates is 

prone to random walk as well as drift (low frequency noise). The pseudo gravity vector based estimate 

only provides an estimate of Euler angles in unaccelerated flight. In accelerated flight, the pseudo 

gravity vector that is computed will also contain the body’s acceleration. It is well understood that a 

fixed wing aircraft is often in accelerated flight. Though, if it is assumed that the body tends to return to 

unaccelerated flight or does not maintain long steady accelerated flight, the body accelerations would 

be mostly higher frequency (i.e. quick longitudinal adjustment that spikes body acceleration 

momentarily followed by constant velocity altitude change). 

The complementary filter blends these two estimates by attenuating the frequencies that contain the 

error component, or only observing the frequencies in which the estimate is accurate. For the 
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integration of the gyros estimate input, the complementary filter will contain a high pass filter as to 

attenuate the low frequency random walk and drift. For the pseudo gravity vector based estimate input, 

the complementary filter will contain a low pass filter as to only allow the lower frequencies into the 

complementary filtered solution estimate. 

While this solution contains assumptions that cannot be 100% guaranteed, it is a simple solution that 

was often used in the early development of open source autopilots, and did not perform as poorly as 

one might imagine. This solution is being included in this analysis as a simple and solid baseline by which 

to compare more advanced and complicated solutions. 

There are a few particularities about this implementation to note. The first is that yaw angle is not part 

of this formulation, as only pitch and roll can be solved for using the pseudo gravity vector based 

method. It would be possible to estimate yaw using other means, including just integration of the gyros. 

Since there is no second estimate for yaw, and yaw is not required to be fed back to estimate pitch or 

roll, the signals of interest, yaw was not estimated. The second, and probably most important note for 

reproducibility, is that the sign convention of the inputs to the trigonometric solution for the angles 

between the body z axis and gravity vector are dependent upon accelerometer orientation with respect 

to the aircraft body. The final note about this implementation is that the High and Low-Pass Filters are 

such that their complement is 1, as described in the Complementary Filter Theory (Section 2.2.1), above. 

It is possible to choose Tau such that this filter performs as a band stop, but one would have to be sure 

that no actual body rotation existed at that frequency. This would require a high fidelity model of the 

aircraft dynamics. 

Also, an important consideration for this formulation, and sensor fusion in general, is what is fed into 

the filter/fusion. In this implementation, both the low and high pass filters are fed with estimates of the 

Euler angles. The author has seen implementations, in code repositories for open source autopilots as 
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well as in published papers that directly filter the sensor input. While this is an acceptable means by 

which to filter sensor noise, it does not guarantee that there are not band-stop filter-like frequency 

attenuation(s) in the Euler solution. In this configuration, one would have to be sure that the filters 

applied directly to the sensors only filter sensor noise, and do not filter out frequencies from both 

estimates that contain actual airplane dynamics. 

 

Figure 3-1: Complementary Filter/Formulation for Attitude Estimation 



 

37 
 

3.2. Airspeed Aided Inertial Attitude Extended Kalman Filter ("Method 2") 

The following EKF formulation was created from "Algorithm 2" in [14]. This estimator utilizes the 

formulation of a strapdown INS corrected by a derived measurement of body acceleration aided by 

airspeed. To be as explicit as possible, the equations that are actually represented in the code that 

implements the EKF will be in bold font. A block diagram and a condensed form of the equations below 

will be presented at the end of this subsection. 

To begin, the system equations  ẋ = 𝑓(x, u) → Ax + Bu⏟    
linearized

 and  y = h(x, u) → Cx + Du⏟    
linearized

 must be identified. 

The following non-linear equations relating roll and pitch to body rates will represent ẋ = 𝑓(x, u): 

ϕ̇ = p + q sinϕ tanθ + r cosϕ tanθ 
(24) 

θ̇ = q cosϕ − r sinϕ 
In discrete form: 

ϕk = ϕk−1 + (p + q sinϕ tanθ + r cosϕ tan θ)k−1 dt 
(25) 

θk = θk−1 + (q cosϕ − r sinϕ)k−1dt 
 

The above equations are used to formulate "f" and "A" for the EKF in Equations 26 and 27 below: 

 𝐟(𝐱, 𝐮) = [
𝛟 + (𝐩 + 𝐪 𝐬𝐢𝐧𝛟 𝐭𝐚𝐧𝛉 + 𝐫 𝐜𝐨𝐬𝛟 𝐭𝐚𝐧𝛉)𝐝𝐭

𝛉 + (𝐪 𝐜𝐨𝐬𝛟 − 𝐫 𝐬𝐢𝐧𝛟)𝐝𝐭
] 

(26) 

 𝐀 = 
𝛛𝐟

𝛛𝐱
= [
𝟏 + (𝐪 𝐜𝐨𝐬𝛟 𝐭𝐚𝐧𝛉 − 𝐫 𝐬𝐢𝐧𝛟 𝐭𝐚𝐧𝛉)𝐝𝐭 (

𝐪 𝐬𝐢𝐧𝛟 + 𝐫 𝐜𝐨𝐬𝛟

𝐜𝐨𝐬𝟐 𝛉
)𝐝𝐭

(−𝐪 𝐬𝐢𝐧𝛟 − 𝐫 𝐜𝐨𝐬𝛟)𝐝𝐭 𝟏
] 

(27) 
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The following non-linear equations relating body rates to body accelerations will represent y = h(x, u): 

 Ax = u̇ + qw − rv + g sinθ 
(28) 

 Ay = v̇ + ru − pw − g cosθ sinϕ 
(29) 

 Az = ẇ + pv − qu − g cosθ cosϕ 
(30) 

*note that 𝐴𝑥,𝑦,𝑧 are not at all related to the A matrix:𝐴 = 
𝜕𝑓

𝜕𝑥
 

Assuming, 

[
u
v
w
] ≈ Va [

cos α cos β
sin β

sinα cos β
],α ≈ θ   ,     and        β ≈ 0 

These equations are used to create Equations 31 and 32, below, for use in the EKF (for creating h and C): 

 𝐡(𝐱, 𝐮) = [

𝐪𝐕𝐚 𝐬𝐢𝐧𝛉 + 𝐠𝐬𝐢𝐧𝛉
𝐫𝐕𝐚 𝐜𝐨𝐬 𝛉 − 𝐩𝐕𝐚 𝐬𝐢𝐧𝛉 − 𝐠 𝐜𝐨𝐬𝛉 𝐬𝐢𝐧𝛟

−𝐪𝐕𝐚 𝐜𝐨𝐬𝛉 − 𝐠 𝐜𝐨𝐬 𝛉 𝐜𝐨𝐬𝛟
] 

(31) 

 
𝐂 =  

𝛛𝐡

𝛛𝐱
=  [

𝟎 𝐪𝐕𝐚 𝐜𝐨𝐬 𝛉 + 𝐠𝐜𝐨𝐬 𝛉
−𝐠𝐜𝐨𝐬 𝛉 𝐜𝐨𝐬𝛟 −𝒓𝐕𝐚 𝐬𝐢𝐧𝛉 − 𝐩𝐕𝐚 𝐜𝐨𝐬 𝛉 + 𝐠 𝐬𝐢𝐧𝛉 𝐬𝐢𝐧𝛟
𝐠𝐜𝐨𝐬 𝛉 𝐬𝐢𝐧𝛟 (𝐪𝐕𝐚 + 𝐠𝐜𝐨𝐬𝛟) 𝐬𝐢𝐧𝛉

] 
(32) 

 

h(x,u) will be compared to z. The error between h and z will be multiplied by the Kalman gain and added 

to the previous estimate as explained in Equation 14 in Section 2.2.2., where z is the vector of the body 

acceleration measurements from the accelerometer: 

 𝐳 = [

𝐀𝐱
𝐀𝐲
𝐀𝐳

]

𝐚𝐜𝐜𝐞𝐥𝐞𝐫𝐨𝐦𝐞𝐭𝐞𝐫

 
(33) 
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Alternative Formulations: 

A few implementation choices for this formulation are available at this point. Those choices are 

alternative formulations and/or inputs for the h matrix. First, Va, an input to the h matrix, could be 

calculated using the integration of the accelerations as shown in Equation 34. Second, the h matrix could 

be calculated using Equation 35. Calculating the h matrix as shown below adds two instances of 

additional recursion in this estimator, though. That is, "C" has more instances of the estimated states in 

it than the "h" that is calculated directly in Equation 31, and the state estimates (x̂k
+) are a parameter in 

this equation. Neither of these choices were used in the following analyses, but this alternative 

implementation should be a known source of potential differences when comparing results from 

multiple sources. 

 Va = √Vax
2 + Vay

2 + Vaz
2         where: Vax = ∫Ax 

(34) 

 h(x, u) =  
∂h

∂x
x = Cx (35) 

 

The tuning parameters for this formulation are in the form shown, below. "qk_c" and "rk_c" are 

constants. Their value will be varied in proceeding sections as to show how these parameters affect the 

estimator performance. 

 𝐐 = [
𝟏 𝟎
𝟎 𝟏

] ∗ 𝐪𝐤_𝐜 
(36) 

 
𝐑 = [

𝟏 𝟎 𝟎
𝟎 𝟏 𝟎
𝟎 𝟎 𝟏

] ∗ 𝐫𝐤_𝐜 
(37) 
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A block diagram that depicts the pseudo code implementation of this estimator is shown in Figure 3-2: 

Airspeed Aided Inertial Attitude EKF. This block diagram is intended to demonstrate how each of the 

equations used in this formulation interact. Each equation, as it relates to the EKF, is detailed in Table 

3-1  and Table 3-2, below. This table is replicated from [13], updated to utilize the notation of this 

document. 
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Figure 3-2: Airspeed Aided Inertial Attitude EKF 
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Table 3-1: Airspeed Aided Inertial Attitude EKF Prediction Equations 

1) Project State: 

x̂k
− = [

ϕ
θ
]
k
= [
ϕ
θ
]
k−1

+ [
p + q sinϕ tan θ + r cosϕ tan θ

q cosϕ − r sinϕ
]
𝑘−1

dt 

 

Equation Nomenclature Symbol Matrix Size Values 

2) Project Error Covariance: 

Pk
− = Ak−1

T Pk−1
− Ak−1 + Q 

Error Covariance Pk
−,  Pk−1

−  2x2 [
# #
# #

] 

State Transition Matrix Ak−1 2x2 [
1 + (q cosϕ tanθ − r sinϕ tanθ)dt (

q sinϕ + r cosϕ

cos2 θ
) dt

(−q sinϕ − r cosϕ)dt 1
] 

Model/Input Covariance Q 
2x2 [

qk_c 0
0 qk_c

] 
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Table 3-2: Airspeed Aided Inertial Attitude EKF Correction Equations 

Equation Nomenclature Symbol 
Matrix 

Size 
Values 

3) Compute the Kalman Gain: 

Kk−1 =
Pk
−Ck−1

T

Ck−1Pk
−Ck−1

T + R
 

Observation Matrix Ck−1 3x2 [

0 qVa cos θ + g cosθ
−g cosθ cosϕ −𝑟Va sin θ − pVa cos θ + g sinθ sinϕ
g cosθ sinϕ (qVa + gcosϕ) sin θ

] 

Measurement 
Covariance Matrix 

R 3x3 [
rk_c 0 0
0 rk_c 0
0 0 rk_c

] 

Kalman Gain Kk−1 2x3 [#2𝑥3] 

4) Update Estimate with 
Measurement: 

x̂k
+ = x̂k

− + Kk−1(zk−1 − h(x̂k
−, uk)) 

Where: h(x̂k
−, uk) ≠  Cx̂k

− 

System States x̂k
+, x̂k

− 2x1 [
ϕ
θ
] 

Accelerometer 
Measurements 

zk−1 3x1 [

Ax
Ay
Az

]

Body

 

Observation h(x̂k
−, uk) 3x1 [

qVa sin θ + g sin θ
rVa cosθ − pVa sin θ − g cos θ sinϕ

−qVa cos θ − g cos θ cosϕ
] 

5) Update the Error Covariance: 
Pk
+ = (I − Kk−1Ck−1) Pk

− 
Identity Matrix I 2x2 [

1 0
0 1

] 
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3.3. GPS Aided Inertial Navigation Extended Kalman Filter ("Method 3") 

The following EKF formulation for attitude estimation is based on that of the “Method 3” formulation in 

[13]. This estimator utilizes the formulation of a strapdown INS corrected by GPS measured position and 

velocity. This estimator will be referred to as "Method 3 EKF" within the text. A block diagram that 

depicts the pseudo code implementation of this estimator is shown below in Figure 3-3. This block 

diagram is intended to demonstrate how each of the equations used in this formulation interact. Each 

equation, as it relates to the EKF, is detailed in Table 3-3 and Table 3-4, below. This table is replicated 

from [13], updated to utilize the notation of this document. It should be noted that the equations 

depicted use Euler angles, though the actual implementation used in these analyses utilize quaternions. 

This depiction choice was made as to make the figure and table as intuitive as possible. The Euler angle 

equations are much more intuitive and are better known. Additionally, the Euler and Quaternion 

equations are "plug-n-play" interchangeable in the formulation. The quaternion equations used will be 

presented, as well, in the following subsection. 
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Figure 3-3: GPS Aided Inertial Navigation EKF Pseudo Code Block Diagram 
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Table 3-3: GPS Aided Inertial Navigation EKF Prediction Equations 

1) Project State: 

x̂k
−(1: 6) =

[
 
 
 
 
 
𝑃𝑥
𝑃𝑦
𝑃𝑧
𝑉𝑥
𝑉𝑦
𝑉𝑧 ]
 
 
 
 
 

𝑘

=

[
 
 
 
 
 
1 0 0
0 1 0
0 0 1

dt 0 0
0 dt 0
0 0 dt

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1 ]

 
 
 
 
 

[
 
 
 
 
 
𝑃𝑥
𝑃𝑦
𝑃𝑧
𝑉𝑥
𝑉𝑦
𝑉𝑧 ]
 
 
 
 
 

𝑘−1

+

[
 
 
 
 
 
0 0 0
0 0 0
0 0 0
dt 0 0
0 dt 0
0 0 dt]

 
 
 
 
 

[

𝑎𝑥
𝑎𝑦
𝑎𝑧
]

𝐸𝑎𝑟𝑡ℎ,𝑘−1

 

 

x̂k
−(7: 9) = [

ϕ
θ
ψ
]

𝑘

= [
ϕ
θ
ψ
]

𝑘−1

+ [

p + q sinϕ tan θ + r cosϕ tanθ
q cosϕ − r sinϕ
q sinϕ + r cosϕ

] dt 

 

Equation Nomenclature Symbol 
Matrix 

Size 
Values 

2) Project Error Covariance: 

Pk
− = Ak−1

T Pk−1
− Ak−1 +Q 

Error Covariance Pk
−,  Pk−1

−  9x9 [

diag(#3x3) 03x3 03x3
03x3 diag(#3x3) 03x3
03x3 03x3 #3x3

] 

State Transition Matrix Ak−1 9x9 [

I3x3 I3x3dt 03x3

03x3 I3x3 J3x3
ϕ,θ,ψ

03x3 03x3 J3x3
ϕ,θ,ψ

] 

Model/Input 
Covariance 

Q 
9x9 [

diag(qkc13x3) 03x3 03x3
03x3 diag(qkc13x3) 03x3
03x3 03x3 diag(qkc23x3)

] 
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Table 3-4: GPS Aided Inertial Navigation EKF Corrections Equations 

Equation Nomenclature Symbol 
Matrix 

Size 
Values 

3) Compute the Kalman Gain: 

Kk−1 =
Pk
−Ck−1

T

Ck−1Pk
−Ck−1

T + R
 

Observation Matrix Ck−1 6x9 [
I3x3 03x3 03x3
03x3 I3x3 03x3

] 

Measurement 
Covariance Matrix 

R 6x6 [
diag(rkc13x3) 03x3

03x3 diag(rkc23x3)
] 

Kalman Gain Kk−1 9x6 [#9𝑥6] 
4) Update Estimate with 
Measurement: 
 

x̂k
+ = x̂k

− + Kk−1(zk−1 − h(x̂k
−, uk)) 

Where: h(x̂k
−, uk) =  Cx̂k

− 

System States x̂k
+, x̂k

− 9x1 [𝑃𝑥 𝑃𝑦 𝑃𝑧 𝑉𝑥 𝑉𝑦 𝑉𝑧 ϕ θ ψ]𝑇 

GPS Measurements zk−1 6x1 [𝑃𝑥 𝑃𝑦 𝑃𝑧 𝑉𝑥 𝑉𝑦 𝑉𝑧]𝑇 

5) Update the Error Covariance: 

Pk
+ = (I − Kk−1Ck−1) Pk

− 
Identity Matrix I 6x6 diag(16x6) 

 

Where "#" indicates a calculated value, and "diag(val)" indicates a diagonal matrix with the diagonal having values of "val". qkc1 and qkc2 are 
constants that are varied in the Monte Carlo analyses. Additionally, A(4:9,7:9) are defined in Equation 38, below. 
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A(4: 9,7: 9) =  

J3x3
ϕ,θ,ψ

J3x3
ϕ,θ,ψ

=

[
 
 
 
 
 
 
 
 
 
 
 
∂Vx

∂ϕ⁄
∂Vx

∂θ
⁄ ∂Vx

∂ψ⁄

∂Vy
∂ϕ
⁄

∂Vy
∂θ
⁄

∂Vy
∂ψ
⁄

∂Vz
∂ϕ⁄

∂Vz
∂θ
⁄ ∂Vz

∂ψ⁄

∂ϕ
∂ϕ⁄

∂ϕ
∂θ
⁄ ∂ϕ

∂ψ⁄

∂θ
∂ϕ⁄

∂θ
∂θ⁄

∂θ
∂ψ⁄

∂ψ
∂ϕ⁄

∂ψ
∂θ
⁄ ∂ψ

∂ψ⁄ ]
 
 
 
 
 
 
 
 
 
 
 

 (38) 

 

Where the following equations are used to obtain the partial derivatives of Equation38, above. Note 

that Equation 41 is the discrete form of Equation 5: 

 Vx|y|z = Vx|y|zk−1 + Ax|y|zk−1,Earthdt  (39) 

Where: 

 Ax|y|zk−1,Earth = DCM ∙ Ax|y|zk−1,Body  (40) 

 

 ϕk = ϕk−1 + (p + q sinϕ tanθ + r cosϕ tan θ)k−1 dt  

 θk = θk−1 + (q cosϕ − r sinϕ)k−1dt (41) 

 ψk = ψk−1 + (q sinϕ + r cosϕ)k−1dt  

*Note that Jarrell's original implementation does not include the partial derivatives of velocity w.r.t 

Euler angles. That is, his A(4:6,7:9) are 03x3. 

 

3.3.1. Quaternion Formulation 

The description of the Method 3 EKF Formulation, thus far has been in Euler angles. This was done as 

Euler based rotational kinematics are more intuitive and familiar to most people. The Method 3 EKF that 

was evaluated in these analyses utilized quaternions. This subsection will present the quaternion 

equations that were used and describe how these new quaternion equations replace the previously 

described Euler equations in this EKF formulation. To make the differences quickly visually apparent, 

equations and dimensions that changed in the tables will be made blue font. 
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Table 3-5: GPS Aided Inertial Navigation EKF Prediction Equations - Quaternions 

1) Project State: 

x̂k
−(1: 6) =  

[
 
 
 
 
 
𝑃𝑥
𝑃𝑦
𝑃𝑧
𝑉𝑥
𝑉𝑦
𝑉𝑧 ]
 
 
 
 
 

𝑘

=

[
 
 
 
 
 
1 0 0
0 1 0
0 0 1

dt 0 0
0 dt 0
0 0 dt

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1 ]

 
 
 
 
 

[
 
 
 
 
 
𝑃𝑥
𝑃𝑦
𝑃𝑧
𝑉𝑥
𝑉𝑦
𝑉𝑧 ]
 
 
 
 
 

𝑘−1

+

[
 
 
 
 
 
0 0 0
0 0 0
0 0 0
dt 0 0
0 dt 0
0 0 dt]

 
 
 
 
 

[

𝑎𝑥
𝑎𝑦
𝑎𝑧
]

𝐸𝑎𝑟𝑡ℎ,𝑘−1

 

 

x̂k
−(7: 10) =  [

q0
q1
q2
q3

]

k

= [

q0
q1
q2
q3

]

k−1

+
dt

2
[

−pq1 − qq2 − rq3
pq0 + rq2 − qq3
qq0 − rq1 + pq3
rq0 + qq1 − pq2

] + dt [

λq0
λq1
λq2
λq3

]where:       λ = 1 − (q0
2 + q1

2 + q2
2 + q3

2) 

 

Equation Nomenclature Symbol 
Matrix 

Size 
Values 

2) Project Error Covariance: 

Pk
− = Ak−1

T Pk−1
− Ak−1 +Q 

Error Covariance Pk
−,  Pk−1

−  10x10 [

diag(#3x3) 03x3 03x4
03x3 diag(#3x3) 03x4
03x3 03x3 #4x4

] 

State Transition Matrix Ak−1 10x10 [

I3x3 I3x3dt 03x4

03x3 I3x3 J3x4
quat

04x3 04x3 J4x4
quat

] 

Model/Input 
Covariance 

Q 
10x10 [

diag(qkc13x3) 03x3 03x4
03x3 diag(qkc13x3) 03x4
04x3 04x3 diag(qkc24x4)

] 
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Table 3-6: GPS Aided Inertial Navigation EKF Correction Equations - Quaternions 

Equation Nomenclature Symbol 
Matrix 

Size 
Values 

3) Compute the Kalman Gain: 

Kk−1 =
Pk
−Ck−1

T

Ck−1Pk
−Ck−1

T + R
 

Observation Matrix Ck−1 6x10 [
I3x3 03x3 03x4
03x3 I3x3 03x4

] 

Measurement 
Covariance Matrix 

R 6x6 [
diag(rkc13x3) 03x3

03x3 diag(rkc23x3)
] 

Kalman Gain Kk−1 10x6 [#10x6] 
4) Update Estimate with 
Measurement: 
 

x̂k
+ = x̂k

− + Kk−1(zk−1 − h(x̂k
−, uk)) 

Where: h(x̂k
−, uk) =  Cx̂k

− 

System States x̂k
+, x̂k

− 10x1 [Px Py Pz Vx Vy Vz q0 q1 q2 q3]T 

GPS Measurements zk−1 6x1 [Px Py Pz Vx Vy Vz]T 

5) Update the Error Covariance: 

Pk
+ = (I − Kk−1Ck−1) Pk

− 
Identity Matrix I 6x6 diag(16x6) 
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 A(4: 10,7: 10) =  
J3x4
quat

J4x4
quat =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
∂𝑉𝑥

∂q0
⁄

∂𝑉𝑦
∂q0
⁄

∂𝑉𝑧
∂q0
⁄

∂𝑉𝑥
∂q1
⁄

∂𝑉𝑦
∂q1
⁄

∂𝑉𝑧
∂q1
⁄

∂𝑉𝑥
∂q2
⁄

∂𝑉𝑦
∂q2
⁄

∂𝑉𝑧
∂q2
⁄

∂𝑉𝑥
∂q3
⁄

∂𝑉𝑦
∂q3
⁄

∂𝑉𝑧
∂q3
⁄

∂q0
∂q0
⁄

∂q1
∂q0
⁄

∂q2
∂q0
⁄

∂q3
∂q0
⁄

∂q0
∂q1
⁄

∂q1
∂q1
⁄

∂q2
∂q1
⁄

∂q3
∂q1
⁄

∂q0
∂q2
⁄

∂q1
∂q2
⁄

∂q2
∂q2
⁄

∂q3
∂q2
⁄

∂q0
∂q3
⁄

∂q1
∂q3
⁄

∂q2
∂q3
⁄

∂q3
∂q3
⁄ ]

 
 
 
 
 
 
 
 
 
 
 
 
 

 
(42) 

 

where: The following equations and Equations 39 and 40are used to obtain the partial derivatives of 

Equation 42, above. The following quaternion equations are the discrete form of Equation 11in the 

quaternion theory section (2.1.1). 

 

q0 = q0k−1 +
dt

2
(−pq1 − qq2 − rq3) + dt ∙ λq0 

q1 = q1k−1 +
dt

2
(pq0 + rq2 − qq3) + dt ∙ λq1 

q2 = q2k−1 +
dt

2
(qq0 − rq1 + pq3) + dt ∙ λq2 

q3 = q3k−1 +
dt

2
(rq0 + qq1 − pq2) + dt ∙ λq3 

(43) 

 

where 

 λ = 1 − (q0
2 + q1

2 + q2
2 + q3

2) 
(44) 
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3.4. GPS Aided Inertial Navigation Unscented Kalman Filter ("Method 4") 

This section will describe the UKF version of the "Method 3" formulation in [13]. This estimator will be 

referred to as "Method 4 UKF" throughout this text. Table 3-7 and Table 3-8, below, show the equations 

for the Method 4 UKF implementation. The equations will utilize the Euler representations, as to present 

the more intuitive implementation. However, the following analyses are performed on the Method 4 

UKF that utilizes the quaternion formulations. The previous subsection provides a thorough example of 

how to replace the Euler equations with quaternion equations for the Method 3 EKF and Method 4 UKF 

estimators. 
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Table 3-7: GPS Aided Inertial Navigation UKF Prediction Equations 

1) Project State: 

x̂k
− = ∑ηi

m

2L

i=0

χk
i  

 

χk
i (1: 6) =  

[
 
 
 
 
 
Px
Py
Pz
Vx
Vy
Vz]
 
 
 
 
 

k

=

[
 
 
 
 
 
1 0 0
0 1 0
0 0 1

dt 0 0
0 dt 0
0 0 dt

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1 ]

 
 
 
 
 

[
 
 
 
 
 
Px ± #
Py ± #

Pz ± #
Vx ± #
Vy ± #

Vz ± #]
 
 
 
 
 

k−1⏟      

χk−1
i (1:6)

+

[
 
 
 
 
 
0 0 0
0 0 0
0 0 0
dt 0 0
0 dt 0
0 0 dt]

 
 
 
 
 

[

ax
ay
az
]

Earth,k−1⏟        
u(1:3)

 

 

χk
i (7: 9) = [

ϕ
θ
ψ
]

𝑘

= [
ϕ
θ
ψ
]

𝑘−1⏟    

χk−1
i (7:9)

+ [

p + q sinϕ tanθ + r cosϕ tanθ
q cosϕ − r sinϕ
q sinϕ + r cosϕ

] dt        where u(4: 6) = p, q, r 

 

Equation Nomenclature Symbol 
Matrix 

Size 
Values 

2) Project Error Covariance: 

Pk
− = Q+∑ηi

c

2L

i=0

(χk
i − x̂k)(χk

i − x̂k)
T 

Error Covariance Pk
− 9x9 [#9𝑥9] 

Sigma Points χk−1 
9x19 

[
x̂k−1
+
⏟
[9𝑥1]

x̂k−1
+ +√L + λ⏟  

[1x1]

√Pk−1⏟  
[9x9]

x̂k−1
+ + √L + λ√Pk−1] 

*each column is an instance of χk−1
i  

Model/Input 
Covariance 

Q 
9x9 [

diag(qkc13x3) 03x3 03x3
03x3 diag(qkc13x3) 03x3
03x3 03x3 diag(qkc23x3)

] 
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Table 3-8: GPS Aided Inertial Navigation UKF Correction Equations 

Equation Nomenclature Symbol 
Matrix 

Size 
Values 

3) Compute the Kalman Gain: 

K =
Pxy

Pyy

= 
∑ ηi

c2L
i=0 (χk

i − x̂k)(Ψk
i − yk)

T

R + ∑ ηi
c2L

i=0 (Ψk
i − yk)(Ψk

i − yk)
T

 

Observation Ψk
i  6x1 χk

i (1: 6) 

Mean of 
Observations 

yk 6x1 yk =∑ηi
m

2L

i=0

Ψk
i  

Measurement 
Covariance Matrix 

R 6x6 [
diag(rkc13x3) 03x3

03x3 diag(rkc23x3)
] 

Kalman Gain K 9x6 [#9𝑥6] 

4) Update Estimate with Measurement: 
x̂k
+ = x̂k

− + K(zk − yk) 

System States x̂k
+, x̂k

− 9x1 [Px Py Pz Vx Vy Vz ϕ θ ψ]T 

GPS Measurements zk 6x1 [Px Py Pz Vx Vy Vz]T 

5) Update the Error Covariance: 

Pk
+ = Pk

− − KPyyKT 
Error Covariance Pk

+ 9x9 [#9𝑥9] 

 

Where:  ηi
m, ηi

c, η0
m, η0

c , λ, L, α, β, and κ are as defined in the UKF Theory Section and the UKF specific tuning parameters, based on [28], where 

chosen as: 

α = 1            β = 2          κ = 0 
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4. Experimental Setup 

4.1. Simulation Environment 

This analysis was conducted entirely using Matlab/Simulink. “Airlib”, an open source aero environment 

model built in Simulink, was used to simulate the aircraft equations of motion. Airlib offers multiple 

aircraft models; The Pioneer UAV aircraft model was chosen for this analysis, as its dynamics are most 

representative of the kind of platform on which the estimators being evaluated would likely be 

implemented. While many have created their own aerodynamic models and simulation environments, 

this open source model has been around since 1993, is able to be adapted by the user, and is thoroughly 

documented [29]. In order to achieve a consistent baseline on which to evaluate estimators between 

multiple research groups, a common environment should be used. Airlib is being recommended by the 

author. 

Initially, the Estimators were prototyped and developed in-the-loop with the Airlib model. In order to 

guarantee repeatability and consistent inputs across all analyses, a few flights were performed while 

recording all applicable inputs and outputs of the Airlib environment (i.e. True Euler angles and other 

parameters required as inputs to estimators). These data would then be loaded and run through the 

estimator models. These data were recorded as timeseries in struct form. Using structs reduced the 

likelihood of error in simulation wiring, ensured scripts would be more easily readable, and reduced the 

need for significant downstream re-wiring for any upstream model changes. Structures were used for 

recording the outputs of the estimator models to aid plotting scripts that would plot data from analyses. 

Such structures and scripts were helpful to be able to repeat analyses quickly when changes were made. 

The simulation environment setup described above is depicted in Figure 4-1.
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Figure 4-1: Simulation Environment Block Diagram 
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4.2. Flights 

The analyses are performed on a set of three flights. The first flight is a trim condition, where all attitude 

states, rotation rates, and accelerations are approximately 0. The second flight is an elevator pulse 

condition, driving pitch attitudes of approximately +2 to -18 degrees damping over 100s with 0 variation 

in roll. The third flight is a 120s "short steady flight"—"steady" meaning lack of force jerks and rapid 

changes in rotation rate. This last flight condition contained a takeoff, short flight (~100s) with a large 

roll condition (circling back around to the runway), and landing. The attitudes of these conditions are 

plotted in the left halves of Figure 5-1 through Figure 5-3, respectively. 

4.3. Noise Models 

Where noise is included, throughout this work, it will have consistent magnitude and properties as 

described in this section. In order to evaluate the Extended Kalman Filter Formulations with the 

Unscented Kalman Filter and Complementary Filter Formulations, white Gaussian noise will be used. 

Based on real sensor hardware data, the sensors will have the covariance and calculation rates as shown 

in Table 4-1, below. The estimators are calculated at 50Hz. It is not uncommon that gyro/accelerometers 

are processed on a different piece of hardware than the estimator. If an experiment were to be set up 

with the IMU being sampled at a different rate than the estimator computations, the noise 

characteristics could vary. 

Table 4-1: Sensor Noise Properties 

Sensor Covariance Calculation Rate  

Gyro 5 deg/s 50 Hz 

Accelerometer 0.003 g’s 50 Hz 

GPS Position 3m* 10 Hz 

GPS Velocity 6m/s* 10 Hz 

Airspeed 6m/s* 50 Hz 
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*Note: GPS position and GPS/Airspeed velocity covariances used in these analyses are large compared 

to the best (still low-cost) sensors available at the time of the authoring of this thesis. The values in the 

table are more representative of the lower quality sensors available at this time. Higher performing low-

cost sensors are closer to 1m, 0.6m/s, and 1m/s. Due to the rapid increases in low-cost sensor 

performance, it is recommended for researchers to do a quick scan of available low cost sensors at the 

time of their research to determine more accurate covariances.  

4.4. Monte Carlo Setup 

The Monte Carlo Analyses that are discussed in the “Analyses, Results, and Observations”, are described 

below. The Monte Carlo analyses range from one degree of freedom to 4 degrees of freedom. An 

example of a 1 DoF Monte Carlo would be the analysis that determined the experimentally optimum 

single tuning parameter for the Complementary Filter Solution (Tau). An example of a 4 DoF Monte 

Carlo would be the analysis that determined the 4 experimentally optimum tuning parameters (qkc1, 

qkc2, rkc1, and rkc2) for the Method 3 EKF and Method4 UKF solutions, where the top and bottom 

halves of their "Q" and "R" matrices were independently varied. 

The Monte Carlo method is implemented in a Matlab .m script that uses the “sim()” command to call the 

estimator .slx models. The mfile defines a list of values for each parameter that was part of the Monte 

Carlo analysis. Nested for() loops, in the mfile, iterate through all possible combinations of each value in 

each list. The sim() command lies in the deepest nested for() loop. This is shown in the pseudo code 

block diagram in Figure 4-2, below. 
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Figure 4-2: Monte Carlo Setup Pseudo Code Block Diagram 
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5. Analyses, Results, and Observations 

In current research comparing attitude estimators, comparisons are typically done with only, or with 

respect to only, one set of tuning parameters per estimator. For example, Estimator A (with Q=X and 

R=Y) will be compared to Estimator B (with Q=J and R=K); or Estimator A/Bs' sensitivity to tuning 

parameters will be compared, comparing multiples of the chosen Q/R matrices. The Q/R choices will 

have rationale behind them; however, they are typically not proven to be optimal for the tested 

estimator for the given conditions, or test cases. 

 

This analysis, first, takes a broad look at the many Q/R choices that produce Euler estimates for each 

filter/formulation (Section 5.1 "Optimal Tuning Parameters"). This provides an additional measure of 

how optimal each filter/formulation is compared to the others. Given that other analyses choose the 

Q/R for each estimator without proving, experimentally, that the Q/R choices are optimal, it is possible 

that one estimator is inherently more optimal than the other-- by tuning alone. That is, a comparison 

between an EKF and UKF, without knowing how optimally tuned each is, is likely to lead to inconclusive 

and/or conflicting results, as observed by Rhudy et al. [3]. 
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5.1. Optimal Tuning Parameters 

5.1.1. Complementary Filter ("Method 1") 

5.1.1.1. Without Noise 

Figure 5-1, Figure 5-2, and Figure 5-3 contain plots for 3 different flight conditions: trim, elevator pulse, 

and a short steady flight, respectively. Each figure contains box plots of Euler error (top) and plots of 

actual Euler vs estimated Euler for multiple time constants (Tau) (bottom). The left half of the figures 

corresponds to pitch, and the right half corresponds to roll. 

Figure 5-1 and Figure 5-2have 0 error in roll as these conditions are trim and elevator pulse, respectively. 

The other plots show, definitively though, that this complementary filter formulation (with no noise) is 

optimal at a high time constant. A large time constant forces the estimate toward the integration of the 

gyros, for Euler angle estimate, rather than the trigonometric solution of the gravity vector from the 

accelerometer. 

With the optimal (no noise) solution strongly favoring the integration of the gyros, it is apparent that the 

assumption of a non-accelerated body, that is required by the trigonometric solution of the pseudo 

gravity vector from the accelerometer, is invalid for a significant amount of the flight conditions. Though 

less pronounced in the trim and elevator pulse conditions, it is still apparent.  
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Figure 5-1: CF - Without Noise - Flight: Trim 
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Figure 5-2: CF - Without Noise - Flight: Elevator Pulse Input 
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Figure 5-3: CF - Without Noise - Flight: Short Steady Flight 
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5.1.1.2. With Noise 

Figure 5-4, Figure 5-5, and Figure 5-6 contain plots for 3 different flight conditions: trim, elevator pulse, 

and a short steady flight, respectively. Each figure contains box plots of Euler error (top) and plots of 

actual Euler vs estimated Euler for multiple Taus (bottom). The left half of the figures corresponds to 

pitch, and the right half corresponds to roll. 

From these plots it can be seen that the optimal tau for each estimated parameter for a particular flight 

is not necessarily the same. For example, the optimal tau for estimating theta for the trim condition (Tau 

= 1) is not the same as the optimal tau for estimating phi for that same trim condition (Tau = 10); Also, 

the optimal tau for estimating theta for the trim condition (Tau = 1) is not the same as the optimal tau 

for estimating theta for the short steady flight case (Tau = 1000). Note that Tau = 1000 was chosen as 

optimal Tau for estimating pitch for the short steady flight condition as it has the lowest median and 

maximum error. 

These results show that for the given filter/formulation and flight conditions tested, that a Tau between 

1 and 100 should be chosen, assuming only one value of Tau must be chosen for all states. If outliers, or 

maximum error is a concern, for even one timestep, Tau = 100 would be a better choice as it has low 

median errors, and no maximum errors greater than |5|degrees. 
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Figure 5-4: CF - With Noise - Flight: Trim 
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Figure 5-5: CF - With Noise - Flight: Elevator Pulse Input 
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Figure 5-6: CF - With Noise - Flight: Short Steady Flight 
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Figure 5-7 through Figure 5-9 are higher resolution runs with 1 < Tau < 1000, as that is where the 

optimal with-noise solution occurs. It is clear that for the steady state scenario (trim conditions and roll 

angle in elevator pulse flight), Tau = 1 is optimal. For the more dynamic scenarios, though, it is less 

apparent which Tau is optimal for both axes. Tau = 1000 is optimal for pitch for the short steady flight, 

while 50 <= Tau <= 80 is optimal for phi in that condition. A Tau between 50 and 80 also produces 

adequate estimates in the pitch axis for the short steady flight, and both axes for the other flight 

conditions. Additionally, Tau = 10 produces low median and 75th percentile errors compared with 20 <= 

Tau < 50, and comparable to that of 50 <= Tau <= 80. Tau = 10, though has higher maximum errors. 

The chosen experimentally optimal Tau to be used as the baseline for the sensitivity analyses of this 

estimator will be 20. The rationale is that larger Taus will track the integration of the gyros closely, which 

is known to be a flawed solution. Additionally, as Tau decreases, the short steady flight conditions 

results in exponentially increasing error. 

Discussion: 

These results suggest that utilizing a sliding tuning parameter for each estimated state, as a function of 

the current conditions (magnitude of acceleration/rotation) may be able to produce a more optimal and 

robust solution. For example: making Tau a function of gyro rate over acceleration with respect to each 

Euler angle being estimated. 
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Figure 5-7: CF - With Noise - Flight: Trim - Refined Tau  
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Figure 5-8: CF - With Noise - Flight: Elevator Pulse Input - Refined Tau  
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Figure 5-9: CF - With Noise - Flight: Short Steady Flight - Refined Tau 



 

73 
 

5.1.2. Airspeed Aided Inertial Attitude Extended Kalman Filter ("Method 2") 

5.1.2.1. Without Noise 

Figure 5-10 through Figure 5-14 show the results of a Monte Carlo analysis of the no-noise Method 2 

EKF solution for a short steady flight. The error (z-axis) is the max or mean of the absolute values of the 

error at each timestep for the pitch and roll axes. This measure of error serves as a simple and intuitive 

metric for comparing estimators. Whether the plot represents max or mean and pitch or roll, is specified 

in each figure. 

These two figures show that, for the EKF solution that uses only the IMU, the ideal solution uses a Q and 

R matrix that are as shown in Equations 45 and 46. Note that 1E-10 and 1E10 were chosen arbitrarily as 

large and small numbers. These figures show that for this EKF configuration, the best solution comes 

from a small Q and large R such that the solution closely follows the input (u) rather than the 

measurement (y). With this EKF configuration, that means that the solution closely follows the 

integration of the gyros. 

Note that in these figures, there are smaller errors, relatively, in the corners that represent large Q and 

small R combinations. This is misleading. This is a downfall to the automated method that was used to 

collect the Monte Carlo data. If an estimator diverged completely such that the Simulink model stopped 

producing an estimate, the error that was recorded from then on was 0. This results in apparently low 

error for divergent solutions. Those solutions, though, all fall near other high error estimates, and the 

errors follow trends; therefore, it is obvious where this is occurring. 

 Q = [
1 0 0
0 1 0
0 0 1

] ∙ 1−10 
(45) 

 
R = [

1 0 0
0 1 0
0 0 1

] ∙ 110 
(46) 
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Figure 5-10: Airspeed Aided Attitude EKF - Theta Mean Error - Without Noise 

 

 
Figure 5-11: Airspeed Aided Attitude EKF - Phi Mean Error - Without Noise 
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Figure 5-12: Airspeed Aided Attitude EKF - Theta Max Error - Without Noise 

 

 
Figure 5-13: Airspeed Aided Attitude EKF - Phi Max Error - Without Noise 
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5.1.2.2. With Noise 

Figure 5-14 through Figure 5-17, below, show the results of a Monte Carlo analysis of the with-noise 

Method 2 EKF solution for a short steady flight. The noise modeled is gyro covariance of 5 deg/s and 

accelerometer covariance of 0.003 g's. These noise values are also used for the other estimators' "with-

noise" runs in the following subsections. 

These figures show, like the complementary filter in the previous section, the optimal Q and R are not 

the same for both pitch and roll axes. For the pitch estimate, even with noise, the lowest max and mean 

errors come from the lowest Q and highest R combinations. The roll error estimate plots show a 

definitive valley of experimentally optimal Q and R matrices that do not include the lowest Q and 

highest R combinations. These results make sense as the pitch axis had higher frequency maneuvers, 

while the roll axis had lower frequency maneuvers. That is, maneuvers in the pitch axes were not as 

observable by the lower frequency component (accelerometer measurement) of the EKF; therefore, the 

better solution more closely follows the higher frequency component (gyro input). The opposite is true 

for the roll axes, as the higher frequency gyro input is subject to random walk over lower frequency 

maneuvers. Both axes show a similar trend for which Q and R combinations produce bad estimates. This 

observation refines the solution space to a smaller subset of Q and R combinations. 

The most restrictive solution space is for the maximum roll error seen in Figure 5-17. For this estimate 

the most optimal Q and R combination is shown to a Q between 1E-5 and 1E-4 and an R between 1E3 

and 1E5. Fortunately, for the short steady flight condition, these Q and R values also show to be within 

the most optimal solutions of the roll mean error and pitch max and mean error figures. 

Note that in these figures, like the no-noise figures, there are small error values in the corners that 

represent the large Q and small R combinations. This is misleading. This is a downfall to the automated 

method that was used to collect the Monte Carlo data. If an estimator diverged completely such that the 
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Simulink model stopped producing an estimate, the error that was recorded from then on was 0. This 

results in apparently low error for divergent solutions. Those solutions, though, all fall near other high 

error estimates, and the errors follow trends; therefore, it is obvious where this is occurring. 

The chosen experimentally optimal Q and R values to be used as the baseline for the sensitivity analyses 

of this estimator will come from the values rk_c = 1000 and qk_c = 1E-4. The rationale is that these 

values fall toward the middle of optimal "valleys". Additionally, these lean toward the lower R and 

higher Q, such that the estimator isn't driven so closely to the integration of the gyros—a known flawed 

solution. 

Discussion: 

From these results, it can be concluded that the optimal estimate does not use the "standard" method 

for choosing R as the covariances of the measurements. The results also show that the best choice for 

tuning parameters is dependent upon the flight conditions that will be observed. 

These results, too, suggest that a better EKF estimator may be possible if the Q and R values are dynamic 

with respect to the current flight conditions. Additionally, since the dynamics of the pitch and roll axes 

are independent, these results suggest that a better EKF may be possible by estimating each axis with its 

own EKF estimator. While this sounds extreme, the EKFs would share a lot of the same components. The 

Jacobians, which constitute the majority of the computation expense, would only have to be computed 

once for use in multiple EKFs. Therefore, the suggestion of an EKF for each axis would not require 2 or 

more times the computation cost. 

 



 

78 
 

 

Figure 5-14: Airspeed Aided Attitude EKF - Theta Mean Error - With Noise 

 

Figure 5-15: Airspeed Aided Attitude EKF - Phi Mean Error - With Noise
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Figure 5-16: Airspeed Aided Attitude EKF - Theta Max Error - With Noise 

 

Figure 5-17: Airspeed Aided Attitude EKF - Phi Max Error - With Noise 
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5.1.3. GPS Aided Inertial Navigation Extended Kalman Filter ("Method 3") 

5.1.3.1. Without Noise 

Table 5-1 and Table 5-2 show the results of a noiseless 3^4 run Monte Carlo analysis of the no-noise EKF 

solution for a short steady flight with the specifications listed above the table. Table 5-1 shows the 

results from Q and R combinations that did not cause the estimator to diverge. Table 5-2 shows the 

results from Q and R combinations that caused the estimator to diverge. Table 5-2 is important as it can 

be useful to know what does not work as well as what does. The tuning parameters chosen for this 

Monte Carlo are representative of a very small number, very large number, and 1. These were chosen as 

a representative cross section of tuning parameter combinations based on the results from the prior 

section. The rows are sorted from lowest to highest Total Euler Error from the simulation runs. Total 

Euler Error is simply the sum of the means of the absolute values of the errors of the three Euler 

estimates (in degrees), as defined in Equation 47. Similarly, Total Position Error and Total Velocity Error 

are the sums of the means of the absolute values of the x, y, and z errors of position and velocity, in 

meters and meters per second, respectively. These serve as a simple, intuitive metrics for the initial 

evaluation of each Q/R combination. The errors are rounded to the nearest 100th.The last rows, that 

have no error columns, are the Q/R combinations that caused divergence of any of the state estimates. 

 Total Euler Error =  |ϕerror
mean| + |θerror

mean| + |Ψerror
mean| 

(47) 
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Table 5-1: Monte Carlo Results from EKF ("Method 3") - Without Noise - Theoretical Q/R 

 
    

Errors 
Row 
#(/81) rkc2 rkc1 qkc2 qkc1 

Mean 
|phi| 

Mean 
|theta| 

Mean  
|psi| 

Total 
Euler 

Total 
Position 

Total 
Velocity 

1 1E-11 1E-11 1E-11 1 0.01 0.01 0.01 0.03 0 0.19 

2 1E-11 1E-11 1E-11 99999999 0.01 0.01 0.01 0.03 0 0.19 
3 1E-11 1E-11 1 99999999 0.01 0.01 0.01 0.03 0 0.19 
4 1E-11 1 1E-11 1 0.01 0.01 0.01 0.03 0 0.19 

5 1E-11 1 1E-11 99999999 0.01 0.01 0.01 0.03 0 0.19 
6 1E-11 1 1 99999999 0.01 0.01 0.01 0.03 0 0.19 
7 1E-11 99999999 1E-11 1 0.01 0.01 0.01 0.03 0 0.19 

8 1E-11 99999999 1E-11 99999999 0.01 0.01 0.01 0.03 0 0.19 

9 1E-11 99999999 1 99999999 0.01 0.01 0.01 0.03 0 0.19 

10 1 1E-11 1E-11 1 0.01 0.01 0.01 0.03 0 0.18 

11 1 1E-11 1E-11 99999999 0.01 0.01 0.01 0.03 0 0.19 

12 1 1E-11 1 99999999 0.01 0.01 0.01 0.03 0 0.19 

13 1 1 1E-11 1 0.01 0.01 0.01 0.03 0 0.18 

14 1 1 1E-11 99999999 0.01 0.01 0.01 0.03 0 0.19 

15 1 1 1 99999999 0.01 0.01 0.01 0.03 0 0.19 

16 1 99999999 1E-11 1 0.01 0.01 0.01 0.03 0 0.18 

17 1 99999999 1E-11 99999999 0.01 0.01 0.01 0.03 0 0.19 

18 1 99999999 1 99999999 0.01 0.01 0.01 0.03 0 0.19 

19 99999999 1E-11 1E-11 1 0.01 0.01 0.01 0.03 6.02 3.04 

20 99999999 1E-11 1E-11 99999999 0.01 0.01 0.01 0.03 0 0.18 

21 99999999 1E-11 1 99999999 0.01 0.01 0.01 0.03 0 0.18 

22 99999999 1 1E-11 1 0.01 0.01 0.01 0.03 5.16 2.18 

23 99999999 1 1E-11 99999999 0.01 0.01 0.01 0.03 0 0.18 

24 99999999 1 1 99999999 0.01 0.01 0.01 0.03 0 0.18 

25 99999999 99999999 1E-11 1E-11 0.01 0.01 0.01 0.03 3.19 0.24 

26 99999999 99999999 1E-11 1 0.01 0.01 0.01 0.03 3.08 0.21 

27 99999999 99999999 1E-11 99999999 0.01 0.01 0.01 0.03 0 0.18 

28 99999999 99999999 1 99999999 0.01 0.01 0.01 0.03 0 0.18 

29 1 99999999 1E-11 1E-11 0.01 0.01 0.02 0.04 0 0.2 

30 1 1 1E-11 1E-11 0.01 0.08 0.07 0.16 4.1 0.3 

31 99999999 1 1E-11 1E-11 0.01 0.08 0.07 0.16 4.13 0.31 

32 99999999 99999999 1 1E-11 0.05 0.21 0.32 0.58 3.24 0.25 

33 99999999 99999999 1 1 0.04 0.17 0.4 0.61 3.18 0.25 

34 1E-11 1 1E-11 1E-11 39.89 3.34 46.45 89.68 5.99 0.32 

35 1E-11 99999999 1E-11 1E-11 39.89 3.34 46.45 89.68 5.99 0.32 

36 1 99999999 1 1 39.89 3.34 46.45 89.68 5.66 0.32 

37 1 99999999 1 1E-11 40.17 3.66 47.89 91.72 6.08 0.33 

38 1 1E-11 1 1 40.72 3.54 47.76 92.02 6 0.32 

39 99999999 1E-11 99999999 99999999 40.72 3.54 47.76 92.02 6 0.32 

40 99999999 1 99999999 99999999 40.72 3.54 47.76 92.02 6 0.32 

41 1E-11 1E-11 1E-11 1E-11 40.24 3.81 48.7 92.75 5.12 0.32 

42 1 1 1 1 40.24 3.81 48.7 92.75 5.12 0.32 

43 99999999 99999999 99999999 99999999 40.24 3.81 48.7 92.75 5.12 0.32 

44 1E-11 1E-11 99999999 99999999 68.36 4.11 49.16 121.63 6 0.29 

45 1E-11 1 99999999 99999999 68.36 4.11 49.16 121.63 6 0.29 

46 1E-11 1E-11 1 1 67.94 4.09 49.76 121.79 6 0.29 

47 1E-11 99999999 1 1 68.24 4.11 49.67 122.02 5.71 0.29 

48 1E-11 99999999 99999999 99999999 68.4 4.11 49.51 122.02 5.12 0.29 

49 1E-11 1 1 1 68.07 4.09 49.96 122.12 5.12 0.29 

50 1 99999999 99999999 99999999 68.5 4.09 49.72 122.31 5.12 0.29 

51 1 1E-11 99999999 99999999 68.4 4.1 50.05 122.55 6 0.29 

52 1 1 99999999 99999999 68.4 4.1 50.05 122.55 6 0.29 
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Table 5-2: Monte Carlo Results from EKF ("Method 3") - Without Noise - Theoretical Q/R – Divergent Q/R Combinations 

Row 
#(/81) rkc2 rkc1 qkc2 qkc1 

53 1E-11 1E-11 1 1E-11 

54 1E-11 1E-11 99999999 1E-11 
55 1E-11 1E-11 99999999 1 
56 1E-11 1 1 1E-11 

57 1E-11 1 99999999 1E-11 

58 1E-11 1 99999999 1 

59 1E-11 99999999 1 1E-11 

60 1E-11 99999999 99999999 1E-11 

61 1E-11 99999999 99999999 1 

62 1 1E-11 1E-11 1E-11 

63 1 1E-11 1 1E-11 

64 1 1E-11 99999999 1E-11 

65 1 1E-11 99999999 1 

66 1 1 1 1E-11 

67 1 1 99999999 1E-11 

68 1 1 99999999 1 

69 1 99999999 99999999 1E-11 

70 1 99999999 99999999 1 

71 99999999 1E-11 1E-11 1E-11 

72 99999999 1E-11 1 1E-11 

73 99999999 1E-11 1 1 

74 99999999 1E-11 99999999 1E-11 

75 99999999 1E-11 99999999 1 

76 99999999 1 1 1E-11 

77 99999999 1 1 1 

78 99999999 1 99999999 1E-11 

79 99999999 1 99999999 1 

80 99999999 99999999 99999999 1E-11 

81 99999999 99999999 99999999 1 
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5.1.3.2. With Noise 

Table 5-3 and Table 5-4 show two subsets of a Monte Carlo analysis of the with-noise EKF solution for a 

short steady flight with the specifications and Q/R combinations listed above the table. The value in the 

"Row #(/5184)" column is the rank from best (1) to worst (5184) of the estimators, based on Total Euler 

Error. Table 5-3 shows the Q/R combinations that produced the best 50 Euler estimates, based on 

lowest Total Euler Error. Table 5-4 shows all runs with the R matrix that would have been used if the R 

matrix was chosen to be a diagonal matrix of the covariance of the sensors. The covariances of the GPS 

position and velocity modeled in the GPS noise model are 3.048m and 6.096m/s, respectively. 

Choosing the R matrix to be a diagonal matrix of the sensor covariance is a standard approach. The 

optimal estimation solution (by mathematical proof) for a pure Kalman Filter would have the R matrix 

formulated in this way. Keep in mind that the optimal estimation solution of a Kalman Filter also comes 

with assumptions about the noise, and does not account for the measurement occurring at a different 

frequency than the estimator, as the GPS does in these experiments (GPS: 10Hz; Estimator: 50Hz). 

Additionally, the optimal estimation proof is not valid for EKFs or UKFs, as they are not optimal 

estimators. Nonetheless, it is standard practice to use the sensor covariance directly for the choice of 

the R matrix. 

Table 5-3 shows that the "standard" choice for the R matrix is not represented in the top 50 (out of 

5184) Euler estimates. In fact, only 14 out of the top 50 are even multiples of the "standard" covariances 

(rows 11, 14, 15, 20-22, 24-28, 31, 32, and 33). The majority of the top 50 Euler estimates have, at least, 

one half of the covariances in the diagonal of the R matrix as 99999999, which is a non-intuitive (per 

theory) and different from the standard practice choice for the R matrix. Some of the top 50 estimators 

for estimating Euler angles, though, do not produce adequate position and velocity estimates (rows 

highlighted red). 
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Additionally, it appears that a low q1/q2 ratio appears to drive a good Euler estimate. This can be seen 

in Table 5-3, in that all of the top 50 estimates, less the rows with bad position or velocity estimates 

(highlighted red), have a low q1/q2 regardless of what the r1 and r2 values are. Though not directly 

analogous, this is similar to the results of the previous estimators in that the experimentally optimal 

solution comes from small covariances assigned to the gyro and larger assigned to the accelerometer. 

Table 5-4 shows that, although not optimal (by experiment), the standard practice choice for the R 

matrix can be used to produce an adequate estimation of Euler angles, position, and velocity. The results 

produced below show that the optimal (by experiment) estimator produces a Total Euler Error of 

2.5deg, while the best estimator that uses a standard practice R matrix produces a Total Euler Error of 

4.42deg). 

The chosen experimentally optimal Q and R values to be used as the baseline for the sensitivity analyses 

of this estimator will come from the values in row 1 (highlighted cyan). 

Discussion: 

Table 5-3 and Table 5-4 provide evidence that the standard practice method of determining the R matrix 

may not produce experimentally optimal results. However, computational performance could limit the 

ability to choose very large and very small numbers, as seen in the Q/R matrices of the best estimators.
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Table 5-3: Monte Carlo Results from EKF ("Method 3") - With Noise 

     
Errors 

Row 

#(/5184) 

rkc2 rkc1 qkc2 qkc1 Mean 

|phi| 

Mean 

|theta| 

Mean  

|psi| 

Total 

Euler 

Total 

Position 

Total 

Velocity 1 99999999 99999999 1 1000 0.44 0.69 1.37 2.5 3.38 0.71 
2 99999999 99999999 0.1 100 0.51 0.66 1.43 2.6 3.75 0.88 
3 99999999 99999999 0.1 1000 0.57 0.73 1.44 2.74 3.46 0.83 

4 99999999 99999999 0.01 10 0.7 0.74 1.47 2.91 6 1.54 
5 99999999 99999999 0.1 10 0.56 0.66 1.85 3.07 5.08 1.08 
6 99999999 99999999 0.01 100 0.73 0.82 1.55 3.1 4.54 1.39 

7 99999999 99999999 1 100 0.47 0.78 1.93 3.18 3.73 0.79 
8 99999999 30.48 0.0001 1 0.81 1.32 1.39 3.52 4.99 3.08 
9 0.006096 99999999 1E-11 1E-11 0.71 0.82 2 3.53 37.52 2.23 

10 99999999 99999999 0.001 1 0.92 1.02 1.59 3.53 14.07 2.94 
11 0.006096 30.48 1E-11 1E-11 0.7 0.81 2.03 3.54 36.51 2.18 
12 0.06096 99999999 1E-11 1E-11 0.91 1.06 1.58 3.55 57.13 3.75 

13 99999999 99999999 0.01 1 0.79 0.78 1.99 3.56 9.58 1.94 
14 0.06096 30.48 1E-11 1E-11 0.89 1.06 1.66 3.61 47.6 3.53 
15 0.006096 3.048 1E-11 1E-11 0.68 0.81 2.22 3.71 28.7 1.96 

16 99999999 99999999 0.001 10 0.93 0.99 1.83 3.75 9.65 2.59 
17 0.006096 1 1E-11 1E-11 0.66 0.82 2.4 3.88 21.37 1.74 
18 60.96 99999999 0.0001 1 0.97 1.49 1.56 4.02 10.48 3.29 

19 60.96 99999999 0.0001 10 0.86 1.41 1.76 4.03 9.79 5.34 
20 60.96 30.48 0.0001 10 0.86 1.42 1.77 4.05 6.57 5.36 
21 60.96 3.048 0.0001 10 0.86 1.41 1.8 4.07 7.71 5.35 

22 60.96 1 0.0001 10 0.86 1.41 1.81 4.08 7.91 5.35 
23 99999999 99999999 0.001 0.1 0.97 1.15 1.97 4.09 20.25 3.35 
24 60.96 0.0003048 0.0001 10 0.86 1.41 1.82 4.09 8.03 5.35 

25 60.96 0.003048 0.0001 10 0.86 1.41 1.82 4.09 8.03 5.35 
26 60.96 0.03048 0.0001 10 0.86 1.41 1.82 4.09 8.02 5.35 
27 60.96 0.3048 0.0001 10 0.86 1.41 1.82 4.09 7.99 5.35 

28 60.96 30.48 0.0001 1 1 1.54 1.58 4.12 4.94 3.39 
29 99999999 30.48 0.0001 10 0.97 1.27 1.9 4.14 6.6 4.51 
30 99999999 99999999 0.01 1000 1.04 1.04 2.08 4.16 3.94 1.33 

31 0.006096 0.3048 1E-11 1E-11 0.69 0.87 2.65 4.21 14.86 1.53 
32 0.06096 3.048 1E-11 1E-11 0.87 1.1 2.26 4.23 30.22 3 
33 60.96 3.048 0.0001 1 1.02 1.6 1.65 4.27 6.53 3.47 

34 99999999 30.48 0.001 100 0.97 1.46 1.86 4.29 7.73 5.37 
35 99999999 3.048 0.0001 10 0.97 1.47 1.86 4.3 7.73 5.39 
36 99999999 1 0.0001 10 0.96 1.5 1.86 4.32 7.92 5.54 

37 99999999 30.48 0.01 1000 0.96 1.51 1.86 4.33 8.01 5.54 
38 99999999 1 0.001 100 0.96 1.52 1.87 4.35 8.03 5.62 
39 99999999 1 0.01 1000 0.96 1.52 1.87 4.35 8.05 5.57 

40 99999999 0.0003048 0.01 1000 0.96 1.52 1.87 4.35 8.05 5.57 
41 99999999 0.003048 0.01 1000 0.96 1.52 1.87 4.35 8.05 5.57 
42 99999999 0.03048 0.01 1000 0.96 1.52 1.87 4.35 8.05 5.57 

43 99999999 0.3048 0.0001 10 0.96 1.52 1.87 4.35 8.01 5.6 
44 99999999 0.3048 0.01 1000 0.96 1.52 1.87 4.35 8.05 5.57 
45 99999999 3.048 0.001 100 0.96 1.52 1.87 4.35 8.01 5.6 

46 99999999 3.048 0.01 1000 0.96 1.52 1.87 4.35 8.05 5.57 
47 99999999 99999999 10 1000 0.73 1.13 2.5 4.36 3.49 0.93 
48 99999999 0.0003048 0.0001 10 0.96 1.53 1.87 4.36 8.05 5.64 

49 99999999 0.0003048 0.001 100 0.96 1.53 1.87 4.36 8.05 5.63 
50 99999999 0.003048 0.0001 10 0.96 1.53 1.87 4.36 8.05 5.64 
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Table 5-4: Monte Carlo Results from EKF ("Method 3") - With Noise – Q/R Combinations with Traditional R Values 

     
Errors 

Row 

#(/5184) 

rkc2 rkc1 qkc2 qkc1 Mean 

|phi| 

Mean 

|theta| 

Mean  

|psi| 

Total 

Euler 

Total 

Position 

Total 

Velocity 59 6.096 3.048 0.0001 10 0.93 1.89 1.6 4.42 7.73 6.13 

125 6.096 3.048 0.001 100 1.09 2.45 1.54 5.08 8 6.15 

177 6.096 3.048 0.01 1000 1.18 2.67 1.51 5.36 8.03 6.15 
304 6.096 3.048 0.0001 100 1.88 1.59 2.68 6.15 8 6.15 
392 6.096 3.048 0.001 1000 1.88 1.61 2.67 6.16 8.03 6.15 
540 6.096 3.048 0.0001 1000 2.81 1.85 2.88 7.54 8.03 6.15 
572 6.096 3.048 1E-11 0.0001 2.82 1.85 2.89 7.56 4.54 2.18 
638 6.096 3.048 1E-11 0.001 3.01 1.91 2.9 7.82 3.66 1.5 
976 6.096 3.048 1E-11 1 3.03 1.92 2.9 7.85 6.57 5.34 
977 6.096 3.048 1E-11 0.01 3.03 1.92 2.9 7.85 3.96 1.89 
978 6.096 3.048 1E-11 0.1 3.03 1.92 2.9 7.85 4.94 3.33 
979 6.096 3.048 1E-11 10 3.03 1.92 2.9 7.85 7.73 6.12 
980 6.096 3.048 1E-11 100 3.03 1.92 2.9 7.85 8 6.15 
981 6.096 3.048 1E-11 1000 3.03 1.92 2.9 7.85 8.03 6.15 

1036 6.096 3.048 0.0001 1 2.34 3.25 2.29 7.88 6.57 5.39 
1085 6.096 3.048 0.001 10 4.74 5.58 3 13.32 7.73 6.16 
1143 6.096 3.048 0.01 100 47.47 7.18 10.88 65.53 8 6.18 
1191 6.096 3.048 0.1 1000 50.1 7.9 13.25 71.25 8.03 6.18 
1298 6.096 3.048 0.0001 0.1 52.33 6.59 40.12 99.04 4.94 4.08 
1331 6.096 3.048 0.0001 0.01 55.63 7.63 46.04 109.3 4.09 4 
1369 6.096 3.048 0.0001 0.001 57.81 8.18 47.23 113.22 3.97 4.28 
1373 6.096 3.048 0.01 10 64.66 13.95 34.75 113.36 7.73 6.22 
1423 6.096 3.048 0.001 1 60.26 10.69 45.89 116.84 6.58 5.56 
1434 6.096 3.048 0.0001 0.0001 59.79 8.61 48.78 117.18 4.46 4.78 
1470 6.096 3.048 0.001 0.1 61.47 12.95 49.24 123.66 4.96 4.29 
1491 6.096 3.048 0.0001 1E-11 61.5 10.06 55.55 127.11 5.04 5.23 
1550 6.096 3.048 1 1000 67.97 17.76 45.16 130.89 8.03 6.2 
1690 6.096 3.048 0.1 100 67.15 16.69 54.33 138.17 8 6.2 
1731 6.096 3.048 0.1 10 105.68 22.32 103.56 231.56 7.73 6.25 
1784 6.096 3.048 0.01 0.0001 124.86 24.32 96.18 245.36 3.86 5.14 
1800 6.096 3.048 0.01 1E-11 127.31 25.15 95.26 247.72 3.85 5.16 
1812 6.096 3.048 0.01 0.001 125.93 25.03 98.62 249.58 3.89 5.17 
1825 6.096 3.048 0.01 0.1 130.16 22.94 98.51 251.61 5 5.14 
1840 6.096 3.048 0.01 0.01 125.24 24.71 104.44 254.39 4.13 5.1 
1885 6.096 3.048 0.001 0.01 147.41 15.03 96.29 258.73 4.17 5.29 
1942 6.096 3.048 0.01 1 153.03 18.71 99.98 271.72 6.58 5.9 
1952 6.096 3.048 0.001 0.001 158.33 15.02 100.22 273.57 3.98 5.6 
1981 6.096 3.048 0.001 0.0001 160.68 15.75 100.83 277.26 3.96 5.61 
1992 6.096 3.048 0.001 1E-11 160.97 15.74 101.2 277.91 3.97 5.6 
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5.1.4. GPS Aided Inertial Navigation Unscented Kalman Filter ("Method 4") 

5.1.4.1. Without Noise 

Table 5-5 and Table 5-6 show the results of a noiseless 3^4 run Monte Carlo analysis of the no-noise UKF 

solution for a short steady flight with the specifications listed above the table. The rows are sorted from 

lowest to highest Total Euler Error from the simulation runs. Table 5-6 has no error columns, as it 

contains only the Q/R combinations that caused divergence in any of the state estimates. 

Comparing Table 5-5 with Table 5-1, provides useful insight for choosing between the EKF and UKF 

solutions. It should be noted that the best Euler estimate comes from the same Q/R combination in the 

EKF and UKF. This result is evidence that the solutions are both implemented correctly. 

The Total Euler Error is lower for the EKF solution: 0.03deg error for the EKF vs. 0.28 deg error for the 

UKF. The Total Position and Velocity Errors, though are 0 for the UKF, while they are 6m and 0.19m/s for 

the EKF. This result indicates that the ideal no-noise EKF solution produces a more accurate Euler 

estimate, while the ideal no-noise UKF solution produces more accurate position and velocity estimates. 

The most notable difference between the two results is that the EKF has more combinations of 

acceptable Q/R choices. This indicates that the EKF solution is more robust to a sub-optimal design, 

while the UKF solution may be more robust to computation rate and aliasing. 

It may be worth noting that all of the Q/R combinations that produced adequate estimates in the UKF 

solution (rows 1-8), also produced adequate estimates in the EKF solution. The inverse scenario is not 

true, which agrees with the conclusions about robustness discussed in the previous paragraph. 
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Table 5-5: Monte Carlo Results from UKF ("Method 4") - Without Noise - Theoretical Q/R 

     
Errors 

Row 
#(/81) rkc2 rkc1 qkc2 qkc1 

Mean 
|phi| 

Mean 
|theta| 

Mean  
|psi| 

Total 
Euler 

Total 
Position 

Total 
Velocity 

1 1E-11 1E-11 1E-11 1 0.02 0.02 0.24 0.28 0 0 

2 1E-11 1 1E-11 1 0.02 0.02 0.24 0.28 0.8 0 

3 1 1E-11 1E-11 1 0.02 0.02 0.24 0.28 0 0.13 

4 1 1 1E-11 1 0.02 0.02 0.24 0.28 0.79 0.13 

5 1 99999999 1E-11 1 0.02 0.01 0.28 0.31 62.17 0.09 

6 1E-11 99999999 1E-11 1 0.03 0.01 0.28 0.32 61.86 0 

7 99999999 1 1E-11 1 0.13 0.04 0.96 1.13 0.79 27.14 

8 99999999 1E-11 1E-11 1 0.17 0.05 1.09 1.31 0 30.56 

9 1 99999999 1E-11 1E-11 15.07 10.59 6.01 31.67 2741.44 37.53 

10 99999999 99999999 1E-11 1E-11 0.81 1.18 59.92 61.91 1092.84 97.2 

11 99999999 1 1E-11 1E-11 26.13 13.58 49.53 89.24 113.09 43.2 

12 1 1 1E-11 1E-11 25.78 16.24 52.16 94.18 107.96 39.82 

13 99999999 99999999 1 1 15.73 15.93 83.76 115.42 1351.55 1517.46 

14 99999999 99999999 1 99999999 6.91 4.38 105.34 116.63 2.35 54.81 

15 99999999 99999999 1 1E-11 15.31 16.17 85.75 117.23 1356.87 1521.33 

16 1E-11 99999999 1 99999999 6.91 4.38 107.58 118.87 2.75 0 

17 1E-11 1E-11 1 99999999 6.91 4.39 107.6 118.9 0 0 

18 99999999 1E-11 1 99999999 6.91 4.38 107.65 118.94 0 54.83 

19 1 99999999 1 99999999 6.91 4.38 107.71 119 2.75 0 

20 99999999 1 1 99999999 6.91 4.38 107.78 119.07 0 54.83 

21 1 1E-11 1 99999999 6.91 4.38 107.87 119.16 0 0 

22 1 1 1 99999999 6.91 4.38 108.53 119.82 0 0 

23 1E-11 1 1 99999999 6.91 4.38 108.88 120.17 0 0 

24 99999999 99999999 1E-11 1 1.14 3.83 139.51 144.48 468.13 77.58 

25 1E-11 1E-11 1E-11 99999999 6.6 4.39 172.72 183.71 0 0 

26 1 1E-11 1E-11 99999999 6.6 4.39 172.72 183.71 0 0 

27 1E-11 1 1E-11 99999999 6.6 4.39 172.73 183.72 0 0 

28 1 1 1E-11 99999999 6.6 4.39 172.73 183.72 0 0 

29 99999999 1E-11 1E-11 99999999 6.6 4.39 172.73 183.72 0 0.49 

30 99999999 1 1E-11 99999999 6.6 4.39 172.73 183.72 0 0.49 

31 1E-11 99999999 1E-11 99999999 6.61 4.39 172.73 183.73 1.95 0 

32 1 99999999 1E-11 99999999 6.61 4.39 172.73 183.73 1.95 0 

33 99999999 99999999 1E-11 99999999 6.61 4.39 172.77 183.77 1.96 0.48 
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Table 5-6:  Monte Carlo Results from UKF ("Method 4") - Without Noise - Theoretical Q/R – Divergent Q/R Combinations 

Row 
#(/81) rkc2 rkc1 qkc2 qkc1 

34 1E-11 1E-11 1E-11 1E-11 

35 1E-11 1E-11 1 1E-11 

36 1E-11 1E-11 1 1 

37 1E-11 1E-11 99999999 1E-11 

38 1E-11 1E-11 99999999 1 

39 1E-11 1E-11 99999999 99999999 

40 1E-11 1 1E-11 1E-11 

41 1E-11 1 1 1E-11 

42 1E-11 1 1 1 

43 1E-11 1 99999999 1E-11 

44 1E-11 1 99999999 1 

45 1E-11 1 99999999 99999999 

46 1E-11 99999999 1E-11 1E-11 

47 1E-11 99999999 1 1E-11 

48 1E-11 99999999 1 1 

49 1E-11 99999999 99999999 1E-11 

50 1E-11 99999999 99999999 1 

51 1E-11 99999999 99999999 99999999 

52 1 1E-11 1E-11 1E-11 

53 1 1E-11 1 1E-11 

54 1 1E-11 1 1 

55 1 1E-11 99999999 1E-11 

56 1 1E-11 99999999 1 

57 1 1E-11 99999999 99999999 

58 1 1 1 1E-11 

59 1 1 1 1 

60 1 1 99999999 1E-11 

61 1 1 99999999 1 

62 1 1 99999999 99999999 

63 1 99999999 1 1E-11 

64 1 99999999 1 1 

65 1 99999999 99999999 1E-11 

66 1 99999999 99999999 1 

67 1 99999999 99999999 99999999 

68 99999999 1E-11 1E-11 1E-11 

69 99999999 1E-11 1 1E-11 

70 99999999 1E-11 1 1 

71 99999999 1E-11 99999999 1E-11 

72 99999999 1E-11 99999999 1 

73 99999999 1E-11 99999999 99999999 

74 99999999 1 1 1E-11 

75 99999999 1 1 1 

76 99999999 1 99999999 1E-11 

77 99999999 1 99999999 1 

78 99999999 1 99999999 99999999 

79 99999999 99999999 99999999 1E-11 

80 99999999 99999999 99999999 1 

81 99999999 99999999 99999999 99999999 

 

  



 

90 
 

5.1.4.2. With Noise 

Table 5-7 and Table 5-8 show two subsets of a Monte Carlo analysis of the with-noise UKF solution for a 

short steady flight with the specifications and Q/R combinations listed above the table. The value in the 

"Row #(/5184)" column is the rank from best (1) to worst (5184) of the estimators, based on Total Euler 

Error. The first 50 rows of the table are the best 50 Euler estimates (lowest Total Euler Error). The last 

portion of the table (separated by a slightly thicker borderline) represents all runs with the R matrix that 

would have been used if the R matrix was chosen to be a diagonal matrix of the covariance of the 

sensors. The covariances of the GPS position and velocity modeled in the GPS noise model are 3.048m 

and 6.096m/s, respectively. 

Table 5-7 shows that, like the EKF solution, the "standard" choice for the R matrix is not represented in 

the top 50. Unlike the EKF solution, though, the majority of the top 50 are multiples of the covariances 

of the sensors. 

The chosen experimentally optimal Q and R values to be used as the baseline for the sensitivity analyses 

of this estimator will come from the values in row 3 (highlighted cyan). This is the lowest total Euler 

error that correlates to reasonable velocity and position estimates. 

Discussion: 

Table 5-7 shows that there is one qkc2 value that produces the most accurate estimates regardless of 

qkc1, rkc1, and rkc2 values (1E-11). This is also evident in Table 5-5, though less obvious, as there are 

many less adequate Euler estimates (rows 1-8 only). This suggests that Q and R are more independent of 

each other for UKF solutions than they are for the EKF solutions. This is supported by the formulae of 

the two solutions, in that the Kalman gain of the EKF can be looked at as a scalar function of Q divided 

by R [13] while the Kalman gain of the UKF is less direct; The UKF Kalman gain is influenced by Q only 

through the UKF Kalman gain being a function of xk-1, which is a function of Q. 
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The ratio of Q/R being more influential on the EKF solution than the UKF would provide rationale as to 

why the EKF had so many more combinations of Q/R that produced adequate estimates than the UKF. 

That is, since the qkc and rkc values were all multiples of each other, there were multiple instances in 

which the same Q/R ratio was achieved. 
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Table 5-7: Monte Carlo Results from UKF ("Method 4") - With Noise 

     
Errors 

Row 
#(/5184) rkc2 rkc1 qkc2 qkc1 

Mean 
|phi| 

Mean 
|theta| 

Mean  
|psi| 

Total 
Euler 

Total 
Position 

Total 
Velocity 

1 60.96 0.0003048 1E-11 0.001 3 2 2.36 7.36 4.57 38.83 

2 6.096 0.0003048 1E-11 0.001 3.02 2.04 2.3 7.36 4.5 34.97 

3 0.0006096 0.0003048 1E-11 0.0001 3 1.91 2.71 7.62 3.89 3.73 

4 99999999 0.0003048 1E-11 0.001 3.08 2.02 2.54 7.64 4.51 41.69 

5 1 0.0003048 1E-11 0.001 3.01 1.94 2.84 7.79 4.37 20.06 

6 0.0006096 0.0003048 1E-11 0.001 3.01 1.92 3 7.93 4.33 4.79 

7 0.6096 0.0003048 1E-11 0.001 3.03 1.92 3 7.95 4.26 14.98 

8 0.06096 0.0003048 1E-11 0.001 3.08 1.96 2.92 7.96 4.27 3.82 

9 0.06096 0.0003048 1E-11 0.0001 3.03 1.91 3.03 7.97 5.16 36.83 

10 1 0.003048 1E-11 0.0001 3.03 1.93 3.04 8 5.14 21.17 

11 1 0.0003048 1E-11 0.0001 3.12 2.32 2.58 8.02 14.01 109.77 

12 0.006096 0.0003048 1E-11 0.001 3 1.92 3.11 8.03 4.15 3.62 

13 0.6096 0.003048 1E-11 0.0001 3.03 1.93 3.07 8.03 4.78 17.49 

14 60.96 0.003048 1E-11 0.0001 3.03 1.92 3.08 8.03 5.22 27.9 

15 0.0006096 0.003048 1E-11 0.0001 3.03 1.93 3.08 8.04 3.88 3.84 

16 0.06096 0.003048 1E-11 0.0001 3.03 1.93 3.08 8.04 3.96 5.61 

17 0.06096 0.3048 1E-11 0.01 3.04 1.92 3.08 8.04 3.82 3.96 

18 0.6096 3.048 1E-11 0.1 3.04 1.92 3.08 8.04 3.82 3.96 

19 6.096 0.0003048 1E-11 0.01 3.04 1.92 3.08 8.04 4.26 2.62 

20 6.096 0.003048 1E-11 0.0001 3.02 1.92 3.1 8.04 5.3 26.55 

21 60.96 0.0003048 1E-11 0.1 3.04 1.92 3.08 8.04 4.34 2.65 

22 60.96 0.003048 1E-11 0.1 3.04 1.92 3.08 8.04 4.26 2.62 

23 1 1 1E-11 0.1 3.04 1.92 3.09 8.05 3.82 3.83 

24 1 0.0003048 1E-11 0.01 3.04 1.92 3.09 8.05 4.26 2.61 

25 1 0.0003048 1E-11 0.1 3.04 1.92 3.09 8.05 4.34 3.77 

26 1 0.003048 1E-11 0.1 3.04 1.92 3.09 8.05 4.26 3.77 

27 1 0.03048 1E-11 0.1 3.04 1.92 3.09 8.05 3.88 3.79 

28 1 0.3048 1E-11 0.1 3.04 1.92 3.09 8.05 3.78 3.83 

29 1 3.048 1E-11 0.1 3.04 1.92 3.09 8.05 3.76 3.83 

30 99999999 0.003048 1E-11 0.0001 3.04 1.92 3.09 8.05 5.52 28.54 

31 0.006096 0.003048 1E-11 0.0001 3.03 1.93 3.09 8.05 3.73 3.06 

32 0.006096 0.003048 1E-11 0.001 3.04 1.93 3.08 8.05 3.8 3.93 

33 0.006096 0.03048 1E-11 0.001 3.04 1.93 3.08 8.05 3.82 3.96 

34 0.06096 1 1E-11 0.01 3.04 1.93 3.08 8.05 4.05 3.96 

35 0.06096 0.0003048 1E-11 0.01 3.04 1.92 3.09 8.05 4.26 3.93 

36 0.06096 0.003048 1E-11 0.01 3.04 1.92 3.09 8.05 3.88 3.94 

37 0.06096 0.03048 1E-11 0.01 3.04 1.92 3.09 8.05 3.78 3.96 

38 0.6096 1 1E-11 0.1 3.04 1.92 3.09 8.05 3.85 3.96 

39 0.6096 0.0003048 1E-11 0.01 3.04 1.92 3.09 8.05 4.26 2.84 

40 0.6096 0.0003048 1E-11 0.1 3.04 1.92 3.09 8.05 4.34 3.93 

41 0.6096 0.003048 1E-11 0.1 3.04 1.92 3.09 8.05 4.26 3.93 

42 0.6096 0.03048 1E-11 0.1 3.04 1.92 3.09 8.05 3.88 3.94 

43 0.6096 0.3048 1E-11 0.1 3.04 1.92 3.09 8.05 3.78 3.96 

44 0.6096 3.048 1E-11 0.01 3.04 1.92 3.09 8.05 3.51 2.95 

45 6.096 1 1E-11 1 3.04 1.92 3.09 8.05 3.73 3.94 

46 6.096 0.0003048 1E-11 1 3.04 1.92 3.09 8.05 4.35 3.92 

47 6.096 0.0003048 1E-11 0.1 3.04 1.92 3.09 8.05 4.34 2.84 

48 6.096 0.003048 1E-11 1 3.04 1.92 3.09 8.05 4.34 3.93 

49 6.096 0.003048 1E-11 0.001 3.04 1.93 3.08 8.05 3.78 7 

50 6.096 0.003048 1E-11 0.01 3.04 1.92 3.09 8.05 3.88 2.46 
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Table 5-8:  Monte Carlo Results from UKF ("Method 4") - With Noise – Q/R Combinations with Traditional R Values 

     
Errors 

Row 
#(/5184) rkc2 rkc1 qkc2 qkc1 

Mean 
|phi| 

Mean 
|theta| 

Mean  
|psi| 

Total 
Euler 

Total 
Position 

Total 
Velocity 

54 6.096 3.048 1E-11 1 3.04 1.92 3.09 8.05 3.78 3.96 

103 6.096 3.048 1E-11 0.01 3.04 1.93 3.09 8.06 3.27 2.37 

104 6.096 3.048 1E-11 0.1 3.04 1.93 3.09 8.06 3.63 2.98 

173 6.096 3.048 1E-11 0.001 3.04 1.93 3.11 8.08 3.63 3.86 

231 6.096 3.048 1E-11 10 3.05 1.93 3.13 8.11 3.89 4.58 

281 6.096 3.048 1E-11 0.0001 3.07 1.93 3.19 8.19 6.92 8.57 

335 6.096 3.048 1E-11 100 3.16 1.93 4.77 9.86 4.26 5.82 

501 6.096 3.048 1E-11 1000 3.57 2.11 60.05 65.73 4.34 6.12 

511 6.096 3.048 1E-11 1E-11 15.8 16.81 33.76 66.37 118.38 33.94 

648 6.096 3.048 0.1 1000 9.44 6.42 135.51 151.37 4.34 6.12 

664 6.096 3.048 0.01 100 7.77 5.26 140.56 153.59 4.26 5.82 

 

 

5.2. Sensitivity to Tuning Parameters 

This section is meant to show each estimator's sensitivity to its tuning parameters. The intent of this 

section is not to analyze accuracy of any estimator, but to compare the sensitivity of the estimators' 

errors with respect to the tuning parameters. In order to show which estimators are more or less 

sensitive, tuning parameters that produce adequate estimations will be chosen for each 

filter/formulation. Then, tuning parameter multipliers from 1E-3 to 1E3 will be applied to each 

estimator. Given that the multipliers will be the same for each estimator, the results will provide an 

experimental comparison how sensitive each estimator is to its given tuning parameters. 

5.2.1. Complementary Filter ("Method 1") 

Figure 5-18, below, shows that the Method 1 formulation using a complementary filter is not extremely 

sensitive to tuning parameters in lower dynamic situations such as the pitch condition for the short 

steady flight (-15 < pitch < 10). The more dynamic scenario of the roll axis in the short steady flight is 

much more sensitive to the tuning parameter than the less dynamic scenario of the pitch axis. 
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Figure 5-18: CF - Tuning Parameter Multiplier 
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5.2.2. Airspeed Aided Inertial Attitude Extended Kalman Filter ("Method 2") 

Figure 5-19 is the result of multiplying both Q and R by the same multiplier for the Method 2 EKF 

solution. All of the solutions are exactly the same. This provides evidence in support of the discussion 

regarding the high importance of the ratio of Q/R for an EKF solution. 

Figure 5-20 is the result of multiplying only Q by the multiplier. This alters the Q/R ratio, and therefore 

has an effect on the estimator. Comparing to Figure 5-18: CF - Tuning Parameter Multiplier, shows that 

the EKF is less sensitive to a change in tuning parameters than the CF. This is somewhat qualitative, but 

there is significantly less error associated with the multipliers that produce the worst estimates in Figure 

5-20 than in Figure 5-18. 
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Figure 5-19: Airspeed Aided Inertial Attitude EKF - Tuning Parameter Multiplier (Q and R) 
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Figure 5-20: Airspeed Aided Inertial Attitude EKF - Tuning Parameter Multiplier (Q Only) 
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5.2.3. GPS Aided Inertial Navigation Extended Kalman Filter ("Method 3") 

Similar to the previous EKF, multiplying Q and R by the same value does not alter the estimator results, 

as the Q/R ratio stays the same. Since there is no sensitivity of this filter/formulation to varying both Q 

and R at the same time, two additional sensitivity analyses will be presented. The first, in Figure 5-22, 

will show the sensitivity of this estimator to a multiplier applied to Q alone. The second, in Figure 5-23, 

will show the sensitivity of this estimator to a multiplier applied to the lower half of Q only. The lower 

portion of Q, is the portion that corresponds to the gyro inputs to the estimator. Figure 5-22 and Figure 

5-23 show that applying a multiplier to the entire Q matrix does not affect the results as much as varying 

only the lower half of the Q matrix. That is, this filter/formulation is less sensitive to the Q/R ratio than it 

is to the qkc_1/qkc_2 ratio (where qkc_#'s are defined in Table 3-3, in the "Formulations" Section, 

above). 
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Figure 5-21: GPS Aided Inertial Navigation EKF - Tuning Parameter Multiplier (Q and R) 
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Figure 5-22: GPS Aided Inertial Navigation EKF - Tuning Parameter Multiplier (Q Only) 
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Figure 5-23: GPS Aided Inertial Navigation EKF - Tuning Parameter Multiplier (Lower Portion of Q Only) 
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5.2.4. GPS Aided Inertial Navigation Unscented Kalman Filter ("Method 4") 

Figure 5-24 through Figure 5-26 were created using the same tuning parameter multipliers and method 

as those corresponding to the Method 3 EKF in the previous section. Unlike the EKF, the case where Q 

and R are varied by the same multiplier (such that the Q/R ratio remains the same), the UKF is affected, 

as seen in below in Figure 5-24. This provides evidence in support of the discussion regarding the higher 

independence of Q and R for an UKF compared with an EKF solution. Like the EKF solution, Figure 5-25 

and Figure 5-26 show that this formulation is more sensitive to manipulating the lower portion of Q than 

it is to the manipulation of the Q/R ratio. Although Figure 5-24 shows one instance of extreme 

divergence (multiplier of 0.001), the other 5 multipliers show little sensitivity, Figure 5-26:  GPS Aided 

Inertial Navigation UKF - Tuning Parameter Multiplier (Lower Portion of Q Only) shows significant 

sensitivity with each multiplier. Note that in both the roll and pitch axes of Figure 5-26, the solution 

diverges completely at ~70sec; therefore, the magnitude of the error reported in the boxplots for the 

multiplier of 1000 appears much less than it actually is. 
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Figure 5-24: GPS Aided Inertial Navigation UKF - Tuning Parameter Multiplier (Q and R) 
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Figure 5-25: GPS Aided Inertial Navigation UKF - Tuning Parameter Multiplier (Q Only) 
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Figure 5-26: GPS Aided Inertial Navigation UKF - Tuning Parameter Multiplier (Lower Portion of Q Only) 
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5.2.5. Discussion 

Given the significant difference of the Q/R and qkc1/qkc2 between the Method 3 EKF and Method 4 

UKF, these results cannot be directly compared. It might be worth, for future study, choosing Q and R 

values that provide an adequate estimate for both the EKF and UKF and comparing those sensitivities. 

This is suggested over choosing the experimentally optimal Q and R for each, the EKF and UKF, then 

comparing sensitivities. 

From the "Sensitivity to Tuning Parameters" Analyses, a few conclusions can be drawn about the 

sensitivity of the Kalman Filter estimators. It was shown that an experimentally optimal EKF is 

dependent upon the Q/R ratio, rather than the individual Q and R values. This was demonstrated for 

both formulations that used the EKF. It was also shown that, unlike the EKF, the UKF solution relies on 

independently optimally chosen Q and R values. The final conclusion from this section is that the 

Method 3and Method 4 formulations are most sensitive to the ratio of the upper half w.r.t. lower half of 

Q. This was not shown for the Method 2 EKF, therefore cannot be concluded to be a property of Kalman 

Filters, or Kalman Filters for attitude estimation. Though, it is an interesting observation. 
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5.3. Bias Sensitivity 

Each of the filter/formulations was run with different gyro biases ranging from 0 to 6 deg/s. An equal 

bias was inserted on each gyro axis. The results of each are plotted below in Figure 5-27 through Figure 

5-30. The tuning parameters used for the bias runs are the chosen optimal parameters from Section5.1 

"Optimal Tuning Parameters". These parameters are printed in the upper left of each figure. 

None of the estimators handled gyro bias adequately. Given that the estimator's optimal tuning 

parameters were chosen without gyro bias included in the noise, the parameters favored the integration 

of the gyro rates; therefore, they are susceptible to gyro bias. Additional simulations were done, 

adjusting tuning parameters as to create a more optimal result for the conditions with gyro bias. As the 

Method 1 CF and Method 2 EKF decreased tau or the Q/R ratio, respectively, the estimators would track 

the higher frequency dynamics in each axis better; however, would show no resemblance to the actual 

attitude angles with any amount of bias. The Method 3 and Method 4 solutions showed no 

improvement in bias tolerance as their qkc1/qkc2 ratio was increased as to drive the solution away from 

the integration of the gyros. 

Though the Method 3 EKF and Method 4 UKF, that use quaternion renormalization, they were still 

greatly affected by the gyro bias. This is due to the fact that this formulation does not have direct 

estimation of the Euler angles; i.e. the Euler corrections are a byproduct of the DCM. 

Though none of the estimators were able to produce an adequate estimate with gyro bias, the Method 

1CF and Method 2 EKF appear to handle the bias better than the Method 3 EKF and Method 4 UKF 

solutions. This is a somewhat qualitative conclusion based on the fact that the Method 1 and Method 2 

solutions do not diverge with the smallest amount of bias and tend to track the actual attitude, though 

with a biased estimate. 
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5.3.1. Complementary Filter ("Method 1") 

Figure 5-27, below, shows that this estimator tracks the actual attitudes, but contains a bias for biases up to 2 deg/s/s. Larger biases cause the 

estimator to diverge. Interestingly though, for the 1 and 2 deg/s/s bias cases, the roll estimate converges on actual roll at higher roll attitudes, 

while driving the pitch estimate erroneous. 

Figure 5-27: CF - Gyro Bias Sweep (0-6deg/s) 
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5.3.2. Airspeed Aided Inertial Attitude Extended Kalman Filter ("Method 2") 

The Q and R that were chosen were within the experimentally optimal bounds discussed in Section 5.1. 

They were chosen as to draw the solution away from only the integration of the gyros, while remaining 

within the aforementioned experimentally optimal bounds. That is Q was chosen to be the largest and R 

was chosen to be the smallest within those bounds. 

Figure 5-28 shows that this estimator's error follows a trend as the bias increases. Interestingly, unlike 

the other estimators, even with a bias of 4deg/s, the roll estimate converges to the actual roll when the 

roll angle is large. This is likely due to the fact that the C and h matrices in this estimator are a function 

ofEuler angles such that the Kalman gain, and error by which the Kalman gain is multiplied, become 

larger as Euler angle magnitude increases. With how close this estimator can come to actual, coming 

from a diverged solution, it is apparent that some component of this estimator has an accurate estimate 

of the attitude during higher angles. It's also possible that this component has an accurate estimate of 

the attitude during lower angles, but given that the feedback loop of this estimator is highly dependent 

on the magnitude of the Euler angles (C and h matrices), the estimator cannot converge to this 

component's solution. This adds additional rationale for having sliding tuning parameters. 
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Figure 5-28: Airspeed Aided Inertial Attitude EKF - Gyro Bias Sweep (0-6deg/s) 
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5.3.3. GPS Aided Inertial Navigation Extended Kalman Filter ("Method 3") 

The Method 3 EKF is not at all tolerant to gyro bias, even with the quaternion re-normalization. This can be seen in Figure 5-29, below. This is 

likely due to the fact that this formulation does not have a direct estimate of attitude. The attitude estimate is a byproduct of the position and 

velocity corrections through the Kalman gain.  

Figure 5-29: GPS Aided Inertial Navigation EKF -Gyro Bias Sweep (0-6deg/s) 
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5.3.4. GPS Aided Inertial Navigation Unscented Kalman Filter ("Method 4") 

Like the EKF, the Method 4 UKF is not at all tolerant to gyro bias. This can be seen in Figure 5-30, below. This is likely due to the same reason as 

for the EKF—the particularities of the formulation of this estimator. 

 

Figure 5-30: GPS Aided Inertial Navigation UKF - Gyro Bias Sweep (0-6deg/s) 
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5.4. Initialization Error 

Each estimator's ability to converge to the correct solution after being initialized with error was 

evaluated. This was done by initializing one Euler axis (pitch) with 25 degrees of error for a perfect trim 

condition. The tuning parameters used for each estimator are those chosen in Section 5.1 "Optimal 

Tuning Parameters". Each estimator was subject to the same noise used throughout this analysis: gyro 

covariance of 5deg/s, accelerometer covariance of 0.003 g's; No gyro bias was used for the initialization 

error analysis. 

5.4.1. Complementary Filter ("Method 1") 

The complementary filter was initialized with 100 degrees of error in the pitch axis that was maintained 

for 2 seconds. This was done to show the immediate convergence of this estimator even with large 

initial and sustained error. These results can be seen in Figure 5-31, below. 

 

Figure 5-31: Initialization Error -  Complementary Filter 
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5.4.2. Airspeed Aided Inertial Attitude Extended Kalman Filter ("Method 2") 

The EKF was initialized to 25 degrees of error in the pitch axis. This error was created using an initial 

condition block in Simulink, therefore was not sustained for more than one sample. As seen in Figure 

5-32  the error converges quickly (~10s), relative to the results from the 3 state solution in [3] which 

converged in >20 sec. This estimator's convergence is comparable to the convergence performance of 

the 6 and 12 state EKF and UKFs in Rhudy et. al. Additionally, the diagonal of the covariance matrix 

(P(1,1) and P(2,2)) are shown, in Figure 5-33, below, to converge to a steady value at approximately the 

same time the error converges to zero. 

 

Figure 5-32: Initialization Error - Airspeed Aided Inertial Attitude EKF 
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Figure 5-33: Covariance - Initialization Error -  ExtendedKalman Filter (Method 2) 

 

5.4.3. GPS Aided Inertial Navigation Extended Kalman Filter ("Method 3") 

The EKF ("Method 3") was initialized to 25 degrees of error in the pitch axis. This error was created using 

an initial condition block in Simulink, therefore was not sustained for more than one sample. As seen in 

Figure 5-34, below, the error converges (~22s). While this convergence is not fast relative to other 

estimators, it performs adequately. The diagonal of the covariance matrix (P(1,1:10)) are shown, in 

Figure 5-35, below, to converge to a steady value at approximately the same time the error converges to 

zero. 
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Figure 5-34: Initialization Error - GPS Aided Inertial Navigation EKF 

 

 

Figure 5-35: Covariance - Initialization Error - GPS Aided Inertial Navigation EKF 
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5.4.4. GPS Aided Inertial Navigation Unscented Kalman Filter ("Method 4") 

The Method 4 UKF, using the experimentally optimal tuning parameters, was not able to converge from 

an initialized error, as seen in Figure 5-36, below. This is not a property of the Unscented Kalman Filter, 

as UKF formulations have been shown to perform similarly to their EKF equivalents in multiple other 

analyses. This estimator's inability to converge could be attributed to the choice to use the 

experimentally optimal tuning parameters from the Monte Carlo run—which were not chosen based on 

the covariance of the sensors. It is possible, and likely that another set of tuning parameters, that also 

would produce an adequate Euler estimate, would demonstrate convergence. This suggests that 

convergence might need to be considered when choosing the experimentally optimal tuning 

parameters. 

 

Figure 5-36: Initialization Error - GPS Aided Inertial Navigation UKF 
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5.4.5. Discussion 

The Complementary Filter converged from the initialization error effectively instantaneously (one time 

step). Both EKFs converged from their errors rather quickly, with the Method 2 solution being on par 

with other estimators from other analyses (~10s to converge) (Rhudy et. al.), and the Method 3 EKF 

performing adequately, but not as well (~20s to converge). The UKF formulation, with the tuning 

parameters chosen, did not converge from an initial error. 

The lack of convergence property for the UKF formulation (as tuned) did not affect its performance in 

the other analyses; however, this property might provide enough rationale for this estimator (as tuned) 

to not be chosen over other options. This unexpected result motivated a suggestion for future research 

to include convergence time as part of the Monte Carlo results for choosing the experimentally optimal 

tuning parameters. This suggestion is further detailed in Section6 "Conclusions & Recommendations". 
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5.5. Baseline Comparison 

Figure 5-37 is a plot of each estimator's solution for roll (top) and pitch (bottom) vs truth. It is visually 

apparent that, overall for these conditions, the Airspeed Aided Inertial Attitude EKF performed the best. 

Though, as time increases through the run, the estimator that performs the best and worst changes 

multiple times. For example, in the pitch axis, the Airspeed Aided Inertial Attitude EKF begins performing 

better than the CF, then begins to perform worse than the CF (~80s-100s), then finishes the flight 

performing better than the CF. Each estimator's performance being a function of the particular 

conditions has been seen throughout this analysis. 

The Method 3 EKF, again, shows the interesting property that it, once diverged, begins to converge 

quickly at higher phi. This convergence also occurs in the pitch axis, though the higher attitude angle is 

in the roll axis. The original divergence, in both axes, becomes worse than that of the UKF; however, is 

able to converge as to be a better estimate. 

The UKF performed the worst for these conditions. Intuitively, the UKF and EKF should perform similarly. 

The UKF's poor performance compared to the EKF (with the same formulation) could be attributed to 

the lack of UKF specific parameter (alpha, beta, wc) inclusion in the Monte Carlo runs. Additionally, the 

non-intuitive tuning parameters (Q and R) of the Method 3 EKF and Method 4 UKF solutions, implies 

that the "standard" choices for alpha, beta, and wc may not be "standard" as well—while, for this 

analysis, alpha, beta, and wc were held constant at the "standard" choices. 

It is also possible that choosing the UKF's experimentally optimal tuning parameters based on a single 

metric led to poor performance. Given that the Total Euler Errors were similar (+- ~1deg) for multiple 

tuning parameter combinations (Table 5-7: Monte Carlo Results from UKF ("Method 4") - With Noise), it 

is quite possible that a more optimal choice exists with respect to other performance metrics. The CF 

and Method 2 EKF experimentally optimal tuning parameters were chosen based on maximum and 
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mean error with respect to each individual axis, while the Method 3 EKF and Method 4 UKF parameters 

were chosen based on a single metric for both axes. Additionally, the visual nature of the box-and-

whiskers and boxplots used for the Method 1 CF and Method 2 EKF in Section 5.1 "Optimal Tuning 

Parameters", gave a sense trends w.r.t. the tuning parameters. Trends were much less obvious from 

tables used for the Method 3 EKF and Method 4 UKF estimators' tuning. Box-and-whiskers was not used 

for the Method 3 EKF and Method 4 UKF estimators' tuning as it would've been impractical for 

evaluating the 1000s of combinations. Additionally, the Method 3 EKF and Method 4 UKF "Total Euler 

Error" included the heading error. This was done as not to pick parameters that produced good pitch 

and roll, but inaccurate heading—similar to how parameters would not be chosen if they produced 

inadequate velocity and position estimates even though the only states of interest were pitch and roll. 

Most analyses utilize only one or few metrics in order to tune their estimators. This could be 

contributing to the existence of conflicting results in the literature, as seen by Rhudy et. al. It is likely 

that utilizing more metrics, when choosing experimentally optimal parameters, will result in an 

estimator that is more optimal. This is discussed further in Section 6 "Conclusions & Recommendations". 

It should be noted that these results are the results of the combination of the filter and the formulation. 

That is, the prior conclusions do not intend to state that a complementary filter or EKF are better than a 

UKF. It is the combination of the filter and formulation that is being evaluated. Additionally, the UKF 

tracks the high frequency dynamics of the attitude well, even after the estimate accrues bias. The UKF's 

inability to converge from the accrued bias was alluded to by its inability to converge from an initial 

error in the previous section. 
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Figure 5-37: Baseline Plot - Comparing All Estimators with Respect to Phi and Theta 
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The inadequate performance of the UKF is much more evident in Table 5-9, below, particularly when 

comparing Mean Square Error. Had MSE been considered in choosing the best tuning parameters for 

this estimator, other parameters may have been chosen. Also note in Table 5-9 that the 3 sigma error 

for the UKF is better than that of the Method 3 EKF. This provides further evidence that multiple metrics 

should be considered when comparing estimators or choosing experimentally optimal tuning 

parameters. 

Table 5-9: Baseline Table - Comparing All Estimators with Respect to Phi and Theta 

 

 

 

  

 
Phi (deg) Theta (deg) 

Total_Euler_Error (deg) 
Estimators MSE RMSE 3sigma MSE RMSE 3sigma 

CF (Method 1) 3.13 1.77 6.05 11.64 3.41 6.5 4.13 

EKF (Method 2) 0.29 0.54 1.97 0.76 0.87 2.9 1.13 

EKF (Method3) 13.78 3.71 15.34 6.76 2.6 7.06 4.92 

UKF (Method 4) 23.1 4.81 10.78 39.24 6.26 13.84 7.8 
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6. Conclusions & Recommendations 

The conclusions, supporting evidence, and recommendations will be summarized in Table 6-1, below. This summary will be expanded upon in 

the following subsections. 

Table 6-1: Conclusions & Recommendations Summary 

Subject Conclusion Evidence Recommendation 

Optimal 
Tuning 

Traditional choices (sensor covariance) 
for tuning parameters (Q/R) of KFs may 
not be experimentally optimal.  

Optimal Tuning 
Parameters Sections 

When using formulations whose inputs to the KF are not 
direct measurements, a Monte Carlo analysis should be 
used to determine best possible tuning parameters. 

Additional metrics should be considered 
when choosing optimal parameters. 

Poor UKF performance 
seen in  
Baseline Comparison 
Section 5 

Gyro bias and convergence (from initial error), at 
minimum, should be considered in choosing best tuning 
parameters. 

Metrics 

Different single metrics identify different 
experimentally optimal tuning 
parameters and top performers 

 
Baseline Comparison 

Section 5 

2σ, 3σ, 4σ, max, mean, and mode errors, at minimum, 
should be considered. 

Commonality and consistency between 
estimator comparison studies impedes 
discernment. 

Conflicting research results 
[3] 

A simple, easy to implement, estimator (the IMU-only 
CF)is recommended to be used as a common baseline 
across studies. Also, historical INS comparison standards 
should be re-evaluated for applicability. 

Future 
Configur-

ations 

Bias elimination is unlikely a by-product 
of a configuration, unless specifically 
designed for. 

Bias Sensitivity Section 5.3 Designed bias elimination is essential. 

Each individual state did not have the 
same optimal tuning parameters. 

Optimal Tuning 
Parameters Sections 

Future configurations might consider independent 
estimates of states. 

Magnitude of states drove improved 
accuracy of estimate. 

Figure 5-28 Sliding tuning parameters should be investigated for 
their ability to produce similar results. 



 

124 
 

6.1. Optimal Tuning 

Conclusions: 

Previous research demonstrated the need to fairly compare estimators [3]. That research, though, only 

compared one configuration using two different filters with the same tuning parameters. This analysis 

compared estimators with multiple different configurations and formulations. Different configurations 

and formulations were hypothesized to perform at their individual bests with different tuning 

parameters. This was shown in the comparison of two EKF estimators with different 

formulations/configurations as well as in the comparison of an EKF and UKF using the same 

formulation/configuration. 

Additionally, this analysis showed that the experimentally optimal tuning parameters for each estimator 

were not based on the covariances of the sensor inputs. This is demonstrated by the chosen 

experimentally optimal estimators in the "Optimal Tuning Parameters" Sections: 5.1.2, 5.1.3, and 5.1.4. 

Such a finding could be explained by the differences between the configuration/formulation for the 

infamous first practical implementation for the Apollo mission and the estimators typical of SUAS (See 

Section 1.3.2.2.2.2 in the Introduction). 

Though experimentally optimal, based on the chosen metric, the UKF performance showed that a single 

performance metric is not adequate for choosing a "best" set of tuning parameters. This is evident in the 

UKF "Initialization Error" and "Baseline Comparison". 

Recommendations: 

In order to compare different configurations and/or formulations, some analysis must be conducted to 

ensure they're both tuned to an equivalent level of their individual bests. Given the recursive nature of 

state estimators, a Monte Carlo analysis is highly recommended. The metrics suggested for comparing 
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the Monte Carlo output are: error statistics, error convergence rate, and performance under gyro 

biases. "Error statistics" are being recommended as results have shown that 2σ, 3σ, 4σ, max, mean, and 

mode, and other single metrics, if used alone, would identify different experimentally optimal tuning 

parameters (See Metrics" in Section 6.2, below). 

Somewhat of a sensitivity analysis is recommended in order to choose the experimentally optimal 

tuning parameters. While it may not seem practical to incorporate bias and initialization error in a 

Monte Carlo analysis, it is more practical than hand checking the top percent performers (20 or 50 of 

many thousands). For example, none of the top UKF tuning parameters performed adequately for initial 

error convergence. The only feasible way to have identified an adequate performer with error 

convergence properties would have been to include this in the Monte Carlo criteria. 

6.2. Metrics 

Conclusions: 

A single metric is not adequate for comparing estimators. Results show that 2σ, 3σ, 4σ, max, mean, 

mode, and other single metrics, if used alone would identify different experimentally optimal tuning 

parameters. This is apparent in previous research [3], box-and-whisker plots (Optimal Tuning 

Parameters - Complementary Filter Section 5.1.1) , and Table 5-9 in Section 5.5 "Baseline Comparison". 

It is not intuitive, by comparing previous research from multiple sources, which estimators perform the 

best. There are hundreds, if not thousands, of papers claiming some kind of improved performance of 

their novel estimator. Without some kind of a common baseline, though, results are difficult to discern. 

Including a comparison to an extremely simple estimator, in Section 5.5 "Baseline Comparison" was 

qualitatively insightful. 
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Recommendations: 

It is being recommended that multiple common and intuitive metrics be used when comparing 

estimators. Error statistics such as 2σ, 3σ, 4σ, max, mean, and mode are a good first step. It's possible, 

and likely that other metrics be useful in determining performance of an estimator, and possibly help 

determine sources of error. Late in this research a few promising metrics were discovered, but not 

evaluated. The first is the Allan Deviation; it is intended to detect drift [30]. The others include using 

moving averages or integrals of error and/or the statistics of these; These may be indicative of bias or 

random walk. The former of these late findings had formal documentation; the latter did not. 

A simple, easy to implement, estimator is being suggested for use as a common baseline by which to 

compare across different research.The simple IMU-Only CF is being suggested as it would not require 

much effort. Though a simple estimator may not provide massive amounts of insight, it would be an 

easy to take step in the right direction w.r.t commonality of estimator comparisons. It is also being 

recommended that historical INS comparison standards be re-evaluated for applicability for the new 

navigation systems [4]. It appears that this has not been done, based on lack of inclusion or reference in 

recent comparison studies. 

6.3. Future Configurations 

Conclusions: 

Of all of the estimators analyzed in this thesis, Method 2 performed the best. Method 3 performed the 

second best. The basic CF (Method 1) performed rather well for how simple it is. Method 4 did not 

perform well. 

It was hypothesized that some estimator configuration/formulations would handle gyro bias better than 

others. This, though, was not obviously the case. All estimators in this study did not perform adequately 
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after adding in gyro bias. Though the estimators were not tuned using any gyro bias, it is apparent that 

estimators may not have any inherent ability to reject the significant gyro bias typical of MEMS. 

Each individual state did not have the same optimal tuning parameters. This was most apparent in the 

EKF and UKF "Optimal Tuning Parameters" Sections 5.1.3 and 5.1.4 in that the optimal attitude solutions 

did not always produce adequate position and velocity estimates. This is likely due to the indirect 

method by which the attitude solutions received their corrections from the KFs. Though this indirectness 

is a known feature of the Method 3 and Method 4 formulation, other formulations have coupling 

between the state estimates, through the Kalman gain, that are more of a byproduct than an intention. 

Such a finding could be evidence against a single estimator, unlike the 6, 9, 12, and 15 state estimators 

common to research today. 

It was also observed that estimators' performance changed with respect to the dynamics of the system. 

Dynamics, in this case, are not referring to quantification of non-linearity, but w.r.t. magnitude of inputs 

and/or states. Particularly, it was seen that estimators would converge or diverge at particular attitudes 

(i.e. Figure 5-28). 

Recommendations 

Though Method 2 performed the best, it is not immediately recommendable. This method still requires 

the addition of bias removal. If an adequate bias removal component for Method 2 was created, though, 

that same bias removal algorithm may also close the gap between the simple Method 1 CF and the more 

accurate Method 2 EKF. That is, based on the performance vs complexity, the author's next steps will be 

to analyze Method 1 and Method 2 with a bias removal component. The rationale is that these are the 

most simple attitude estimators, of those analyzed, and they both show potential for simple adequate 

solutions. 
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It is strongly recommended that a fundamental/initial design consideration for any attitude estimator be 

the handling of gyro bias. Most research found regarding this utilized some estimate of gyro bias. 

Though, it may possible to handle bias without estimating it. Regardless, this should be an initial 

consideration—not an afterthought. 

Removing the coupling of corrections, via the Kalman gain, between state estimates may produce better 

estimates. This could be done by creating multiple estimators that only estimate states together that 

have relevant coupling in their dynamics. Additionally, sliding parameters within the estimator could 

permit coupling only when the dynamics are also coupled. 

Sliding tuning parameters could produce improved performance by weighting one input over another in 

conditions in which it is known one estimate would be better. Figure 5-28 shows converge of an 

estimate from a significant bias during particular states. Such an affect could be created under desired 

conditions by design by making the accurate component of the estimate more influential at higher 

attitudes. That is, the tuning parameters could be variable such that they are a function of attitude 

magnitude. It is also possible that these tuning parameters be varied based on magnitude of the sensor 

inputs for the following reasons. The first reason is that it is known that drift is less of a contribution to 

the overall measured rotation rate at high rates. Therefore, at high rotation rates, one might want to 

weight the gyro inputs more. The second reason is that it is known that the measured accelerations are 

not measuring only gravity (less accurate of an attitude measurement) when total acceleration is not 

equal to 1g. For this reason, one might want to vary the tuning parameters as to increase weight of the 

accelerometer when total acceleration is close to 1g, and de-weight as a function of (1g – |total 

acceleration|). 
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