28,080 research outputs found

    A framework for the selection of the right nuclear power plant

    Get PDF
    Civil nuclear reactors are used for the production of electrical energy. In the nuclear industry vendors propose several nuclear reactor designs with a size from 35–45 MWe up to 1600–1700 MWe. The choice of the right design is a multidimensional problem since a utility has to include not only financial factors as levelised cost of electricity (LCOE) and internal rate of return (IRR), but also the so called “external factors” like the required spinning reserve, the impact on local industry and the social acceptability. Therefore it is necessary to balance advantages and disadvantages of each design during the entire life cycle of the plant, usually 40–60 years. In the scientific literature there are several techniques for solving this multidimensional problem. Unfortunately it does not seem possible to apply these methodologies as they are, since the problem is too complex and it is difficult to provide consistent and trustworthy expert judgments. This paper fills the gap, proposing a two-step framework to choosing the best nuclear reactor at the pre-feasibility study phase. The paper shows in detail how to use the methodology, comparing the choice of a small-medium reactor (SMR) with a large reactor (LR), characterised, according to the International Atomic Energy Agency (2006), by an electrical output respectively lower and higher than 700 MWe

    Dominance Measuring Method Performance under Incomplete Information about Weights.

    Get PDF
    In multi-attribute utility theory, it is often not easy to elicit precise values for the scaling weights representing the relative importance of criteria. A very widespread approach is to gather incomplete information. A recent approach for dealing with such situations is to use information about each alternative?s intensity of dominance, known as dominance measuring methods. Different dominancemeasuring methods have been proposed, and simulation studies have been carried out to compare these methods with each other and with other approaches but only when ordinal information about weights is available. In this paper, we useMonte Carlo simulation techniques to analyse the performance of and adapt such methods to deal with weight intervals, weights fitting independent normal probability distributions orweights represented by fuzzy numbers.Moreover, dominance measuringmethod performance is also compared with a widely used methodology dealing with incomplete information on weights, the stochastic multicriteria acceptability analysis (SMAA). SMAA is based on exploring the weight space to describe the evaluations that would make each alternative the preferred one

    Modelling and optimizing multiple attribute decisions by using fuzzy sets

    Get PDF
    The purpose of this paper is to present a coherent perspective of modeling and optimizing multiple attribute decisions by using fuzzy sets. In management practice we face most of the time the situation in which a problem have several possible solutions and each solution can be analyzed using multiple criteria models. In the same time, in real life decision making process there is a given level of uncertainty which makes difficult a clear cut analytical analysis. The object of this article is to build a model approach for making multiple criteria decision using fuzzy sets of objects. Elaborating multiple attribute decisions involves performing an assessment and selecting from a given and finite set of possible alternative courses of action in the presence of a given and finite, and usually conflicting set of attributes and criteria.decision making, fuzzy sets, modeling, multiple criteria optimization.

    Intertemporal Choice of Fuzzy Soft Sets

    Get PDF
    This paper first merges two noteworthy aspects of choice. On the one hand, soft sets and fuzzy soft sets are popular models that have been largely applied to decision making problems, such as real estate valuation, medical diagnosis (glaucoma, prostate cancer, etc.), data mining, or international trade. They provide crisp or fuzzy parameterized descriptions of the universe of alternatives. On the other hand, in many decisions, costs and benefits occur at different points in time. This brings about intertemporal choices, which may involve an indefinitely large number of periods. However, the literature does not provide a model, let alone a solution, to the intertemporal problem when the alternatives are described by (fuzzy) parameterizations. In this paper, we propose a novel soft set inspired model that applies to the intertemporal framework, hence it fills an important gap in the development of fuzzy soft set theory. An algorithm allows the selection of the optimal option in intertemporal choice problems with an infinite time horizon. We illustrate its application with a numerical example involving alternative portfolios of projects that a public administration may undertake. This allows us to establish a pioneering intertemporal model of choice in the framework of extended fuzzy set theorie

    Evaluating strategies for implementing industry 4.0: a hybrid expert oriented approach of B.W.M. and interval valued intuitionistic fuzzy T.O.D.I.M.

    Get PDF
    open access articleDeveloping and accepting industry 4.0 influences the industry structure and customer willingness. To a successful transition to industry 4.0, implementation strategies should be selected with a systematic and comprehensive view to responding to the changes flexibly. This research aims to identify and prioritise the strategies for implementing industry 4.0. For this purpose, at first, evaluation attributes of strategies and also strategies to put industry 4.0 in practice are recognised. Then, the attributes are weighted to the experts’ opinion by using the Best Worst Method (BWM). Subsequently, the strategies for implementing industry 4.0 in Fara-Sanat Company, as a case study, have been ranked based on the Interval Valued Intuitionistic Fuzzy (IVIF) of the TODIM method. The results indicated that the attributes of ‘Technology’, ‘Quality’, and ‘Operation’ have respectively the highest importance. Furthermore, the strategies for “new business models development’, ‘Improving information systems’ and ‘Human resource management’ received a higher rank. Eventually, some research and executive recommendations are provided. Having strategies for implementing industry 4.0 is a very important solution. Accordingly, multi-criteria decision-making (MCDM) methods are a useful tool for adopting and selecting appropriate strategies. In this research, a novel and hybrid combination of BWM-TODIM is presented under IVIF information

    An optimal feedback model to prevent manipulation behaviours in consensus under social network group decision making

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.A novel framework to prevent manipulation behaviour in consensus reaching process under social network group decision making is proposed, which is based on a theoretically sound optimal feedback model. The manipulation behaviour classification is twofold: (1) ‘individual manipulation’ where each expert manipulates his/her own behaviour to achieve higher importance degree (weight); and (2) ‘group manipulation’ where a group of experts force inconsistent experts to adopt specific recommendation advices obtained via the use of fixed feedback parameter. To counteract ‘individual manipulation’, a behavioural weights assignment method modelling sequential attitude ranging from ‘dictatorship’ to ‘democracy’ is developed, and then a reasonable policy for group minimum adjustment cost is established to assign appropriate weights to experts. To prevent ‘group manipulation’, an optimal feedback model with objective function the individual adjustments cost and constraints related to the threshold of group consensus is investigated. This approach allows the inconsistent experts to balance group consensus and adjustment cost, which enhances their willingness to adopt the recommendation advices and consequently the group reaching consensus on the decision making problem at hand. A numerical example is presented to illustrate and verify the proposed optimal feedback model
    • 

    corecore