484 research outputs found

    A new self-organizing neural gas model based on Bregman divergences

    Get PDF
    In this paper, a new self-organizing neural gas model that we call Growing Hierarchical Bregman Neural Gas (GHBNG) has been proposed. Our proposal is based on the Growing Hierarchical Neural Gas (GHNG) in which Bregman divergences are incorporated in order to compute the winning neuron. This model has been applied to anomaly detection in video sequences together with a Faster R-CNN as an object detector module. Experimental results not only confirm the effectiveness of the GHBNG for the detection of anomalous object in video sequences but also its selforganization capabilities.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Unsupervised Understanding of Location and Illumination Changes in Egocentric Videos

    Full text link
    Wearable cameras stand out as one of the most promising devices for the upcoming years, and as a consequence, the demand of computer algorithms to automatically understand the videos recorded with them is increasing quickly. An automatic understanding of these videos is not an easy task, and its mobile nature implies important challenges to be faced, such as the changing light conditions and the unrestricted locations recorded. This paper proposes an unsupervised strategy based on global features and manifold learning to endow wearable cameras with contextual information regarding the light conditions and the location captured. Results show that non-linear manifold methods can capture contextual patterns from global features without compromising large computational resources. The proposed strategy is used, as an application case, as a switching mechanism to improve the hand-detection problem in egocentric videos.Comment: Submitted for publicatio

    Neural Controller for PTZ cameras based on nonpanoramic foreground detection

    Get PDF
    Abstract—In this paper a controller for PTZ cameras based on an unsupervised neural network model is presented. It takes advantage of the foreground mask generated by a nonparametric foreground detection subsystem. Thus, our aim is to optimize the movements of the PTZ camera to attain the maximum coverage of the observed scene in presence of moving objects. A growing neural gas (GNG) is applied to enhance the representation of the foreground objects. Both qualitative and quantitative results are reported using several widely used datasets, which demonstrate the suitability of our approach.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Real time motion estimation using a neural architecture implemented on GPUs

    Get PDF
    This work describes a neural network based architecture that represents and estimates object motion in videos. This architecture addresses multiple computer vision tasks such as image segmentation, object representation or characterization, motion analysis and tracking. The use of a neural network architecture allows for the simultaneous estimation of global and local motion and the representation of deformable objects. This architecture also avoids the problem of finding corresponding features while tracking moving objects. Due to the parallel nature of neural networks, the architecture has been implemented on GPUs that allows the system to meet a set of requirements such as: time constraints management, robustness, high processing speed and re-configurability. Experiments are presented that demonstrate the validity of our architecture to solve problems of mobile agents tracking and motion analysis.This work was partially funded by the Spanish Government DPI2013-40534-R grant and Valencian Government GV/2013/005 grant

    Vehicle Classification in Traffic Environments Using the Growing Neural Gas

    Get PDF
    Traffic monitoring is one of the most popular applications of automated video surveillance. Classification of the vehicles into types is important in order to provide the human traffic controllers with updated information about the characteristics of the traffic flow, which facilitates their decision making process. In this work, a video surveillance system is proposed to carry out such classification. First of all, a feature extraction process is carried out to obtain the most significant features of the detected vehicles. After that, a set of Growing Neural Gas neural networks is employed to determine their types. A qualitative and quantitative assessment of the proposal is carried out on a set of benchmark traffic video sequences, with favorable results.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Fast 2D/3D object representation with growing neural gas

    Get PDF
    This work presents the design of a real-time system to model visual objects with the use of self-organising networks. The architecture of the system addresses multiple computer vision tasks such as image segmentation, optimal parameter estimation and object representation. We first develop a framework for building non-rigid shapes using the growth mechanism of the self-organising maps, and then we define an optimal number of nodes without overfitting or underfitting the network based on the knowledge obtained from information-theoretic considerations. We present experimental results for hands and faces, and we quantitatively evaluate the matching capabilities of the proposed method with the topographic product. The proposed method is easily extensible to 3D objects, as it offers similar features for efficient mesh reconstruction

    Real time motion estimation using a neural architecture implemented on GPUs

    Get PDF
    This work describes a neural network based architecture that represents and estimates object motion in videos. This architecture addresses multiple computer vision tasks such as image segmentation, object representation or characterization, motion analysis and tracking. The use of a neural network architecture allows for the simultaneous estimation of global and local motion and the representation of deformable objects. This architecture also avoids the problem of finding corresponding features while tracking moving objects. Due to the parallel nature of neural networks, the architecture has been implemented on GPUs that allows the system to meet a set of requirements such as: time constraints management, robustness, high processing speed and re-configurability. Experiments are presented that demonstrate the validity of our architecture to solve problems of mobile agents tracking and motion analysis

    A Question of Consent in Cybernorms Governance

    Get PDF
    Although access to the internet is increasingly recognised as a critical right, the increasing criminalisation of copyright infringements and its consequent constitutional concerns reflects not only an ever widening gap between the legislative prescriptions and the broader societal expectations but may also raise constitutional concerns that may undermine that right of access. Drawing on the premise of consent from a public choice perspective this thesis examines some aspects of these complex debates such as in advocating for government intervention. The research finds that the recent pluralistic legislative developments such as ACTA and DRD are forum shifted with the ascending IPRs rights in the on-going bilateral forum (such as the CETA) matched by increased surveillance that can be understood as issues of voter ignorance/rationalities and the rent seeking lobbying interest groups that erodes the premise of consent and ultimately the democratic legitimacy of the State. It is argued that the paradoxical neoliberal outcomes are product of lobbying and the malaise underlying political consensus. It argues for the return of ‘bottom-up’ spontaneous ordering of ‘cybernorm’ law-making as a product of human action to address these developments instead of the social construct and human design of central government institutions in understanding and addressing the normative gap

    Evaluation of different chrominance models in the detection and reconstruction of faces and hands using the growing neural gas network

    Get PDF
    Physical traits such as the shape of the hand and face can be used for human recognition and identification in video surveillance systems and in biometric authentication smart card systems, as well as in personal health care. However, the accuracy of such systems suffers from illumination changes, unpredictability, and variability in appearance (e.g. occluded faces or hands, cluttered backgrounds, etc.). This work evaluates different statistical and chrominance models in different environments with increasingly cluttered backgrounds where changes in lighting are common and with no occlusions applied, in order to get a reliable neural network reconstruction of faces and hands, without taking into account the structural and temporal kinematics of the hands. First a statistical model is used for skin colour segmentation to roughly locate hands and faces. Then a neural network is used to reconstruct in 3D the hands and faces. For the filtering and the reconstruction we have used the growing neural gas algorithm which can preserve the topology of an object without restarting the learning process. Experiments conducted on our own database but also on four benchmark databases (Stirling’s, Alicante, Essex, and Stegmann’s) and on deaf individuals from normal 2D videos are freely available on the BSL signbank dataset. Results demonstrate the validity of our system to solve problems of face and hand segmentation and reconstruction under different environmental conditions
    • …
    corecore