54,082 research outputs found

    Vibration Suppression Controller of Multi-Mass Resonance System Using Fuzzy Controller

    Get PDF
    Vibration suppression control of the mechanical system is a very important technology for realizing high precision, high speed response and energy saving. In general, the mechanical system is modeled with a multi-mass resonance system, and vibration suppression control is applied. This chapter presents a novel controller design method for the speed control system to suppress the resonance vibration of two-mass resonance system and three-mass resonance system. The target systems are constructed by a motor, finite rigid shafts, and loads. The control system consists of a speed fuzzy controller and a proportional-integral (PI) current controller to realize precise speed and torque response. In order to implement the experimental system, the system is treated as the digital control. This chapter also utilizes a differential evolution (DE) to determine five optimal controller parameters (three scaling factors of the fuzzy controller and two controller gains of PI current controller. Finally, this chapter verified the effectiveness to suppress the resonance vibrations and the robustness of the proposed method by the computer simulations and the experiments by using the test experimental setup

    Trajectory tracking control of pendubot using the Takagi-Sugeno fuzzy sheme

    Get PDF
    Pendubot is a planar two-link underactuated robotic mechanism and serves as a benchmark example to test developed control algorithms for underactuated mechanical systems. In this thesis we attempt to use the Takagi-Sugeno fuzzy model for the task of the trajectory tracking of the Pendubot. Two proposed control algorithms employ the fuzzy control that is designed by an aggregation of the fuzzy local controllers. For the first control algorithm, the local controller consists of an optimal output feedback plus a term for perturbation rejection, which is design based on the output optimal control and the linear regulatory theory. For the second control algorithm, the local controller is constructed with the state observer. The advantage for such designs is only simple fuzzy controllers are used in the approaches. The proposed two control laws ensure global stability of the closed-loop system and the first one also guarantees the optimal output trajectory trackin

    Trajectory tracking control of pendubot using the Takagi-Sugeno fuzzy sheme

    Get PDF
    Pendubot is a planar two-link underactuated robotic mechanism and serves as a benchmark example to test developed control algorithms for underactuated mechanical systems. In this thesis we attempt to use the Takagi-Sugeno fuzzy model for the task of the trajectory tracking of the Pendubot. Two proposed control algorithms employ the fuzzy control that is designed by an aggregation of the fuzzy local controllers. For the first control algorithm, the local controller consists of an optimal output feedback plus a term for perturbation rejection, which is design based on the output optimal control and the linear regulatory theory. For the second control algorithm, the local controller is constructed with the state observer. The advantage for such designs is only simple fuzzy controllers are used in the approaches. The proposed two control laws ensure global stability of the closed-loop system and the first one also guarantees the optimal output trajectory trackin

    Modelling an Industrial Robot and Its Impact on Productivity

    Full text link
    [EN] This research aims to design an efficient algorithm leading to an improvement of productivity by posing a multi-objective optimization, in which both the time consumed to carry out scheduled tasks and the associated costs of the autonomous industrial system are minimized. The algorithm proposed models the kinematics and dynamics of the industrial robot, provides collision-free trajectories, allows to constrain the energy consumed and meets the physical characteristics of the robot (i.e., restriction on torque, jerks and power in all driving motors). Additionally, the trajectory tracking accuracy is improved using an adaptive fuzzy sliding mode control (AFSMC), which allows compensating for parametric uncertainties, bounded external disturbances and constraint uncertainties. Therefore, the system stability and robustness are enhanced; thus, overcoming some of the limitations of the traditional proportional-integral-derivative (PID) controllers. The trade-offs among the economic issues related to the assembly line and the optimal time trajectory of the desired motion are analyzed using Pareto fronts. The technique is tested in different examples for a six-degrees-of-freedom (DOF) robot system. Results have proved how the use of this methodology enhances the performance and reliability of assembly lines.Llopis-Albert, C.; Rubio Montoya, FJ.; Valero Chuliá, FJ. (2021). Modelling an Industrial Robot and Its Impact on Productivity. Mathematics. 9(7):1-13. https://doi.org/10.3390/math907076911397AOYAMA, T., NISHI, T., & ZHANG, G. (2017). Production planning problem with market impact under demand uncertainty. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 11(2), JAMDSM0019-JAMDSM0019. doi:10.1299/jamdsm.2017jamdsm0019Llopis-Albert, C., Rubio, F., & Valero, F. (2015). Improving productivity using a multi-objective optimization of robotic trajectory planning. Journal of Business Research, 68(7), 1429-1431. doi:10.1016/j.jbusres.2015.01.027Rubio, F., Valero, F., Sunyer, J., & Cuadrado, J. (2012). Optimal time trajectories for industrial robots with torque, power, jerk and energy consumed constraints. Industrial Robot: An International Journal, 39(1), 92-100. doi:10.1108/01439911211192538Llopis-Albert, C., Rubio, F., & Valero, F. (2018). Optimization approaches for robot trajectory planning. Multidisciplinary Journal for Education, Social and Technological Sciences, 5(1), 1. doi:10.4995/muse.2018.9867Yang, Y., Pan, J., & Wan, W. (2019). Survey of optimal motion planning. IET Cyber-Systems and Robotics, 1(1), 13-19. doi:10.1049/iet-csr.2018.0003Gasparetto, A., & Zanotto, V. (2008). A technique for time-jerk optimal planning of robot trajectories. Robotics and Computer-Integrated Manufacturing, 24(3), 415-426. doi:10.1016/j.rcim.2007.04.001Mohammed, A., Schmidt, B., Wang, L., & Gao, L. (2014). Minimizing Energy Consumption for Robot Arm Movement. Procedia CIRP, 25, 400-405. doi:10.1016/j.procir.2014.10.055Van den Berg, J., Abbeel, P., & Goldberg, K. (2011). LQG-MP: Optimized path planning for robots with motion uncertainty and imperfect state information. The International Journal of Robotics Research, 30(7), 895-913. doi:10.1177/0278364911406562Liu, S., Sun, D., & Zhu, C. (2011). Coordinated Motion Planning for Multiple Mobile Robots Along Designed Paths With Formation Requirement. IEEE/ASME Transactions on Mechatronics, 16(6), 1021-1031. doi:10.1109/tmech.2010.2070843Plaku, E., Kavraki, L. E., & Vardi, M. Y. (2010). Motion Planning With Dynamics by a Synergistic Combination of Layers of Planning. IEEE Transactions on Robotics, 26(3), 469-482. doi:10.1109/tro.2010.2047820Rubio, F., Llopis-Albert, C., Valero, F., & Suñer, J. L. (2015). Assembly Line Productivity Assessment by Comparing Optimization-Simulation Algorithms of Trajectory Planning for Industrial Robots. Mathematical Problems in Engineering, 2015, 1-10. doi:10.1155/2015/931048Rubio, F., Llopis-Albert, C., Valero, F., & Suñer, J. L. (2016). Industrial robot efficient trajectory generation without collision through the evolution of the optimal trajectory. Robotics and Autonomous Systems, 86, 106-112. doi:10.1016/j.robot.2016.09.008Llopis-Albert, C., Valero, F., Mata, V., Pulloquinga, J. L., Zamora-Ortiz, P., & Escarabajal, R. J. (2020). Optimal Reconfiguration of a Parallel Robot for Forward Singularities Avoidance in Rehabilitation Therapies. A Comparison via Different Optimization Methods. Sustainability, 12(14), 5803. doi:10.3390/su12145803Llopis-Albert, C., Valero, F., Mata, V., Escarabajal, R. J., Zamora-Ortiz, P., & Pulloquinga, J. L. (2020). Optimal Reconfiguration of a Limited Parallel Robot for Forward Singularities Avoidance. Multidisciplinary Journal for Education, Social and Technological Sciences, 7(1), 113. doi:10.4995/muse.2020.13352Yang, J., Su, H., Li, Z., Ao, D., & Song, R. (2016). Adaptive control with a fuzzy tuner for cable-based rehabilitation robot. International Journal of Control, Automation and Systems, 14(3), 865-875. doi:10.1007/s12555-015-0049-4Zhang, G., & Zhang, X. (2016). Concise adaptive fuzzy control of nonlinearly parameterized and periodically time-varying systems via small gain theory. International Journal of Control, Automation and Systems, 14(4), 893-905. doi:10.1007/s12555-015-0054-7SUTONO, S. B., ABDUL-RASHID, S. H., AOYAMA, H., & TAHA, Z. (2016). Fuzzy-based Taguchi method for multi-response optimization of product form design in Kansei engineering: a case study on car form design. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 10(9), JAMDSM0108-JAMDSM0108. doi:10.1299/jamdsm.2016jamdsm0108DUBEY, A. K. (2009). Performance Optimization Control of ECH using Fuzzy Inference Application. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 3(1), 22-34. doi:10.1299/jamdsm.3.22Zhang, H., Fang, H., Zhang, D., Luo, X., & Zou, Q. (2020). Adaptive Fuzzy Sliding Mode Control for a 3-DOF Parallel Manipulator with Parameters Uncertainties. Complexity, 2020, 1-16. doi:10.1155/2020/2565316Markazi, A. H. D., Maadani, M., Zabihifar, S. H., & Doost-Mohammadi, N. (2018). Adaptive Fuzzy Sliding Mode Control of Under-actuated Nonlinear Systems. International Journal of Automation and Computing, 15(3), 364-376. doi:10.1007/s11633-017-1108-5Truong, H. V. A., Tran, D. T., To, X. D., Ahn, K. K., & Jin, M. (2019). Adaptive Fuzzy Backstepping Sliding Mode Control for a 3-DOF Hydraulic Manipulator with Nonlinear Disturbance Observer for Large Payload Variation. Applied Sciences, 9(16), 3290. doi:10.3390/app9163290Li, T.-H. S., & Huang, Y.-C. (2010). MIMO adaptive fuzzy terminal sliding-mode controller for robotic manipulators. Information Sciences, 180(23), 4641-4660. doi:10.1016/j.ins.2010.08.00

    Knowledge discovery for friction stir welding via data driven approaches: Part 2 – multiobjective modelling using fuzzy rule based systems

    Get PDF
    In this final part of this extensive study, a new systematic data-driven fuzzy modelling approach has been developed, taking into account both the modelling accuracy and its interpretability (transparency) as attributes. For the first time, a data-driven modelling framework has been proposed designed and implemented in order to model the intricate FSW behaviours relating to AA5083 aluminium alloy, consisting of the grain size, mechanical properties, as well as internal process properties. As a result, ‘Pareto-optimal’ predictive models have been successfully elicited which, through validations on real data for the aluminium alloy AA5083, have been shown to be accurate, transparent and generic despite the conservative number of data points used for model training and testing. Compared with analytically based methods, the proposed data-driven modelling approach provides a more effective way to construct prediction models for FSW when there is an apparent lack of fundamental process knowledge

    A hierarchical Mamdani-type fuzzy modelling approach with new training data selection and multi-objective optimisation mechanisms: A special application for the prediction of mechanical properties of alloy steels

    Get PDF
    In this paper, a systematic data-driven fuzzy modelling methodology is proposed, which allows to construct Mamdani fuzzy models considering both accuracy (precision) and transparency (interpretability) of fuzzy systems. The new methodology employs a fast hierarchical clustering algorithm to generate an initial fuzzy model efficiently; a training data selection mechanism is developed to identify appropriate and efficient data as learning samples; a high-performance Particle Swarm Optimisation (PSO) based multi-objective optimisation mechanism is developed to further improve the fuzzy model in terms of both the structure and the parameters; and a new tolerance analysis method is proposed to derive the confidence bands relating to the final elicited models. This proposed modelling approach is evaluated using two benchmark problems and is shown to outperform other modelling approaches. Furthermore, the proposed approach is successfully applied to complex high-dimensional modelling problems for manufacturing of alloy steels, using ‘real’ industrial data. These problems concern the prediction of the mechanical properties of alloy steels by correlating them with the heat treatment process conditions as well as the weight percentages of the chemical compositions

    Optimal control of wind energy conversion systems with doubly-fed induction generators

    Get PDF
    Wind energy conversion systems (WECSs) have become the interesting topic over recent years for the renewable electrical power source. They are a more environmentally friendly and sustainable resource in comparison with the fossil energy resource. The WECS using a doubly-fed induction generator (DFIG) to convert mechanical power into electrical power has a significant advantage. This WECS requires a smaller power converter in comparison with a squirrel cage induction generator. Efficiency of the DFIG-WECS can be improved by a suitable control system to maximise the output power from WECS. A maximum power point tracking (MPPT) controller such as tip-speed ratio (TSR)control and power signal feedback (PSF) control is use to maximise mechanical power from wind turbine and a model-based loss minimisation control (MBLC) is used to minimise electrical losses of the generator. However, MPPT and MBLC require the parameters of the wind turbine and the generator for generating the control laws like optimal generator speed reference and d-axis rotor current reference. The Efficiencies of the MPPT and MBLC algorithms deteriorate when wind turbine and generator parameters change from prior knowledge. The field oriented control for a DFIG in the WECS is extended by introducing a novel control layer generating online optimal generator speed reference and d-axis rotor current reference in order to maximise power produced from the WECS under wind turbine and DFIG parameter uncertainties, which is proposed. The single input rule modules (SIRMs) connected fuzzy inference model is applied to the control algorithm for optimal power control for variable-speed fixed-pitch wind turbine in the whole wind speed range by generating an online optimal speed reference to achieve optimal power under wind turbine parameter uncertainties. The proposed control combines a hybrid maximum power point tracking (MPPT) controller, a constant rotational speed controller for below-rated wind speed and a limited-power active stall regulation by rotational speed control for above-rated wind speed. The three methods are appropriately organised via the fuzzy controller based SIRMs connected fuzzy inference model to smooth transition control among the three methods. The online parameter estimation by using Kalman filter is applied to enhance model-based loss minimisation control (MBLC). The d-axis rotor current reference of the proposed MBLC can adapt to the accurate determination of the condition of minimum electrical losses of the DFIG when the parameters of the DFIG are uncertain. The proposed control algorithm has been verified by numerical simulations in Matlab/Simulink and it has been demonstrated that the energy generated for typical wind speed profiles is greater than that of a traditional control algorithm based on PSF MPPT and MBLC
    • …
    corecore