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Abstract

Vibration suppression control of the mechanical system is a very important technology
for realizing high precision, high speed response and energy saving. In general, the
mechanical system is modeled with a multi-mass resonance system, and vibration
suppression control is applied. This chapter presents a novel controller design method
for the speed control system to suppress the resonance vibration of two-mass resonance
system and three-mass resonance system. The target systems are constructed by a
motor, finite rigid shafts, and loads. The control system consists of a speed fuzzy
controller and a proportional-integral (PI) current controller to realize precise speed
and torque response. In order to implement the experimental system, the system is
treated as the digital control. This chapter also utilizes a differential evolution (DE) to
determine five optimal controller parameters (three scaling factors of the fuzzy control-
ler and two controller gains of PI current controller. Finally, this chapter verified the
effectiveness to suppress the resonance vibrations and the robustness of the proposed
method by the computer simulations and the experiments by using the test experimen-
tal setup.

Keywords: multi-mass resonance system, vibration suppression control, fuzzy controller,
differential evolution

1. Introduction

Recently, motor drive system, which consists of several motors, shafts, gears, and loads, is

widely utilized in industrial fields. These mechanical systems are made a request the high-

speed response, weight reduction, miniaturization, and high precision requirements for vari-

ous industrial applications.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Hence, in industrial field, the system is treated as a multi-mass resonance system, which

consists of several inertial moments, torsional shafts, and gear coupling. The first-order

approximation model of multi-mass resonances model is two-mass resonance model. For

instance, several control methods, which are PID control (Proportional plus Integral plus

Derivative Control) with a resonance ratio control using the disturbance observer, coefficient

diagram method (CDM), full state feedback control with the state observer, the pole placement

method, fractional order PIDk control, and H
∞
control method, are effective to control for two-

mass resonance system [1–3]. Ikeda et al. [4] have explained the effectiveness of the controller

design technique using the pole placement method for the two-mass position control system.

However, the resonance system is required more high precision and high response speed

control in recent years. Therefore, it is necessary to deal with a higher order model of the

resonance system. For instance, the drive train of the electric vehicle is constructed the four-

mass system. Likewise, the ball screw drive stage is typically four-mass system. The thermal

power generation system composed of multiple turbines and generators is modeled as twelve-

mass resonance system. Thus, several vibration suppression control methods on three-mass

resonance system or more have been proposed [5, 6]. Here, modified-IPD speed controller

using Taguchi Method has been proposed in Refs. [7, 8].

Meanwhile, the state equations of the controlled object and its parameters are required to

design the control systems. Refs. [9, 10] previously proposed a controller gain tuning method

for a vibration suppression-type speed controller using fictitious reference iterative tuning

(FRIT) for single-input multi-variable control objects without knowledge of the system state

equations and the parameters.

In contrast, a fuzzy control system can be assumed as one method for solving these problems.

A fuzzy control system using a fuzzy inference is the embodiment of non-mathematical

control algorithm, which is constructed by experience and intuition. Several applications

brought in the fuzzy control system to motor drive system [11–14].

This chapter proposes a vibration suppression controller by using a fuzzy inference. The

control system consists of a speed fuzzy controller and a proportional-integral (PI) current

controller to realize precise speed and torque response on two or three inertial resonance

system. In the control system, only motor side state variables are utilized for controlling the

resonance system. Additionally, this chapter treats with the proposed control system as the

digital control system. Here, the proposed control system is new system that I improved to

apply the control system which I already proposed for simulation model in Refs. [13, 14] to

experimental actual equipment.

The fuzzy controller has three scaling factors, and the PI current controller has two controller

gains. In this chapter, a differential evolution algorithm (DE) is utilized the determination of

these five controller parameters [13–18]. DE, which was proposed by Price and Storn, is one of

the evolutionary optimization strategies. By using DE, it is easy and fast to determine the

proper controller parameters.

Lastly, the validity of the controller design, the robustness, and the control effectiveness of the

proposed method was verified using the simulations and the experiments by using the test

experimental set up.
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2. Multi-mass vibration suppression control system

2.1. 2-mass model

Figure 1 shows the two-mass resonance model. The model is configured of two rigid inertial

masses with a torsional shaft, where ωM, Tdis, ωL, Tin, JM, JL, Ks, and TL denote the motor

angular speed, the torsional torque, the load angular speed, the input torque, the inertia of

motor, the inertia of load, the shaft torsional stiffness, and the load torque, respectively.

If all the state variables can be observed by several sensors and all the system parameters are

known or identified, it is easy to construct the optimal control system. However, in general, it

is difficult to measure the state variables of the load side due to constraints on scarce measure-

ment environment and sensor installation location. Therefore, in this chapter, we use only the

motor side variables. Furthermore, we contemplate for the current minor control in order to

compensate torque response. Eq. (1) shows the continuous state equation of two-mass reso-

nance model, where the viscous friction is not considered.
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Eq. (2) shows the transfer function of two-mass model, which input signal is Tin and output

signal is ωM.

ωM

Tin

¼
s2 þ ω2

a

JMsðs
2 þ ω2

r Þ
ð2Þ

where ωr is a resonance frequency and ωa is an anti-resonance frequency. Here, we use the DC

servo motor as the driving motor. Eq. (3) is the voltage equation of dc servo motor, where Ra is

the armature resistance, La is the armature inductance, Ke is the back-emf constant, and K0 is

the converter gains of the DC power supply. Input torque is calculated by Tin = Ktia, where Kt is

the torque constant.

La
dia

dt
þ Raia ¼ K0uc � ωM ð3Þ

Figure 2 is indicative of the block diagram of the two-mass resonance system.

Figure 1. 2-mass model.
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The inertia ratio R of two-mass model is given by Eq. (4), where JMn and JLn represent the

nominal values of the motor and load inertias, respectively.

R ¼
JLn
JMn

ð4Þ

2.2. Three-mass model

Similarly to two-mass resonance model, Figure 3 reveals the three-mass model. The model

consists of three rigid inertias and two shafts. Here, Jc and JL are the load 1 inertia moment and

the load 2 inertia moment, respectively. Furthermore,ωc,ωL, Tdis1, Tdis2, Ks1, and Ks2 denote load 1

angular speed, load 2 angular speed, shaft 1 torsional torque, shaft 2 torsional torque, the shaft 1

stiffness, and the shaft 2 stiffness, respectively.
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Figure 2. Block diagram of two-mass resonance model.

Figure 3. Three-mass model.

Modern Fuzzy Control Systems and Its Applications402



The state equation of three-mass resonance model is shown in Eq. (5). Then, Eq. (6) shows the

continuous transfer function of three-mass resonance model, which input signal is Tin and

output signal is ωM.

ωM

Tin

¼
ðs2 þ ω2

a1Þðs
2 þ ω2

a2Þ

JMsðs2 þ ω2
r1Þðs

2 þ ω2
r2Þ

ð6Þ

In this equation, ω indicates the angular frequency, where ωr1, ωr2, ωa1, and ωa2 are the resonance

frequencies, and anti-resonance frequency, respectively. Then, the block diagram realized by using

above equations is shown in Figure 4.

2.3. Experimental set up

This chapter confirms the effectiveness and performance of the proposed method by experi-

ments using the experimental equipment.

Figure 5 is the appearance of the experimental system constructed in this research. The two-

mass resonance system is simulated by utilizing the dc servo motor and the dc generator with

a finite rigid coupling. The controller is realized on a digital signal processor, which calculates

the PWM signal to a four-quadrant dc chopper.

The DSP board (PE-PRO/F28335 Starter Kit, Myway Plus Corp.) consists of the DSP

(TMS320F28335PGFA), a digital input/output (I/O), ABZ counters for encoder signals, analog-

to-digital (AD) converters and digital-to-analog (DA) converters [19]. The motor and load

angles and angular speeds are detected using 5000 pulses-per-revolution encoders. The current

of dc servo motor is measured by the current sensor and AD converter.

Figure 4. Block diagram of three-mass model.
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The control frequency and the detection frequency of the encoder are both 1 ms, and the

detection period for the current is 10 μsec. The design language used was C. Then, while

considering the application of the system to specific apparatus, we constructed a digital control

system that contains a discrete controller. In addition, we used MATLAB/Simulink software

for the proposed off-line tuning process based on simulation and constructed the fuzzy control

system as a continuous system [20]. The disturbance is added to the dc generator as the torque

by using the electric load device on constant current mode. Figures 6 and 7 show the appara-

tus of the two-mass model and three-mass model used in the experimental set up, respectively.

Figure 8 shows the experimental system configuration. For reference, the nominal parameters

Figure 6. Photograph of two-mass resonance model.

Figure 5. Experimental apparatus.

Figure 7. Photograph of three-mass resonance model.
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of the experimental two-mass model and three-mass model are given in Tables 1 and 2,

respectively.

Figure 9 shows an example of experimental result using two-mass model. These step waves

are the motor and load angular speeds with direct current voltage input. Similarly, Figure 10

shows an example of experimental result using three-mass model, which are the motor and

DC
Motor

DC
Generator

4 Quadrant

Chopper

CPU

Speed / Angle Detect

Control

D/A

Monitoring

Input Parameters

USB/Opt.

Optical Cable

Memory / Record

PE PE

PWM

Generating

Circuit

A/D

Digital I/O

Counter

Electric 

Load

Note PC

DSP Board

(TMS320F28335PGFA)

DC Voltage
Source

Figure 8. Configuration of experimental system (two-mass resonance model).

Symbol Parameter Value

JMn Motor inertia 2.744 · 10�4 (kgm2)

JLn Load inertia 2.940 · 10�4 (kgm2)

Ksn Shaft stiffness 18.5 (Nm/rad)

Table 1. Nominal parameters of two-mass experimental model.

Symbol Parameter Value

JMn Motor inertia 2.744 · 10�4 (kgm2)

Jcn Load 1 inertia 1.112 · 10�4 (kgm2)

JLn Load 2 inertia 2.940 · 10�4 (kgm2)

Ks1n Shaft stiffness 1 18.5 (Nm/rad)

Ks2n Shaft stiffness 2 18.5 (Nm/rad)

Table 2. Nominal parameters of three-mass experimental model.
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load angular speeds with same above condition. In these figures, the resonance vibrations can

be observed. The purpose of this research is to suppress these resonance vibrations.

3. Proposed fuzzy control system

3.1. Fuzzy speed controller

Fuzzy controller, which is executed by the fuzzy set and the fuzzy inference, can control for

nonlinear systems or uncertain model. Figure 11 indicates the proposed fuzzy speed controller in

this chapter. The speed controller is based on fuzzy control. The current controller is typical PI

controller. Furthermore, the load side state variables are not utilized for control,where S1, S2, and S3
are the parameters to determine the scale of the membership function, which are called scaling

factors or scaling coefficient.Kpc andKic are the current PI controller gains. Eq. (7) shows the transfer

function of current PI controller. Additionally, this chapter uses the discrete control system.

ucðkÞ ¼ Kpc þ
1

s
Kic

� �

eðkÞ ð7Þ

Figure 12 is indicative of the membership function for the premise variables. This membership

function is a shape of triangle with a dense center. Figure 13 indicates the membership

Figure 9. Angular speeds (ωM and ωL) of the step responses to a DC voltage input (two-mass model).

Figure 10. Angular speeds (ωM and ωL) of the step responses to a DC voltage input (three-mass model).
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function, which is formed uniformly triangle for the consequent variable. Here, the s denotes

the scaling factor. PB, PM, PS, ZE, NS, NM, and NB are the linguistic variables of the fuzzy

control where, PB indicates positive big, PM indicates positive medium, PS indicates positive

small, ZE indicates zero, NS indicates negative small, NM indicates negative medium, and NB

indicates negative big, respectively. The premise variables are e
ωM(k) and Δe

ωM(k).

eωMðkÞ ¼ ωref � ωMðkÞ ð8Þ

ΔeωMðkÞ ¼ eωMðkÞ � eωMðk� 1Þ ð9Þ

Figure 11. Block diagram of the proposed control system.

Figure 12. Membership functions of the antecedence.

Figure 13. Membership functions of the consequence.

Vibration Suppression Controller of Multi-Mass Resonance System Using Fuzzy Controller
http://dx.doi.org/10.5772/intechopen.68319

407



Then, the consequence variable is the variation width of the current input Δiref(k). Therefore, the

proposed fuzzy controller is nearly same as the proportional-derivative (PD) type controller.

Figure 14 is indicative of the fuzzy rule table. The rule is included the rising correction of the

angular speed response.

3.2. Design method of controller parameters by differential evolution

In this chapter, five parameters (S1, S2, S3, Kpc and Kic) of the proposed controller have to be

designed. However, it is difficult to determine them by trial and error or some. Therefore, this

chapter proposes the differential evolution (DE) to search the optimal controller parameters.

Here, DE is one of evolutionary optimized solution search methods. DE is the optimization

method-based multi-point search method. In particular, basic GA expresses parameter by

binary coding, whereas DE uses the parameters by real variable vector. The DE design is

conducted by the initial population, the mutation, the crossover, and the selection. The design

flow of DE is shown in Figure 15. In this chapter, DE/rand/1/bin design strategy is used for the

determination of five controller parameters.

where D is the number of design parameter vectors, NP is the number of members in each

population. Each parameter vector is represented by the parameter vector (target vector) xi,G,

where G denotes one generation. The mutation vector vi,G is calculated by Eq. (10). From this

equation, F indicates the step width (scaling factor) of DE design, and CR indicates of the

crossover rate, where r1, r2, and r3 are different values.

vi,Gþ1 ¼ xr1,G þ Fðxr1,G � xr3,GÞ, r1 6¼ r2 6¼ r3 6¼ i ð10Þ

uj,Gþ1 ¼
vj,Gþ1 rand ≤CR or j ¼ ST
xj,G rand > CR or j 6¼ ST

�

ð11Þ

Figure 14. Control rule table.
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In Eq. (11), uj,G+1 is the vector of trial parameter, the rand is random value, and ST indicates the

start point. The selection is utilized next algorithm,

xi,Gþ1 ¼
ui,Gþ1 if yðui,Gþ1Þ > yðxi,GÞ for maximaization problems
xi,G otherwise

�

ð12Þ

As previously described, the proposed method uses five control parameters (S1, S2, S3, Kpc, and

Kic). The population size is 2000, the order of each vector is 20, and the coefficient of member-

ship function F is 0.5. Moreover, the rate of crossover CR is 0.9. Then, the performance index

function is shown in Eq. (13). Meanwhile, this chapter utilizes the inverse of y as a fitness

function.

y ¼

ð

∞

0

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðωref � ωLÞ
2

q

dt ð13Þ

Start

Set values to DE 

Parameters: F and CR

Initialize the Population

Determination

Evaluation of Fitness Function

Mutation

Reproduction

Selection

Print Optimum Value

Stop

Figure 15. Flow of DE algorithm.
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4. Simulation and experimental results

4.1. Verification results of computer simulation

Next, the simulation results of the proposed method are demonstrated by computer simulation.

Table 3 shows the results of design parameter using the proposed method for two-mass model.

Figure 16 is indicative of the transition of the maximum fitness function. In this simulation design,

the step response and the disturbance response have been evaluated. Furthermore, the inertia

ratio R is 1.07, and the stiffness of shaft Ksn has been set to 18.5 Nm/rad in the simulation design.

Figures 17 and 18 show the step responses that were obtained for the motor and load angular

speeds, and armature current when using the proposed method. In this chapter, ωref is 30 rad/s,

the DC voltage input is 25 V, and the disturbance input TL is changed from 0 to 20% at t = 0.3 s.

As shown by these figures, good waves are observed for the reference-following, vibration

S1 S2 S3 Kpc Kic

8.486 0.4802 0.4001 4.678 1.0 · 10�6

Table 3. Results of design parameter calculated by DE.
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iteration

E
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Figure 16. Convergence of index function y.

Figure 17. Simulation results ωM and ωL (two-mass, R = 1.07, Ksn = 18.5 Nm/rad).
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suppression, and the disturbance performance. Figure 19 is indicative of the search process of

the S1 vector. Similarly, Figures 20–23 show the transition of the S2 vector, S3 vector, Kpc vector

and Kic vector, respectively. In particular, from Figure 23 and Table 3, Kic is 1.0 · 10�6 of the

design limitation value. Therefore, integral gain of the current PI controller can be omitted for

this control object.
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Figure 18. Simulation results ia (two-mass, R = 1.07, Ksn = 18.5 Nm/rad).
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Figure 19. Transition of scaling factor S1.
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Figure 20. Transition of scaling factor S2.
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Figure 21. Transition of scaling factor S3.
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4.2. Experimental results

4.2.1. 2-mass model

Next, the experimental results by using the proposed method are illustrated in this section.

Figures 24 and 25 show the experimental results of two-mass model using the proposed

method, where the condition (R = 1.07, Ksn = 18.5 Nm/rad) is same as the above simulation

results shown in Figures 17 and 18. From these figures, it is observed that the resonance

vibrations between the motor and the load angular speed (ωM and ωL) have been suppressed

very well. Furthermore, after inputting disturbance, it can be seen that the angular speeds

immediately have followed the reference speed ωref without resonance vibrations. Hence, the

validity of the control system, which consists of the proposed method, can be confirmed.

0 100 200 300 400 500

0

150

300

iteration

K
ic

Figure 23. Transition of current integral gain Kic.

Figure 24. Experimental results for ωM and ωL obtained using the proposed method (two-mass, R = 1.07, Ksn = 18.5 Nm/rad).
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Figure 22. Transition of current proportional gain Kpc.
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5. Effects of parameter variation

Next, it is described the effectiveness of robustness by the proposed design method. This

section evaluates the robustness to variations in the ratio of inertia and the stiffness of the rigid

shaft based on a nominal value.

Figures 26 and 27 show the experimental results of the motor and load angular speeds obtained

for the inertia ratio variation when using the same controller gains that were designed using the

Figure 25. Experimental results for ia obtained using the proposed method (two-mass, R = 1.07, Ks = 18.5 Nm/rad).

Figure 26. Robustness verification results (two-mass, R = 0.42, Ksn = 18.5 Nm/rad).

Figure 27. Robustness verification results (two-mass, R = 2.67, Ksn = 18.5 Nm/rad).
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proposed method, when R = [0.42, 2.65], where the disturbance torque input was skipped. From

these figure, although it can be observed some overshoot and resonance vibration, the good

results can be confirmed that were obtained for the design condition.

Figure 28 shows the experimental results of the motor and load angular speeds obtained for the

stiffness of shaft variation using the same controller gains, whenKsn = 70.7. From this figure, it can

be seen some resonance vibrations. However, the vibrations rapidly have been suppressed well.

Similarly, Figure 29 shows the experimental results when Ksn = 3.1. As can be seen, themotor and

load angular speeds oscillated and overshot. Therefore, if the stiffness of shaft of the experimen-

tal model is less than the design value, the settling time to suppress the resonance vibration

becomes longer, although the proposed control system is not unstable. In addition, Figure 30

shows the experimental result when the control parameter redesigned with the stiffness of shaft

Ksn as the nominal value of experimental model. Good responses can be observed in this figure.

Furthermore, the proposed fuzzy control system is applied to a three-mass resonance model.

Figure 31 shows the experimental results of the motor and load angular speeds when using the

same controller gains designed for two-mass model (R = 1.07, Ksn = 18.5 Nm/rad, where the

nominal parameters of the three-mass experimental setup are JMn = 2.774 · 10�4 kgm2, JLn =

2.940 · 10�4 kgm2, Ks1n = 18.5 Nm/rad, Ks2n = 18.5 Nm/rad. From this figure, the effectiveness

of the proposed method can be confirmed in a similar manner to the two-mass model case.

Figure 29. Robustness verification results (two-mass, R = 1.07, Ksn = 3.1 Nm/rad).

Figure 28. Robustness verification results (two-mass, R = 1.07, Ksn = 70.7 Nm/rad).
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6. Conclusions

This chapter proposed the speed control system to suppress the resonance vibration of multi-

inertial model, especially two-mass system and three-mass system. The controller has been

constructed with the digital fuzzy controller for speed control and the digital PI controller for

current control. In the control system, only motor side state variables have been used for

controlling the resonance system. Additionally, this chapter utilized the DE to determine these

five controller parameters. Finally, the validity of the controller design, the robustness, and the

control effectiveness of the proposed method has been verified using the simulations and the

experiments by using the test experimental set up.
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Figure 31. Robustnessverification results (three-mass, JMn= 2.774 · 10�4kgm2, Jcn= 1.112 · 10�4kgm2, JLn= 2.940 · 10�4kgm2,

Ks1n = 18.5Nm/rad,Ks2n = 18.5Nm/rad).

Figure 30. Experimental results for ωM and ωL redesigned using the proposed method (two-mass, R = 1.07, Ksn = 3.1 Nm/rad).
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