4,943 research outputs found

    An Integrated Framework to Model Cellular Phenotype as a Component of Biochemical Networks

    Get PDF
    Identification of regulatory molecules in signaling pathways is critical for understanding cellular behavior. Given the complexity of the transcriptional gene network, the relationship between molecular expression and phenotype is difficult to determine using reductionist experimental methods. Computational models provide the means to characterize regulatory mechanisms and predict phenotype in the context of gene networks. Integrating gene expression data with phenotypic data in transcriptional network models enables systematic identification of critical molecules in a biological network. We developed an approach based on fuzzy logic to model cell budding in Saccharomyces cerevisiae using time series expression microarray data of the cell cycle. Cell budding is a phenotype of viable cells undergoing division. Predicted interactions between gene expression and phenotype reflected known biological relationships. Dynamic simulation analysis reproduced the behavior of the yeast cell cycle and accurately identified genes and interactions which are essential for cell viability

    Aerospace Medicine and Biology: A continuing bibliography, supplement 191

    Get PDF
    A bibliographical list of 182 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1979 is presented

    Design Of Dna Strand Displacement Based Circuits

    Get PDF
    DNA is the basic building block of any living organism. DNA is considered a popular candidate for future biological devices and circuits for solving genetic disorders and several other medical problems. With this objective in mind, this research aims at developing novel approaches for the design of DNA based circuits. There are many recent developments in the medical field such as the development of biological nanorobots, SMART drugs, and CRISPR-Cas9 technologies. There is a strong need for circuits that can work with these technologies and devices. DNA is considered a suitable candidate for designing such circuits because of the programmability of the DNA strands, small size, lightweight, known thermodynamics, higher parallelism, and exponentially reducing the cost of synthesizing techniques. The DNA strand displacement operation is useful in developing circuits with DNA strands. The circuit can be either a digital circuit, in which the logic high and logic low states of the DNA strand concentrations are considered as the signal, or it can be an analog circuit in which the concentration of the DNA strands itself will act as the signal. We developed novel approaches in this research for the design of digital, as well as analog circuits keeping in view of the number of DNA strands required for the circuit design. Towards this goal in the digital domain, we developed spatially localized DNA majority logic gates and an inverter logic gate that can be used with the existing seesaw based logic gates. The majority logic gates proposed in this research can considerably reduce the number of strands required in the design. The introduction of the logic inverter operation can translate the dual rail circuit architecture into a monorail architecture for the seesaw based logic circuits. It can also reduce the number of unique strands required for the design into approximately half. The reduction in the number of unique strands will consequently reduce the leakage reactions, circuit complexity, and cost associated with the DNA circuits. The real world biological inputs are analog in nature. If we can use those analog signals directly in the circuits, it can considerably reduce the resources required. Even though analog circuits are highly prone to noise, they are a perfect candidate for performing computations in the resource-limited environments, such as inside the cell. In the analog domain, we are developing a novel fuzzy inference engine using analog circuits such as the minimum gate, maximum gate, and fan-out gates. All the circuits discussed in this research were designed and tested in the Visual DSD software. The biological inputs are inherently fuzzy in nature, hence a fuzzy based system can play a vital role in future decision-making circuits. We hope that our research will be the first step towards realizing these larger goals. The ultimate aim of our research is to develop novel approaches for the design of circuits which can be used with the future biological devices to tackle many medical problems such as genetic disorders

    Reverse engineering of logic-based differential equation models using a mixed-integer dynamic optimization approach

    Get PDF
    9 páginas, 6 figuras.-- This is an Open Access article distributed under the terms of the Creative Commons Attribution LicenseMotivation: Systems biology models can be used to test new hypotheses formulated on the basis of previous knowledge or new experimental data, contradictory with a previously existing model. New hypotheses often come in the shape of a set of possible regulatory mechanisms. This search is usually not limited to finding a single regulation link, but rather a combination of links subject to great uncertainty or no information about the kinetic parameters. Results: In this work, we combine a logic-based formalism, to describe all the possible regulatory structures for a given dynamic model of a pathway, with mixed-integer dynamic optimization (MIDO). This framework aims to simultaneously identify the regulatory structure (represented by binary parameters) and the real-valued parameters that are consistent with the available experimental data, resulting in a logic-based differential equation model. The alternative to this would be to perform real-valued parameter estimation for each possible model structure, which is not tractable for models of the size presented in this work. The performance of the method presented here is illustrated with several case studies: a synthetic pathway problem of signaling regulation, a two-component signal transduction pathway in bacterial homeostasis, and a signaling network in liver cancer cellsD.H., J.R.B. and J.S.R. acknowledge funding from the EU FP7 projects ‘NICHE’ (ITN Grant number 289384) and ‘BioPreDyn’ (KBBE grant number 289434). J.R.B. also acknowledges funding from the Spanish Ministerio de Economía y Competitividad (and the FEDER) through the project MultiScales (DPI2011-28112-C04-03).Peer reviewe

    "Going back to our roots": second generation biocomputing

    Full text link
    Researchers in the field of biocomputing have, for many years, successfully "harvested and exploited" the natural world for inspiration in developing systems that are robust, adaptable and capable of generating novel and even "creative" solutions to human-defined problems. However, in this position paper we argue that the time has now come for a reassessment of how we exploit biology to generate new computational systems. Previous solutions (the "first generation" of biocomputing techniques), whilst reasonably effective, are crude analogues of actual biological systems. We believe that a new, inherently inter-disciplinary approach is needed for the development of the emerging "second generation" of bio-inspired methods. This new modus operandi will require much closer interaction between the engineering and life sciences communities, as well as a bidirectional flow of concepts, applications and expertise. We support our argument by examining, in this new light, three existing areas of biocomputing (genetic programming, artificial immune systems and evolvable hardware), as well as an emerging area (natural genetic engineering) which may provide useful pointers as to the way forward.Comment: Submitted to the International Journal of Unconventional Computin
    corecore