
A New Self-Organizing Neural Gas Model based on Bregman Divergences

Esteban J. Palomo∗, Miguel A. Molina-Cabello∗, Ezequiel López-Rubio∗ and Rafael Marcos Luque-Baena∗
∗Department of Computer Languages and Computer Science

University of Málaga, Bulevar Louis Pasteur, 35, 29071 Málaga, Spain
Emails: {ejpalomo,miguelangel,ezeqlr,rmluque}@lcc.uma.es

Abstract—In this paper, a new self-organizing neural gas
model that we call Growing Hierarchical Bregman Neural
Gas (GHBNG) has been proposed. Our proposal is based
on the Growing Hierarchical Neural Gas (GHNG) in which
Bregman divergences are incorporated in order to compute
the winning neuron. This model has been applied to anomaly
detection in video sequences together with a Faster R-CNN
as an object detector module. Experimental results not only
confirm the effectiveness of the GHBNG for the detection
of anomalous object in video sequences but also its self-
organization capabilities.

1. Introduction

The Self-organizing Map (SOM) [1] has been widely
used for data clustering since its publication. The SOM
performs a mapping between high-dimensional data and
a lower dimensional representation space preserving the
topology of input data. Many SOM-like neural models have
been proposed over the years, which are based on a fixed
lattice topology among the neurons [2]. The Growing Neural
Gas (GNG) [3] is a self-organizing neural network which
learns a dynamic graph with variable numbers of neurons
and connections. This graph represents input data in a
more plastic and flexible way than a fixed-topology map,
improving visualization capabilities and understanding of
data.

These self-organizing models have their hierarchical ver-
sions, such as the Growing Hierarchical Self-Organizing
Map (GHSOM) for the SOM [4] and the Growing Hier-
archical Neural Gas (GHNG) for the GNG [5], in which a
neuron can be expanded into a new map or graph in a sub-
sequent layer of the hierarchy depending on the quantization
error associated to that neuron or the graph it belongs to.
Hierarchical models can reflect hierarchical relations present
among input data in a more straightforward way.

Another possible problem present in these self-
organizing models is the use of the Euclidean distance to
compute the winning neuron, since this distance may not be
the most suitable for all input distributions. Hence, Bregman
divergences were taken into account for the GHSOM [6],
since they are suited for clustering because their minimizer
is the mean [7]. Moreover, the squared Euclidean distance
is a particular case of the Bregman divergences. Therefore,

by using Bregman divergences the most suitable divergence
according to input data can be specified. In this paper, a new
self-organizing neural network called the Growing Hierar-
chical Bregman Neural Gas (GHBNG) is proposed, which
is grounded in the GHNG model and in which Bregman
divergences have been considered.

On the other hand, the proliferation in recent years of
a huge amount of visual information in the form of data
sequences has led to a growth in the field of intelligent video
surveillance. In particular, one of the most important tasks
to consider is to automatically detect moving objects that
are not very frequent in a scene and can be considered as
anomalies. In recent years, the appearance of deep learning
networks for the detection of objects in an image has meant a
turning point in the detection of objects in video sequences
[8]. Thus, it is possible to use pre-trained networks with
thousands of data and a large number of object types to
detect moving objects in a scene, providing more stable
results than those obtained by classical approaches.

In order to show the possible applications of our pro-
posal, we have also applied the GHBNG to anomalous
detection in video sequences acquired by fixed IP cameras.
The objects in motion on each frame are obtained by the
Faster RCNN network [9]. Later, the GHBNG estimates the
objects considered as anomalous after a previous training
phase.

The rest of the paper will have the following structure:
section 2 exhaustively describes the GHBNG model. Section
3 presents several experiments which demonstrate the self-
organization capacity of the GHBNG model, in addition to
its application for the detection of anomalous objects in
video sequences. Finally section 4 concludes the paper.

2. The GHBNG Model

A Growing Hierarchical Bregman Neural Gas (GHBNG)
network is defined as a Growing Hierarchical Neural Gas
(GHNG) network [5] in which Bregman divergences are
incorporated in order to compute the winning neuron. A
GHBNG network can be seen as a tree of Growing Neural
Gas (GNG) networks [3] where a mechanism to control the
growth of each GNG graph is established. This mechanism
distinguishes between a growth phase where more neurons
are added until no significant improvement in the quanti-
zation error is obtained, and a convergence phase where

no more units can be created. Thus, each graph contains
a variable number of neurons so that its size can grow or
shrink during learning. Also, each graph is the child of a unit
in the upper level, except for the top level (root) graph which
has no parent. An example of the structure of a GHBNG
model is shown in Figure 1. Note that the structure is the
same as the GHNG since the difference between these two
self-organizing models resides in the way to compute the
winning neuron according to the used Bregman divergence.

The definition of the GHBNG is organized in two sub-
sections. First a review of Bregman divergences is presented.
Then, the basic model for a graph and the corresponding
learning algorithm are explained (Subsection 2.3). Finally
we explain how new graphs are created to yield a hierarchy
of graphs (Subsection 2.4).

Figure 1. Structure of a GHBNG model with four graphs. The parent
neurons are shown in a darker tone.

2.1. Review of Bregman Divergences

Next the fundamentals of Bregman divergences and their
application to clustering are reviewed. Let φ : S → R be a
strictly convex real valued function defined over a convex
set S ⊆ RD, where D is the dimension of the input data
[10], [11], [12]. We assume that φ is differentiable on the
relative interior ri (S) of the set S [7]. Then the Bregman
divergence Dφ : S × ri (S) → [0,+∞) corresponding to φ
is defined as

Dφ (x,y) = φ (x)− φ (y)− (x− y)
T ∇φ (y) (1)

where x ∈ S and ∇φ (y) stands for the gradient vector
of φ evaluated at y ∈ ri (S). Table 1 lists the Bregman
divergences that we consider in this paper.

Bregman divergences are suited for clustering because
their minimizer is the mean. This is the main contribution of
[7], where it is proved that the class of distortion measures
with respect to a set of centroids which admit an itera-
tive minimization procedure is precisely that of Bregman
divergences. Moreover, it is also proved that each Bregman

divergence is uniquely associated to a regular exponential
family of probability density functions, that are defined
below. This way, a unique probability density function can
be linked to the cluster associated to a given centroid,
which enables probabilistic soft clustering. Furthermore,
expectation maximization can be carried out with a reduced
computational complexity for general Bregman divergences,
so that specific Bregman divergences can be designed to suit
the application at hand.

The property that the mean is the minimizer of a Breg-
man divergence is formalized next. Given an input distribu-
tion for x the following condition holds [12]:

µ = E [x] = arg min
y
E [Dφ (x,y)] (2)

Let N be the number of clusters, and let µi be the mean
vector of the i-th cluster Ci, i ∈ {1, ..., N}. Then a point x
belongs to Ci if µi minimizes the divergence with respect
to x:

Ci =

{
x ∈ S | i = arg min

j∈{1,...,N}
Dφ

(
x,µj

)}
(3)

So, we can rewrite (2) to partition S into N clusters Ci:

µi = E [x | Ci] = arg min
y
E [Dφ (x,y) | Ci] (4)

The above equation implies that the mean of the cluster
Ci minimizes the Bregman divergence to the samples x
which belong to the cluster.

2.2. Basic model

For clustering and self-organizing network applications
it is necessary to learn a weight vector wi of each cluster
i [13], so that wi estimates the cluster mean vector µi.
Stochastic gradient descent has been proposed in [12] to
minimize E [Dφ (x, z)]:

4wi = −η ∂Dφ (x,wi)

∂wi
(5)

where η is a suitable step size.
Here we propose a different approach, namely the es-

timation of the cluster mean vector E [x | Ci] by stochastic
approximation [14], [15], [16], [17]. This strategy has been
successfully applied by the authors to other self-organizing
models in [18], [19], [20]. The goal of stochastic approx-
imation is to find the value of some parameter θ which
satisfies

ζ (θ) = 0 (6)

where ζ is a function whose values can not be obtained
directly. What we have is a random variable z which is a
noisy estimate of ζ:

E [z (θ) | θ] = ζ (θ) (7)

Divergence S φ (x) Dφ (x,y)

Squared Euclidean distance RD ‖x‖2 ‖x− y‖2

Generalized I-divergence RD+
∑D
k=1 xk log xk

∑D
k=1

(
−xk + yk + xk log

xk
yk

)
Itakura-Saito distance RD+ −

∑D
k=1 log xk

∑D
k=1

(
−1 + xk

yk
− log xk

yk

)
Exponential loss RD

∑D
k=1 expxk

∑D
k=1 (expxk − exp yk − (xk − yk) exp yk)

Logistic loss (0, 1)D
∑D
k=1 (xk log xk + (1− xk) log (1− xk))

∑D
k=1

(
xk log

xk
yk

+ (1− xk) log 1−xk
1−yk

)
TABLE 1. BREGMAN DIVERGENCES CONSIDERED IN THIS PAPER. RD+ STANDS FOR THE SET OF VECTORS OF SIZE D WITH STRICTLY POSITIVE REAL

COMPONENTS.

Under these conditions, the Robbins-Monro algorithm
proceeds iteratively:

θ (n+ 1) = θ (n) + η (n) z (θ (n)) (8)

where n is the time step.
In our case, the varying parameter θ (n) is the i-th

weight vector:

θ (n) = wi (n) (9)

As said before, we aim to estimate the conditional
expectation µi = E [x | Ci] by stochastic approximation,
so we may take

ζ (wi) = µi −wi (10)

z (wi) =
I (x ∈ Ci)
P (Ci)

(x−wi) (11)

where I stands for the indicator function and P (Ci) is the
a priori probability of cluster Ci. Please note that

x /∈ Ci ⇒ z (wi) = 0 (12)

Consequently, we have that (11) satisfies the condition
(7):

E [z (wi) | wi] = P (Ci)E [z (wi) | Ci,wi] +

P
(
C̄i
)
E
[
z (wi) | C̄i,wi

]
=

E [x−wi | Ci,wi] = E [x | Ci]−wi = µi −wi (13)

where C̄i is the complement of cluster Ci.
Hence equation (8) reads

wi (n+ 1) = wi (n) + η (n) z (wi (n)) (14)

If we take

η (n) = P (Ci) ε (n) (15)

then (14) can be rewritten as

wi (n+ 1) = wi (n) +

ε (n)P (x (n) ∈ Ci) (x (n)−wi (n)) (16)

where ε(n) is the learning rate at time step n, and we no
longer need the value of the a priori probability P (Ci). The
term ε(n)P (x(n) ∈ Ci) is assumed to be εb for the winning
neuron, εn for its direct neighbors, and zero otherwise, with
εb > εn > 0. That is, P (x(n) ∈ Ci) is assumed to be
maximum for the winning neuron, smaller for its immediate
neighbors, and zero for all other units.

2.3. Graph model

Each graph of the GHBNG is made of H neurons
(H ≥ 2) and one or more directed connections among them.
Both neurons and connections can be created and destroyed
during the learning process. It is not necessary that the
graph is connected, as mentioned earlier. The training set
for the graph will be noted S, with S ⊂ RD, where D is
the dimension of the input space. Each unit i ∈ {1, ...,H}
has an associated prototype wi ∈ RD and an error variable
ei ∈ R, ei ≥ 0. Each connection has an associated age,
which is a non-negative integer. The set of connections will
be noted A ⊆ {1, ...,H} × {1, ...,H}.

The learning mechanism for a graph of the GHBNG
is based on the original GNG [3], but it includes a novel
procedure to control the growth of the graph. First a growth
phase is performed where the graph is allowed to enlarge,
until a condition is fulfilled which indicates that further
growing would provide no significant improvements in the
quantization error. After that, a convergence phase is exe-
cuted where no unit creation is allowed in order to carry out
a fine tuning of the graph. The learning algorithm is given
by the following steps:

1) Start with two neurons (H = 2) joined two connec-
tions, one each way. Each prototype is initialized
to a sample drawn at random from S. The error
variables are initialized to zero. The age of the
connections are initialized to zero, too.

2) Draw a training sample xn ∈ RD at random from
from S.

3) Find the nearest unit q and the second nearest unit
s in terms of Bregman divergences:

q = arg min
i∈{1,...,H}

Dφ (x (n) ,wi (n)) (17)

s = arg min
i∈{1,...,H}−{q}

Dφ (x (n) ,wi (n)) (18)

4) Increment the age of all edges departing from q.
5) Add the squared Euclidean distance between xn

and the nearest unit q to the error variable eq:

eq (n+ 1) = eq (n) + ‖wq (n)− x(n)‖2 (19)

6) Update q and all its direct topological neighbors
with step size εb for unit q and εn for the neighbors,
where εb > εn:

ε (n, i) =


εb iff n = q

εn iff (n 6= q) ∧ (n, q) ∈ A
0 iff (n 6= q) ∧ (n, q) /∈ A

(20)

wi (n+ 1) = (1− ε (n, i))wi (n) + ε (n, i)x(n)
(21)

7) If q and s are connected by an edge, then set the
age of this edge to zero. Otherwise, create it.

8) Remove edges with an age larger than amax. Then
remove all neurons which have no outgoing edges.

9) If the current time step n is an integer multiple of
a parameter λ and the graph is in the growth phase,
then make a backup copy of the full graph and
insert a new unit as follows. First determine the
unit r with the maximum error and the unit z with
the largest error among all direct neighbors of r.
Then create a new unit k, insert edges connecting
k with r and z, and remove the original edge
between r and z. After that, decrease the error
variables er and ez by multiplying them with a
constant α, and initialize the error variable ek to the
new value of er. Finally, setup the prototype of k
to be halfway between those of r and z, as follows:

wk (n) =
1

2
(wr (n) + wz (n)) (22)

10) If the graph is in the growth phase and the current
time step n satisfies:

mod (n, 2λ) =

⌊
3

2
λ

⌋
(23)

where b·c stands for rounding towards −∞, then
a check is done in order to see whether the graph
growth has resulted in an improvement of the
quantization error. The mean quantization error
per neuron of the backup and current versions
of the graph are computed as the sum of their
error variables divided by their number of neurons
H . Let us MQEold and MQEnew note the
mean quantization errors of the backup and
current versions of the graph, respectively. If the
following condition holds, then the current version

is destroyed, the backup copy is restored, and the
graph enters the convergence phase:

MQEold −MQEnew
MQEold

< τ (24)

where τ ∈ [0, 1] is a parameter which controls the
growth process. The higher τ , the more significant
the improvement in the quantization error must be
in order to continue the growth phase. Hence higher
values of τ are associated with smaller graphs, and
vice versa.

11) Decrease all error variables ei by multiplying them
by a constant d.

12) If the maximum number of time steps has been
reached, then stop. Otherwise, go to step 2.

2.4. Hierarchical model

As mentioned before, the GHBNG is defined as a tree
of graphs. The procedure to learn such hierarchy is detailed
next. The process starts by training the root graph with the
overall set of training samples. Each time that a graph must
be trained with training set S, this is done according to
the algorithm specified in Subsection 2.3. If the resulting
number of neurons is H = 2, then the graph is pruned
because it is too small to represent any important features
of the input distribution. Otherwise, a new graph is created
for each unit i and the training process is invoked recursively
with the receptive field of unit i as the training set:

Si =

{
x ∈ S | i = arg min

j∈{1,...,H}
Dφ (x,wj)

}
(25)

This recursive process continues until a prespecified
number of levels is reached. The elimination of the graphs
with less than 3 neurons and the split of the training set
given by (25) work together in order to attain a parsimonious
hierarchy, i.e. one with a reduced number of graphs and
neurons. This is because lower graphs in the tree cannot have
many neurons because their training sets are smaller. It is
worth noting that many of the created graphs will eventually
be pruned right after their training, so that the fact that a
graph is created for each unit does not lead to uncontrolled
growth.

3. Experimental Results

3.1. Experimental Setup

The experiments reported on this paper have been carried
out on a 64-bit Personal Computer with an Intel Core i7
2.90 GHz CPU, 8 GB RAM and standard hardware. All
training were carried out using 2 epochs, independently of
the number of training samples M . Since the GHBNG is
based on the GHNG, our proposal has the same parameters
than this model. In turn, the GHNG is based on the GNG
so that the parameter setup is the same as recommended

in the original GNG paper [3], whose values are provided
in Table 2. As mentioned before, the parameter τ (which
is also present in the GHNG model) controls the growth
process where the smaller τ , the bigger the architecture size.
This parameter must be tuned for each experiment holding
τ ∈ [0, 1].

3.2. Self-Organization Experiments

This set of experiments has been designed to check the
self-organization capabilities of the GHBNG before different
Bregman divergences. We have selected two different two-
dimensional input distributions (D = 2), namely an input
distribution with the shape of a number eight and another
with the shape of an M letter. The training was carried out
using M = 10, 000 input samples and N = 20, 000 time
steps for each input distribution and Bregman divergence.
Two different values of the τ parameter (0.1 and 0.2) were
chosen to show the effect of this parameter in the final
architecture size.

The resulting GHBNGs for each Bregman divergence
and τ value are given in Figures 2 and 3 for the number
eight and the M letter input distributions, respectively. In
these plots neurons are represented by circles and connection
among neurons are plotted as straight lines, where the
color and size of both neurons and connections is different
depending on the layer they belong to. Thus, upper layers
are painted darker and with a bigger size than deeper layers.
A maximum of three layers has been plotted in order to
avoid cluttered plots. Note that GHBNGs for τ = 0.2
(first rows) yield architectures with less neurons than using
τ = 0.1 (second rows) and therefore commit more mistakes
when adapting to their corresponding shape. If we focus on
τ = 0.1 (second rows), each Bregman divergence correctly
unfolds to the shape of the two input distributions, although
for the M letter some connections are in the wrong place,
especially for Itakura-Saito.

3.3. Anomalous Detection in Video Sequences

We have employed the developed model in the detection
of anomalous objects in video sequences. The system is
composed by a camera fixed in the scenario, recording it
and producing a video.

With a Faster R-CNN object detector module [9] (a
deep learning technique that uses regions with convolutional
neural networks), we can recognize 20 different object
classes included in the PASCAL VOC 2007 dataset [21].
The input of the Faster R-CNN detector is an image and
the output is a set of probabilities and its area per each
detected object, where each probability exhibits the level
of belonging to each class. In this work we only use the
indicated probabilities, so given the frame t, the output set of
probabilites qi,t of our object detector module is as follows:

qi,t = (qi,t,1, ..., qi,t,K) ∈ RK (26)

where i is one the detected objects in the frame t, qi,t,k ∈
[0, 1], Ck ∈ Classes and the number of object classes is K

(in this case, K = 20). In this case, we have incorporated a
Titan X GPU as hardware resource.

In our context, we have considered animals as anoma-
lous objects, whereas the remaining detected classes are
considered non anomalous objects. In order to train our
anomalous classification models, we have carried out the
system with a video that does not exhibit any anomalous
object (so that, there is no animals on it) and, for each frame,
we have obtained the belonging probabilities to each class
of each detected object by the detection module. After that,
we have trained a GHBNG model per Bregman divergence
with this information. According to the definition of the
object detector module, we have a twenty-dimensional input
distribution (D = 20). The training was carried out using
M = 650 input samples, N = 1, 300 time steps for each
Bregman divergence and the value of the τ parameter was
set to 0.1. A schema of this steps in order to train the
GHBNG models can be observed in Figure 4.

Then, we have executed a video which presents anoma-
lous objects in the same scenario (the video with anomalies 1

and without them 2 can be downloaded from our website).
In each frame, like the previous step, the object detector
provides the belonging probabilities of each detected object
and this output is supplied to the anomalous classification
module with a trained GHBNG model. Later, this GHBNG
model calculates how much of anomalous is each detected
object. This values are obtained from the minimum distance
of the object to the prototypes of the model. We have
considered this distance as a negative value, so an object
will be most anomalous than other if its result is lower.
So that, given the set of probabilities qi,t corresponding to
the frame t, the anomalous detection module calculates the
value vi,t ∈ R corresponding to how anomalous is the object
i in t. Finally, the anomalous detection module indicates the
value vt corresponding to the most anomalous object in t
in order to establish if it exists a really anomalous object
in the frame t (for example, a dog) or not (for example,
people or a potterplant). The operation of this process can
be observed in Figure 5.

We have carried out 10 times the selected video with
anomalous objects with the different kinds of GHBNG
models and the produced median vt result by each model
can be observed in Figure 6. Each image exhibits the most
anomalous object in each frame with its value produced
by each model, respectively. This objects are divided into
two groups: the real anomalous objects (animals) and the
real non anomalous ones (the remaining classes). The two
presented dotted lines corresponding to the values of the
higher output of all real anomalous objects and the minimum
output of all real non anomalous objects. The less number

1. http://www.lcc.uma.es/∼miguelangel/resources/fixed camera/video
with anomalies.rar

2. http://www.lcc.uma.es/∼miguelangel/resources/fixed camera/video
without anomalies.rar

Parameter description Values
Step size for the winning unit εb = 0.2
Step size for the neighbor unit εn = 0.006

Maximum edge for an edge amax = 50
New units insertion λ = 100

Maximum number of units Hmax = 50
Reduction of the error variables α = 0.5

Error variable decay d = 0.995

TABLE 2. PARAMETER SELECTION FOR THE GHBNG MODEL.

(a) (b) (c) (d) (e)

Figure 2. GHBNG results for the eight letter input distributions using τ = 0.2 (first row), τ = 0.1 (second row) and different Bregman divergences:
(a) squared Euclidean, (b) generalized I-divergence, (c) Itakura-Saito, (d) exponential loss, and (e) logistic loss. Neurons are represented by circles and
connection among neurons are plotted as straight lines, where upper layers are painted darker and with a bigger size than deeper layers.

of objects between this two lines (higher heterogeneity)
the better the model, and a value between this two lines
could be considered as threshold of these model in order to
classify an object as anomalous. So that, an object between
this two dotted lines could be considered anomalous or non
anomalous, depending on the selection of the threshold.

As it can be observed in this Figure 6 the Logistic Loss
and the Generalized I-Divergence models classify correctly
the detected objects in the video. On the other hand, the
Squared Euclidean and the Exponential Loss models yield
the worst performance. In addition, we could consider a
model better than other if the exhibited outputs of the
anomalous and non anomalous sets are close between them,
respectively, even more if a set is far away from the other.
So the election of the threshold could be chosen better and
the model could be suitable in a wide range of scenarios.
Thus, for example, as we saw in Figure 6, the Logistic Loss
model could be more appropriated than the Generalized I-
Divergence model.

4. Conclusions

This paper has presented a novel growing hierarchical
self-organizing model based on the neural gas approach and

Bregman divergences. The main feature is its adaptability
and flexibility to the data, learning a dynamic graph at each
level of the hierarchy. Additionally, the use of different
measures (Bregman divergences) to compute the winning
neuron provides more possibilities in order to form clusters,
which is suitable in real heterogeneous environments.

Thus, the self organizing capabilities of the new ap-
proach have been proved in the experimental section in a
qualitative way. On the other hand, a more specific applica-
tion related to detect anomalous objects in video surveillance
has been considered, with interesting results which indicate
its viability in this field. It is remarkable the possibilities
that this model offers, obtaining the best results with the
Generalized I-Divergence and Logistic Loss divergences.
As future work, comparison with other methods and other
performance will be addressed.

Acknowledgments

This work is partially supported by the Ministry of Econ-
omy and Competitiveness of Spain under grant TIN2014-
53465-R, project name Video surveillance by active search
of anomalous events and TIN2016-75097-P. It is also par-
tially supported by the Autonomous Government of Andalu-

(a) (b) (c) (d) (e)

Figure 3. GHBNG results for the M letter input distributions using τ = 0.2 (first row), τ = 0.1 (second row) and different Bregman divergences:
(a) squared Euclidean, (b) generalized I-divergence, (c) Itakura-Saito, (d) exponential loss, and (e) logistic loss. Neurons are represented by circles and
connection among neurons are plotted as straight lines, where upper layers are painted darker and with a bigger size than deeper layers.

Figure 4. Schema of the training GHBNG models process.

sia (Spain) under projects TIC-6213, project name Develop-
ment of Self-Organizing Neural Networks for Information
Technologies; and TIC-657, project name Self-organizing

Figure 5. Schema of the operation of the anomaly detection system based
on a GHBNG model.

systems and robust estimators for video surveillance. All
of them include funds from the European Regional Devel-
opment Fund (ERDF). The authors thankfully acknowledge
the computer resources, technical expertise and assistance
provided by the SCBI (Supercomputing and Bioinformatics)
center of the University of Málaga. They also gratefully

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2
Value

no_anomalous

anomalous

Squared Euclidean

-8 -6 -4 -2 0
Value

no_anomalous

anomalous

Generalized I-Divergence

-3500 -3000 -2500 -2000 -1500 -1000 -500 0
Value

no_anomalous

anomalous

Itakura-Saito

-1 -0.8 -0.6 -0.4 -0.2 0
Value

no_anomalous

anomalous

Exponential Loss

-10 -8 -6 -4 -2 0
Value

no_anomalous

anomalous

Logistic Loss

Figure 6. Most anomalous output for each anomaly classification model in each frame of the tested video sequence.

acknowledge the support of NVIDIA Corporation with the
donation of two Titan X GPUs used for this research.

References

[1] T. Kohonen, “Self-organized formation of topologically correct fea-
ture maps,” Biological Cybernetics, vol. 43, no. 1, pp. 59–69, 1982.

[2] T.Kohonen, “Essentials of the self-organizing map,” Neural Networks,
vol. 37, pp. 52–65, 2013.

[3] B. Fritzke, “A growing neural gas network learns topologies,” Ad-
vances in Neural Information Processing Systems, vol. 7, pp. 625–
632, 1995.

[4] A. Rauber, D. Merkl, and M. Dittenbach, “The growing hierarchical
self-organizing map: Exploratory analysis of high-dimensional data,”
IEEE Transactions on Neural Networks, vol. 13, no. 6, pp. 1331–
1341, 2002.

[5] E. J. Palomo and E. López-Rubio, “The growing hierarchical neural
gas self-organizing neural network,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 28, no. 9, pp. 2000–2009, 2017.

[6] E. López-Rubio, E. J. Palomo, and E. Dominguez, “Bregman diver-
gences for growing hierarchical self-organizing networks,” Interna-
tional Journal of Neural Systems, vol. 24, no. 04, p. 1450016, 2014.

[7] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh, “Clustering
with Bregman divergences,” Journal of Machine Learning Research,
vol. 6, pp. 1705–1749, 2005.

[8] X. Wang, “Deep learning in object recognition, detection, and seg-
mentation,” Foundations and Trends in Signal Processing, vol. 8,
no. 4, pp. 217–382, 2016.

[9] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-
CNN: towards real-time object detection with region proposal
networks,” CoRR, vol. abs/1506.01497, 2015. [Online]. Available:
http://arxiv.org/abs/1506.01497

[10] L. Bregman, “The relaxation method of finding the common point of
convex sets and its application to the solution of problems in convex
programming,” USSR Computational Mathematics and Mathematical
Physics, vol. 7, no. 3, pp. 200–217, 1967.

[11] Y. Censor and S. Zenios, Parallel Optimization: Theory, Algorithms,
and Applications. Oxford University Press, 1998.

[12] T. Villmann and S. Haase, “Divergence-based vector quantization,”
Neural Computation, vol. 23, pp. 1343–1392, 2011.

[13] E. Mwebaze, P. Schneider, F. M. Schleif, J. R. Aduwo, J. A. Quinn,
S. Haase, T. Villmann, and M. Biehl, “Divergence-based classification
in learning vector quantization,” Neurocomputing, vol. 74, no. 9, pp.
1429–1435, 2011.

[14] H. J. Kushner and G. G. Yin, Stochastic approximation and Recursive
Algorithms and Applications. New York, NY, USA: Springer-Verlag,
2003.

[15] T. Lai, “Stochastic approximation,” Annals of Statistics, vol. 31, no. 2,
pp. 391–406, 2003.

[16] B. Delyon, M. Lavielle, and E. Moulines, “Convergence of a stochas-
tic approximation version of the EM algorithm,” Annals of Statistics,
vol. 27, no. 1, pp. 94–128, 1999.

[17] M. Sato and S. Ishii, “On-line EM algorithm for the normalized
Gaussian network,” Neural Computation, vol. 12, no. 2, pp. 407–432,
2000.

[18] E. López-Rubio, J. M. Ortiz-de-Lazcano-Lobato, and D. López-
Rodrı́guez, “Probabilistic PCA self-organizing maps,” IEEE Trans-
actions on Neural Networks, vol. 20, no. 9, pp. 1474–1489, 2009.

[19] E. López-Rubio and E. Palomo, “Growing hierarchical probabilis-
tic self-organizing graphs,” IEEE Transactions on Neural Networks,
vol. 22, no. 7, pp. 997–1008, 2011.

[20] E. López-Rubio, E. J. Palomo-Ferrer, J. M. Ortiz-de Lazcano-Lobato,
and M. C. Vargas-González, “Dynamic topology learning with the
probabilistic self-organizing graph,” Neurocomputing, vol. 74, no. 16,
pp. 2633–2648, 2011.

[21] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman, “The PASCAL Visual Object Classes
Challenge 2007 (VOC2007) Results,” http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html.

