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Abstract

Motivation: Systems biology models can be used to test new hypotheses formulated on the basis

of previous knowledge or new experimental data, contradictory with a previously existing model.

New hypotheses often come in the shape of a set of possible regulatory mechanisms. This search

is usually not limited to finding a single regulation link, but rather a combination of links subject to

great uncertainty or no information about the kinetic parameters.

Results: In this work, we combine a logic-based formalism, to describe all the possible regulatory

structures for a given dynamic model of a pathway, with mixed-integer dynamic optimization

(MIDO). This framework aims to simultaneously identify the regulatory structure (represented by

binary parameters) and the real-valued parameters that are consistent with the available experi-

mental data, resulting in a logic-based differential equation model. The alternative to this would be

to perform real-valued parameter estimation for each possible model structure, which is not tract-

able for models of the size presented in this work. The performance of the method presented here

is illustrated with several case studies: a synthetic pathway problem of signaling regulation, a two-

component signal transduction pathway in bacterial homeostasis, and a signaling network in liver

cancer cells.

Supplementary information: Supplementary data are available at Bioinformatics online.

Contact: julio@iim.csic.es or saezrodriguez@ebi.ac.uk

1 Introduction

In recent years, there has been a growing interest in the application

of logic formalisms to systems biology, and in particular to

model signal transduction (Albert and Thakar, 2014; Samaga and

Klamt, 2013). The basis of this model formalism lies in the assump-

tion that cells process information of certain stimuli approximately

by logic circuits, and their simplicity makes them particularly amen-

able to model large networks and integrate pathway knowledge

from databases with high-throughput data (Blinov and Moraru,

2012).

Logic models were first introduced by Kauffman (1969) to

model gene regulatory networks. Since then, diverse modifications

from the original formalism were developed. In particular various

extensions have been developed to accommodate continuous values

(e.g. Aldridge et al., 2009; Bernardo-Faura et al., 2014; Bonneau

et al., 2006, de Jong, 2002; Mendoza and Xenarios, 2006).
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Amongst these formalisms, logic-based ordinary differential equa-

tions (ODEs) are well suited to handle time series in a precise man-

ner. The main idea is to transform the logic model into a continuous

homologue in the form of ODEs. Since it is based on a logic circuit,

this formalism does not require information about the biochemistry

(e.g. stoichiometry or type of kinetics), and at the same time, since it

provides a model of differential equations, we can accurately per-

form dynamic simulations for the state variables trajectories. Several

methods have been proposed in the literature to transform Boolean

logic model into ODE approximations (Bonneau et al., 2006;

Mendoza and Xenarios, 2006). CellNOpt, relies in multivariate

polynomial interpolation introduced by Wittmann et al. (2009).

Logic formalisms have been used to reverse engineer biochemical

networks from data, i.e. to obtain a mechanistic dynamic model

from time-series data. One early example is the work by Akutsu

et al. (1999) which proposed a brute force approach that infers the

Boolean function of a few top k regulators, node by node. Other

methods treat these networks in a global manner (instead of fitting

logic functions node by node) borrowing ideas from optimization

and machine learning to avoid excessive model complexity

(Bonneau et al., 2006; Saez-Rodriguez et al., 2009). In Saez-

Rodriguez et al. (2009) networks derived from of prior knowledge,

from e.g. public repositories of manually curated networks, are

expanded into a hypergraph, where all the possible logic gates are

represented and optimization strategies are used to find which net-

works could best reproduce the data with the smallest number of

hyperedges. This method is implemented in the software CellNOpt

(Terfve et al., 2012) for various logic formalisms and is designed to

reverse engineer Boolean models, mainly in a protein signaling envir-

onment, given data from perturbation experiments.

Here, we present a mixed-integer global optimization approach

for the problem of reverse engineering signaling and regulatory net-

works as logic-based ODEs from a source of prior-knowledge con-

taining multiple possible regulation links and experimental data.

The problem of identifying the logic gates is formulated as a simul-

taneous model selection and parameter identification problem.

From the optimization point of view, this corresponds to a mixed

integer dynamic optimization (MIDO) problem. Although MIDO

problems are typically hard, we show that solutions can be achieved

for rather complex networks by applying global optimization meta-

heuristics.

Only a few authors have considered the use of mixed-integer

nonlinear programming for reverse engineering purposes. Sambo

et al. (2012) proposed the algorithm mixed optimization for reverse

engineering (MORE), which consists in a bi-level optimization

where the discrete (binary) level communicates with the continuous

(NLP) level and vice versa. For model representation, a structured

formalism, formally identical to dynamic recurrent neural networks,

is used. Guillén-Gosálbez et al. (2013) have presented a determinis-

tic method for identification of regulatory structure and kinetic par-

ameters in biochemical networks, transforming the MIDO problem

into an approximated large-scale MINLP, which was then solved by

a nonlinear branch and bound method. To avoid local minima the

authors provided high quality initial solutions to the solver. These

solutions were obtained by solving a set of relaxed problems from

different starting points. Despite these advances, the major draw-

back of deterministic global methods is that the computational

effort increases very rapidly with problem size. More recently,

Rodriguez-Fernandez et al. (2013) have shown how to apply mixed

integer nonlinear programming (MINLP) to perform simultaneous

model discrimination and parameter estimation in dynamic models

of cellular systems.

This paper is organized as follows: first, we present the formula-

tion of the mixed-integer dynamic optimization problem making use

of logic-based dynamic models. Then we present a solution strategy

based on global optimization metaheuristics. Next, the performance

and capabilities of the new approach are illustrated with several

reverse engineering case studies: a synthetic pathway of signaling

regulation, a signal transduction pathway in bacterial homeostasis,

and a signaling pathway in live cancer cells. Finally, the main con-

clusions are outlined.

2 Methods

2.1 Logic-based ordinary differential equation models
Logic models describe the flow of information inside the cell by

means of discrete states (logic decisions) that can assume either the

values 0 or 1. Each state xi 2 f0; 1g is, therefore, represented by a

binary variable that is systematically updated according to a

Boolean function Biðxi1; xi2; :::; xiNÞ 2 f0;1g of its N inputs (xij). As

an example, consider the case where a specific protein is to be phos-

phorylated in two sites by different kinases, and both phosphoryl-

ations are required to activate the protein. This can be modeled as a

logic conjunction (AND gate). In contrast, if two different kinases

can phosphorylate the same site activating the propagation of the

downstream signaling independently, this can be regarded as a logic

disjunction (OR gate). Furthermore, if a signal inhibits the

propagation of another one, this can be depicted as a negation

(NOT gate).

If one uses only AND/OR/NOT gates, logic models can be

represented using a hypergraph structure (incidence matrix).

In this case, a hyperedge with more than one input represents

and AND gate, and OR gates are encoded by multiple hyperedges

arriving at a given node. The idea in logic-based ODE models is

to convert each Boolean update function into a continuous

homologue Bi 2 ½0; 1�, where the species xi 2 ½0; 1� is allowed to

take continuous values between 0 and 1, and its temporal behavior

is described by:

_xi ¼
1

si
� ðBiðxi1; xi2; :::; xijÞ � xiÞ (1)

where si can be interpreted as the life-time of the species xi.

In order to achieve a continuous homologue, Wittmann et al.

(2009) introduced HillCubes. These functions are based on multi-

variate polynomial interpolation and incorporate Hill kinetics,

which are known to provide a good generalized approximation of

the synergistic dynamics of gene regulation.

To obtain HillCubes, a first transformation method is required

to reach a continuous homologue from the Boolean update function.

Table 1 provides an example on how an OR gate would be

Table 1. The relationship between the OR Boolean update function

Bðx1; x2Þ and its continuous homologue BIðx1; x2Þ, obtained by

multivariate polynomial interpolation (Wittmann et al., 2009), is

illustrated with the help of a truth table

x1 x2 Bðx1; x2Þ BIðx1; x2Þ ¼ :::

0 0 0 0 � ð1� x1Þ � ð1� x2Þþ
0 1 1 1 � ð1� x1Þ � x2þ
1 0 1 1 � x1 � ð1� x2Þþ
1 1 1 1 � x1 � x2

Note: For every combination of the Boolean variables x1 and x2, a term is

added to BIðx1; x1) depending on Bðx1; x2Þ.
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transformed into a BoolCube (BI), obtained by multi-linearly inter-

polating the Boolean update function:

BI ðx1; . . . ; xNÞ

¼
X1

x1¼0

. . .
X1

xN¼0

Bðx1; :::; xNÞ �
YN
i¼1

ðxixi þ ½1� xi�½1� xi�Þ
" #

(2)

BooleCubes are accurate homologues of Boolean functions; how-

ever, these fail to represent the typical sigmoid shape switch-like behav-

ior, often present in molecular interactions (Krumsiek et al., 2010).

The latter can be achieved by replacing the xi by a Hill function:

f HðxiÞ ¼
xn

i

xn
i þ kn

(3)

or the normalized Hill function:

f HnðxiÞ ¼
f HðxiÞ
f Hð1Þ (4)

A further discussion about continuous homologues and method-

ology to obtain logic-based ODE models can be found in (Wittmann

et al., 2009).

2.2 Problem formulation
In order to find the logic gates which best describe the behavior of a

given network, we will be interested in a formulation similar to

what was used by Saez-Rodriguez et al. (2009) within a Boolean

logic framework or Morris et al. (2011) within the constrained

fuzzy-logic formalism. The idea here is that starting from a directed

graph containing only the interactions and their signs (activating or

inhibitory) we can obtain an expanded hypergraph containing all

the possible gates where edges with two or more inputs (a hyper-

edge) represent a logical conjunction (AND gate) and single edges

represent a logical disjunction (OR gate).

The problem can be formulated as the following:

minimizen;k;s;w F ¼
Xn�
�¼1

Xn�o
o¼1

Xn�;os

s¼1

ðy��;os � y�;os Þ
2

subject to Esub ¼ feijwi ¼ 1g; i ¼ 1; . . . ; nhyperedges

Hsub ¼ ðV; EsubÞ

LBn�n�UBn

LBk�k�UBk

LBs�s�UBs

_x ¼ f ðHsub; x;n;k; s; tÞ

xðt0Þ ¼ x0

y ¼ gðHsub; x;n; k; s; tÞ

(5)

where Hsub is the subgraph containing only the hyperedges (Esub),

defined by the binary variables w (see Fig. 1). Additionally n, k and

s are the continuous parameters needed for the logic-based ODE

approach. These parameters are limited by upper and lower bounds

(e.g. LBk). The model dynamics ( _x) are given by the function f. This

set of differential equations varies according to the subgraph (and

therefore also according to the integer variables vector w). Finally,

the system of differential equations has to be solved to obtain the

simulated data. The objective function is the squared difference

between the simulated data (y) and the experimental data (y
�
) and

our goal is to minimize this value for every experiment (�), observed

species (o) and sampling point (s). The simulation data y is given by

an observation function g of the model dynamics at time t.

2.3 Solving the mixed integer dynamic optimization

problem
The problem considered in this work belongs to the category of net-

work reverse engineering, where the objective is to simultaneously

determine network topology and continuous model parameters

which explain a given set of data. The network contains a series of

possible regulatory mechanisms and our goal is to find the set that

best describes the data. Our dynamic formulation, shown in the pre-

vious section, makes use of logic-based ODEs. Essentially, the bin-

ary variables define the structure of the system of ODEs describing

the dynamic behaviour. Additionally, a set of continuous parameters

modulating those dynamics need to be estimated. From the opti-

mization point of view, this problem belongs to the class of mixed

integer dynamic optimization (MIDO).

In general, model calibration of a nonlinear dynamic model is a

difficult task. Due to the nonlinear and constrained nature of the

system dynamics, these problems are multi-modal (non-convex)

(Banga, 2008; Villaverde and Banga, 2014). The MIDO considered

here augments the difficulties of solving non-linear, non-convex

problems with those typical of combinatorial problems.

MIDO problems can be solved using deterministic or stochastic

global optimization methods. A broad overview of global optimiza-

tion with a special focus on deterministic methods, including mixed-

integer nonlinear programminng and the global optimization of

dynamic systems, can be found in the works of Biegler and

Grossmann (2004), Grossmann and Biegler (2004), Chachuat et al.

(2005) and Houska and Chachuat (2014).

Regarding the specific usage of deterministic MIDO methods for

systems identification, significant advances have been made recently,

as shown by Guillén-Gosálbez et al. (2013). However, these still suf-

fer from the major drawback of deterministic global methods, i.e.

computational effort increases extremely rapidly with problem size.

Stochastic algorithms for global optimization cannot offer guar-

antees of global optimality, but usually converge to the vicinity of

the global optimum in reasonable computation times, at least for

small and medium scale problems. However, for larger problems

their computational cost is very significant (Moles et al., 2003).

Hybrid approaches try to combine the best of the two worlds by
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Y

ANDw1

x2

w2

w3

w3w3

x1

Y

x2

x1

Y

w1

x2 x1

Y

x2

w2

x1

Y

w1

x2

w2

x1

Y

AND

x2

3

w

w

3w3

Subgraph w1=1,w2=0,w3=0 Subgraph w1=0,w2=1,w3=0

Subgraph w1=1,w2=1,w3=0 Subgraph w1=0,w2=0,w3=1

Prior Knowledge Network (PNK) Expanded Hypergraph 

Fig. 1. A simple PKN, the corresponding expanded hypergraph and a number

of possible solutions for the obtained subgraph are shown to illustrate the

association of the used weights (w) with each hyperedge. There are four op-

tions in this example: if w1 is equal to one, x1 activates y. If w2 is equal to one,

x2 activates y. If both w1 and w2 are equal to one, y can be activated by x1 or

x2. If w3 is equal to one and both w1 and w2 are zero, x1 and x2 are required

to activate y. OR gates are implicitly represented as simple edges
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combining global stochastic methods with efficient (local) determin-

istic optimization methods (Banga et al., 2004; Rodriguez-

Fernandez et al., 2006a). In this context, metaheuristics (i.e. guided

heuristics) have been particularly successful, ensuring the proper

solution of these problems by adopting a global optimization

approach, while keeping the computational effort under reasonable

values thanks to efficient local optimization solvers (Rodriguez-

Fernandez et al., 2006b).

In this work, we have chosen a recent metaheuristic based on the

combination of an enhanced scatter search (eSS) method as global

solver (Egea et al., 2010) with a Mixed-Integer Sequential Quadratic

Programming (MISQP) (Exler et al., 2012) local solver. eSS is an

evolutionary algorithm for complex-process optimization that

employs some elements of scatter search and path relinking. MISQP

is a trust region sequential quadratic programming solver adapted to

solve MINLP problems. In this code, instead of solving continuous

quadratic programs, the solution is approximated by a series of

mixed-integer convex quadratic programming problems. In add-

ition, MISQP accepts black-box problems and, thus, does not

require the problem to be transformed into an algebraic form, a typ-

ical requirement of most MINLP methods. As shown below, we

compared the performance of eSS with two other modern metaheur-

istics, ACOmi (Ant-Colony for Mixed Integer) (Schlüter et al.,

2009) and MITS (Mixed-Integer Tabu Search) (Exler et al., 2008).

For the class of problems considered here, we found that eSS consist-

ently provided the best results.

2.4 A multi-phase scatter search with relaxed MINLPs
The MIDO problem formulated above is extremely challenging to

solve. Although the initial results obtained with the enhanced scatter

search (eSS) method (Egea et al., 2010) were promising, a second

objective of this work was to improve the algorithm in terms of con-

vergence speed while keeping robustness in order to ensure a good

scale-up for realistic applications. For this purpose, we have devised

a multi-phase scatter search (MPeSS) strategy which, in a first phase,

computes intermediate solutions of relaxed MINLPs and, in a

second phase, uses them as initial points for solving the original

MINLP.

In order to reformulate a relaxed problem, we consider each

hyperedge to be associated with a continuous weight instead of a

binary variable. Each weight will appear as an additional term in its

corresponding minterm from the truth table. When several weights

affect a single minterm, then we can apply the multivariate polyno-

mial interpolation of an OR gate. Table 2 and Figure 1 illustrate the

problem formulation where variables x1 and x2 represent two differ-

ent inputs: only w1 activates Y; only w2 activates Y; w1 and w2 are

required to activate Y.

When solutions are of a binary nature this formulation holds

exactly the same solution as the previously shown for the mixed

integer nonlinear case. So far, this reformulation produces an over-

parameterized problem which does meet the basic constraint that

each hyperedge can only be present or not present. Thus, to enforce

that solutions for w tend to be of a binary nature, we add a penalty.

The objective function to be minimized becomes:

minimize
n;k;s;w

Fp ¼
Xn�
�¼1

Xn�o
o¼1

Xn�;os

s¼1

ðy��;os � y�;os Þ
2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
F

þa �
Xnint

i¼0

pwi|fflfflfflfflfflffl{zfflfflfflfflfflffl}
P

subject to

pwi
¼

wi; if wi�0:5

1�wi; if wi > 0:5;

8<
:

0�w�1

LBn�n�UBn

LBk�k�UBk

LBs�s�UBs

_x ¼ f ðx;n; k; s;w; tÞ

xðt0Þ ¼ x0

y ¼ gðx;n; k;w; s; tÞ

(6)

where pwi
is the penalty associated with the deviation of each wi

from the nearest binary value (0 or 1).

The usage of this relaxed formulation to find MIDO solutions

can be summarized as follows:

• In a first phase, we solve the relaxed problem with a small or null

penalty value to find a set of continuous parameters, which are

able to describe the data well.
• The solution found in the previous iteration is used to restart eSS

with a given a. Depending on the difficulty of the problem, this

step might consist on only one iteration or multiple phases with

increasing a.
• In a final step, we apply eSS to solve the pure MINLP problem,

where the best solution from the previous steps is used as an ini-

tial guess (rounding the previously relaxed variables).

Here, a is chosen as a continuation parameter that gives a

sequence of trade-offs between the penalty (P) and the squared

residuals (F), with the final aim of getting pw (iteratively) close to

zero. If a is increased too sharply, the penalty (P) will dominate over

the goodness of fit (F) and we risk guiding the metaheuristic towards

uninteresting areas of the search space.

The term goodness of fit refers to the quality of the adjustment

of the model to the data and can be quantified using different

metrics like the sum of the squared residuals (previously defined as

F), the correlation coefficient between model predictions and ex-

perimental data or the root mean squared error (RMSE), defined

as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn�
�¼1

Xn�o
o¼1

Xn�;os

s¼1

ðy��;os � y�;os Þ
2

Xn�
�¼1

Xn�o
o¼1

n�;os

vuuuuuuuut : (7)

Table 2. Truth table with weights representing the presence of

hyperedges in a continuous formulation for the graph shown in

Figure 1

x1 x2 BIðx1; x2Þ ¼ :::

0 0 0 � ð1� x1Þ � ð1� x2Þþ
0 1 w1 � ð1� x1Þ � x2þ
1 0 w2 � x1 � ð1� x2Þþ
1 1 ORðw1;w2;w3Þ � x1 � x2

Note: The multivariate polynomial interpolation of the OR gate is used to

make a smooth approximation of a logical disjunction for the weights w1, w2

and w3.
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2.5 Remarks on the tuning and performance

assessment of metaheuristics
Meta-heuristics for global optimization are approximate stochastic

methods which in general do not have proofs of convergence. Thus

it is not possible to obtain an analytical prediction of the effort it

will take to arrive to a solution of a certain quality. Similarly, it is

not possible to ensure that the metaheuristic will arrive to near-

global solutions in every run. A related problem is the tuning of the

internal search parameters of the method. Although the eSS meta-

heuristic is mostly self-adapting in that sense, we still need to choose

a stopping criterion.

Due to this lack of theoretical guarantees and the stochastic

behavior of these methods, one must resort to empirical tuning and

performance assessments. We have performed this tuning and

assessment based on repeated runs of the methods for each problem

(see guidelines provided by Luke, 2013) and the subsequent analysis

of the convergence curves (objective function values versus number

of function evaluations) and the distributions of the solutions found

(see general discussion in Chiarandini et al., 2007).

The analysis of these distributions for a number of trial runs

allow us to choose the stopping criteria. In general, stopping criteria

for metaheuristics are based on 3 metrics (Glover and

Kochenberger, 2003): (i) after a fixed number (budget) of function

evaluations (FEs), computation time or iterations (ii) after a fixed

number of iterations without improvement in the cost function (iii)

when the cost function arrives to a pre-set value-to-reach.

These criteria can be combined. In our study, we have chosen (i)

because criteria (ii) can be reached with premature stagnation in

local optima, and criteria (iii) requires a priori knowledge about the

global solution. Criteria (i) is widely used (Schoen, 2009) and is par-

ticularly useful when the evaluation of the cost function is computa-

tionally expensive (as in our study), since it also directly reflects

practical limits on computation time.

3 Results

3.1 Case study 1: synthetic signaling pathway
In order to illustrate the methodology we now turn to a published

model used by MacNamara et al. (2012). This dynamic model is

composed by 26 ordinary differential equations and 86 continuous

parameters. It was initially used to illustrate the capabilities and

limitations of different formalisms related with logic-based models.

Although this is a synthetic model, it was derived to be a plausible

representation of a signaling transduction pathway. This model was

used to generate pseudo-experimental data for 10 combinations of

experimental perturbations of 2 ligands (TNFa and EGF) and two

kinase inhibitors (for PI3K and RAF1). From a total of 26 dynamic

states, 6 were observed (NFKB, P38, AP1, GSK3, RAF1 and ERK)

and 5% of Gaussian noise was added to the data.

Following the methodology described in Saez-Rodriguez et al.

(2009), we obtained an expanded network containing every possible

AND/OR logic gate given the initial graph structure. This so-called

expansion procedure generated a nested model comprising 34 add-

itional variables, one for each hyperedge (Fig. 2).

The model and experimental setup were implemented using

AMIGO (Balsa-Canto and Banga, 2011) and method of choice for

the simulation was CVODES (Serban and Hindmarsh, 2003).

As described previously, when using stochastic methods the rec-

ommended practice is to run each optimizer a number of times to

assess their performance based on a distribution of results. This

problem was solved in 30 runs by each method, ACOmi, MITS, eSS

and MPeSS, using a budget of 6 � 104 function evaluations. In the

case of MPeSS this budget was equally distributed among three

phases, with the first two using relaxations with a¼1 and a¼3, and

with the third solving the original MIDO problem.This parameter

was chosen such that the penalty (P) is not generally dominating

over squared residuals (F) (see Supplementary Fig. S3).

Albeit no solver/configuration was able to recover the correct so-

lution in every run, the multi-phase strategy of MPeSS, was the most

reliable method, i.e the method which located vicinity of the optimal

solution more often. In Figure 3a, the histogram represents the dis-

tribution of final values achieved by each method. By combining

both problem formulations (relaxed and MINLP), MPeSS is able to

arrive to near-globally optimal values in approximately 47% of the

runs. However, because MPeSS also has a large tail of poor

Fig. 2. Case study 1 (synthetic signaling pathway): Hypergraph showing every

possible logic gate consistent with the prior knowledge network. Strong red

and dark hyperedges correspond to gates present in the original model used

to generate the in silico data while grey and light red hyperedges show links

not present in this model

(a)

(b)

Fig. 3. Case study 1 (synthetic signaling pathway): (a) Histogram of the final

objective function achieved by each method (F(x)) across the multiple inde-

pendent optimization runs. (b) The accuracy of the obtained solutions as a

function of the objective function. Each dot describes the results of an inde-

pendent optimization run
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solutions, the median of the final objective function values is

similar to that of eSS and ACOmi. According to the non-

parametric Wilcoxon rank-sum test, the three solvers did not

show statistically significant differences (see Supplementary Table

S2). MITS systematically failed to solve the problem for the con-

sidered FE budget. Convergence curves for the tested methods

can be found in the Supplementary Materials (Supplementary

Figs S2 and S3).

Figure 3b represents the accuracy of the obtained solution as a

function of the final objective function value achieved. Each dot

describes the result of an independent optimization run. Near-globally

optimal solutions, with a final objective function value below a certain

threshold, are always able recover the correct solution. The accuracy

is computed as ðTPþ TNÞ=ðTPþ TN þ FPþ FNÞ, where TP is the

number of true positive, TN the number of true negative, FP the num-

ber of false positive and FN the number of false negative hyper edges

when compared with the correct solution (an accuracy of 1). Since the

data has been generated in silico with known structure (see Fig. 2) and

parameters we can compute the accuracy of the recovered model

structures. Additionally the time-course simulations (Fig. 4) indicate a

very good agreement with the pseudo-experimental data, which is

also indicated by its low RMSE of 0.099. A solution with poor good-

ness of fit (RMSE of 0.2659) is also given in the Supplementary

Materials (Supplementary Fig. S9).

3.2 Case study 2: application to the KdpD/KdpE

two-component signal transduction pathway
In this section, we consider a model of Kþ regulation of the

Kdpd/Kdpe two-component signal transduction pathway in

Escherichia coli. The main components of this system are the

high-affinity Kþ transporter KdpFABC and two regulatory pro-

teins, KdpD (sensor kinase) and KdpE (response regulator)

(Laermann et al., 2013). The two proteins regulate the kdpFABC

operon, which is activated in response to Kþ limiting conditions

(Heermann and Jung, 2010), restoring the intracellular Kþ con-

centration (Jung et al., 2012).

Recently, new experimental data has been generated using mu-

tant strains with impaired Kþ properties and diverse Kþ stimulation

conditions. Based on these data, Rodriguez-Fernandez et al. (2013)

have postulated the possible existence of two new possible feedback

loops and an alternative expression for a previous description of the

stimuli counteraction responsible for restoring Kþ homeostasis.

These new two feedback loops affected the translation and proteoly-

sis of KdpFABC. Here, we write the differential equation describing

the dynamics of KdpFABC as a logic-based ODE:

dKdpFABC

dt
¼

ðw2 � ½1� f Hnð mRNA

normmRNA
Þ� � ½1� f HnðKdpFABCÞ�

þ0 � ½1� f Hnð mRNA

normmRNA
Þ� � f HnðKdpFABCÞ

þORðw1;w2;w3Þ � f Hnð mRNA

normmRNA
Þ � ½1� f HnðKdpFABCÞ�

þw1 � f Hnð mRNA

normmRNA
Þ � f HnðKdpFABCÞ

�KdpFABCÞ � sKdpFABC;

(8)

where normmRNA is a parameter, used to scale mRNA to values

between 0 and 1.

The expression for R3 controls the dephosphorylation of KdpEp:

dR3

dt
¼ ½w4 � f HnðKdpFABCÞ � R3� � sR3

; (9)

where it is assumed that an the increase in the KdpFABC transporter

will decrease internal Kþ concentration leading to an lower depho-

sporylation rate of KdpEp. The expanded model is composed by

4 hyperedges and 27 continuous parameters, mostly related with the

original model by Rodriguez-Fernandez et al. (2013). More infor-

mation about the model structure and context of this model can be

found in the Supplementary Materials.

To evaluate the ability of our method to describe and calibrate a

model in a realistic scenario where multiple hypothesis are postu-

lated, we used the model derived by Rodriguez-Fernandez and col-

leagues to generate pseudo-experimental data. We considered

10 different scenarios by varying the external concentration of Kþ

and by considering a wild-type and a mutant strain. The mutant

strain is modelled by removing the influence R3 in the dephosphory-

lation of KdpEp. In the 10 experimental scenarios KdpFABC and

mRNA were observed and perturbed with 5% of Gaussian noise.

We executed 30 optimization runs for each solver, eSS, ACOmi

and MITS using the objective function F. The same budget of object-

ive function evaluations was given to every run. In this case due to

the smaller size of the problem we did not see any improvement by

using MPeSS over eSS. The most robust method was clearly eSS

(see Supplementary Figs S11 and S12), a result which is supported

by the non-parametric Wilcoxon rank-sum test (see Supplementary

Table S3). ACOmi was also able to solve the problem in a few

instances. MITS consistently failed to solve the problem for the

allowed FE budget.

After redundant hypereges were filtered, all solutions showing a

final objective function value below a given threshold (a total of 26)

located the same solution. CellNOpt (Terfve et al., 2012) was used

to illustrate this solution (see Fig. 5). In this problem 4 binary vari-

ables were considered; w1, w2, w3 and w4. The hyperedges w3 and

w4 were present in every of the top performing solutions while w1

and w2 were always absent.

Fig. 4. Case study 1 (synthetic signaling pathway): predicted versus observed time-series for the best solution found (experiments 1 and 2), showing a very good

agreement of the simulation with the pseudo-experimental data used to calibrate the model

3004 D.Henriques et al.

 at C
SIC

 on O
ctober 29, 2015

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv314/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv314/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv314/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv314/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv314/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv314/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv314/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv314/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv314/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv314/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv314/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv314/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv314/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv314/-/DC1
http://bioinformatics.oxfordjournals.org/


When comparing the time course simulation of the best solution

with the pseudo-experimental data we see that there is an excellent

agreement between the two (normalized RMSE values of 0.0168

and 0.0191 for kdpFABC and mRNA, respectively).

3.3 Case study 3: signaling application to transformed

liver hepatocytes
In this section, we explore the reverse engineering of a logic-based

ODE model using liver cancer data (a subset of the data generated

by Alexopoulos et al., 2010). It consists of phosphorylation meas-

urements from an hepatocellular carcinoma cell line (HepG2) at 0,

30 and 180 minutes after perturbation. Although the data-set covers

only three sampling time points it includes a large combination of

64 perturbations comprising 7 ligands stimulating inflammation and

proliferation pathways as well as 7 small-molecule inhibitors block-

ing the activity of key kinases (see Supplementary Fig. S17). Thus,

despite having only 3 time points per measured variable, the rich

experimental design ensures a large information content in the data,

facilitating the reverse engineering process.

To preprocess the network, we used CellNOptR, the R version

of CellNOpt (Terfve et al., 2012). Basically, the network was

compressed (see Supplementary Fig. S18) to remove as many non-

observable/non-controllable species. Subsequently, it was expanded

to generate all possible hyperedges (AND gates) formed by a pair of

inputs. The obtained full network (Supplementary Fig. S19) has a

total of 109 hyperedges and 135 continuous parameters. To trans-

form this network into logic-based ODEsl, we developed a parser

that generates a C file and Matlab scripts compatible with AMIGO

(Balsa-Canto and Banga, 2011).

To use logic-based ODE models, all data should be in the [0,1]

range and thus we simply normalized the data by rescaling it to this

range. From the total 25 states present in the model, 16 corres-

ponded to observed species. The initial conditions for the other

9 species are not known and were therefore estimated. In order not

to increase the problem size and multi-modality unnecessarily esti-

mated initials conditions were assumed the same for every of the

64-experiments.

The problem was solved in 20 independent instances by each

solver: ACOmi, eSS and MPeSS. The first two methods used the

F objective function, while the third method used the relaxed formu-

lation objective function (Fp). For this problem we considered a

larger budget of 1.5�105 FEs. The budget for MPeSS was split into

6 phases. The first 5 with increasing values of a and a final round

configured as MINLP solver. As in case study 1 (the synthetic signal-

ing pathway), a was chosen such that the penalty (P) was not gener-

ally dominating over the squared sum of the residuals (F) and

increased gradually to facilitate convergence towards areas of the

search space where the goodness of fit prevails.

MPeSS not only found the best solution but was also the most

robust strategy (convergence curves are given in the Supplementary

Fig. S20 for ACOmi/eSS and S.21 for MPeSS). This result is

supported by the non-parametric Wilcoxon rank-sum test (see

Supplementary Table S6). No significant differences were found

between ACOmi and eSS which were occasionally able to find solu-

tions with low objective function values (see histogram in

Supplementary Fig. S22).

In Figure 6 we show, for the best solutions (cost function under

65) the goodness of fit (F) obtained by each independent optimiza-

tion run as a function of the number of active variables, i.e. the num-

ber of binary variables plus the number of continuous parameters.

Here we considered solutions in which the final objective function

value is up to two times worse than best found. In general, one

applies Occam’s razor, i.e. we seek the simplest model which can

explain the available data satisfactorily. The best model structure

(solution A) achieved a RMSE of 0.1211. Comparing with other

solutions, it shows a good balance between goodness of fit (F) and

complexity (see Fig. 6). Model structures for solutions A–F

(Supplementary Figs S27–S32) along with goodness of fit measures

(Supplementary Fig. S26) are given in the Supplementary Materials.

Despite the uncertainty in the completeness of the PKN and the

uncertainty in the experimental data, we are able to find relatively

simple mechanistic models which explain the data. The agreement

between the simulation and the experimental data is qualitatively

and quantitatively good with the transient behaviour of phosphory-

lated proteins being well captured by the dynamic model depending

on the different stimuli and inhibitors (trajectories available in the

Supplementary Figs S33–S36).

4 Conclusion

In this contribution, we apply a mixed-integer global optimization

approach to reverse engineer logic-based ODE models from time-

course data. The problem is stated as simultaneously finding the bin-

ary variables that determine the model structure and its associated

continuous parameters. Further, to improve computational effi-

ciency, we present a relaxed non-linear programming reformulation

of the problem that allows us to find good initial points for the

mixed-integer nonlinear programming problem.

Fig. 6. Case study 3 (HepG2): This figure shows the Pareto front for the trade-

off between the goodness of fit (F ) obtained by each independent optimiza-

tion run and the number of active variables (number of active binary variables

plus the number of active continuous parameters), which is a proxy for model

complexity. The chosen solution shows a good balance between goodness of

fit (RMSE of 0.121) and complexity

Fig. 5. Case study 2 (E.coli homeostasis): The recovered model is depicted by

strong red and dark hyperedges. Excluded hyperedges are represented in

grey and light red
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With our approach, we are able to find a number of solutions

which describe the data satisfactorily. It is important to highlight

that the lack of unique solutions is common in reverse engineering

problems. Even in the utopian case of large amounts of perfect data

available, the reverse engineering of dynamic models can have non-

unique solutions, and this is independent of the method used to

recover them. For example, in the case of chemical reaction net-

works it has been shown that many network configurations can

describe the same dynamical behavior (Szederkényi et al., 2011).

Although the metaheuristic approach we present does not pro-

vide guarantees about the global optimality of the solutions, we

show, by solving synthetic problems (case studies 1 and 2), that

problems of realistic size can be successfully solved with a reason-

able effort.

In the third case study, we apply the methods to a large signaling

network given real experimental data from a liver cancer cell line

(HepG2). Due to its size (109 binary variables and 135 continuous

parameters) this is, from the optimization point of view, an

extremely challenging problem and illustrates well the capability of

the method regarding problems of realistic size. Here we did not

recover unique solutions, as was expected due to the lack of struc-

tural identifiability typical of these problems: their underdetermined

nature (Siegenthaler and Gunawan, 2014)and the corresponding

indistinguishability and non-uniqueness (Szederkényi et al., 2011).

Instead, we did find a family of solutions much simpler than the ori-

ginal superstructure containing all likely interactions, with a very

good fit to the experimental data. This is illustrated in the

Supplementary Materials by the initial expanded superstructure

(Supplementary Fig. S19) and the family of obtained solutions

(Supplementary Fig. S24). This family of solutions has the potential

to be exploited by approaches like ensemble modeling (Kuepfer

et al., 2007).

Although the obtained results are very encouraging, future work

will focus on further improving the efficiency of the metaheuristic

optimization methods by exploiting multi-method cooperation and

high-performance computing (parallelization).
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