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This paper presents a radial basis function (RBF) neural network control scheme for manipulators with actuator nonlinearities.
The control scheme consists of a time-varying sliding mode control (TVSMC) and an RBF neural network compensator. Since
the actuator nonlinearities are usually included in the manipulator driving motor, a compensator using RBF network is proposed
to estimate the actuator nonlinearities and their upper boundaries. Subsequently, an RBF neural network controller that requires
neither the evaluation of off-line dynamical model nor the time-consuming training process is given. In addition, Barbalat Lemma
is introduced to help prove the stability of the closed control system. Considering the SMC controller and the RBF network
compensator as the whole control scheme, the closed-loop system is proved to be uniformly ultimately bounded.Thewhole scheme
provides a general procedure to control the manipulators with actuator nonlinearities. Simulation results verify the effectiveness of
the designed scheme and the theoretical discussion.

1. Introduction

Thepast several decades have seen a rapid increase in parallel
manipulators connected to the control system. It is well
known that parallel manipulators with high rigidity are of
generally higher accuracy and of lower error accumula-
tion than similarly sized serial manipulators. Their closed
kinematics structure allows them to obtain high structural
stiffness and perform high-speed motions. The inertia of
its mobile parts is reduced, since the actuators of a parallel
manipulator are often fixed to its base and the end effectors
can perform movements with higher accelerations. Adaptive
tracking control for a class of nonlinear systems is given
in [1–3], and in [4] a design of the sliding mode surface
integral algorithm is proposed to inhibit the steady-state error
and enhance the robustness. In [5, 6] sliding mode control
(SMC) with low-pass filter is used to keep trajectory tracking
accurately.

It is known that SMC has the intrinsic nature of robust-
ness, good transient fast response, and insensitivity to the
variation of plant parameters and external disturbances in
[7]. Thus, the SMC is considered as an effective approach for

the control of many systems such as uncertain nonlinear
systems in [8], discrete-time nonlinear systems in [9], and
singular stochastic hybrid systems in [10–12]. The control
process of SMC consists of two parts; one part is continuous
and the other discontinuous. When the system reaches the
sliding mode, the system with variable structure control is
insensitive to the external disturbances and the variations of
the plant parameters, and it has been widely applied to the
manipulator systemdue to its operation characteristics for the
sake of fastness, robustness, and stability in large load varia-
tions. All those merits are gotten at the cost of the chattering.
Furthermore, inmany time-variable systems, parameters and
perturbation upper bounds are often uncertain, so switching
control gain should be as high as possible to keep stable [13–
16]. The control algorithm in [17–20] reduces the reaching
phase extremely and achieves better robustness than SMC.
However, in [17] with disturbance observer based on SMC,
the algorithm assumes that the disturbance is produced
by a linear exogenous system, but in fact it is difficult to
accurately predict the uncertainty and disturbance of the
time-variable system. In [18–20], the adaptive sliding mode
control (ASMC) algorithm is proposed with the switching
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Figure 1: Structure of 2-DOF parallel manipulator.

gain excessive the SMC values, which brings themore serious
chattering problems. So the appropriate switching gain is the
key to the accurate control in time-variable system.

Motivated by the above observations, we propose a new
approach to using RBF neural network to estimate the
actuator nonlinearities and their upper boundaries for the
switching gain. In this paper, we aim to solve these problems
by focusing on the accurate tracking problemof the uncertain
mechanical system. Our research begins with a time-variable
SMC (TVSMC) algorithm with the dynamics of the manip-
ulator. The main characteristics of such a TVSMC algorithm
are discussed. To deal with the finite static error brought by
the continuous approximation of the TVSMC algorithm, the
RBF neural network is utilized, a novel Lyapunov function is
introduced, and then a new time-variable stability criterion
is presented. In the numerical simulation, the RBF TVSMC
algorithm and the TVSMC algorithm are compared after
being tested.

2. System Model

The 2-degree-of-freedom parallel manipulator (2-DOF par-
allel manipulator) is made up of three groups of two links in
one platform, in which one group has a base of open chain
mechanism, respectively, installed by the AC servo motor
and a speed reducer drive shown in Figure 1 and coordinate
in Figure 2. The 2-DOF parallel manipulator system can be
described by Laugrange’s equations [21, 22]:

𝐽 ⃛𝜃 + 𝐵 ̈𝜃 + 𝑊 ̇𝜃 = 𝑈 + 𝑈𝑑. (1)

In (1), 𝜃 ∈ 𝑅
3 stands for a displacement angle of

generalized coordinates, 𝐽 for the symmetric and positive-
definite inertia matrix, 𝐵 for a damping coefficient matrix,
𝑊 for a stiffness coefficient matrix, 𝑈 for a voltage vector
of generalized control input, and 𝑈𝑑 for a damping voltage
vector of external disturbance.

Defining 𝐽 = 𝐽 + Δ𝐽, 𝐵 = 𝐵 + Δ𝐵, and𝑊 = �̂� + Δ𝑊, the
superscript (∧) stands for the nominal value, and the notation
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Figure 2: Coordinate of 2-DOF parallel manipulator.

(Δ) represents the uncertainty. According to the structural
feature, the effect caused by the model uncertainties can
be merged into the disturbance term, which then can be
regarded as the lumped disturbance in the following form:

𝑑 = 𝑈𝑑 − Δ𝑊 ̇𝜃 − Δ𝐵 ̈𝜃 − Δ𝐽 ⃛𝜃. (2)

From (2), it is assumed that the lumped disturbance is
bounded by a upper bound; that is, ‖𝑑‖∞ ≤ 𝑑max, where
𝑑max ∈ 𝑅

+ is a constant scalar and ‖ ⋅ ‖∞ is the infinite norm
of a vector. ̇̂

𝐽 − 2𝐵 is a skew-symmetric matrix (see details in
[23, 24]).

So (1) can be rewritten as

𝐽 ⃛𝜃 + 𝐵 ̈𝜃 + �̂� ̇𝜃 = 𝑈 + 𝑑. (3)

3. TVSMC Design and Parameter Setting

In this paper, we will address the tracking control problem of
the system in (3). For the desired trajectory with the system
states of 𝜃𝑑, ̇𝜃𝑑, and ̈𝜃𝑑, a controller 𝑢 for the system is
designed so that the system states 𝜃𝑑, ̇𝜃𝑑, and ̈𝜃𝑑 can track the
desired trajectory in the presence of parametric uncertainty
and external disturbance.

For the given trajectory, the tracking error and tracking
angle are defined as

𝐸 = 𝜃 − 𝜃𝑑,

�̇� = ̇𝜃 − ̇𝜃𝑑,

�̈� = ̈𝜃 − ̈𝜃𝑑,

(4)

with the initial tracking error satisfying 𝐸(0) ̸= 03×1,
�̇�(0) ̸= 03×1, and �̈�(0) ̸= 03×1, where the subscript denotes the
appropriate dimensions of the matrix.
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Figure 4: Architecture of the RBF neural network.
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Figure 5: The desired manipulator trajectory.

In order to derive the SMC algorithm, the switching
surface can be chosen as

𝑆 = [𝑠1 𝑠2 𝑠3]
𝑇
= 𝐶𝐸, (5)

where 𝐶 ∈ 𝑅
3×3 is the matrix with strictly positive every

elements and 𝐸 = (𝐸 �̇� �̈�)
𝑇. The switching surface is then

determined by 𝑆 = 03×1, which is the desired dynamics.
The input of SMC algorithm is set as

𝑈 = 𝑢eq + 𝑢𝑛. (6)
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Figure 6: The desired joints trajectories.

In (6),𝑢eq is the equivalent control.The equivalent control
of the ideal sliding mode is obtained on 𝑆 = 0 with ̇𝑆 = 0; it
can be gotten as

𝑢eq = − (𝐽 (𝐶1�̇� + 𝐶2�̈�) − 𝐵 (𝐶1𝐸 + 𝐶2�̇�)

+ (𝐽 ⃛𝜃𝑑 + 𝐵 ̈𝜃𝑑 + �̂� ̇𝜃𝑑)) .

(7)

𝑢𝑛 is the switching control:

𝑢𝑛 = −𝛾 ⋅ sign (𝑆) . (8)

𝛾 = diag(𝛾1, 𝛾2, 𝛾3) ∈ 𝑅
3×3 is the switching gain

matrix with the elements 𝛾𝑖 > 𝑑max, and the sign(𝑆) =

(sign(𝑠1) sign(𝑠2) sign(𝑠3))
𝑇 presents the sign function.

Theorem 1. Considering the system in (3) under the lumped
disturbance with an upper boundary of 𝑑max, by adopting the
time-varying sliding mode function in (5) and the correspond-
ing input control in (6), if 𝛾𝑖 > 𝑑max, then the controlled system
is stable.
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Figure 7: Control voltage generated by TVSMC.

Proof. Consider the following Lyapunov function:

𝑉 =
1

2
𝑆
𝑇
𝐽𝑆. (9)

Differentiating 𝑉 with respect to time yields

�̇� = 𝑆
𝑇
𝐽 ̇𝑆 +

1

2
𝑆
𝑇 ̇̂
𝐽𝑆

= 𝑆
𝑇
𝐽 (𝐶1�̇� + 𝐶2�̈� + �⃛�) +

1

2
𝑆
𝑇 ̇̂
𝐽𝑆

= 𝑆
𝑇
(𝑈 + 𝑑 + 𝐽 (𝐶1�̇� + 𝐶2�̈�)

−𝐵�̈� − �̂��̇� − 𝐽 ⃛𝜃𝑑 − 𝐵 ̈𝜃𝑑 − �̂� ̇𝜃𝑑)

+
1

2
𝑆
𝑇 ̇̂
𝐽 (𝐶1𝐸 + 𝐶2�̇� + �̈�)

= 𝑆
𝑇
(𝑈 + 𝑑 + 𝐽 (𝐶1�̇� + 𝐶2�̈�) + 𝐵 (𝐶1𝐸 + 𝐶2�̇�)

− (𝐽 ⃛𝜃𝑑 + 𝐵 ̈𝜃𝑑 + �̂� ̇𝜃𝑑)) .

(10)

𝑈 = 𝑢eq + 𝑢𝑛 is substituted in Lyapunov function, and
for ̇𝐽 − 2𝐵 is a skew-symmetric matrix such that (1/2)𝑆𝑇( ̇̂

𝐽 −

2𝐵)𝑆 = 0. The time derivative of 𝑉 will be

�̇� = 𝑆
𝑇
(−𝛾 sign (𝑆) + 𝑑)

=

3

∑

𝑖=1

(−𝛾𝑖 ⋅
𝑠𝑖
 + 𝑑𝑖𝑠𝑖)

≤ −

3

∑

𝑖=1

(𝛾𝑖 − 𝑑max)
𝑠𝑖
 < 0.

(11)
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Figure 8: Control voltage generated by RBF TVSMC.

As 𝑉 is positively defined and �̇� < 0, according to the
Lyapunov stability theory, the TVSMC is stable. And Figure 3
is gotten.

4. RBF SMC Algorithm Design

From Figure 3(b), the process of SMC action is divided
into two states: one is the reaching state and the other is
the sliding state. Then reaching state will be joined to the
sliding state inside the sliding tranche with bandwidth 2𝛾

surrounding the sliding surface, in a finite time limited by the
switching frequency. The system adopts the dynamic of the
surface and reaches the equilibrium point. In a short phrase,
the switching gain depends on 𝛾. Consider the following
saturation function to replace the sign function to decrease
chattering:

sat (𝑆) =
{

{

{

𝑆

|𝑆|∞ + 𝛿
,

𝑠𝑖
 ≤ 𝛿,

sign (𝑆) , otherwise.
(12)

In (12) 𝛿 is tiny positive number and is also the boundary
layer thickness, which can reduce the chattering if appropri-
ately chosen.

On the other hand, radial basis function neural network
based on controller design is one of the popular methods of
high precision control. In the SMC based controller, the RBF
NN is used to approximate the upper boundary of lumped
disturbance (Figure 4).

The upper boundary of the lumped disturbance can be
designed as

𝛾𝑖 =

4

∑

𝑗=1

𝑤𝑖𝑗ℎ𝑖𝑗, (13)

where ℎ𝑖𝑗 is the Gaussian radial basis function.
Here, further consideration will be given about adjusting

the network weights. The weight adjustment is 𝐴
𝑑

=

(1/2)𝐸
𝑇
𝐸.
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Figure 9: Trajectory tracking by TVSMC.

The RBF NN earning algorithm is

Δ𝑤 = −
𝜕𝐴𝑑

𝜕𝑤
= −𝐸
𝑇 𝜕𝐸

𝜕𝑤

= −𝐸
𝑇 𝜕𝐸

𝜕𝑢

𝜕𝑢

𝜕𝛾

𝜕𝛾

𝜕𝑊

≈ −𝐸
𝑇 sign(𝜕𝜃

𝜕𝑢
)
𝜕𝑢

𝜕𝛾

𝜕𝛾

𝜕𝑊
,

(14)

where the value of (𝜕𝜃/𝜕𝑢) can be substituted by coefficient of
learning rate, 𝜃 is in direct proportion to 𝑢 in step response,
sign(𝜕𝜃/𝜕𝑢) = 1, (𝜕𝑢/𝜕𝛾) = − sign(𝑆), and (𝜕𝛾/𝜕𝑊) = 𝜙.

So Δ𝑤 can be described as follows:

Δ𝑤 ≈ 𝐸
𝑇 sign (𝑆) 𝜙 = (𝐶

−1
)
𝑇 
𝑆
𝑇
⋅ 𝜙. (15)

Theorem 2. Considering the system in (3) under the lumped
disturbance with an upper boundary of 𝑑max, by adopting the
time-varying sliding mode function in (5) and the lumped
disturbance identified by using the RBF neural network in (13),
the controlled system is global asymptotic stable.

Proof. Let optimal network weights be 𝑤∗ and the estimated
upper boundary value of RBF NN be 𝛾; then we get

3

∑

𝑗=1

𝑤
∗

𝑗𝑖
ℎ𝑗 − 𝛾𝑖 = 𝜀, |𝜀| < 𝜀0, (16)
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Figure 10: Trajectory tracking by RBF TVSMC.

where 𝜀 is a tiny number and 𝜀0 is tiny positive number, and
let 𝛾𝑖 − |𝑑𝑖| > 𝜀1 > 𝜀0, �̇� = (𝐶

−1
)
𝑇
|𝑆
𝑇
|𝜙. A neural Lyapunov

function can be designed as

𝑉1 =
1

2
𝑆
𝑇
𝐽𝑆 +

1

2
(𝑤
∗
− 𝑤)
𝑇
𝐶
𝑇
(𝑤
∗
− 𝑤) . (17)

Differentiating 𝑉1 with respect to time yields, we get

�̇� = 𝑆
𝑇
𝐽 ̇𝑆 +

1

2
𝑆
𝑇 ̇̂
𝐽𝑆 − (𝑤

∗
− 𝑤)
𝑇
𝐶
𝑇
�̇�, (18)

with 𝑈 = 𝑢eq + 𝑢𝑛 and simplifying

�̇�1 = 𝑆
𝑇
(−𝛾 sign (𝑆) + 𝑑) − (𝑤

∗
− 𝑤)
𝑇
𝐶
𝑇
�̇�

= 𝑆
𝑇
(−𝛾 sign (𝑆) + 𝛾 sign (𝑆)

−𝛾 sign (𝑆) + 𝑑) − 𝐶
𝑇
(𝑤
∗
− 𝑤)
𝑇
�̇�

≤ −

𝑆
𝑇
(𝑤
𝑇
𝜙 − 𝑤

∗
𝑇

𝜙 + 𝜀)

−

𝑆
𝑇
(𝛾 − |𝑑|) −


𝑆
𝑇
(𝑤
∗
− 𝑤)
𝑇
𝜙

= −

3

∑

𝑖=1

𝑠𝑖
 ⋅ (

6

∑

𝑗=1

(𝑤𝑖𝑗 − 𝑤
∗

𝑖𝑗
) ℎ𝑗)



8 Mathematical Problems in Engineering

0 20 40 60

0

0.5

−0.5

Jo
in
tA

1
er
ro
r𝜃

(r
ad
)

t (s)

(a)

0 20 40 60

0

2

4

−2

Jo
in
tA

2
er
ro
r𝜃

(r
ad
)

t (s)

(b)

0 20 40 60

0

5

−5

Jo
in
tA

3
er
ro
r𝜃

(r
ad
)

t (s)

(c)

Figure 11: Angle displacement error responses controlled by TVSMC.

−

𝑆
𝑇
𝜀 −


𝑆
𝑇
(𝛾 − |𝑑|)

−

3

∑

𝑖=1

𝑠𝑖
 (

6

∑

𝑗=1

(𝑤𝑖𝑗 − 𝑤
∗

𝑖𝑗
) ℎ𝑗)

= −

𝑆
𝑇
𝜀 −


𝑆
𝑇
(𝛾 − |𝑑|)

≤

𝑆
𝑇
𝜀0 −


𝑆
𝑇
𝜀1

= −

𝑆
𝑇
(𝜀1 − 𝜀0) ≤ 0.

(19)

Using integral transform in (19), the neural Lyapunov func-
tion can be gotten as

𝑉1 (𝑡) = 𝑉1 (0) + ∫

𝑡

0

�̇�1𝑑𝜏

≤ 𝑉1 (0) + ∫

𝑡

0

−

𝑆
𝑇
(𝜀1 − 𝜀0) 𝑑𝜏.

(20)

By the Barbalat Lemma, the system is asymptotically stable.

5. Simulation Tests

The parameters of the 2-DOF parallel manipulator are listed
as follows: joints reduction ratio is 40 : 1, 𝑙11 = 𝑙12 = 𝑙21 =

𝑙22 = 𝑙31 = 𝑙32 = 244mm, back electromotive force
constant is 0.04297V/(s/rad), torque constant is 3.41 N⋅m/A,

resistance factor in driving side is 8.1 × 10−5N⋅m/(rad/s),
winding resistance of electrical machine is 1.025Ω, winding
inductance of electrical machine is 0.03837H, rotational
inertia 𝐽 is 0.39 kg⋅m2, and the uncertain inertia Δ𝐽 ≤

0.1 kg⋅m2. The desired manipulator trajectory is the right
triangle shown in Figure 5, and the desired joints trajectories
are shown in Figure 6.

The trajectory tracking processes controlled by the
TVSMC algorithm and the RBF TVSMC algorithm are
compared in Figures 7–12 with the corresponding angle
displacement in Figure 6.

According to the angle displacement responses in Figures
7 and 8, it can be seen that the maximum control voltage
generated by TVSMC algorithms is 10V, while that by
RBF TVSMC algorithms is no more than 2.5 V. And the
control voltage generated by the RBF TVSMC algorithms
is more stable than the that by TVSMC algorithm. When
we focus on the control accuracy, significant differences
exist in steady-state regime of the closed-loop system as
seen from the angle trajectory tracking responses in Figures
9 and 10. Figure 10 has more accurate trajectory tracking
responses than Figure 9. According to angle displacement
error responses of joint A1 in Figures 11 and 12, we can see that
the angle error of joint stable at origin is within 40 s based on
TVSMC algorithm, but based on RBF TVSMC algorithm it
is not later than 3 s. The average error responses controlled
by the TVSMC algorithm are about 0.3 rad, while for the
RBF SMC algorithm, the average error is less than 0.03 rad,
which proves the precision improvement of the RBF TVSMC
algorithm.
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Figure 12: Angle displacement error responses controlled by RBF
TVSMC.

6. Conclusions

In this paper, the accurate tracking control problemof 2-DOF
parallel manipulator in the presence of parameter variation
and uncertain disturbance is investigated via the TVSMC
technique. An effective method is provided for the param-
eter selection in the TVSMC framework. RBF NN based
time-varying sliding mode control algorithm is proposed
to address the global chattering problem and increase the
control accuracy. Simulation results verify the effectiveness
of the proposed algorithm.

(1) This paper provides a trajectory algorithm of RBF
neural network based time-varying sliding mode control
for 2-DOF parallel manipulator system. And a compensator
using RBF network is proposed to estimate the actuator
nonlinearities and eliminate their upper boundaries. So
that an RBF neural network controller can work properly
requiring neither the evaluation of off-line dynamical model
nor the time-consuming training process. The other article,
“The Implementation to Servomotor Based on RBF Neural
Network Equivalent to Sliding Mode Variable Structure
Control,” provides a trajectory optimization algorithm for
2-DOF parallel manipulator system of servomotor which is

assumed as one linear system.The algorithm of input control
is divided into two parts: one is the sliding mode control
with the linear control and the other is the nonlinear control
of output of the RBF replacing the switching input. (2) This
paper is further research based on the other article, and it
involves the three joints’ trajectories but the other article just
focuses on one joint.
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