2,428 research outputs found

    A novel technique for load frequency control of multi-area power systems

    Get PDF
    In this paper, an adaptive type-2 fuzzy controller is proposed to control the load frequency of a two-area power system based on descending gradient training and error back-propagation. The dynamics of the system are completely uncertain. The multilayer perceptron (MLP) artificial neural network structure is used to extract Jacobian and estimate the system model, and then, the estimated model is applied to the controller, online. A proportional–derivative (PD) controller is added to the type-2 fuzzy controller, which increases the stability and robustness of the system against disturbances. The adaptation, being real-time and independency of the system parameters are new features of the proposed controller. Carrying out simulations on New England 39-bus power system, the performance of the proposed controller is compared with the conventional PI, PID and internal model control based on PID (IMC-PID) controllers. Simulation results indicate that our proposed controller method outperforms the conventional controllers in terms of transient response and stability

    Navigation Control of an Automated Guided Underwater Robot using Neural Network Technique

    Get PDF
    In recent years, under water robots play an important role in various under water operations. There is an increase in research in this area because of the application of autonomous underwater robots in several issues like exploring under water environment and resource, doing scientific and military tasks under water. We need good maneuvering capabilities and a well precision for moving in a specified track in these applications. However, control of these under water bots become very difficult due to the highly non-linear and dynamic characteristics of the underwater world. The logical answer to this problem is the application of non-linear controllers. As neural networks (NNs) are characterized by flexibility and an aptitude for dealing with non-linear problems, they are envisaged to be beneficial when used on underwater robots. In this research our artificial intelligence system is based on neural network model for navigation of an Automated Underwater robot in unpredictable and imprecise environment. Thus the back propagation algorithm has been used for the steering analysis of the underwater robot when it is encountered by a left, right and front as well as top obstacle. After training the neural network the neural network pattern was used in the controller of the underwater robot. The simulation of underwater robot under various obstacle conditions are shown using MATLAB

    Fuzzy-logic-based control, filtering, and fault detection for networked systems: A Survey

    Get PDF
    This paper is concerned with the overview of the recent progress in fuzzy-logic-based filtering, control, and fault detection problems. First, the network technologies are introduced, the networked control systems are categorized from the aspects of fieldbuses and industrial Ethernets, the necessity of utilizing the fuzzy logic is justified, and the network-induced phenomena are discussed. Then, the fuzzy logic control strategies are reviewed in great detail. Special attention is given to the thorough examination on the latest results for fuzzy PID control, fuzzy adaptive control, and fuzzy tracking control problems. Furthermore, recent advances on the fuzzy-logic-based filtering and fault detection problems are reviewed. Finally, conclusions are given and some possible future research directions are pointed out, for example, topics on two-dimensional networked systems, wireless networked control systems, Quality-of-Service (QoS) of networked systems, and fuzzy access control in open networked systems.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374039, 61473163, and 61374127, the Hujiang Foundation of China under Grants C14002 andD15009, the Engineering and Physical Sciences Research Council (EPSRC) of the UK, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Decentralised control for complex systems - An invited survey

    Get PDF
    © 2014 Inderscience Enterprises Ltd. With the advancement of science and technology, practical systems are becoming more complex. Decentralised control has been recognised as a practical, feasible and powerful tool for application to large scale interconnected systems. In this paper, past and recent results relating to decentralised control of complex large scale interconnected systems are reviewed. Decentralised control based on modern control approaches such as variable structure techniques, adaptive control and backstepping approaches are discussed. It is well known that system structure can be employed to reduce conservatism in the control design and decentralised control for interconnected systems with similar and symmetric structure is explored. Decentralised control of singular large scale systems is also reviewed in this paper

    A Robust Controller Design for Simple Robotic Human Arm

    Get PDF
    Nowadays, the manipulator of two degrees of freedom (2DOF) has many applications. One is a human arm that may be utilized in robotic rehabilitation. The 2DOF controlled robot manipulator usually acts like human arms. This paper aims to design a robust, stable controller for the upper limb robotic model. A sliding mode control (SMC) approach is proposed to realize stability, tracing accuracy, and robustness for 2DOF robotic manipulator. Based on the general manipulator equation of motion, two SMCs are designed. The first is designed according to the input–output stability constraints. The second is designed according to the adaptive law. Not only the trajectory tracking is guaranteed but also stability is ensured. The stability of the controllers is examined based on Lyapunov stability criteria. The controllers and the robotic arm are formulated analytically. The MATLAB platform is adopted to examine and validate the proposed controller’s performance. The addition of adaptation law in the SMC scheme improves the results for the two designed controllers and shows remarkable trajectory tracking and system stability as well. The improvement rate shows an enhancement of 40.5% and 36.7% for manipulator joints 1 and 2, respectively

    Comprehensive review on controller for leader-follower robotic system

    Get PDF
    985-1007This paper presents a comprehensive review of the leader-follower robotics system. The aim of this paper is to find and elaborate on the current trends in the swarm robotic system, leader-follower, and multi-agent system. Another part of this review will focus on finding the trend of controller utilized by previous researchers in the leader-follower system. The controller that is commonly applied by the researchers is mostly adaptive and non-linear controllers. The paper also explores the subject of study or system used during the research which normally employs multi-robot, multi-agent, space flying, reconfigurable system, multi-legs system or unmanned system. Another aspect of this paper concentrates on the topology employed by the researchers when they conducted simulation or experimental studies

    RBF Neural Network of Sliding Mode Control for Time-Varying 2-DOF Parallel Manipulator System

    Get PDF
    This paper presents a radial basis function (RBF) neural network control scheme for manipulators with actuator nonlinearities. The control scheme consists of a time-varying sliding mode control (TVSMC) and an RBF neural network compensator. Since the actuator nonlinearities are usually included in the manipulator driving motor, a compensator using RBF network is proposed to estimate the actuator nonlinearities and their upper boundaries. Subsequently, an RBF neural network controller that requires neither the evaluation of off-line dynamical model nor the time-consuming training process is given. In addition, Barbalat Lemma is introduced to help prove the stability of the closed control system. Considering the SMC controller and the RBF network compensator as the whole control scheme, the closed-loop system is proved to be uniformly ultimately bounded. The whole scheme provides a general procedure to control the manipulators with actuator nonlinearities. Simulation results verify the effectiveness of the designed scheme and the theoretical discussion

    Load frequency controllers considering renewable energy integration in power system

    Get PDF
    Abstract: Load frequency control or automatic generation control is one of the main operations that take place daily in a modern power system. The objectives of load frequency control are to maintain power balance between interconnected areas and to control the power flow in the tie-lines. Electric power cannot be stored in large quantity that is why its production must be equal to the consumption in each time. This equation constitutes the key for a good management of any power system and introduces the need of more controllers when taking into account the integration of renewable energy sources into the traditional power system. There are many controllers presented in the literature and this work reviews the traditional load frequency controllers and those, which combined the traditional controller and artificial intelligence algorithms for controlling the load frequency
    corecore