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1. INTRODUCTION 

In multi-attribute utility theory (MAUT), the functional 
form of the multi-attribute utility function differs subject 
to a variety of independence conditions, see Keeney and 
Raiffa (1976). The additive model is considered to be a 
valid approach in most practical situations for the 
reasons described in Raiffa (1982) and Stewart (1996). 
The functional form of this model is 

U(AI) = y].w,»,(x/). 

where x, is the performance of alternative A/ in the 
attribute Xt, M,-(JC£) is the utility associated with the 
aforementioned performance, for w,() is the corre­
sponding component utility function representing the 
decision maker's (DM) preferences over the possible 
attribute performances and w, are the weights repre­
senting the relative importance of each attribute. Note 
that £ > , • = ! . 

However, complex decision-making problems are 
usually plagued with uncertainty. Additionally, it is 
often not easy to elicit precise values for the scaling 
weights. They are often described within prescribed 
bounds or as just satisfying certain ordinal relations. 
Different authors refer to this situation as decision­
making with imprecise information, with incomplete 
information or with partial information. 

Several reasons are given in the literature to justify 
why a DM may wish to provide incomplete infor­
mation (Weber, 1987; Sarabando and Dias, 2010). 
Regarding weights, the DM may find it difficult to 
compare criteria or may not want to reveal his or her 
preferences in public. Moreover, the decision could 
be taken in a group decision-making situation, where 
incomplete information, such as weight intervals, is 
usually derived from a negotiation process (Jimenez 
et ah, 2005; Mateos et al, 2006). 

Many work on MAUT has dealt with incomplete 
information. Sage and White (1984) proposed the 
model of imprecisely specified MAUT, where prefer­
ence information about both weights and utilities is 
assumed not to be precise. Malakooti (2000) suggested 
a new efficient algorithm for ranking alternatives when 
there is incomplete information about the preferences 
and the value of the alternatives. This involves solving 



a single mathematical programming problem many 
times. Ahn (2003) extended Malakooti's work. 

Eum et al. (2001) provided linear programming 
characterizations of dominance and potential optimal-
ity for decision alternatives when information about 
performances and/or weights is incomplete, extended 
the approach to hierarchical structures (Lee et al., 
2002) and developed the concepts of weak potential 
optimality and strong potential optimality (Park, 
2004). More recently, Mateos et al. (2007) considered 
the more general case where imprecision, described by 
means of fixed bounds, appears in alternative perfor­
mances, as well as in weights and utilities. 

Sarabando and Dias (2010) gave a brief overview 
of approaches proposed by different authors within 
the MAUT and MAVT (multi-attribute value theory) 
framework to deal with incomplete information. 

Stochastic multicriteria acceptability analysis 
(SMAA) was developed for support in discrete group 
decision-making problems, where there is no weight 
information (Lahdelma and Salminen, 1998), and is 
widely used. This situation was also considered 
by Bana e Costa (1986), Charnetski and Soland 
(1978), Nijkamp et al. (1990) and Voogd (1983). 
SMAA explores the weight space to describe the 
ratings that would make each alternative the pre­
ferred one and computes acceptability indices. 
Acceptability indices measure the variety of differ­
ent preferences ranking each alternative best. This 
information can be used to classify the alternatives 
as more or less acceptable and unacceptable. How­
ever, SMAA ignores information about the other 
ranks. This can make it difficult to identify good 
compromise alternatives, particularly when the 
acceptability is split between extreme alternatives; 
each of which is ranked best according to a few 
weights but worst by other weights. The potential 
compromise alternatives then are the ones that yield 
a good, but not necessarily the best, rank across 
many different weights. 

Lahdelma and Salminen (2001) proposed the SMAA-2 
method to solve this problem. SMAA-2 extends the anal­
ysis to the sets of weight vectors for any rank from best 
to worst for each decision alternative. The rank accept­
abilities can then be combined using the so-called meta 
weights into holistic acceptability indices, describing 
the overall acceptability of each alternative. 

A new approach for dealing with incomplete infor­
mation about weights is to use information about 
each alternative's intensity of dominance, known as 
dominance measuring methods. 

The first dominance measuring method was pro­
posed in Ahn and Park (2008). They computed both 

dominating and dominated measures from a dominance 
matrix and then derived a net dominance. This is used as 
a measure of the strength of preference in the sense 
that a greater net value is better. They proposed and 
compared two alternative approaches with surrogate 
weighting methods and decision rules by means of a 
simulation study. 

In Mateos et al., (2010), we proposed two new 
dominance measuring methods aimed at overcoming 
some drawbacks associated with Ahn and Park's 
methods. The first method is based on dominating 
and dominated measures computed from the domi­
nance matrix. They are combined into a net domi­
nance value, but they are all computed differently than 
Ahn and Park's (2008) measures to resolve deficien­
cies and improve on Ahn and Park's methods. In the 
second method, alternatives are ranked on the basis 
of a preference intensity measure. These preference 
intensity measures are based on the fact that the 
differences between utilities corresponding to alter­
natives Ak and At are always within the interval whose 
lower endpoint is the element located at the Mi row and 
fth column of the dominance matrix and whose upper 
endpoint is located at the fth row and Mh column of 
the dominance matrix with the sign changed. Moreover, 
alternative Ak is preferred to At for the positive values in 
the above interval, whereas alternative A/ is preferred to 
Ak for the negative values. 

The aforementioned methods considered ordinal 
relations regarding attribute weights, that is, DMs 
ranked attributes in descending order of importance. 
In this paper, we consider different cases with incom­
plete information about weights. Specifically, we 
consider weight intervals, weights fitting independent 
normal probability distributions or weights repre­
sented by triangular or trapezoidal fuzzy numbers. 
Then, a simulation study is performed to compare 
the proposed methods with the measures reported 
in Ahn and Park (2008), with classical decision 
rules and with the SMAA and SMAA-2 methods in 
the aforementioned situations. 

The paper is organized as follows. In Section 2, 
we examine weight intervals. Pairwise and absolute 
dominance concepts and derived ranking methods, 
such as modified classical decision rules and domi­
nance measuring methods, are reviewed, as are the 
SMAA and SMAA-2 methods. In Section 3, an illustra­
tive example is introduced. Section 4 evaluates and 
compares the methods in a simulation study and 
presents the study results. In Section 5, weights fit 
independent normal probability distributions or are 
represented by fuzzy numbers. Finally, we outline 
our conclusions in Section 6. 



2. RANKING METHODS BASED ON 
DOMINANCE MEASURES 

Let us consider a group decision-making problem 
with n attributes {Xt, i=\,...,ri) and m alternatives 
(Aj, j= 1,.. .,m), where incomplete information about 
input parameters has been incorporated into the 
decision-making process as follows: 

• Alternative performances under uncertainty 
(x'lG [x(. , x'i ], z'= 1 ,.. . ,«;_/= 1 , . . . , m), where x'i 
and xl

i are the lower and the upper endpoints 

of the performance interval of the attribute Xt 

for the alternative Aj, respectively. 
• Imprecision concerning utility function assessment 

(ui(-) e [uf (•), wf (•)] ,i=l,...,n), where uf (•) 
and uf(-) are the lower and the upper utility functions 
of the attribute Xt. 

• Imprecision concerning weights, which is represented 
by weights intervals (w,- G [wf, wf] ,i= 1, . . . ,«), 
where wf and wf are the lower and the upper end-
points of the weight interval for the attribute Xh 

i= 1,...,«. 

Given two alternatives Ak and Ah alternative Ak dom­
inates A[ if D'M > 0, D'u being the optimum value of the 
optimization problem (Puerto et al., 2000), 

D u=min u(Ak)-u(Ai) = YjViUi (xf) -YjViUi (x'f) 

wf <Wi< wf, i 1 n 

xfL<xf <xf,i = 1. ,« (1) 
S.t. xf <X? <xfV = 1, . .. ,M 

M f ( 4 ) < M , ( x f ) < M f ( x f ) , / = L 

u f ( ^ ) < « i ( ^ ) < « F W ) . ' = l . - - ' 

D'u = mini ^Wjif 

s.t. wf<wt<wf,i = 1. 

(2) 

where zf are the optimal values of the optimization 
problem 

zf = min{ui(x*) -w«(x0} 

x*£ <x* <xF,i = 1. 

,n (3) x?£<x?<x?c/,i = 1, 

Problem (3) can be solved depending on what the 
characteristics of the utility function for attribute Xt 

are (Mateos et al., 2007): 

• If the utility function is monotonically increasing, 
thenzf^fCxh-wfCxf7) . 

• If the utility function is monotonically decreasing, 
rt. kl Ls kU-, Us IL-, 

then Zi = Ui (xt ) - ut (x,- ). 

This concept of dominance is called pairwise domi­
nance and leads to the so-called dominance matrix: 

D = 

I - D12 

D31 D32 

\Dm2 D ml 

Dlm-1 D\m\ 

D2m-1 D2„ 

D3m-1 D3„ 

D, 

(4) 

mm—\ J 

where Dki = D'u/YTi=\wi a nd ^'ki a nd wi are t n e opti­
mum values for the objective function and weights in 
problem (1), respectively. 

Another possibility is to use what is known as 
absolute dominance (Salo and Hamalainen, 2001). 
Absolute dominance considers the following linear 
optimization problems: 

Examining the objective function, we find that 
it can be rewritten as ^{w^u^fy — w,(xj)], where ut(xf) 
ufa) does not depend on weights w,. Moreover, if 
we carefully observe the constraints, we discover 
that variables w, are independent of the other 
variables. So, taking into account that weights wt 

are non-negative, solving problem (1) is equivalent 
to solving the optimization problem 

Uk = maxy^WiUi{xf) 
i=\ 

wf <Wi<wf ,i= 1. 

s.t. x*L<x*<x*uA=\. 

,n 

uftf)<Ui(xf)<uVtf),i=l. 



and 
n 

1=1 

wf < w; <wf ,z = 1, ...,n 

s.t. x^<^<^u,i=l,...,n 

tti)<uiti)<u?ti),i=l,...,n 

Alternative Ak absolutely dominates A/ if Lk > Ui, 
that is, the lower bound of Ak exceeds the upper bound 
of A[. Note that if Ak absolutely dominates A/, then Ak 

dominates Ah but the reverse does not hold. 
Note that this dominance approach often results in 

almost no prioritization of alternatives or too many 
non-dominated alternatives (Kirkwood and Corner, 
1993). However, pairwise and absolute dominance 
values can be used to further prioritize competitive 
alternatives and hence recommend the best alternative 
and fully rank alternatives. 

The following is an example of how these domi­
nance values have been employed to modify three 
classical decision rules to operate in an imprecise 
decision-making context (Puerto et ai, 2000; Salo and 
Hamalainen, 2001): 

• maximax rule or optimist rule (OPT): evaluating each 
alternative for its maximum guaranteed value, that is, 
max{Uj, j= 1,.. .,m}. 

• maximin rule or pessimist rule (PES): evaluating 
each alternative for its minimum guaranteed value, 
that is, max{Lj, j= 1,.. .,m}. 

• minimax regret rule (REG): evaluating each alterna­
tive for the maximum loss of value with respect to a 
better alternative, that is, min{MRk, k=l,.. .,m}, 
where MRk represents the maximum regret incurred 
when choosing alternative /, that is, MRk = max 
{max{u(Ai) — u(Ak) I Wki} V/^fe}, where Wki are 
the constraints of the optimization problem (1). 

Although none of these rules ensures that the best 
ranked alternative is the same as it would be if precise 
values were elicited for weights, simulations show that 
the selected alternative is generally one of the best 
(Sarabando and Dias, 2009). 

A new approach is to use information about each 
alternative's intensity of dominance employing what 
are known as dominance measuring methods. Ahn and 
Park (2008) proposed two approaches on the basis of 
the dominance matrix D. In the first approach, denoted 
by API (Ahn and Park 1), alternatives are ranked 

according to a dominating measure a^ = ^ Dy. 

The higher this dominating measure is, the more pre­
ferred the alternative will be because the sum of the 
intensity of one alternative dominating the others will 
also be greater. In the second approach, denoted by 
AP2 (Ahn and Park 2), alternatives are ranked according 
to the difference between the dominating measure ak 

m 

and a dominated measure fik = ^ Dit, that is, on the 
1=1,l^k 

basis of ak—f5k. 
A simulation study showed API to be better than 

AP2. Whereas API involves just adding the paired 
dominance values in the kth row of D, AP2 considers 
paired dominance values in both the Mi row and the 
feth column of D. The reason why API is better than 
AP2 is that AP2 uses duplicated information (row 
and column values). On the other hand, API only 
takes into account the dominating measure, leading 
to a trade-off between positives and negatives. The 
drawbacks associated with API and AP2 are that 
API only considers dominating measures (trade-off 
of positive and negative values), and AP2 duplicates 
dominated measures. 

Two new methods aimed at overcoming these 
problems were proposed in Mateos et al. (2010). 
The first one, denoted by DME1 (Dominance Mea­
suring Extension 1), is based on the same idea as 
Ahn and Park suggested (Ahn and Park, 2008). 
First, dominating and dominated measures are com­
puted from the paired dominance values Dkt and 
then a net dominance is derived. This net domi­
nance is used as a measure of the strength of pre­
ference. DME1 computes the positive and negative 
dominating measures (step 2) and positive and 
negative dominated measures (step 4). They are 
used to compute first a proportion representing 
how strongly one alternative is preferred to the 
others (step 3) and second, a proportion represent­
ing how intensely one alternative is not preferred 
to the others (step 5). Finally, DME1 subtracts both 
proportions (step 6) to compute the intensity of the 
preference. The ranking of alternatives will be 
based on this intensity value (step 7). 

DME1 can be implemented as follows: 

1. Obtain the paired dominance values Dkl and the 
dominance matrix D as in (4). 

2. Compute the dominating measures ak, ak 

and ak for each alternative Ak: 
m m m 

l=l,l^k l=l,l^k,Du>0 l=l,tyk,Da<0 



3. Compute the proportion 

4. Compute the dominated measures pk, pk
 a n d Pk 

for each alternative Ak: 

m m 

l=\,tyk l=l,l^k,Dik>0 
m 

= Y, D»>v*-
l=l,l^k,Dlt<0 

5. Compute the proportion 

pp = Pk 
k Pt-Pk' 

6. Calculate the preference intensity value Pk for each 
alternative Ak: 

Pk = Pl-plk=h---,m. 

7. Rank alternatives according to the Pk values, where 
the best (rank 1) is the alternative for which Pk is a 
maximum and the worst (rank m) is the alternative 
for which Pk is the minimum. 

The drawback of the DME1 method is that when the 
dominance matrix D contains all negative elements, that 
is, when all the alternatives are non-dominated, the 
algorithm is unable to rank the alternatives because all 
Pk are equal to 0. The properties of matrix D were 
analysed in an attempt to overcome this problem, and 
we observed that the difference between the utilities 

n n 

corresponding to Ak and Ah ^W,-M,-(JC^) — ^W,-M,-(J^) 

in Wk[, is always within [Dkh —Dik\, as demonstrated 

in Mateos et al. (2010).Thus, 

• If -Dlk < 0 <^ Du < 0 and Dlk > 0 <^ alternative Az 

dominates Ak => the intensity with which Ak is 
preferred to At is 0, that is, PIkt=Q. 

• If Dkl>0 <^ Dkl>0 and D f t < 0 » alternative Ak 

dominates At => the intensity with which Ak is 
preferred to At is 1, that is, PIkt = 1. 

• If Dkl < 0 and Dlk < 0, then interval [Dkh -Dlk\ will 
contain a positive subinterval with positive values 
in which alternative Ak is preferred to At and a 

negative subinterval in which alternative Az is pre­
ferred to Ak. Thus, the intensity with which Ak is 
preferred to A/ is the proportion of the positive sub-
interval over the whole [DM, —Dtk\. 

On the basis of this idea, a second method was pro­
posed in Mateos et al. (2010), denoted by DME2 
(Dominance Measuring Extension 2). In DME2, 
paired dominance values Dkt are first transformed into 
preference intensities PIki (step 2) depending on 
the preference among alternatives Ak and At. Then, a 
preference intensity measure (PIMk) is derived for each 
alternative Ak (step 3) as the sum of the preference inten­
sities of alternative Ak regarding the other alternatives. 
This is used as the measure of the strength of preference. 

Dominance measuring extension 2 can be imple­
mented as follows: 

1. Compute dominance matrix D (4) from the paired 
dominance values D'kt (1). 

2. If Dkl > 0, then alternative Ak is preferred to alter­
native At, that is, the intensity with which alterna­
tive Ak is preferred to At is 1, PIki= 1. 

E l s e ( D H < 0 ) , 

• If Dlk > 0, then alternative Al dominates alternative 
Ak; therefore, the intensity with which alternative 
Ak is preferred to At is 0, that is, PIkt = 0. 

• Else, note that alternative Aj is preferred to alter­
native Ak for those values in Wki that satisfy 

n n 
Dki<J2wiUi(^) - X > , w , ( x ? ) < 0 , and Ak is pre-

i=i i=i 
ferred to At for those values in Wki that satisfy 

n n 

0 < Y,WiUi(j^) - ^w,-w,-(^)< - Da=> the inten-

sity Ak is preferred to At is 

3. Compute a preference intensity measure for each 
alternative Ak 

m 

PIMk= J2 PIki-
1=1,l^k 

4. Rank alternatives according to the PIM values, 
where the best (rank 1) is the alternative with greatest 
PIM and the worst is the alternative with the least PIM. 



As mentioned before, DME1 and DME2, same with 
API and AP2, considered ordinal relations regarding 
attribute weights, that is, DMs ranked attributes in 
descending order of importance. For this scenario, 
Monte Carlo simulation techniques were carried out to 
analyse their performance and to compare them with 
other approaches, such as surrogate weighting methods 
and adapted classical decision rules (Ahn and Park, 
2008; Mateosefa/., 2010). 

The results showed that DME2 performs better in 
terms of the identification of the best alternative and 
the overall ranking of alternatives than other dominance 
measuring methods proposed by different authors. 
Also, DME2 outperforms the adaptation of classical 
decision rules and comes quite close to the Rank-Order 
centroid ROC method, which was identified as the best 
approach. 

In Section 4, the results of a new computational study 
based on Monte Carlo simulation techniques are shown 
for a scenario where there are weight intervals rather than 
ordinal relations. Surrogate weighting methods cannot 
be used for this purpose, so the API and DME2 methods 
are analysed and compared with modified decision rules 
and with SMAA and SMAA-2 methods, which are briefly 
described in the succeeding text. 

Stochastic multicriteria acceptability analysis 
(Lahdelma and Salminen, 1998) is widely used for 
situations where neither criteria values nor weights are 
precisely known. Uncertain or imprecise criteria values 
are represented by stochastic variables £,-,- with assumed 
or estimated joint probability distribution and density 
function J{E) in the space X. Similarly, the DM's 
unknown or partially known preferences are repre­
sented by a weight distribution with density function 
fiyv) in the set of feasible weights W. Total lack of 
knowledge about weights is represented in 'Bayesian' 
spirit by a uniform weight distribution in W. The distri­
bution has density function/(w) = ml}w\ • 

The SMAA method determines for each alternative 
the set of favourable weights Wfe) = {w £ W: u(&h w) > 
u(Ek, w),Vk}. Then, the acceptability index is used 
to classify the alternatives as more or less acceptable 
(a, > 0) and unacceptable (at zero or near zero), where 

ai= / / ( £ ) / f(w)dwde. 
JX JWi(e) 

In some cases, some amount of bias may occur in the 
SMAA acceptability indices: a) the scaling of the criteria 
affects the acceptability indices; b) if the assumed 
weight distribution does not represent the DMs' prefer­
ence accurately, classification based on acceptability 

indices should be limited to excluding alternatives with 
zero or near-zero acceptability; and c) SMAA ignores 
information about the other ranks. For this reason, the 
SMAA-2 method (Lahdelma and Salminen, 2001) was 
developed. SMAA-2 extends the acceptability analysis 
to the sets of weight vectors for each rank from best to 
worst for each decision alternative. 

The rank acceptability index a\ is then defined as 
the expected volume of the set of favourable rank 
weights. The rank acceptability index is a measure of 
the variety of different ratings ranking alternative At 

as r, 

a\= / / 0 ) / f(w)dwdE, 
Jx J writ) 

where W^E) = {w £ W : rank(Ei, w) = r] with rank 
(£,-, w)=l + J2kp(u(£k, w) > u(Ekh w)) and p{true) = 1 
and pifalse) = 0. The problem of comparing the alterna­
tives in terms of their rank acceptabilities can be seen as 
a 'second-order' multicriteria decision problem. For this 
reason, Lahdelma and Salminen (2001) proposed a 
complementary approach of combining the rank accept­
abilities into holistic acceptability indices a, for each 
alternative using 

at = y a'" a\. 
r 

where ar= (Y^iLr 1 / 0 / {Y^T=i 1/0 a r e centroid weights. 

3. AN ILLUSTRATIVE EXAMPLE 

To illustrate the methods introduced in the previous 
section, we consider the data from a decision-making 
problem consisting of the construction of a new general 
cargo harbour in Helsinki, Finland (Hokkanen et al., 
1999; Lahdelma and Salminen, 2001). Table I shows 
the criteria performances for m = 13 alternatives (where 
I and II are navigation channels; A, B and C represent 
roads; and 1, 2, 3 and 4 correspond to railway connec­
tions) and n = 11 attributes. 

Uniform probability distributions for criteria per­
formances in the intervals [xtj — Ay, xtj + Atj\ are 
used. For Atj, 10% of the interval between the high­
est and lowest performance for each criteria is used 

(i.e. Ay = (xjmx—xjlm)/10). The scaling problem 

is also outlined here; the criteria performances are 
scaled by using best and worst criteria values, that 

is, My = (Xij - xJorA J (x)est - xJorA . 



Table I. Criteria performances 

Alternative 

IA1 
IIA2 
IIA3 
IIA4 
IIB1 
IIB2 
IIB3 
IIB4 
IIC1 
IIC2 
IIC3 
IIC4 
ZERO 

1 (min) 

4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
1 

2 (min) 

1.0 
2.5 
1.5 
1.5 
1.5 
2.5 
2.0 
2.0 
1.0 
2.5 
1.5 
2.0 
0.0 

3 (min) 

985 
985 
985 
985 
985 
985 
985 
985 
985 
985 
985 
985 

1300 

4 (max) 

30 
30 
30 
30 
35 
35 
35 
35 
35 
35 
35 
35 
50 

5 (max) 

166 
166 
166 
166 
177 
177 
177 
177 
166 
166 
166 
166 
266 

6 (min) 

705 
765 
705 
705 
705 
765 
705 
705 
705 
765 
705 
705 

4200 

7 (max) 

25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
25 
0 

8 (max) 

4.5 
4.5 
4.5 
4.5 
4.5 
4.5 
4.5 
4.5 
4.5 
4.5 
4.5 
4.5 
2.0 

9 (max) 

4.2 
4.1 
4.3 
4.3 
4.4 
4.3 
4.5 
4.5 
4.6 
4.5 
4.7 
4.7 
1.0 

10 (max) 

15.1 
15.3 
12.7 
12.2 
15.1 
15.3 
12.7 
12.2 
14.8 
15 
12.4 
11.9 
18.8 

11 (max) 

1.75 
1.69 
1.75 
1.65 
1.68 
1.62 
1.68 
1.58 
1.72 
1.66 
1.72 
1.62 
1.00 

Table II shows the dominance matrix. Note that, in 
this example, a simple operation solves the optimization 
problem (2). For example, 

D 1 2 min{0- 0.16,0.5 - 0 . 1 6 , 0 . 5 7 - 1,0-0.16,0 

-0.16,0.83-0.99,0.83 - 1,0.83 - 1,0.72 

-0.86,0.45 - 0.59,083 - 0.93}= -0.43. 

Rows 1 and 2 of Table III show the results output by 
Ahn and Park's method and the corresponding ranking, 
respectively. Each element in the first row is computed 
by adding the values of the corresponding row in 
Table II. 

To apply the DME2 method, we first have to compute 
a preference intensity matrix from the dominance matrix 
and then the preference intensity measure for each alter­
native. Table IV shows the preference intensity matrix, 
whereas Table V lists the preference intensity measures 
for each alternative and the resulting ranking. 

Note that the first value in Table IV is computed as 
follows: Pu = —^- = 0.607. Values shown in 
Table V are computed by adding the values in the cor­
responding row of Table IV (the first row is used for 
the first value, and so on). 

Finally, Table VI shows the results output by the 
SMAA and SMAA-2 methods, see Lahdelma and 
Salminen (2001). 

Figure 1 illustrates the alternative rankings included 
in Tables III and V together with the results of the 
SMAA and SMAA-2 methods. 

Looking at Figure 1, we find that 

DME2, SMAA and SMAA-2 methods (IIC1), but this 
alternative is ranked as seventh by the API method. 

• The best two and the worst three alternatives are the 
same for the DME2 method, analysing the set of 
favourable weights (SMAA and SMAA-2 methods). 
This similarity is stronger for the DME2 and 
SMAA-2 methods, which also output the same alter­
natives for the third, fourth, fifth and sixth rankings, 
whereas IIA4 and IIB1 just switch positions 
(seventh and eighth). Looking at Tables V and VI, 
we find that the difference between IIA4 and IIB1 
is minimum, although IIA4 was possibly a little bet­
ter. The same applies to the tenth-ranked and ele­
venth-ranked alternatives. 

• The main difference between the ranking output by 
the SMAA method and DME2 and SMAA-2 methods 
is that alternative ZERO is ranked fourth by SMAA, 
whereas the DME2 and SMAA-2 methods rank it as 
the ninth and tenth, respectively. 

• In any case, the results output by the DME2, SMAA 
and SMAA-2 methods are very similar. 

Generally, DME2 is very easy to apply and compu­
tationally efficient. On the other hand, the SMAA-2 
method shows more information. In our opinion, the 
DME2 approach could be used to output the ranking 
of alternatives, and the SMAA-2 method could be used 
to study the robustness of this ranking. 

4. COMPUTATIONAL STUDY 

• The best alternative is IIC3 for all four methods, 
whereas the second-ranked is the same for the 

We propose to conduct a simulation study of the dom­
inance measuring methods described in the previous 
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the process would be as follows: 
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1. Randomly generate component utilities for each 
alternative in each attribute from a uniform distribu­
tion in [0,1], leading toanmxn matrix. Normalize 
the columns in this matrix to make the smallest 
value 0 and the largest 1 and remove dominated 
alternatives. 

2. Generate attribute weights representing their relative 
importance. Note that these weights are the TRUE 
weights, and the derived ranking of alternatives will 
be denoted as the TRUE ranking. To generate the 
TRUE weights, we first select n— 1 independent 
random numbers from a uniform distribution on 
(0,1) and then rank these numbers. Suppose the 
ranked numbers are 1 > rn_1>.. .>r2 > r1 > 0. The 
differences between adjacently ranked numbers are 
then used as the desired weights: wT

n = \— rn_1, 
Wn-i = r„_; — rn_2,.. .,wf = r;. The resulting weights 
will sum 1 and be uniformly distributed in the 
weight space. 

3. To derive the corresponding weight intervals, add 
and subtract the same quantity to precise values, 
leading to the lower and upper endpoints of the 
weight intervals. We used the quantities, q, of 0.1/ 
2, 0.2/2, 0.3/2, 0.4/2 and 0.5/2 that represent 10%, 
20%, 30%, 40% and 50% imprecision, respectively. 
In other words, [wf,wY] [wf- q,wf + q]. Jfwf-q<0, 

0, and if wf+q > 1, then wf+ q = \ then w, — q • 
is considered. Throughout the simulation process, 
weights will be randomly generated from these 
weight intervals, [wf — q,wf + q]. 

4. Compute the ranking of alternatives for each method 
according to their procedures and compare with 
the TRUE ranking, computed in step 2. We use 
two measures of efficacy, hit ratio and rank-order 
correlation (Ahn and Park, 2008; Barron and 
Barrett, 1996; Winkler and Hays, 1985). The hit 
ratio is the proportion of all cases in which the 
method selects the same best alternative as in the 
TRUE ranking. Rank-order correlation represents 
how similar the overall alternative-ranking structures 
are in the TRUE and the method-driven rankings. It 
is calculated using Kendall's x (Mateos et al., 2009): 
T = 1 — 2 x (number of pairwise preference viola­
tions)/^ tal number of pair preferences). 

c 
Following (Ahn and Park, 2008; Mateos et al, 2010; 

Winkler and Hays, 1985), four different levels of 
alternatives (m = 3,5,7,10) and five different levels of 



Table V. Results and corresponding ranking output by DME2 method 

IA1 EA2 IIA3 IIA4 IIB1 IIB2 IIB3 IIB4 IIC1 IIC2 IIC3 IIC4 ZERO 

DMEl 5.7 
Rank 10 

3.79 
13 

6.37 
6 

6.33 
7 

6.12 
8 

4.60 
11 

6.75 
3 

6.62 
5 

6.94 
2 

4.46 
12 

7.54 
1 

DME2, dominance measuring extension 2. 

Table VI. SMAA and SMAA-2 results 

IA1 
IIA2 
IIA3 
IIA4 
imi 
IIB2 
IIB3 
IIB4 
IIC1 
IIC2 
IIC3 
IIC4 
ZERO 

a1 

5 
0 
5 
3 
4 
0 
9 
8 

18 
0 

27 
11 
10 

a2 

11 
0 

12 
9 

11 
1 

21 
18 
33 

1 
48 
22 
11 

a3 

18 
0 

22 
17 
20 

2 
34 
29 
45 

2 
64 
34 
12 

Holistic a 

28 
7 

34 
30 
33 
14 
42 
39 
49 
14 
61 
42 
15 

a -rank a -rank a -rank 

6.69 
4 

Holistic rank 

8 
13 
7 
10 
9 
11 
5 
6 
2 

12 
1 
3 
4 

7 
13 
6 
10 
8 
11 
4 
5 
2 

12 
1 
3 
9 

8 
13 
6 
9 
7 
11 
4 
5 
2 

12 
1 
3 
10 

9 
13 
6 
8 
7 
12 
3 
5 
2 

11 
1 
4 
10 

SMAA, stochastic multicriteria acceptability analysis. 
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Figure 1. Rankings output by dominance measuring meth­
ods (Ahn and Park 1 (API) and dominance measuring exten­
sion 2 (DME2)) and the stochastic multicriteria acceptability 
analysis (SMAA) and SMAA-2 methods. 

attributes (n = 3,5,7,10,15) were considered to vali­
date the output results. Also, 20000 trials were 
performed for each of the 20 design elements 
(alternatives x attributes). 

The results of similar computational studies when 
ordinal information about weights is available are 
shown in Mateos et al. (2009). Surrogate weighting 
methods, methods that modified classical decision rules 
(REG, PES and OPT, see Section 2) and dominance 
measuring methods (API, DMEl, DME2) were consid­
ered. The findings were as follows: 

1. Regarding methods that modified classical decision 
rules, the REG method appears to be better than the 
PES method. PES outperforms the OPT method. 
They are all outperformed by dominance measuring 
methods. Moreover, the results for DMEl and 
DME2 methods are similar, but both outperform 
API. 

2. The average hit ratio decreases the more attributes 
there are for all the methods under consideration 
and any given number of alternatives. This 
decrease is more pronounced than if the number 
of alternatives is increased for the same number 
of attributes. 

Surrogate weighting methods are also compared 
with dominance measuring methods when ordinal 
information about weights is available in Mateos 
et al. (2010). DME2 outperforms all the surrogate 
weighting methods except the ROC method, which is 
the best in terms of the hit ratio and the rank-order 
correlation. 

In the simulation study carried out in this work, we 
compare the API and DME2 methods with methods 
that analyse the set of favourable weights (SMAA 
and SMAA-2 methods). Additionally we use intervals 
rather than ordinal relations for weights. The ROC 
method cannot be applied in this scenario. 



Figure 2 shows the average hit ratio for each of the 
20 design elements when the interval length is 0.1, 
that is, the average values of 20000 trials. The 20 
design elements are represented on the abscissa, where 
the first value indicates the number of alternatives and 
the second the number of attributes. 

The hit ratio decreases the more attributes there are 
for any given number of alternatives. Additionally, the 
number of alternatives also affects the hit ratio. 

The DME2, SMAA and SMAA-2 methods clearly 
outperform the API method. On the other hand, though 
the performance of the DME2, SMAA and SMAA-2 
methods is very similar, SMAA and SMAA-2 slightly 
outperform DME2 for a small number of alternatives 
when the number of attributes is increased. 

Looking at the rank-order correlation, see Figure 3, 
then 

1. as the rank-order correlation decreases, the more 
attributes there are for any given number of alterna­
tives. However, the number of alternatives does not 
affect the correlation. 

2. the SMAA-2 method slightly outperforms the DME2 
method, which also outperforms the API method. 

93,00 

91,00 

87,00 

85.00 

1 

' 

• DME2 

•SMAA2 

API 

rr, tri T* O i 
USES 53 

Figure 3. Rank-order correlation for the three methods. 
DME2, dominance measuring extension 2; SMAA, stochastic 
multicriteria acceptability analysis; API, Ahn and Park 1. 

similar results in terms of hit ratio, but SMAA-2 
slightly outperforms DME2 on rank-order correlation. 

5. WEIGHTS FITTING INDEPENDENT NORMAL 
DISTRIBUTIONS OR WEIGHTS REPRESENTED 

BY FUZZY NUMBERS 

Note that SMAA was not considered when analysing 
the rank-order correlation because it is not always possi­
ble to derive a ranking of alternatives from this method. 

The simulation was also run for the other listed per­
centages of imprecision (20%, 30%, 40% and 50%), 
and the results were similar, that is, the DME2, SMAA 
and SMAA-2 methods clearly outperform the API 
method. DME2, SMAA and SMAA-2 output very 

. . 
DME2 

i SMAA2 

i SMAA 

API 

Figure 2. Hit ratio for the four methods. DME2, dominance 
measuring extension 2; SMAA, stochastic multicriteria 
acceptability analysis; API, Ahn and Park 1. 

Now, we consider that the uncertainty about weights 
is represented by independent normal distributions 
with means (jii,..., fin) and variances (a\, 
is, (wi~N (/it, aj), i = l,...,n). 

In this case, problem (2) can be represented by 

or), that 

D« = £ w ^ (5) 
i=i 

s.t. wi~N(ni,of),i= I, 

Our aim is to take advantage of normal distribution 
properties, such as closure under linear combinations. 
For example, any linear combination of a number of 
independent normal distributions also follows a normal 
distribution. Therefore, it is well known that if 
Wi~N{jii, of) , i = 1 , . . . , n, then Du has a normal dis-

n n 

tribution with mean ^zf/^,- and variance J^ (zf) a\ 

because Du is a linear combination of w,. 
The approach is based on the same idea as method 

DME2, where only weight intervals are considered to 
represent weights. 

The new approach, denoted by DME2-Normal, can 
be implemented as follows. In the first step, the method 
computes the optimal solution of the optimization 
problems (3) for each pair of alternatives Ak and At 



(k, 1=1,.. .,m). In the second step, the intensity 
with which alternative Ak to is preferred to the 
others is computed. In the third step, a preference 
intensity measure for each alternative Ak is com­
puted. This measure represents a preference in­
tensity measure of Ak . The third step ranks the 
alternatives considering the preference intensity 
measure. Alternative Ak is better than alternative 
A[ if the preference intensity measure of alternative 
Ak is greater than the preference intensity measure 
of alternative At. 

1. Compute zf for alternatives Ak and At {k, I = 1,... ,m) 
and each attributeXt (i= 1,...,«) following (3). 

2. Compute 

Phi fki(x)dx. 

where fu{x) is the density function of the variable Dkt, 
that is, fki(x) is the density function of a normal distri-

n 

bution variable with mean Y^zfu,- and variance 
™ 1 7 = 1 

i=\ 

3. Compute a preference intensity measure for each 
alternative Ak : 

PIMk 

'. = 1 

4. Rank alternatives according to the PIMk values, 
where the best (rank 1) is the alternative with the 
greatest PIMk and the worst is the alternative with 
the least PIMk. 

If the weights are represented by triangular or trape­
zoidal fuzzy numbers, adaptation is direct because the 
product of a scalar multiplied by a triangular or trapezoi­
dal fuzzy number and the sum of triangular or trapezoi­
dal fuzzy numbers is another triangular or trapezoidal 
fuzzy number. For example, if weights w, are repre­
sented by triangular fuzzy numbers (ai,bi,ci),Vi=l, 
. . . ,«, then problem (5) is 

DM = y^w, 
7 = 1 

4 

s.t. Wi = (ai,bi,ci),i= 1. 

To compute the components of Dkh we must take 
into account that 

j(aizf,bizf,cizf),iSzf>0 
VlZi ~- \ t „ Jd u Jd „ -U\ ^ zkl < Q !(c,-zf,/?4Wr 

and 

(a,-, bt, ct) + (a,-, bj, Cj) = (at + aj, bt + bh ct + cj). 

Thus, Dkt = (akh bkt, cki) and is a fuzzy number. 
The algorithm for fuzzy numbers and independent 

normal probability distributions is similar, except that 
Pitt is defined in step 2 as follows: 

PI kl 

cu - aki bM - au 

cu — au 

Ckl 
Ckl 

cu - bid 

(cu ~ au)(bu ~ au) - (auY 
(cu ~ aki)(bki - au) 

(cuY 
Ckl ~ akl (cu-bki)(cki-aki)

: 

, ifau<0<b u 

if bki<0<cki 



6. CONCLUSIONS 

In real complex decision-making problems, it is not 
easy to elicit precise values for the weights representing 
the relative importance of criteria, which often leads to 
information being incomplete. A recent approach for 
dealing with such situations is to use information about 
each alternative's intensity of dominance employing 
what are known as dominance measuring methods. 

We have reviewed the features of existing domi­
nance measuring methods, all applied when there are 
ordinal relations regarding attribute weights, that is, 
DMs ranked attributes in descending order of impor­
tance. Simulation studies have been conducted in this 
scenario to compare the methods with each other and 
with other approaches, such as surrogate weighting 
methods and modified decision rules. The results 
showed that DME2 performs better than other domi­
nance measuring methods and the adaptation of classi­
cal decision rules and comes quite close to the ROC 
method, which was identified as the best approach. 

However, incomplete information about weights 
can be expressed in other ways, for example, by 
weight intervals fitting independent normal probabil­
ity distributions or represented by triangular or trape­
zoidal fuzzy numbers. Moreover, the ROC method 
cannot be applied in these situations. 

A simulation study has been run on the aforemen­
tioned scenarios to analyse the DME2 method, and 
again, compare it with the methods suggested by 
Ahn and Park, with modified decision rules and with 
SMAA and SMAA-2 methods. 

The results show that DME2 and SMAA-2 outper­
form the other methods in terms of the identification 
of the best alternative and the overall ranking of 
alternatives. Different situations of imprecision were 
analysed (10%, 20%, 30%, 40% and 50% impreci­
sion), leading to the same conclusion. Furthermore, 
all these methods are sensitive to the number of attri­
butes. An increase in the number of attributes implies 
the reduction of the proportion of well-ordered alter­
natives. On the other hand, the increase in the number 
of alternatives does not significantly affect the good­
ness of the method. 

Although SMAA-2 slightly outperforms DME2, 
DME2 can be used when incomplete information 
about weights is expressed not just as weight intervals 
but also as weights satisfying linear or non-linear 
constraints, weights represented by fuzzy numbers 
or weights fitting normal probability distributions. 
However, the SMAA-2 method cannot consider fuzzy 
numbers, and simulation techniques could be hard to 
apply considering constraints on weights. 
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