
Wayne State University Wayne State University

Wayne State University Dissertations

January 2018

Design Of Dna Strand Displacement Based Circuits Design Of Dna Strand Displacement Based Circuits

Aby Konampurath George
Wayne State University, fs6159@wayne.edu

Follow this and additional works at: https://digitalcommons.wayne.edu/oa_dissertations

 Part of the Nanoscience and Nanotechnology Commons

Recommended Citation Recommended Citation
Konampurath George, Aby, "Design Of Dna Strand Displacement Based Circuits" (2018). Wayne State
University Dissertations. 1937.
https://digitalcommons.wayne.edu/oa_dissertations/1937

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has
been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of
DigitalCommons@WayneState.

http://digitalcommons.wayne.edu/
http://digitalcommons.wayne.edu/
https://digitalcommons.wayne.edu/oa_dissertations
https://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1937&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/313?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1937&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/oa_dissertations/1937?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F1937&utm_medium=PDF&utm_campaign=PDFCoverPages

DESIGN OF DNA STRAND DISPLACEMENT BASED CIRCUITS

by

ABY KONAMPURATH GEORGE

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2018

MAJOR: ELECTRICAL ENGINEERING

Approved By:

Harpreet Singh Date

Feng Lin

Guangzhao Mao

Le Yi Wang

c© COPYRIGHT BY

ABY KONAMPURATH GEORGE

2018

All Rights Reserved

DEDICATION

This thesis is dedicated to my parents, my wife, and my teachers who made

me who I am today..

iii

ACKNOWLEDGMENTS

I believe that Dr. Singh, my thesis advisor, molded my thought process as a researcher

immensely. He also gave me tremendous support to go into a research area which is very

new to me. Without his encouragements I may not be able to achieve whatever I have now

as a researcher. Dr. Singh supported me by providing almost everything I needed for my

research and the scientific growth. He always encouraged me by giving challenging problems

and constructive feedback. I will be always grateful to Dr. Singh for his nurturing and

guidance, not only for my research, but also for making me an even better person.

I am extremely grateful to my thesis committee members: Dr. Le Yi Wang, Dr. Feng

Lin, and Dr. Guangzhao Mao. They were always willing to give valuable suggestions, and

feedback for making my research fruitful. Particularly their suggestion during my prospectus

helped me in designing my thesis work in a more professional way. I would also like to thank

Dr. Mumtaz Usmen, Dr. Abhilash Pandya, and Dr. Syed Mahmud for encouraging me

throughout my research. I would like to thank our collaborator Dr. Athanasios V. Vasilakos

for his valuable suggestions and guidance in creating a visionary paper on the emerging DNA

circuits.

I would also like to express my gratitude to Dr. Haipeng Liu and his Ph.D. student Ms.

Jingchao Xi for helping me in implementing the circuits in the wet lab. As a novice to wet

lab experiments, without their help I may not be able to see how the simulation experiments

I performed worked in the real world. I would like to thank all my teachers present and

past, without their support I may not have achieved this much in life. I would like to

thank my mentors from IIT Roorkee, Dr. P Sumathi, my supervisor during my Master’s

thesis, Professor M K Vasantha, who showed me who is a good teacher and many other

iv

good teachers. As a person coming from a remote village in India, I would like to thank my

primary teachers who inspired me to achieve great things in life. I especially thank Shyla

Teacher who was my class teacher in my primary class. Her love and care are always with

me.

I would also like to thank my lab-mates with whom I spent most of my life at Wayne

State University. The discussions we had on the experimental parts on the implementation

of different works help me a lot in my research. In particular, I would like to thank Amjad

Almatrood, Ishak O K, Ishan Jindal, Mohammad Ashraf Ali, and Chang Fu. Wayne State

University is truly a great place to do scientific work. I would also like to thank my dear

friends on our Friday poker nights, especially Dr. Sandeep and Deepesh Gopalakrishnan for

their valuable suggestions throughout my research.

In conclusion, I would like to thank my family for everything. I would like to thank my

father K V George, mother Achamma George, brother Vibin George, and grandparents for

being with me in completing all my dreams, aspirations, and wishes. Finally, a big thank to

my wife Vincy Mary Vavachan, who stood as a pillar of support with love, care, and support

throughout the journey.

v

TABLE OF CONTENTS

DEDICATION iii

ACKNOWLEDGMENTS iv

LIST OF FIGURES x

LIST OF TABLES xv

CHAPTER 1: Introduction 1

1.1 Motivation and Context . 2

1.2 Preliminaries . 5

1.2.1 Structure of DNA . 5

1.2.2 DNA Strand Displacement Operation 8

1.3 Summary of Contributions . 9

CHAPTER 2: Literature Review: DNA Circuits 11

2.1 Introduction . 11

2.2 Enzyme-free DNA Digital Design . 11

2.2.1 Seesaw Gate Motif Based Circuits . 12

2.2.2 Localized DNA Hairpins Based Circuits 17

2.2.3 DNA-based CRN on a Surface [1] . 21

2.2.4 Molecular Spider System Based Circuits [2] 25

2.2.5 Comparison of Different Methods . 29

2.3 DNA Analog Design . 32

2.3.1 Amplification Circuits . 33

2.3.2 Arithmetic Circuits . 33

2.3.3 Control Circuits . 34

vi

2.3.4 Timer Circuits . 35

2.3.5 Challenges for Analog Circuits . 35

2.4 Conclusion . 36

CHAPTER 3: Spatially Localized Majority Gates 37

3.1 Introduction . 37

3.2 Spatially Localized DNA Majority Gate . 38

3.2.1 Methodology . 38

3.2.2 Simulation Results and Discussion . 43

3.3 Spatially Localized Five Input Majority Gate 47

3.3.1 Input Strand . 47

3.3.2 Input Translator Hairpin Strand . 47

3.3.3 Fuel Strand . 48

3.3.4 Threshold Strand . 49

3.3.5 Output Translator Strand . 49

3.4 Simulation Results . 51

3.4.1 Implementation of Five Input Majority Gate in Visual DSD 51

3.4.2 Circuit Design Using Majority Gates 55

3.4.3 Case Study: Full Adder Design . 57

3.4.4 Design of an n-Input Majority Gate 59

3.5 Conclusion . 61

CHAPTER 4: DNA Strand Displacement Based Inverter Logic Gate 62

4.1 Introduction . 62

4.2 DNA Inverter Gate Design . 63

4.3 Simulation Results and Discussion . 66

vii

4.4 Conclusion . 71

CHAPTER 5: DNA Strand Displacement Based Fuzzy Inference Engine 73

5.1 Introduction . 73

5.2 Minimum and Maximum Functions Using DNA 75

5.2.1 Basic Concepts . 75

5.2.2 Minimum Gate . 75

5.2.3 Fan-out Gate . 78

5.2.4 Maximum Gate . 80

5.3 Fuzzy Logic . 83

5.3.1 Modeling of Fuzzy Expert System . 83

5.3.2 DNA Implementation of Mamdani Fuzzy Inference 85

5.4 Simulation Results and Discussion . 87

5.4.1 Minimum Gate . 87

5.4.2 Fan-out Gate . 89

5.4.3 Maximum Gate . 92

5.4.4 Mamdani Fuzzy Inference System . 94

5.4.5 Novelty of the Work . 96

5.5 Wet Lab Implementation of Minimum Gate 97

5.5.1 Sequence Design . 97

5.5.2 Circuit Preparation . 99

5.5.3 Kinetic Experiments . 101

5.6 Conclusion . 103

CHAPTER 6: Challenges and Future Research 104

6.1 Introduction . 104

viii

6.2 Challenges . 104

6.3 Future Research . 107

6.4 Conclusion . 109

CHAPTER 7: Summary and Discussion 110

APPENDIX: Visual DSD Codes 113

PUBLICATIONS 125

BIBLIOGRAPHY 129

ABSTRACT 143

AUTOBIOGRAPHICAL STATEMENT 145

ix

LIST OF FIGURES

Figure 1.1 The graph showing the advances in productivity of DNA strands [3] . 5

Figure 1.2 Example of a DNA Molecule . 6

Figure 1.3 A simple model showing the structure of double-stranded DNA [4] . . 7

Figure 1.4 Basic structures formed by the annealing reaction of single-stranded(a,

b, d, e) molecules or partially double stranded (c) molecules 8

Figure (a) Structure A . 8

Figure (b) Structure B . 8

Figure (c) Structure C . 8

Figure (d) Structure D . 8

Figure (e) Structure E . 8

Figure 1.5 Example of a DSD operation . 9

Figure 2.1 Stoichiometric triggering and catalytic cycle of a DNA gate motif [5] . 13

Figure 2.2 Example of threshold operation in a DNA gate motif [5] 14

Figure 2.3 Abstract diagram of a DNA seesaw gate motif acting as an amplifying

gate . 14

Figure 2.4 Abstract diagram of a DNA seesaw gate motif acting as an integrating

gate . 15

Figure 2.5 Cascaded operation of integrating gate and amplifying gates as AND

gate and OR gate [6] . 16

Figure 2.6 DSD operation in a hairpin structure 17

Figure 2.7 OR operation with two hairpin structures 18

Figure 2.8 AND operation with a single hairpin structure 19

Figure 2.9 Hairpin opening operation when the input bind to the hairpin 20

x

Figure 2.10 Hairpin opening operations for spatially localized 2 input AND gate

with both inputs were present [7] . 21

Figure 2.11 DNA implementation of unimolecular (A→ B) reaction on a surface [1] 22

Figure 2.12 DNA implementation of bimolecular (A + B → C + D) reaction on a

surface [1] . 23

Figure 2.13 CRN based logic gates with corresponding molecular reactions [1] . . 24

Figure (a) NOT Gate . 24

Figure (b) AND Gate . 24

Figure (c) OR Gate . 24

Figure 2.14 The spatial path followed by a molecular spider in normal sites when

X = 0 and X = 1 [2] . 26

Figure 2.15 DNA walker based logic gates with corresponding molecular reactions [2] 27

Figure (a) AND Gate . 27

Figure (b) OR Gate . 27

Figure (c) NOT Gate . 27

Figure 2.16 A possible implementation of molecular spider [2] 28

Figure (a) Spider Legs . 28

Figure (b) Spider with arm 0/1 . 28

Figure (c) Non-alterable Sites . 28

Figure (d) Exit mechanism . 28

Figure 3.1 An example of DSD operation in a DNA hairpin structure 40

Figure 3.2 DNA hairpin strand operation for localized majority gate with only

one input present . 41

Figure 3.3 DNA hairpin strand operation for localized majority gate with two

inputs present . 42

Figure 3.4 Abstract diagram of a three input majority gate with labels showing

xi

interaction between hairpins . 43

Figure 3.5 Time courses for different input combinations in Visual DSD 44

Figure 3.6 The final concentrations obtained for a three input majority gate for

different input combinations . 45

Figure 3.7 The spatial arrangement of DNA strands for a five input majority gate 48

Figure 3.8 Abstract diagram of a five input majority gate 52

Figure 3.9 The main reactions associated with a five input majority gate for three

inputs (A,B, and E) . 54

Figure 3.10 Circuit diagram of a full adder using majority gates 57

Figure 3.11 Dual rail implementation of full adder using majority gates 58

Figure 3.12 Abstract diagram showing strands of full adder circuit using majority

gates . 59

Figure 4.1 Block diagram of the proposed DNA Inverter 64

Figure 4.2 The DNA reactions associated with the DNA Inverter 65

Figure 4.3 Simulation results of the proposed DNA Inverter 66

Figure 4.4 Full adder circuit using majority gates and inverter 67

Figure 4.5 Full adder abstract diagram using seesaw gates and inverter gate with

gate enable . 68

Figure 4.6 Full adder simulation results for different input combinations 72

Figure 5.1 DNA design of minimum gate . 76

Figure 5.2 DNA reaction diagrams in the minimum gate 77

Figure 5.3 DNA design of fan-out gate . 79

Figure 5.4 DNA reaction diagrams in the fan-out gate 80

Figure 5.5 DNA design of fan-out gate with a fan-out of 3 81

Figure 5.6 Block diagram of the proposed maximum gate 81

xii

Figure 5.7 Architecture of fuzzy expert system 83

Figure 5.8 Simulation results of minimum gate in Visual DSD. Response of min-

imum gate for [i2]0 = 0.6 and [i1]0 = 0.4 for the range rmin = 1 88

Figure 5.9 Simulation results of minimum gate in Visual DSD. Response of min-

imum gate for [i2]0 = 0.6 and [i1]0 = 0.4 for the range rmin = 2 88

Figure 5.10 A heat map showing the variation of settling time (ts) with changes in

the inputs [i1]0 and [i2]0 for the range (0, 1) 89

Figure 5.11 A heat map showing the variation of settling time (ts) with changes in

the inputs [i1]0 and [i2]0 for the range (0, 2) 90

Figure 5.12 Simulation results of 2 output fan-out gate in Visual DSD. Response

of fan-out gate for [i1]0 = 0.5 for the range rf = 1 90

Figure 5.13 Simulation results of 2 output fan-out gate in Visual DSD. Response

of fan-out gate for [i1]0 = 0.5 for the range rf = 2 91

Figure 5.14 A graph showing the variation of settling time (ts) with changes in the

inputs [i1]0 for the range (0, 1) . 91

Figure 5.15 A graph showing the variation of settling time (ts) with changes in the

inputs [i1]0 for the range (0, 2) . 92

Figure 5.16 Simulation results of the maximum gate in Visual DSD. Response of

maximum gate for [i1]0 = 0.4 and [i2]0 = 0.6 for r = 1 93

Figure 5.17 Heat-map showing the variation of settling time (ts) with changes in

the inputs [i1]0 and [i2]0 for the range (0, 1). 93

Figure 5.18 Variation of µlow(f) with changes in inputs x and y 95

Figure 5.19 Variation of µhigh(f) with changes in inputs x and y 95

Figure 5.20 Variation in the settling time (ts) of µlow(f) with changes in inputs x

and y . 96

Figure 5.21 Variation in the settling time (ts) of µhigh(f) with changes in inputs x

and y. 96

Figure 5.22 Different DNA strands generated from NUPACK 99

xiii

Figure (a) I1 . 99

Figure (b) I2 . 99

Figure (c) Reporter . 99

Figure (d) M1 . 99

Figure (e) M2 . 99

Figure 5.23 Experimental results for the minimum gate with different set of input

concentrations . 103

xiv

LIST OF TABLES

Table 2.1 Comparison of different scalable DNA digital design circuits 29

Table 3.1 Truth table of a three input majority gate 39

Table 3.2 Different functions possible from five input majority gate 56

Table 4.1 Abstract diagram for the 16 basic Boolean expressions with two variables 69

Table 5.1 The domains and corresponding base pair sequences for minimum gate

obtained from NUPACK software . 98

Table 5.2 The details of different strands used in the design of minimum gate . . 100

Table 5.3 The volume of different strands in the solution for different set of input

concentrations . 102

xv

1

CHAPTER 1: INTRODUCTION

The conventional electronic circuits are made up of silicon transistors. For the past five

decades, the miniaturization of transistors used in integrated circuits were closely following

Moore’s Law [8]. Nevertheless, in Moore’s recent interview given to the IEEE spectrum

magazine on the 50th anniversary of Moore’s law, he foresees the death of his law in the next

decade [9]. According to him, the heat management issues are major while reducing the size

of silicon-based transistors and increasing the density further. The cooling methods used are

also a major source of e-waste. The photo-lithographic techniques used to manufacture elec-

tronic circuits have many limitations such as cost-effectiveness for further miniaturization.

Researchers have been searching for an alternative for silicon-based circuits. Even though

some replacements are available in the literature for silicon for constructing transistor, they

are designed to work at liquid helium temperatures [10,11]. Currently, researchers are search-

ing for computing devices which can perform at scales such as within a cell, where traditional

computing devices cannot be used. These issues show the importance of a smaller, faster,

powerful, cleaner, and application-specific technology. The research on the development of

nano-scale devices and structures altogether is called nanotechnology research. There were

many groundbreaking types of research in the field of nanotechnology in the recent years. In

my opinion, the greatest achievement of nanotechnology to this date was the development

of CRISPR/cas9 [12] technology, which can specifically edit the gene and thus cure many

genetic disorders.

Quantum and molecular computing are considered the popular candidates for designing

circuits on the nanoscale [13]. In these techniques, instead of transistors, researchers use

different mechanisms as the basic building blocks. Quantum cellular automata (QCA) uses

2

quantum dot cells as their basic unit [14]. QCA circuits normally use a majority gate and

an inverter to build the circuits [14, 15]. On the other hand, molecular computing deals

with computing with molecules at the molecular scale. For medical applications, computing

devices made up of materials compatible with biological organisms are preferred. In this

thesis, we are developing circuit design approaches using bio-compatible materials with a

focus to the biological applications of these circuits.

1.1: Motivation and Context

Biological computing is a discipline that deals with two fundamental questions: How

to design automated computing/decision-making circuits using bio-materials and how to

incorporate these circuits inside the cell? Someone may wonder, why we need biological/-

molecular circuits when there are silicon-based electronic circuits? The traditional electronic

circuits are not suitable for directly interacting with biological signals, such as nucleic acids

or other analytes. The circuits or devices that can sense, transmit, or make decisions in a

biological system must be very small size, lightweight, programmable, and fundamentally

bio-compatible. Different types of molecular Boolean logic gates are available in the litera-

ture [16–19]. But in these logic gates, the inputs and outputs are of different types, therefore,

the scaling up of the circuits are not possible. This problem can be solved by using DNA

strands as input and output. DNA is the most suitable material for making biological devices

and circuits.

The research on the development of DNA computing circuits is becoming more popular

among biologists and engineers with the development of different DNA circuits and devices.

Here, the word “circuit” stands for any practical setup which can execute an algorithm.

Similar to voltage in conventional silicon-based electronic circuits, the concentration of the

3

DNA strand is considered as the signal in the DNA circuits. The most interesting feature

of DNA strands which makes them suitable for building circuits is the predictability of their

double helix structure and the Watson-Crick binding thermodynamics [20]. Another advan-

tage of using DNA computing techniques is the availability of well established experimental

procedures of biotechnology and biochemistry. The DNA circuits can act as a programmable

bridge between the biological inputs and outputs. There are translators available in the lit-

erature, which can convert many biological signals into the required single-stranded DNA

signals [21]. Another important aspect of DNA circuits is its modularity. The inputs and

outputs are of the same kind, and thus, the output of one gate can be fed as input to another

gate. Many complex functions can be physically realized using DNA circuits. The advantage

of using DNA strands is that they can store information encoded in their sequence. Also,

the structure and physical properties of DNA are well studied and highly predictable com-

pared to other molecules such as proteins. The DNA circuits available in the literature can

be broadly classified into enzyme-free circuits and enzymatic circuits. In the enzyme-free

set-up, the circuit works completely by itself. On the other hand, enzymatic circuits are

assisted by protein enzymes.

The applications of programmable devices and circuits which is made up of biological

components are far-reaching. The applications could be in vitro (test-tube experiments) or

in vivo (within the living organism). The applications range from disease diagnostics in

vitro to targeted drug delivery systems or SMART drugs in vivo. The DNA circuits can be

used with different DNA structures and machines in order to perform some specific task.

For instance, consider a targeted drug delivery system which detects the cancerous cells and

delivers the drug to the specified cell. Here, the device has to make some kind of decisions

based on the inputs. The decision-making circuitry could be simply a digital system or a

4

more complex analog decision-making system [22]. Another example is the imaging of a

particular biomarker. The strength of the signal may be weak. In such a situation, we need

an amplifier to increase the visibility of the imaging [23].

The computational powers of DNA were first explored by Adleman, in his famous seven-

city Hamiltonian path problem [24]. Ever since researchers are working on DNA, and investi-

gating the computational powers of DNA to build nanostructures and circuits to solve many

complex problems [25–28]. The studies available for thermodynamics of DNA hybridization

reactions [29] are helping the researchers to predict the structure and interactions of DNA

molecules. Many researchers predict DNA computing as a possible replacement of current

silicon-based technology [13] for implantable medical applications, because of its computa-

tional powers, small size, lightweight, and compatibility with bio-signals. The cost of DNA

strand preparation and purification are also decreasing exponentially with advances in the

DNA nanotechnology [3]. From the graph given by Carlson (as shown in Fig. 1.1), it can be

seen that the productivity has increased by 5 orders of magnitude since. If the trend con-

tinues for another few decades, it could be expected that more sophisticated DNA devices

and circuits could be produced at an affordable price. DNA as nano-materials can be used

for non-biological applications also [30–32].

One remarkable work, towards enzyme-free DNA computing, was done by Erik Winfree

[33], in which the self-assembly of the DNA strands was used for computation and problem-

solving. A DNA seesaw gate motif based AND and OR gates were developed in [5]. The

scaling up of the DNA gate motif circuits are also possible by a dual rail AND-OR logic

[6]. The operation of such circuits is based on DNA strand displacement (DSD) technique

[34]. Arithmetic circuits [35], feedback controllers [36], and nanorobots for the transport of

molecular payloads [22] are also available in the literature, which employs the DSD technique

5

Figure 1.1: The graph showing the advances in productivity of DNA strands [3]

for their operation. A review of devices working on the principle of DSD can be found

in [37]. The studies on the conductivity of DNA and DNA polymers are also available in the

literature [38–40]. There are some basic digital as well as analog enzyme-free DNA circuits

available in the literature which use DSD for their operation. However, more efficient circuit

design approaches are still needed to develop DNA circuits with minimum leakage. In this

research, we are proposing novel logic operations and analog gates with a view to reducing

leakage reactions in the circuits.

1.2: Preliminaries

1.2.1: Structure of DNA

The DNA strand is made up of many individual units called nucleotides. A nucleotide has

the following components, (1) a sugar molecule having five carbon atoms, (2) a phosphate

group, and (3) one of the four different nitrogenous bases called adenine(A), thymine (T),

6

5' – G C C T T G A T G T - 3'

3' – C G G A A C T A C A - 5'

Figure 1.2: Example of a DNA Molecule

cytosine (C) and guanine (G). The nucleotides in DNA are called deoxyribonucleotides. The

different carbon atoms used in the sugar molecule are numbered from 1’ to 5’. The 1’ carbon

attaches to the base, 5’ carbon to the phosphate group, and the 3’ carbon to a hydroxyl (OH)

group. Nucleotides differ from one another based on the nitrogenous bases they use. Hence,

we can refer a nucleotide as A, T, C or G. The nucleotides can be joined together by covalent

bonds, to form a sequence. The base pairs (A, T) and (G, C) are complementary to each

other, such that a hydrogen bonding is possible only between these pairs [13]. The length of

such a base pair is approximately 0.34nm. The nucleotide sequences have a directionality,

and this directionality is determined by the carbon atoms used for the covalent bond while

forming the sequence. The directionality can be 3’ to 5’ or 5’ to 3’. Two single-stranded

sequences with opposite directionality and complement to each other, are hydrogen-bonded

together to form a double-stranded sequence. This complementarity is called Watson-Crick

complementarity [20]. A DNA molecule with a double-stranded sequence is shown in Fig.

1.2. It could be noted that the upper strand is aligned with 5’-3’ direction and the lower

strand with 3’-5’, from left to right, and the base pairs are complementary to each other.

A simple model showing the helical structure and dimensions of a double-stranded DNA is

given in Fig. 1.3. The ribbons represent the two single-stranded sequences, and the sticks

between these ribbons indicate the base pairs. The measurements are given in nanometers.

A DNA molecule can exist in different structures. Some of these structures are shown in

Fig. 1.4. These structures are formed by the annealing reactions of different single-stranded

7

Figure 1.3: A simple model showing the structure of double-stranded DNA [4]

molecules (Fig. 1.4a, 1.4b, 1.4d, 1.4e) or partially double-stranded molecules (Fig. 1.4c).

Each curve represents a DNA strand, and the half arrow at the end of each curve represents

the direction of the strand (i.e., the 3’ of the strand). A particular sequence is represented by

a letter (A,B,C or S). The complements of these sequences are represented by A∗, B∗, C∗,

and S∗. A Watson-Crick pairing is formed between these complement pairs, and the small

lines between two strands in the figure represent the hydrogen bond, which connects these

strands. In some representations, the double-stranded molecules are denoted without these

small lines. The helical conformation of the DNA double-strand can vary based on different

8

S

S*

+

S

S*

(a) Structure A

S

S*

+

S

S*

(b) Structure B

S

S*

+

S

S*

(c) Structure C

S

A*

+

A B

B*

S
A B

A* B*

(d) Structure D

A*
+

B

B* C

+

C*
A

(e) Structure E

Figure 1.4: Basic structures formed by the annealing reaction of single-stranded (a, b, d, e)

molecules or partially double stranded (c) molecules

factors such as hydration condition, pH, and ionic concentrations of the environment. [41].

1.2.2: DNA Strand Displacement Operation

Strand displacement is a technique in which a pre-hybridized strand is displaced from an

incomplete double-strand [42–44]. Unlike the strand displacement mentioned in molecular

biology, this DSD is an enzyme-free operation. A simple DSD reaction is shown in Fig. 1.5.

Here, 2∗ is a short domain, which is exposed for reacting with its complement. This domain

is called a toehold. When two strands reacted together, the toehold domain (2) of the

single-stranded molecule (B), binds to its complement (2∗) in the partially double-stranded

9

Figure 1.5: Example of a DSD operation

molecule A. Once the toehold binds to its complement, the branch migration takes place,

and starts to displace the pre-hybridized strand E, from the incomplete double strand. The

branch migration continues, and completely displaces the pre-hybridized strand [34]. The

DSD operation in this particular example will result in another double-stranded molecule D,

and a single-stranded molecule (E). From this example, we can say that a DSD operation

has three steps: Toehold binding, Branch migration, and Release of the strand.

The DSD technique can be used for designing nano-scale circuits [1, 2, 7, 45], nano-

structures [46–49], and solving different mathematical problems [25–28]. The kinetics of

the DSD operation can be controlled by changing the length and sequence of the toehold

domain [50,51]. The kinetics of different strand displacement reactions were predicted in [51].

1.3: Summary of Contributions

The scientific contributions given in this thesis are summarized below:

• Chapter 2 gives a detailed review of existing DNA circuits. The enzyme-free DNA

circuits available in the literature can be broadly classified into digital circuits and

analog circuits, based on the input and output signals they are using. In the digital

circuits, the signals are true or false, in other words, 0 or 1. On the contrary, the

analog circuits can take any value within a specified range and produce output within

10

that range. In this chapter, we discuss the existing enzyme-free digital and analog

circuits, and will give a comparative study based on the existing techniques. Chapter

2 is based on our published manuscript given in ref. [52].

• Chapter 3 introduces our work on the development of spatially localized DNA ma-

jority logic gates. The majority logic gate is considered as a suitable candidate for

designing digital circuits in many promising nanotechnologies. The introduction of a

majority logic gate can give more flexibility to the designer while designing large com-

plex circuits. The first section of the chapter gives the design of a three input spatially

localized majority logic gate, while the second part gives a generalized procedure for

the design of n-input majority logic gate in a spatially localized DNA arrangement.

These works are based on our published manuscripts given in ref. [53, 54].

• The design of a DSD based logic inverter gate is presented in Chapter 4. The introduc-

tion of an inverter logic gate will pave the way for designing mono-rail circuits, instead

of the existing dual-rail circuits. This chapter is based on our published work given in

ref. [55].

• Chapter 5 describes the implementation of a DSD based Fuzzy Inference Engine. Here,

we discuss different analog logic gates such as the minimum gate, maximum gate, and

fan-out gate. A Mamdani fuzzy inference engine was developed using these analog

gates to make decisions based on a pre-defined rule set. This chapter is based on our

published manuscript given in ref. [56].

• There are different challenges in the development of fully automated decision making

systems using DNA strands. These challenges and the future research directions are

discussed in Chapter 6.

11

CHAPTER 2: LITERATURE REVIEW: DNA CIRCUITS

2.1: Introduction

DNA is considered as a perfect candidate for designing implantable structures and dy-

namic devices, because of its biocompatibility, small size, and programmability. There are

different types of nucleic acid circuits which can be used in these structures and devices.

Recent advancements in functional DNA nanotechnology will pave the way for designing au-

tonomous device architectures which can be implemented inside biological organisms. Even

though the advancements in this field are highly encouraging, there are still many challenges

which are to be addressed. The use of functional DNA nanotechnology for medical applica-

tions is going to play a vital role in improving the future medical devices and methods.

The rest of the chapter is organized as follows. Section 2.2 explains the different enzyme-

free DNA digital design techniques available in the literature. Different enzyme-free analog

circuits are explained in section 2.3. Section 2.4 provides a summary of the DNA strand

displacement based digital and analog circuits.

2.2: Enzyme-free DNA Digital Design

Different researchers have proposed molecular Boolean logic gates using different prop-

erties of molecules [16–19]. But the input and output properties used for these logic gates

are of different types, and hence, the scaling up of the circuits are not possible in these

types of molecular circuits. This problem can be solved by using DNA strands as input and

output. DNA based logic gates that work on the basis of DSD operations were proposed

by Qian and coworkers [5, 6]. Even though scaling up is possible with this technique, each

gate uses a unique DNA strand, to avoid spurious reactions. Hence, these types of circuits

need a large number of unique strands. The speed of operation is also slow since all the

12

strands are diffused together. To overcome these issues, localized design of DNA circuits was

proposed [1, 2, 7, 45]. The localized design could be implemented in a DNA substrate [57]

or in an Origami box [46]. In this section, we give a review of different techniques that

could be used for scalable enzyme-free DNA Boolean circuit design. These circuits use DNA

hairpins attached to a DNA Origami box or DNA substrate [7,45], localized 3-way initiated

4-way strand displacement chemical reactions [1], or molecular spider systems [2] for their

operation. Although we are focusing on enzyme-free DNA digital design techniques, there

is another category of nucleic acid based computation in cell-free systems, which uses ri-

bozymes and deoxyribozymes for their operations [58,59]. This logic is called enzyme-based

computation systems. The scaling up property in enzyme-based systems are limited because

of the mutual interference between the basic building blocks (oligonucleotides) [60].

Basic logic operations such as AND, OR, or NOT alone will not be enough to solve

complex problems. In such cases, the number of logic gates required will be very large.

Hence, for any design to be suitable for complex digital circuits, the most important attribute

is the scalability of the design. In this section, we discuss various methods with a scalable

architecture. Even though there are many molecular logic gates available in the literature,

they are not suitable for digital design because of the non-uniformity in inputs and outputs.

But some molecular circuits use DNA strands as their inputs and outputs, which make them

suitable for scalable design. These circuits are broadly classified as: (1) seesaw gate motif

based circuits; (2) localized DNA hairpins based circuits; (3) chemical reaction network

(CRN) on surface based circuits; and (4) molecular spider based circuits.

2.2.1: Seesaw Gate Motif Based Circuits

The DNA circuit design using seesaw gate motifs were first introduced by Lulu Qian

and Erik Winfree in [5, 6]. The seesaw gate motif is a combination of an integrating gate

13

S1

S2T S2 T
S3

S2 T

S3

T* S2*

S2
T

S3S1

T

S2

S1

T

input

gate:output

output

gate:input

S1

S2TS2 T
S4

S2 T
S4

S2
T

S4S1

T

S2

S1

T

input

gate:fuel

fuel

gate:input

T*

T* S2* T*

T* S2* T*

T* S2* T*

T* S2* T*

T* S2* T*

Figure 2.1: Stoichiometric triggering and catalytic cycle of a DNA gate motif [5]

and an amplifying gate. A seesaw gate motif is designed by using four basic elements:

inputs, fuel, threshold, and output. The basic idea of a seesaw gate is that, when the input

signal concentration exceeds the threshold concentration, the input converts the fuel to the

output. The signal strands (input, output, and fuel) have a similar structure. They all are

single-stranded molecules, with recognition domains at left and right, and a central toehold

domain. Another important component in this design is a gate complex. The left and right

recognition domains of the signal strands determine to which gate complex it binds. It should

be noted that the toehold domain used here are all same, and their length is small compared

to the recognition domains.

The seesaw gate operation consists of three basic operations. The signal strand (input)

with exposed toehold domain binds to the gate:output complex, and displaces another signal

strand (output) by DSD operation. It could be noted that the output strand produced can

again take part in a DSD operation, with the gate:input complex, to produce the input. This

process is called stoichiometric triggering, and this is reversible. In a Catalytic cycle, the fuel

binds to the gate:input complex produced by stoichiometric triggering, and displaces more

14

S1

S2T

S2

S1 S2T

S2*T*S1*

S2

input

threshold

waste

waste

S2*T*S1*

Figure 2.2: Example of threshold operation in a DNA gate motif [5]

output1

fuel

Amplifying

gate

-Th

w1

2Σwi

input

output2

w2
.

.

.

Th ≥ 0, wi > 0

Figure 2.3: Abstract diagram of a DNA seesaw gate motif acting as an amplifying gate

output. The operation of stoichiometric triggering and catalytic cycle are shown in Fig.

2.1. Another operation associated with the seesaw gate is thresholding. In this operation,

the input strand binds to the threshold complex to produce a waste strand. The threshold

operation is shown in Fig. 2.2. The input strand can combine with either gate:output

complex or threshold complex. The selection of operation depends on the concentration of

input and threshold complexes. The stoichiometric triggering will occur only when the input

concentration is greater than the threshold complexes.

The seesaw gate motif can act either as an amplifying gate or as an integrating gate.

An amplifying gate could be used to drive a single output or many outputs. When the

amplifying gate drives more than one output, the right side signal recognition domain of

the gate:output complexes will have many strands, each strand corresponds to a particular

15

Integrating

gate

w

input1

output

w ≥ max(Σinputi)

input2

.

.

.

Figure 2.4: Abstract diagram of a DNA seesaw gate motif acting as an integrating gate [5]

output. An abstract diagram of an amplifying gate is shown in Fig. 2.3. It could be noted

that the concentration of the fuel strand should be equal to twice that of the summation of

all required output concentrations. The individual outputs are given by:

outputi =

wi if input > Th

0 if input ≤ Th

(2.1)

The abstract diagram of a seesaw gate motif, working as an integrating gate is shown in Fig.

2.4. The integrating gate sums up all the inputs and gives the output. This is achieved by

using different left side signal recognition domains and a single output recognition domain.

An integrating gate does not require a thresholding operation. The output obtained from

an integrating gate is given by:

output = input1 + input2 + (2.2)

Different functions can be realized by the cascaded operation of the integrating and

amplifying gates. In this section, we are limiting our discussion to logical circuits. The AND

gate as well as the OR gate can be designed by selecting the appropriate threshold values.

Fig. 2.5 represents the cascaded operation of integrating gate and amplifying gate that

results in either an AND gate or an OR gate. X1 represents the concentration of the input

16

7

5

-th 1

2

X1 2

1

X2

1

3

th = 0.6 Y = X1 OR X2

Y
6

th = 1.2 Y = X1 AND X2

Figure 2.5: Cascaded operation of integrating gate and amplifying gates as AND gate and

OR gate [6]

strand S1TS2, and X2 represents the concentration of the input strand S3TS2. The first gate

used here is an integrating gate, and hence, the output concentration will be a summation of

the input concentrations X1+X2. This integrating gate is cascaded with an amplifying gate.

Here, we are considering the concentration of 0.9× as logical high and 0.1× as logical low

(where concentration 1× = 100nM at 200C). Now if the threshold concentration is 0.6×,

then this circuit will act as an OR gate. If the threshold concentration is 1.2×, the circuit

will be an AND gate [6].

While designing a complex circuit, AND gates in addition to OR gates are not enough.

We cannot make an inverter logic gate using seesaw gate motifs. Because of this, a dual rail

AND-OR implementation is required for larger circuits. In a dual rail logic, each signal is

represented by a pair of signals. One signal represents the logical zero and other represents

the logical one. For example, if we want to represent an input A = 1, we need two signals

with (A1 = 1, A0 = 0).

17

T
~

Si

~

T
~

So

T

SiT

Si

+

T
~

Si

~

T
~

So

T

Si

T

Si

Figure 2.6: DSD operation in a hairpin structure

2.2.2: Localized DNA Hairpins Based Circuits

There are mainly two methods available in the literature [7,45] which use tethered DNA

hairpins to design basic logic gates. Chandran et al. [45] propose a method in which, the

speed of operation is increased by increasing the concentration at the localized sites. The

other method [7], uses a fuel to improve the speed of operation. The structure of the hairpins

is also different in these two methods.

Localized Hybridization Circuits by Chandran et al. [45]

In this method, cascaded DSD operations on DNA hairpin structures are used to create

the AND as well as the OR operations. A propagation gate and fan-out gate are also designed

in the same manner. All the gates used in this method use a common toehold domain (T̃)

and different specificity domains (S̃i). The specificity domains are unique to each gate. The

basic DSD operation associated with a hairpin structure is shown in Fig. 2.6. When an input

domain TSi reacts with a hairpin structure, the toehold domain T binds to its complement

T̃ in the hairpin, initiating a branch migration, which opens the hairpin. This operation

is similar to a propagation gate, in which the input domain Si is converted to an output

domain So.

Similarly, the OR operation can be performed by using two hairpin structures as shown

18

T
~

Si1

~

T
~

So

T

Si1T

Si1

+

T
~

Si1

~

T
~

So

T

Si1

T

Si1

T
~

Si2

~

T
~

So

T

Si2T

Si2

+

T
~

Si2

~

T
~

So

T

Si2

T

Si2

OR

Gate

Figure 2.7: OR operation with two hairpin structures

in Fig. 2.7. Here, the inputs are strands TSi1 and TSi2. If both inputs are not present, there

will not be any DSD operation, and hence no output domain will be present. If any one of

the input domains or both the input domains (Si1, Si2) are present, then the input strand

will bind to the corresponding DNA hairpin structure, and the branch migration will take

place. This results in the opening of any one or both of the hairpin/s, and will result in the

presence of the output domain So.

The AND operation can be performed by using a single hairpin structure as shown in

Fig. 2.8. Here also, Si1 and Si2 represent the input recognition domains, while So represents

the output domain. If both inputs are not present, then no reaction will take place, and

hence, no output will be produced. If TSi1 is present, then toehold domain T binds to its

complement, and branch migration of Si1 will take place. This will remove the Si1T from

the hairpin. If the second input is not present, the hairpin will not open, and hence, no

19

T
~

Si1

~

T
~

So

T

Si1

T

Si1

+

T

Si2

+

AND

Gate

Si2

~

T
~

T

Si2

T
~

Si1

~

T
~

So

Si1

Si2

~

T
~

T

Si2

T

T

Si1

T
~

Si1

~

T
~

So

T

Si1

Si2

~

T
~

T

Si2

T

Si2

Figure 2.8: AND operation with a single hairpin structure

output will be produced. If the second input TSi2 is also present, the toehold mediated DSD

operation will take place, which opens the hairpin. Hence, an output recognition domain So

will be produced, only when both the inputs are present.

The NOT operation is impossible in this method. The scaling up of the circuit is possible

by using a dual rail AND-OR logic. The dual rail AND-OR logic is implemented by arranging

the DNA AND as well as OR gates in a DNA substrate. These gates are cascaded with the

help of propagation gates. A modular design approach discussed in [61] is followed to avoid

the spurious reactions.

Spatially Localized Architecture by R A Muscat et. al. [7]

Another spatial architecture for designing logic gates using DNA hairpin structures was

discussed in [7]. The architecture developed in [45] uses the diffusion of DNA strands for

their operation, and hence they lack in spatial isolation. In the design proposed by Muscat

et al., a hairpin structure attached to a DNA substrate (DNA Origami box) is the basic

building block of any circuit. The structure of such a hairpin H(A, Y) is shown in Fig.

2.9. We follow the same variable names that are used in the literature. In Fig. 2.9, an

20

a^*

s*

y^
s

a^*

s*

y^

sa^

a^

s

s

H(A0,Y)

Figure 2.9: Hairpin opening operation when the input bind to the hairpin

input strand aˆs binds to the hairpin with an exposed aˆ∗, and undergoes a DSD operation

to displace yˆs by opening the hairpin. This operation could be considered as an input

translation, in which the hairpin structure attached to an origami box, binds a diffusible

input. For designing different logical operations, various hairpins such as input translators

(H(A, Y), H(B, Y)), Fuel (F (Y,X)), output translator (H(X,Z)), and threshold (H(X,−))

are used. The spatial arrangement of these DNA hairpins determines the logical operation

associated with that design.

An AND gate is designed by arranging the hairpin structures as shown in Fig. 2.10.

In this example, we give two inputs. If both the inputs are present, input A will open the

hairpin H(A, Y), and input B will open hairpin H(B, Y). These opened hairpins will have

an exposed yˆs. This exposed yˆs will bind to a freely floating fuel hairpin F (Y,X) to

open xˆs. These domains can either bind to the threshold or to the output translator. The

spatial arrangement of the hairpin structures is in such a way, that the distance between

the input translator and the threshold is less compared to the distance between the input

translator and output translator. Hence, the xˆs corresponds to the first input, binds to the

threshold, and produces a blank domain blankˆs. The xˆs corresponds to the second input,

binds to the output translator H(X,Z) to produce an output. Thus, an output is produced

21

s

a^
y^

b^*

s*

y^

a^*

s*
z^

x^*

s*

blank^

x^*

s*

x^

y^*

s*

AND Gate in an

Origami

x^

y^*

s*

b^*
s*

z^

x^*

s*

blank^

x^*

s*

x^

y^*

s*

x^

y^*

s*

z^

x^*

s*

blank^

x^*

s*

b^*

s*

x^*

s*blank^

x^*

s

s

b^

y^

b^*

s

z^
s

a^*
s*
y^

a^*

s

a^*

x^

x^

Fuel

F(Y,X)
Input

Translator

H(A,Y)

Input

Translator

H(B,Y)

Threshold

H(X,-)

Input A

Input B

Output

Translator

H(X,Z)

s

Figure 2.10: Hairpin opening operations for spatially localized 2 input AND gate with both

inputs were present [7]

only when both the inputs are present. A similar structure without the threshold hairpin

will act as an OR gate. In such an operation, if any, or both, of the inputs are present, the

input translator hairpins will produce the corresponding xˆs, and it can directly bind to the

output translator H(X,Z) to produce the output.

2.2.3: DNA-based CRN on a Surface [1]

Lulu Qian and Erik Winfree proposed a chemical reaction network (CRN) based DNA

circuit on a surface. This method uses unimolecular (A → B) and bimolecular reactions

(A+B → C+D) on a surface, based on 3-way initiated 4-way strand displacement operation.

A + B → C + D means that if A and B are neighbors, then A gets converted to C, and B

22

RA

T1*

X X*

A*

A

A RA

XX*

T2*T2

AT1

+

T2*

X*

X

RA RA*

B

RA B

T2

RA

X*

X T1*

T1

A*

A

X*

XT2*

A

XX*

T2*T2

BT1

X*

X T1* RA

RA*

RA

+

Fuel molecule RA BFuel molecule A RA
Waste

Waste

Figure 2.11: DNA implementation of unimolecular (A→ B) reaction on a surface [1]

gets converted to D. The DNA strands used in these operations are attached to an Origami

surface, and hence the reaction is called surface CRN. A unimolecular reaction (A → B),

can be explained with the help of Fig. 2.11. Here, A→ RA and RA → B are the free floating

fuel molecules. The fuel first binds to the input A, through the exposed toehold domains T1

and T ∗1 . A three-way initiated four-way strand displacement will produce waste molecules,

in addition changes the input A to RA. The signal RA thus produced will again undergo

another three-way initiated four-way strand displacement operation with the fuel molecule

RA → B, to produce signal B and waste molecules.

Similar to A → B chemical reactions, A + B → C + D can also be designed with the

help of DNA strands. Such a design is shown in Fig. 2.12. A and B are located at the

neighboring sites. The fuel molecule A + B → RAB will first react with input signals A

23

X1X1*

T2*T2

AT1

X2X2*

T2*T2

BT1

A

X1 X1*
A*

X2 X2*

B

B*

RAB

X2*

X2
RAB

X1*

X1

A

A*B X1*

X1

B

B*X2*

X2

A RAB

X2*

X2

D

X1*

X1 C

A+B RAB

RAB C+D

X1X1*

T2*T2

CT1

X2X2*

T2*T2

DT1

RAB*

RAB

RAB*

X2

X2*

X1

X1*

RAB

+
+

Fuel A+B RAB
Fuel RAB C+D

Waste

Waste

Figure 2.12: DNA implementation of bimolecular (A+B → C+D) reaction on a surface [1]

and B, through a three-way initiated four-way strand displacement reaction, attach the RAB

domain to the surface, displaces the inputs A and B from the surface, and produces some

waste molecules. The intermediate structure, thus formed will again react with the fuel

molecule RAB → C +D, through another three-way initiated four-way strand displacement,

by displacing RAB from the surface with signals C and D, and creates some waste molecules.

Thus the chemical reactions replace A and B with C and D respectively on the surface.

Different logic operations could be performed by using the two different chemical reactions

(A → B and A + B → C + D), and geometrically arranging the surface signals. A simple

wire can be designed by two bimolecular reactions 0/1 + B → B + 0/1, which means that

0/1 input signal moves to a blank site, by changing the previously occupied site to a blank

24

B BNx

BNy B
NyNxNyNx

NyNxNyNx

BB

BB

01

10

(a) NOT Gate

B B∩x

B∩y B∩z B

B zyzk

kxyx

kxyx

kxyx

kxyx

BB

B

B

B

B

1/01/0

111

001

010

000

(b) AND Gate

B BUx

BUy BUz B

B
zyzk

kxyx

kxyx

kxyx

kxyx

BB

B

B

B

B

1/01/0

111

101

110

000

(c) OR Gate

Figure 2.13: CRN based logic gates with corresponding molecular reactions [1]

site. The surface arrangement for different logic gates and their reactions are shown in Fig.

2.13. A NOT operation consists of two bimolecular reactions. The input site and output site

are connected to wires with blank signals. Initially the neighboring sites, those participating

in the NOT operation are assigned with blank signals BNx and BNy. The site x is an

input site, while y is an output site. Based on the input signal 0Nx or 1Nx reaching the x

site, the NOT gate changes y site to 1Ny or 0Ny respectively, and resets the input site x to

blank (BNx). Similarly, the AND gate as well as the OR gate are designed by 6 bimolecular

reactions as given in the figure. Here, x and y are the input sites, and z is the output site.

The bimolecular reactions are defined for all the possible input combinations (00, 01, 10, and

25

11). The scaling up of the circuit is possible by interconnecting the basic logic gates such as

AND, OR, and NOT with wires. The CRN on surface architectures for fan-out wires and

cross-wiring are also given in [1].

2.2.4: Molecular Spider System Based Circuits [2]

Molecular walkers are a special type of molecular machines, designed to move on a pre-

programmed track, with a directionality via localized reactions [62–64]. In [65], Dannenberg

et al. explore the potential of DNA walkers for implementing Boolean logic. But this method

is limited to sequential design since the circuit is designed in the form of a binary decision

diagram (BDD). Dandan Mo et al. [2] utilizes the molecular spider systems with spatial

localization to implement different logic circuits. The molecular walker is also called as

‘molecular spider’ because of its shape. The localized design of molecular spider used in [2]

for implementing logic gates has two legs, and one arm with a value of 0 or 1.

A molecular spider is having a body and three limbs (two legs and one arm), and it

moves through a track. There are some pre-defined laws for the movement of the molecular

spider. Two limbs are always attached to neighboring sites, which are not occupied by

other spiders. The sites can be classified as normal and functional sites. The normal site

Snorm = {S0, S1, Sl}. Where, Sl is the site which binds to a spider leg, and S0 and S1 are

the sites near to a junction, and they direct the spider based on the spider value. The path

followed by the spider for spider value X = 1 and X = 0 are shown in Fig. 2.14. The

attachment sites in the figure are the sites which are attached to the two legs of the spider.

The logical operation of a walker circuit is based on the arrangements of the functional

sites and normal sites. A functional site has three possible states. An “on” state which

allows the binding of the spider, an “off” state which will not allow binding of the spider,

and a “trapped” state which will not allow the spider to move from there. A functional

26

S1

S0

S1

S0

S1

S0

Normal Sites Attachment sites

Figure 2.14: The spatial path followed by a molecular spider in normal sites when X = 0

and X = 1 [2]

site can also send signals to the neighboring sites. These signals may be a “turning on/off”

signal which sets the state of the neighboring site as on/off or “switching to 1/0” signal

which switches the spider value to 0/1. The design of AND gate and OR gate using the

DNA walkers are shown in Fig. 2.15. In this figure, St represents a site which can trap a

spider binds to it, Sp represents a site which is initially off and blocks the path of the spider

until it gets a “turning on” signal, and Su is a site which will trap the spider binds to it and

send a “turning on” signal to the site Sp. The coordinated operation of Sp and Su in the

crossroad guarantee that when the spiders are reaching the junction from both directions, it

traps one spider while passing the other. For the AND operation, the output location will

receive a spider with value zero, when either spiders X or Y or both are having a value zero.

When both the spiders are having a value 1, then the crossroad will come into the picture

and it will pass a spider with value 1 to the output location. For the OR operation, a spider

with value 1 will reach the output location when either spider X or Y or both are having a

value 1. When both are zero, both spiders will reach the crossroad, and will pass only one

spider with value zero to the output.

27

S1

Su

S1

S0

S0

St

Sp S1 St

Input

spider X

Input

spider Y

Output

Location

Crossroad

(a) AND Gate

S0

Su

S0

S1

S1

St

Sp S0 St

Input

spider X

Input

spider Y

Output

Location

Crossroad

(b) OR Gate

S1

S0

S1 0 Sr
I

S0 1

Sr
II

St

Sr
I Sr

II

Switching S0 1

Switching S1 0

Input

Location
Output

Location

(c) NOT Gate

Figure 2.15: DNA walker based logic gates with corresponding molecular reactions [2]

A NOT gate consists of functional sites which perform switching mechanisms. There are

two switching mechanisms (SW0→1 and SW1→0) associated with a NOT gate. While a spider

pass through a switching mechanism, the spider value is switched, and the sites before the

switching mechanism are cut off. A switching mechanism consists of three functional sites.

The first site is S1→0 or S0→1. Consider S1→0, this trap a spider with value 1, sent a “switch

to 0” signal to the next site SI
r . On the other hand, S0→1 trap a spider with value 0 and

sent a “switch to 1” signal to the next site. The second site is SI
r which receives a “switch to

0” or “switch to 1” signal from the site S1→0 or S0→1 respectively, and send back a “turning

off” signal. From SI
r , the spider can move only to the third site SII

r , since the sites S1→0 or

28

a

b
c
d

Leg Arm 1

p

1
q
n
0
m

0*
m*
f*

Arm 0

p

1
q
n
0
m

1*

p*
t*

(a) Spider Legs

Arm 0/1

(b) Spider with arm 0/1

a* 1* 0*

Sl S1 S0

(c) Non-alterable Sites

2* 3* a*

St Sr
I

Sr
II

A

b*

c*

a*

b*

c

b
2

c*

d*

c
b

a

3

(d) Exit mechanism

Figure 2.16: A possible implementation of molecular spider [2]

S0→1 are turned off. Now SII
r will send back a “turning off” signal to SI

r . Now, the spider

in the site SII
r cannot move back to SI

r since it is turned off, and hence move towards the

output location. Thus, if the input is having a value 1, then the output location contains a

spider with value 0, and vice versa.

The scaling up of the circuit is possible by implementing the logic function in the form

of a Boolean tree model. Each node in this Boolean tree represents a logic gate (AND, OR

or NOT). Each AND and OR gate nodes are connected to two inputs, while a NOT gate

29

Table 2.1: Comparison of different scalable DNA digital design circuits

Method
Reusability

of Circuit

Reusability

of Gates

Localized

Design

Fan-out
Cross

wiring

Scaling up

Method

Speed of

operation

Simulation
Logic

value

Cascades of seesaw

gate motifs

No No No Yes N/A
Dual Rail

AND-OR

Low Available
Concentration

of domain

Localized

hybridization circuits

No Yes Yes Yes No
Dual Rail

AND-OR

High Available
Concentration

of domain

Spatially localized

hairpin circuits

No Yes Yes Yes Yes
Dual Rail

AND-OR

High Available
Concentration

of domain

CRN on surface

based circuits

Partially

Re-usable

Yes Yes Yes Yes
AND-OR

-NOT

High
Not

available

Concentration

of domain

Molecular spider

based circuits

Partially

Re-usable

Yes Yes No No
AND-OR

-NOT

High
Not

available

Arm Value

node is connected to a single input. This Boolean tree implementation will not allow fan-

out gate or cross-wiring. There are different DNA implementations possible for the normal

and functional sites. A typical implementation of molecular spider, its corresponding non-

alterable sites, and possible exit mechanism are shown in Fig. 2.16. Showing all the possible

implementations are beyond the scope of this chapter, these implementations can be found

in [2].

2.2.5: Comparison of Different Methods

The different scalable DNA digital design techniques differ in their design, re-usability

of gates and circuits, the speed of operation, scaling up methods etc. A summary of these

differences is given in Table. 2.1.

Speed of Operation

The circuits discussed in this section can be broadly classified as localized and non-

localized circuits. In non-localized circuits, the DNA strands are freely floating in the solution

and they are free to react with any other strand with an exposed toehold domain. In the

30

case of localized circuits, the DNA strands are attached to a DNA substrate. In localized

design, the strands attached to the substrate can react only with its neighboring strands

and the free floating fuels, on the other hand, in the non-localized designs, a strand has to

search the strand, it has to react within the solution. The diffusion in non-localized design is

a stochastic process, and speed of reaction depends on the mobility and the concentrations

of the molecules involved. Hence, the speed of operation of a large, complex circuit will be

less for non-localized designs compared to the localized designs.

Re-usability of Logic Gates

In localized circuits, the gates are re-usable within the circuit, without causing any spuri-

ous reactions. But for non-localized circuits, the strands used in each gate should be unique

to avoid the spurious reactions. In localized circuits, the strands that are attached to the

DNA substrate can react only with its neighboring strands or free floating fuels. Hence, the

chances of having spurious reactions are not present.

Re-usability of Logic Circuits

If the design changes its strands during one operation cannot be used again for the same

operation. In such cases, the strands no longer have the same functionality after reacting

with the inputs and fuels. The cascade of seesaw gate motifs [6], localized hybridization

circuits using DNA hairpins in [45] and spatially localized circuits using DNA hairpins in [7]

are not reusable. But CRN on surface based circuits in [1] and molecular spider based circuits

in [2] are partially re-usable. In CRN on surface based circuits, the gates are updated by

using the excess fuel molecules. For the molecular spider based design, most of the sites are

non-alterable and this will make them partially re-usable.

31

Scaling up Methods

The NOT operation is not possible in the cascade of seesaw gate motifs, localized hy-

bridization circuits using DNA hairpins, and spatially localized circuits using DNA hairpins.

Hence, these circuits use a dual-rail AND-OR logic for scaling up of the circuits. The CRN

on surface based circuits and molecular spider based circuits use the NOT gate and hence,

the dual rail logic is not required in these designs. The fan-out gates are possible in all the

designs, except the molecular spider based design. The cross-wiring is not defined for molec-

ular spider based circuits and localized hybridization circuits using hairpins given in [45]. In

molecular spider based circuits, the circuit is converted to a binary tree model in which each

node represents a gate. Since the fan-out is not available, the inputs may have to be used

many times in the circuit.

Boolean Logic Used

The circuits explained in this section also differ in the Boolean logic used. All the

circuits except the molecular spider based circuit, use the presence or absence of a particular

domain as logic high or low signal. The presence of a domain is determined by finding the

concentration of that particular domain using reporter strands. The molecular spider based

circuit uses the spider arm value as the Boolean value.

Simulation in Visual DSD

A programming language for representing DNA sequences and DNA reactions was devel-

oped in [66, 67]. A simulation software, called “Visual DSD”, could be used to simulate the

DNA reactions defined by a programming language [68]. In this software, the simulations are

performed as either deterministic or stochastic process. The hairpin structures can be im-

plemented in the Visual DSD. But localization is still a problem. The cascade of seesaw gate

32

motifs can be easily implemented in Visual DSD. In localized hybridization circuit design

using DNA hairpins [45], the authors use different toehold domains to ensure localization of

the DNA strands while doing the simulation. Lakin et al. modified the visual DSD software

to include tethered DNA circuits [69] and implemented the AND gate discussed in [7]. Even

though Visual DSD can perform the basic operations, implementing strands that have a

secondary structure as in the case with CRN on surface based circuits is still a challenge.

The localized design for a more complex design is also a major challenge.

2.3: DNA Analog Design

Analog circuits using DSD operation include amplifier circuits, arithmetic circuits, timer

circuits, control circuits, etc. The digital circuits use only two discrete values, logic 0 and

1. The physical input is compared with a threshold value, and if the input is greater than

the threshold then it is treated as logic high, otherwise, it is treated as a logic low. Digital

circuits are less affected by the offset errors. On the other hand, the analog circuits can use

the physical inputs without any conversions. There will be a specific range of operation for

an analog circuit in which the circuit will work with a particular accuracy and precision.

The advantage of analog circuits is that it requires less number of gates compared to its

digital equivalent. Hence, analog circuits are preferred to digital circuits, in resource-limited

environments such as living cells [70]. Furthermore, some analog computations are less

affected by DNA hybridization errors [71]. The applications of analog circuits range from

imaging to complex decision making systems. In this section, we are discussing different

enzyme-free DNA analog circuits that are available in the literature.

33

2.3.1: Amplification Circuits

The amplifier circuits are useful in imaging applications and other nano-machines in

order to interface with sensors and actuators. They are also useful in case of imaging of

strands with small concentration. The amplification circuits can be used as a DNA fuel

for free running machines [72, 73]. The first toehold mediated DSD based amplifier was

developed by Turberfield and Mitchell [72]. Seelig and co-workers later modified this work

to give more than 10 fold gain. Another amplifying circuit, called entropy-driven catalysis

(EDC) circuit was developed by Zhang et. al. [74]. This amplifier is simple, fast, modular,

composable, and robust compared to the previous designs. Another type of amplification

circuit based on the hybridization chain reaction was developed by Dirks and Pierce [75].

A DNA hairpin based system using the cross-catalytic circuit for exponential amplification

is given by Yin and collaborators [76]. Catalyzed hairpin assembly mechanism is used to

produce 20 to 50 fold amplification was proposed by Li and his team [77]. Zhang and

Seelig developed a fixed gain amplifier [78], which is a combination of catalytic amplifier

and a threshold element. Even though different amplification techniques are available in the

literature, the experimental implementations were corrupted by circuit leakage. Chen and

co-workers proposed a new technique with minimum leakage and maximum amplification

(up to 600,000 fold amplification with two stage four layer cascade) [79]. A detailed review

of nucleic acid based amplification reactions for diagnostic applications is given by Jung and

Ellington [80].

2.3.2: Arithmetic Circuits

Even though there are many arithmetic circuits using DNA digital logic gates available in

the literature [35,81–83], the analog arithmetic circuits are very limited. Song and collabora-

tors recently developed a set of analog gates such as addition, subtraction, and multiplication

34

gates using DNA strands [84]. Instead of Boolean signals, these gates take analog signals as

input and produce an analog output. The concentration of the DNA strands is considered as

the signal in such circuits. They also computed a polynomial function using these gates. But

the operations of these analog gates are limited to positive numbers. Zou et. al. modified

the existing gates to build addition, subtraction, multiplication and division operations [85].

This design uses a dual rail logic and hence, they can work with positive as well as negative

numbers.

2.3.3: Control Circuits

Another major area of DSD based circuits comes under the category of control cir-

cuits. Abstract CRNs are widely used for implementing such enzyme-free DNA control

circuits. The circuits written using CRN can be implemented using DSD operations [86].

An enzyme-free DNA implementation of the proportional integral (PI) controller using ab-

stract CRN [87] is also available in the literature. Such controllers take a time-varying DNA

strand concentration as an input signal and produce an output signal. The four basic op-

erations associated with these linear I/O systems are signal splitting, integration, gain, and

summation. A design flow, from transfer function to CRNs, based on the linear I/O system

developed by Oishi and collaborators [87] is proposed by Chiu and co-workers [88]. Yordanov

and collaborators [89] implemented the PI controller using only catalysis and annihilation

reactions. A different DNA implementation of integration feedback circuit is proposed by

Birat et. al. [90]. A quasi-sliding mode (QSM) feedback controller using unimolecular and

bimolecular enzyme-free entropy driven DNA reactions [36] is also available in the literature.

35

2.3.4: Timer Circuits

A DSD based timer circuit was developed by Fern and co-workers [91]. With the intro-

duction of the timer circuit, it is possible to produce a controllable release of strands which

could act as triggers in different circuits. These timer circuits are used in designing logic

NOT gate [55].

2.3.5: Challenges for Analog Circuits

Even though different analog circuits are available in the literature, most of the designs

are not practically implemented in a wet lab. The major source of error in the cascaded

amplifier circuits is the unwanted background amplification. Even though there is no trigger,

the output signal produced by the upstream amplifier could be fed back to the downstream

amplifier as a signal. The design of DNA strands is very critical, and improper design may

lead to leakage reactions. Another source of leakage reaction is the triggering of the DNA

circuit by unwanted DNA strands. The leakage reactions are not limited to amplifier circuits,

but common to all DSD based circuits. For the control circuits, the major factor in the design

is the reaction rate constants. In a practical situation, there are many uncertainties and these

reaction rate constants may vary. Control systems with more adaptive properties are needed

to overcome this issue. Another major issue is the number of unique DNA strands that are

required for the designs. There is a need of alternative CRNs which require a fewer number

of DNA strands for implementation. Even though DNA circuits for non-linear controllers

such as the sliding mode controller is available in the literature, there is scope for many

potential non-linear controllers. The controllers available in the literature are conceptual

and their practical implementation is still a challenge. Another issue with the enzyme-free

implementation of the controller circuits is that strands used in the circuit may get consumed

after some time, and we have to continuously supply these strands for longer computations.

36

2.4: Conclusion

DNA circuits are considered as a possible candidate for replacing the traditional silicon

transistor based technology in implantable medical devices, because of its computational

powers, small size, light weight and compatibility with bio-signals. In this chapter, we gave

a brief review concentrating on the recent developments in DNA digital design and analog

design techniques. For the digital design techniques we considered scalable designs, which

could be used to design large, complex digital circuits. We gave a comparison of different

techniques with the advantages and disadvantages of each technique based on speed of op-

eration, re-usability of the circuits and strands, availability of simulation software etc. For

analog circuits, we limited our discussions to amplifying circuits, control circuits, arithmetic

circuits and timer circuits. The methods discussed in this chapter were based on enzyme-

free operations. The basic principle behind all these DNA circuits is the toehold mediated

DSD operation. The DNA circuits will have a pivotal role in designing decision-making sys-

tem in future therapeutic applications, bio-sensing applications, bio-signal processors, and

controllers, driving circuits for molecular actuators, etc.

37

CHAPTER 3: SPATIALLY LOCALIZED MAJORITY GATES

3.1: Introduction

Molecular circuits are considered as a popular candidate for replacing silicon-based tech-

nologies for designing implantable medical circuits. With the recent advancements in DNA

nanotechnology, medical devices and circuits could be built inside living organisms in a near

future. Different molecular Boolean logical circuits are available in the literature, but their

input and output types are different [16–19]. The output of one gate cannot be used as the

input of another logic gate, and hence, such circuits are not suitable for designing a large,

complex design. A DNA circuit using strands, as their inputs and output can overcome this

obstacle. The power of DNA, as a computational device was first explored by Adleman, for

solving the seven city Hamiltonian path problem [24]. Ever since this famous experiment,

many researchers were working on DNA, to solve different problems [26–28].

Lulu Qian and Erik Winfree introduced a DNA strand displacement (DSD) reaction

based circuit called seesaw circuit in [5]. In [6], the scaling up of the circuit, using dual-rail

AND-OR logic is discussed. Based on this dual-rail AND-OR logic, an arithmetic cell and

control cell were designed [35]. The speed of operation of such circuits is limited because the

entire reaction is taking place by diffusing all the molecules together. Unique strands are

required for signal, and gate complexes, to avoid spurious reactions in a seesaw circuit. In

general the seesaw based circuits have the following disadvantages (1) need a large number

of unique strands, (2) possibility of spurious reactions, and (3) limited speed of operation. A

localized design was introduced to solve these issues [1,7,45,92]. All the enzyme-free scalable

DNA digital design techniques available in the literature can be found in [52].

In a localized DNA circuit, the interactions of strands are limited to their neighbors. This

38

helps the designer to reuse the strands without causing spurious reactions. The localized

circuits are developed by attaching the DNA strands to a fully addressable lattice or a DNA

Origami substrate [45]. The localized architecture speeds up computation in a DNA circuit,

by removing much of the speed bottleneck due to diffusion. Even though different designs

are available in the literature for a three input majority gate [93,94], none of them are using

a localized architecture. In this work, we are introducing a spatially localized architecture

of DNA strands for implementing a three input majority logic operation.

In this work, we are introducing a novel three-input majority gate with spatially localized

architecture. This architecture is based on the designs used in [7], for designing AND and

OR gates. We are extending this three input majority gate design into a five input majority

gate. The addition of a five input majority gate into the set of DNA logic gates family will

give more flexibility for the designer while developing the complex digital computing circuits.

We also discuss the full adder circuit design using majority gates. A general condition for

obtaining n-input majority gate is also discussed.

3.2: Spatially Localized DNA Majority Gate

3.2.1: Methodology

A majority gate gives a logical high output when the majority of the inputs are at logical

high level. For a three input majority gate, the truth table is shown in Table 3.1. A, B

and C are the inputs and Z is the output. The Boolean expression for the majority gate is

derived from the truth table:

Z = Maj(A,B,C)

= AB + AC +BC (3.1)

39

Table 3.1: Truth table of a three input majority gate

A B C Z

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

It can be observed from the Boolean expression that the majority gate will act as a Boolean

AND gate if one of the input is set to zero.

Z = Maj(A,B, 0) = AB (3.2)

Similarly, by keeping one input at logical high, the majority gate will work as a Boolean OR

gate.

Z = Maj(A,B, 1) = A+B (3.3)

The majority logic is implemented by using DNA hairpin structures attached to a DNA

substrate or an Origami box. The origami is a technique developed by Rutherford [46],

in which a long single strand is self assembled to form certain shapes using short staple

strands. Each staple strand represent a particular address. Origami box is a structure used

to hold different Origami pieces. The basic operation associated with this design is the DSD

reaction. A simple DSD operation associated with a DNA hairpin is shown in Fig. 3.1.

40

a^*

s*

y^
s

a^*

s*

y^

s
a^

a^

s

Figure 3.1: An example of DSD operation in a DNA hairpin structure

Here, the domain aˆs, is a freely floating domain with a toehold domain aˆ. The toehold

can bind to its complement aˆ∗, which is a part of the hairpin structure attached to the

origami substrate. In such a situation, a DSD operation will take place and will result in the

opening of the hairpin. The opened hairpin yˆs, is not a freely floating domain, consequently,

its further reactions are limited to the neighboring strands and other freely floating strands

with exposed yˆ∗. Please note that the ˆ symbol is used denote a toehold domain.

In a localized architecture, the majority logic is achieved by arranging the anchored hair-

pins (input translator, threshold, and output translator) in a way such that the propensity

of reaction between an input translator and a threshold hairpin is greater than the propen-

sity of reaction between an input translator and the output translator. The propensity of

reaction between any two tethered strands is directly related to the distance between those

strands. The propensity of reaction will be more when the strands are anchored in closer

proximity to each other. A possible architecture of such a majority gate is shown in Fig.

3.2.

If there is no input (all inputs are low), there is no reaction and hence, no output is

produced (output is low). The majority operation with only one input is present (one input

is high) is shown in Fig. 3.2. The ˆ symbol is used to identify a toehold domain and ∗ to

identify the complement of a particular domain. The input aˆs binds to the input translator

41

s

a^

y^

b^*

s*

y^

c^*

s*

y^

a^*

s*

z^

x^*

s*

blank^

x^*

s*

x^

y^*

s*

Fuel F(Y,X)

Input

Majority Gate in an Origami

x^

y^*

s*

x^

y^*

s*

y^

b^*

s*

y^

c^*

s*

y^

a^*

s*

z^

x^*

s*

blank^

x^*

s*

s

x^

y^*

s*

x^

y^*

s*

x^

y^*

s*

y^

b^*

s*

y^

c^*

s*

a^*

z^

x^*

s*

blank^

x^*

s*

x^

y^*

s*

x^

y^*

s*

s

b^*

s*

y^

c^*

s*

z^

x^*

s*blank^

x^*

x^

y^*

s*

x^

y^*

s*

s

Threshold

Strand

H(X,blank)

Output

Translator

H(X,Z)

Input

Translator

H(C,Y)

a^*

x^

H(B,Y)

H(A,Y)

Figure 3.2: DNA hairpin strand operation for localized majority gate with only one input

present

H(A, Y) with an exposed aˆ∗, and displaces the domain yˆs. The domain yˆs will bind to

the free floating fuel strand F (Y,X), to displace a domain xˆs. The domain xˆs can bind

to either the threshold H(X, blank) or the output translator H(X,Z) since both of them

are having an exposed xˆ∗. However, the strands are arranged in such a manner, that the

proneness of reaction between the input translator and the threshold is greater than the

proneness of reaction between input translator and output translator. Hence, the domain

xˆs binds to H(X, blank), to displace blankˆs, and thus, no output is produced (output is

low).

Now, consider the majority operation with two inputs present (2 inputs are high) as

42

s

a^

y^

b^*

s*

y^

c^*

s*

y^

a^*

s*

z^

x^*

s*

blank^

x^*

s*

x^

y^*

s*

Majority Gate in an Origami

x^

y^*

s*

x^

y^*

s*

b^*

s*

y^

c^*

s*

y^

a^*

s*

z^

x^*

s*

blank^

x^*

s*

s

x^

y^*

s*

x^

y^*

s*

x^

y^*

s*

y^

c^*

s*

a^*

z^

x^*

s*

blank^

x^*

s*

x^

y^*

s*

b^*

s*

y^

c^*

s*

x^*

s*blank^

x^*

x^

y^*

s*

s

s

b^

y^

b^*

s

a^*

z^
s

s

x^

x^

Figure 3.3: DNA hairpin strand operation for localized majority gate with two inputs present

shown in Fig. 3.3. The inputs A and B open the corresponding input translator hairpins to

displace yˆs. These domains bind to the fuel strands F (Y,X), to open xˆs in both input

translators. As the propensity of reaction between input translator and threshold is greater,

the first xˆs domain binds to the threshold, to displace blankˆs. The second input translator,

with an open xˆs domain, can no longer react with the threshold. Hence, they will bind to

the output translator, and displaces zˆs, which is the output domain (output is high). A

similar operation can be observed, when all the three inputs are present (all the inputs are

high). The presence of first two inputs is enough to open the output domain zˆs.

43

H(A,Y)

H(B,Y)

H(C,Y)

H(X,-) H(X,Z)

a

b

c

d

e

f

+3xF(Y,X)

Figure 3.4: Abstract diagram of a three input majority gate with labels showing interaction

between hairpins

3.2.2: Simulation Results and Discussion

The proposed majority gate using DNA hairpins is written in a programming language

[66], implemented in the Visual DSD software [68], and simulated its operation for different

input combinations. An abstract diagram of the proposed three input majority gate is shown

in Fig. 3.4. The solid lines represent the possible reaction between the input translator

strands and the threshold strand; while the dotted lines represent the possible reaction

between the input translator strands and the output translator strand. The letters given

above these lines are the tag names, indicating the relative spatial arrangements of the

strands.

Each strand is associated with a set of tag names. A reaction is possible only between

two neighboring strands, which shares a common tag within an Origami substrate. It could

be noted that each input translator strand shares a common tag with the threshold strand

and the output translator strand. For the simulation, the local concentration of the tags,

connecting the input translator strands and the threshold strands (lc(a) = lc(b) = lc(c)) are

set to 10× 105nM . Similarly, the local concentration of the tags connecting the input trans-

44

Figure 3.5: Time courses for different input combinations in Visual DSD

lator strands and the output translator strand (lc(d) = lc(e) = lc(f)) are set to 1× 105nM .

A high local concentration indicates that the strands sharing those tags are physically more

close to each other. The propensities of reactions can be calculated by the formula given

in [69]:

p , k ×max(lc(a1), lc(a2),lc(an)) (3.4)

where k is the rate constant (the default DSD toehold bind rate constant is assumed to

be 3 × 10−4nM−1s−1), and a1, a2....an are the common location tags, associated with two

reacting strands, for a particular reaction, in an Origami substrate.

For a three input majority gate, the propensity of reaction between each input trans-

lator strand and the threshold strand is 300, and that of the input translator strand and

45

Figure 3.6: The final concentrations obtained for a three input majority gate for different

input combinations

output translator strand is 30. Therefore, the input translator strand is physically closer

to the threshold. Hence, the probability of a reaction between the input translator strand

and threshold strand is greater, compared to the probability of a reaction between the input

translator strand and the output translator strand. The visual DSD simulation traces ob-

tained for the three input majority gate with different input combinations are shown in Fig.

3.5. In this graph, different output waveforms are merged together and hence it is difficult

to differentiate between them. For more clarity, the final output concentration is given for

different input combinations in Fig. 3.6. It is evident that the output is high only when two

or more inputs are high. Logical AND and OR gates are also implemented from the three

input majority gate by selecting one input as either zero or one. This is also simulated in

Visual DSD.

46

The design of existing DNA three input majority gates can be found in [93,94]. The first

design [93] uses different types of input strands and have three AND and one OR operations.

The input and outputs are not uniform and hence the scaling up of the circuit is difficult.

Also, the number of strands used in the design is more compared to the proposed spatially

localized design. In the second design [94], a central circular DNA strand structure is used

to make a three input majority gate operation. This design is prone to the scaling up issues

such as the requirement of a large number of unique strands to avoid spurious reactions, and

limited speed of operation since all the molecules are diffused together. These issues could

be solved by using the new localized majority gate proposed in this chapter.

The DSD based circuits cannot produce a NOT operation, hence a dual-rail logic is

required. The designs available in the literature for scaling up of circuits concentrate on

dual-rail AND-OR circuits [6]. In a dual-rail circuit, one signal is represented by the signal

itself and its complement. For example, the signal A can be represented in dual-rail logic as

A1 = A and A0 = A. Majority gate is a good candidate for designing dual-rail circuits. The

majority gate is having the following property:

M(A,B,C) = M(A,B,C) (3.5)

In dual-rail logic, (A,B,C) can be represented by (A1, B1, C1), and (A,B,C) by (A0, B0, C0)

then:

M(A,B,C) = M(A1, B1, C1)

M(A,B,C) = M(A0, B0, C0) (3.6)

With the development of localized majority gate, it is possible in the future to design either

dual-rail majority logic or a dual-rail AND-OR-majority logic for complex circuits. Thus the

availability of majority gate will introduce more flexibility while designing complex circuits.

47

3.3: Spatially Localized Five Input Majority Gate

The spatial arrangement of hairpin structures can be used to implement different logical

operations. The design of AND gate and OR gate using the DNA hairpins can be found

in [7]. A majority gate gives a logical high output when the majority of its inputs are logical

high. The expression for a three input majority gate is given in eq. 3.1. Similarly, the

expression for a five input majority gate is given by:

M(A,B,C,D,E) = ABC + ABD + ABE + ACD

+ACE + ADE +BCD +BCE

+BDE + CDE (3.7)

The spatial arrangement of DNA hairpins in a DNA origami substrate for five input majority

logic is shown in Fig. 3.7. There are different strands used to design the majority logic

operation. These strands can be attached to the origami structure using the staple strands

as shown in Fig. 3.7. The functions of these strands are discussed below.

3.3.1: Input Strand

An input strand is a free floating single strand with a domain of the form aˆs. We can

call such a strand as input A. This strand will bind to its complement (aˆ∗) which is exposed

in an input translator hairpin. Similarly, four other strands are also present in this design.

They are bˆs, cˆs, dˆs, and eˆs which correspond to the inputs B, C, D and E, respectively.

3.3.2: Input Translator Hairpin Strand

The input translator is a DNA hairpin with one end anchored to an Origami substrate.

The tail end (toehold) of the input translator is exposed and can bind to its complement.

For example, an input translator hairpin H(A, Y) is having a domain aˆ∗ which is exposed

to react with its complement aˆ. Thus, when the input translator hairpin H(A, Y) reacts

48

s

a^

y^

b^*

s*
y^

c^*

s*

y^

a^*

s*

z^

x^*

s*

blank^

x^*

s*

x^

y^*

s*

Fuel F(Y,X)

Input

Majority Gate in an Origami

x^

y^*

s*

x^

y^*

s*

Threshold
Strand 2

H(X,blank)

Output
Translator

H(X,Z)

Input
Translator

H(A,Y)

y^

d^*

s*

y^

e^*

s*

blank^

x^*

s*

x^

y^*

s*

x^

y^*

s*

Threshold
Strand 1

H(X,blank)

Figure 3.7: The spatial arrangement of DNA strands for a five input majority gate

with an input aˆs, it displaces yˆs by a strand displacement process. Other input translator

hairpins used in the majority gate design are H(B, Y), H(C, Y), H(D, Y), and H(E, Y)

which will bind to inputs bˆs, cˆs, dˆs, and eˆs, respectively.

3.3.3: Fuel Strand

Fuel is a free floating hairpin strand and it is used as a connector between two anchored

hairpins in the neighborhood. Here, the fuel strand has the form F (Y,X); i.e., the fuel

strand will recognize a domain of the form yˆs and releases a domain xˆs. The domain xˆs

can then bind to a hairpin with an exposed xˆ∗, thus connecting the two anchored hairpins.

Five fuel strands, each corresponds to an input translator strand are used for a single five

input majority gate.

49

3.3.4: Threshold Strand

Threshold is a DNA hairpin which is anchored to the Origami substrate. The architecture

of a threshold DNA hairpin is similar to an input translator. A threshold strand is represented

as H(X, blank). This means that the threshold will bind to a domain xˆs, and displaces

a blank domain blankˆs which will not take part in any further reactions. There are two

threshold strands used for a five input majority logic operation.

3.3.5: Output Translator Strand

Output translator strand architecture is similar to an input translator strand and thresh-

old strand. The output translator is represented as H(X,Z). i.e., the output translator

will recognize a domain xˆs and displaces zˆs which is the output domain.

Let the distance between the input translator strands and threshold strands are:

Dit = {dat1 , dbt1 , dct1 , ddt1 , det1 ,

dat2 , dbt2 , dct2 , ddt2 , det2} (3.8)

where Dit is a set, which contains the distance (d) between each input translator strand and

the threshold strands. The subscripts represent the input translator strand (a, b, c, d, and e)

and the threshold number (t1 and t2). Similarly, the distance between the input translator

strands and output translator strand (Dio) is given by:

Dio = {dao, dbo, dco, ddo, deo} (3.9)

For the spatial arrangement of input translators, threshold strands and output translator to

act as a five input majority logic, the following condition should be satisfied.

{∀x ∈ Dit ∧ ∀y ∈ Dio : x < y} (3.10)

50

In other words, the distance between the input translator strands and threshold strands must

be less than the distance between the input translator strands and the output translator

strand.

Suppose, only one input strand (aˆs) is present. The input strand will bind to the

input translator with exposed aˆ∗, i.e., the input translator strand H(A, Y). This is a

strand displacement operation, and it will open the hairpin structure and displaces yˆs.

This operation is similar to that shown in Fig. 3.1. Further operations of yˆs are limited

to its neighboring strands and freely floating fuel strands. The freely floating fuel strands

F (Y,X) is having an exposed yˆ∗. Hence, the strand will bind to the fuel strand through

a strand displacement operation and open the fuel hairpin by displacing xˆs. It could be

noted that the strand is still attached to the Origami and further reactions are limited. Now,

the xˆs domain can either bind to the xˆ∗ of any one of the threshold strands H(X, blank)

or with the output translator strand H(X,Z). But the spatial arrangement is following the

condition given in eq. 3.10. The probability of a strand displacement reaction is more, when

the strands are close to each other [7]. Consequently, the opened xˆ∗ will binds to one of

the threshold strands and displaces the blankˆs. No further reaction is possible, and output

is not produced.

When the second signal (say, bˆs) arrives, it will bind to its corresponding input translator

strand (H(B, Y)) by opening yˆs. This domain will bind to the fuel and open xˆs. Since

one threshold strand is already occupied by the first input, the xˆs domain will bind to

the second threshold strand which is more close to the strand by opening blankˆs. Hence,

the output is not produced when two inputs are present. If the third input (cˆs) is also

present, then it will bind to the corresponding input translator strand (H(C, Y)) and opens

yˆs. This yˆs domain will bind to the freely floating fuel strand H(Y,X) and opens xˆs.

51

Since both the threshold strands are already bound to its complements, no threshold strand

is available for further reaction. Consequently, the xˆs will bind to the output translator

strand to displace zˆs. This is the output domain. The presence of the output domain can

be determined by using a reporter strand [6]. When more than three inputs are present,

they will also opens the yˆs domains from the corresponding input translator strands. But

there will not be any further reactions since there are no exposed toeholds in the threshold

strands and output translator strands. Thus, the five input majority logic gate architecture

produces an output, if there are three or more inputs are present.

The DSD based systems are always affected by some kind of leakage. This may be due to

the problems in synthesis such as improper selection of strands, and improper arrangement

of strands. Another major issue while using the hairpin strands is that there is a possibility

of unavoidable openings of helices. While practically implementing the circuit, there is also

chances of strand displacement to happen, even if the input is not present. Another source

of leakage is the possibility of input stuck at some place without producing output.

3.4: Simulation Results

3.4.1: Implementation of Five Input Majority Gate in Visual DSD

A language for representing DSD reactions was first developed by A. Phillips and L.

Cardelli in [66]. M. R. Lakin et. al. developed modified the programming language with

higher levels of molecular details [67]. A graphical interface called Visual DSD was developed

to implement the DSD programming language [68]. The Visual DSD tool uses stochastic

and deterministic models to simulate the DSD program. The concept of localization and

origami was later added to the Visual DSD tool [69].

The abstract diagram of the proposed five input majority gate is given in Fig. 3.8.

52

H(A,Y)

H(B,Y)

H(C,Y)H(X,-) H(X,Z1)

a

b

c

+5xF(Y,X)

H(D,Y)

H(E,Y)

H(X,-)

d

e

f

g

h

i

j

k

l

m

n

o

Figure 3.8: Abstract diagram of a five input majority gate

Here, H(A, Y), H(B, Y), H(C, Y), H(D, Y), and H(E, Y) are the input translator strands,

H(X,−) is the threshold strand, H(X,Z1) is the output translator strand, and F (Y,X)

is the fuel strand. The lines connecting two strands indicates that there is a possibility

of reaction between those two strands. (a, b,,m, n, o) are the location tags. While con-

verting this abstract diagram into a programming language, we use the location tags to

indicate the possible reaction between two strands. A reaction is possible only between two

neighboring strands sharing a common location tag. It could be noted that in our design,

each input translator strand shares a location tag with both threshold strands and output

translator strands. A set of neighboring strands attached to an Origami are represented

by using a keyword “tether(a1, a2.....an)”, where a1, a2....an are the location tags connect-

ing any two strands. For example, the input translator strand H(A, Y) can be represented

as “{tether(a, f, k) aˆ∗}[s]{yˆ >”. This means that the input translator strand H(A, Y)

can react with either any of the thresholds H(X,−), or with the output translator strand

H(X,Z1).

53

We know that the input translator strands are physically more close to the threshold

strands than to the output translator strands. To implement this spatial localization, the

local concentration of the location tags are defined. If the local concentration of a location

tag is high, then the strands corresponding to that location tag will be physically more close.

We choose the local concentrations:

Cit = {lc(a), lc(b),, lc(j)} (3.11)

and

Cio = {lc(k), lc(l),, lc(o)} (3.12)

Where Cit is set of local concentrations between input translator strands and threshold

strands. Similarly, Cio is the set of local concentrations between the input translator strands

and output translator strand. lc(location tag) represents the local concentration of a partic-

ular location tag. For designing a five input majority gate, the concentrations of the location

tags are selected in such a way that:

{∀x ∈ Cit ∧ ∀y ∈ Cio : x > y} (3.13)

The propensities of reaction between two strands can be calculated by the formula given

in [69]:

p , k ×max(lc(a1), lc(a2),lc(an)) (3.14)

where k is the DSD toehold bind rate constant and a1, a2...an are the location tags associated

with two reacting strands in an Origami, for a particular reaction. The propensities of

reaction calculated will be greater for the reaction between input translator strand and

threshold strand compared to that of input translator strand and output translator strand.

The abstract diagram shown in Fig. 3.8 is implemented in Visual DSD tool. We used a

“just in time” (JIT) compiler which runs a stochastic simulation for simulating the design.

54

Figure 3.9: The main reactions associated with a five input majority gate for three inputs

(A,B, and E)

The reactions taking place for three inputs (A,B, and E), is shown in Fig. 3.9. It could

be noted that an output domain z1s is produced, and it reacts with the reporter strand to

displace F1s.

The NOT operation is not possible with this method. Consequently, these logic gates

55

cannot perform as a universal logic gate. To solve this issue, a dual rail logic is proposed [6].

Instead of using AND-OR dual rail logic, an AND-OR-Majority logic could be used for

scaling up the circuit. Different functions can be realized using a single five input majority

gate [95]. Hence, the addition of a five input majority gate into the DNA digital design will

provide greater flexibility for the designer.

3.4.2: Circuit Design Using Majority Gates

Different functions can be realized from a single five input majority gate. Some of these

functions are given in Table. 3.2. Many other functions can also be implemented by cascading

two majority gates. Even though circuits can be realized using only AND and OR gates, a

simple architecture is possible using majority gates in most of the cases. For example, the

function F = W (X + Y + Z) +X(Y + Z) + Y Z requires 5 two input OR gates, and 3 two

input AND gates. The same function can be implemented using only one five input majority

gate as given in Table. 3.2. This reduces the complexity of the circuit and increases the

speed of operation.

The functions given in Table. 3.2 are not using any complement functions. If any

complement functions are present, then the design requires a dual rail majority logic. In a

dual rail operation, each input is represented by two bits. One bit is the original signal and

the other bit is the complement of the original signal. For example, a single bit input A, can

be represented by two bits, A0 = A and A1 = A. A majority gate is having the following

property:

M(A,B,C) = M(A,B,C) (3.15)

and for five input majority gate:

M(A,B,C,D,E) = M(A,B,C,D,E) (3.16)

56

Table 3.2: Different functions possible from five input majority gate

A B C D E Function

0 0 0 X Y 0

1 1 1 X Y 1

0 0 1 X Y XY

0 1 1 X Y X + Y

0 0 X Y Z XY Z

0 1 X Y Z XY + Y Z +XZ

1 1 X Y Z X + Y + Z

0 W X Y Z WX(Y + Z) + Y Z(W +X)

1 W X Y Z W (X + Y + Z) +X(Y + Z) + Y Z

For a dual rail operation, eq. (3.15) can be written as:

M(A,B,C) = M(A0, B0, C0) (3.17)

Similarly, eq. (3.16) can be written as:

M(A,B,C,D,E) = M(A0, B0, C0, D0, E0) (3.18)

Any circuits can be designed with the help of only majority gates. This is not a good idea

always. But there are certain functions, which can be realized using majority gates with less

complexity.

57

M3

M5

Cout

Sum

ABC

Figure 3.10: Circuit diagram of a full adder using majority gates

3.4.3: Case Study: Full Adder Design

A full adder is a circuit which is used to add three bits at a time. There are two outputs

for a full adder; one is Sum and other is Cout. If A,B, and C are the inputs, then the outputs

are given by:

Sum = A⊕B ⊕ C (3.19)

Cout = AB + AC +BC (3.20)

The same function can be represented using majority gate as follows:

Cout = M3(A,B,C) (3.21)

Sum = M5(Cout, Cout, A,B,C) (3.22)

Here, M3 and M5 are three input and five input majority gate respectively. The circuit

diagram of a full adder using majority gates is shown in Fig. 3.10. In order to implement

the circuit using spatially localized DNA hairpins, the circuit should be converted to a dual

58

M3

M5

Cout1

Sum1

A1 B1 C1

M3

A0 B0C0

Cout0

M5 Sum0

Figure 3.11: Dual rail implementation of full adder using majority gates

rail logic. The function for carry out given in eq. (3.21) can be re-written as:

Cout1 = M3(A1, B1, C1)

Cout0 = M3(A0, B0, C0) (3.23)

Similarly, the function for sum can be written as:

Sum1 = M5(Cout0, Cout0, A1, B1, C1)

Sum0 = M5(Cout1, Cout1, A0, B0, C0) (3.24)

The dual rail implementation of full adder circuit using majority gates is shown in Fig.

3.11. Now, the circuit can be implemented using spatially localized DNA hairpins. While

implementing the circuit, we have to use 2 three input majority gates, 2 five input majority

gates, and fan-out gates. The full adder diagram given in [7] uses 9 AND gates, 8 fan-out

gates and one OR gates. It also requires some wire crossing. The abstract diagram of the

full adder circuit using majority gate is shown in Fig. 3.12. In this circuit, we require 2 three

59

H(X,Y)

H(X,Y)

H(A0,Y)H(X,-) H(X,Y)

F(Y,X)+F(ZI,J)+F(J,I)

H(X,-)

H(B0,Y)

H(C0,Y)

H(X,ZI) H(I,Sum0)

H(X,ZI)

H(I,Y)

H(X,Y)

H(X,ZI) H(I,Y)

H(X,ZI)

H(I,Cout1)

H(A1,Y)

H(B1,Y)

H(C1,Y)

H(X,-)

H(X,Y)

H(X,Y)

H(A1,Y)H(X,-) H(X,Y)H(X,-)

H(B1,Y)

H(C1,Y)

H(X,ZI) H(I,Sum1)

H(X,ZI)

H(I,Y)

H(X,Y)

H(X,ZI) H(I,Y)

H(X,ZI)

H(I,Cout0)

H(A0,Y)

H(B0,Y)

H(C0,Y)

H(X,-)

Figure 3.12: Abstract diagram showing strands of full adder circuit using majority gates

input majority gate, 4 fan-out gates, and 2 five input majority gate. This design does not

require any additional wire crossing also.

Even though different logical circuits can be designed by using spatially localized DNA

hairpins, the experimental validation is still an issue. The complexity increases while simu-

lating large circuits with spatially localized architecture, since the accurate domain lengths

and strand spacings are critical to obtain the desired functionalities. The experimental de-

sign may also produce some spurious reactions, which may be due to the errors in DNA

synthesis, errors in parameter design, etc.

3.4.4: Design of an n-Input Majority Gate

The method used in this chapter can be extended to design any majority gate. For an

n-input majority gate, n should be an odd integer greater than one. It requires n input

60

translator strands for its operation. The number of threshold strands (k) required is given

by:

k =
n− 1

2
(3.25)

We can define the set of distances between the input translator strands and threshold strands

is given by:

Dit = {di1t1 , di2t1 ,, dint1 ,

di1t2 , di2t2 ,, dint2 ,

.............................

di1tk , di2tk ,, dintk} (3.26)

where, i1, i2.....in represents the input translator strands, t1, t2,tk represents the threshold

strands, and d is the distance. Similarly, the set of distances between input translator strands

and output translator strands can be defined by:

Dio = {di1o, di2o,, dino} (3.27)

Here, the subscript o is used to indicate the output translator strand. Now, the condition for

the spatial arrangement of n-input translator strands, k-threshold strands, and one output

translator strands to functions as an n-input majority gate is given by:

{∀x ∈ Dit ∧ ∀y ∈ Dio : x < y} (3.28)

Even though the condition for designing an n-input majority gate is simple, the practical

implementation is very difficult. The parameters such as domain length and strand spacing

are critical while doing simulation and experimental validation. The complexity of the circuit

also increases with the increase in the number of inputs.

61

The design presented in this chapter is a simulation model. The experimental validation

is still a challenge. However, Muscat et al. were able to implement the translation operation

with a three step transmission line. There are many system parameters such as sequence

design, physical positioning of the strands, the length of the domains, etc., which will play

an important role while experimentally implementing the proposed circuit [7].

3.5: Conclusion

DNA is considered as a possible candidate for designing future implantable medical de-

vices. A novel five input and five input majority logic gates using spatially localized DNA

hairpins is proposed in this chapter. The spatial localization helps the designer to reuse

the same strands while scaling up the circuit. The architecture of the proposed logic gates

is explained by giving different input combinations. The majority circuits are simulated in

Visual DSD software. The conversion of the abstract diagram into a programming language

is also explained with necessary equations and diagrams. The flexibility that can be provided

by the addition of a new five input majority logic gate is also discussed. A full adder circuit

is developed using majority gates and also gave a general condition for designing an n-input

majority gate using spatially localized DNA hairpin strands. We also discussed the issues

for simulation and experimental validation of large complex circuits.

62

CHAPTER 4: DNA STRAND DISPLACEMENT BASED
INVERTER LOGIC GATE

4.1: Introduction

The advancements in nanotechnology are paving the way for building the bio-compatible

molecular devices in-vivo or in-vitro. Deoxyribonucleic acid (DNA) is considered as a suitable

candidate for building such devices because of the small size, weight, bio-compatibility, and

programmability. The computational power of DNA was first explored by Adleman in [24].

Different circuits were developed using the DNA strands since then. All these circuits are

working on the basis of the toehold mediated DNA strand displacement (DSD) operation.

Similar to silicon transistor in a conventional digital computing device, the DNA strands can

be used as the basic building blocks of a DNA computing device.

Enzyme-free DNA logic gates such as AND, OR, and Majority gates are already available

in the literature [5–7, 45, 53, 93, 94]. Among these logic gate designs, all of them are not

suitable for the design of large complex circuits. A brief review of all the scalable digital

DNA designs is given in [52]. Digital circuits made up of DNA strands can be used in

nano-machines and devices such as DNA nano-robots [22, 96, 97]. Presently, most of these

logic gate circuits lack the logic inverter or NOT operation. Hence, a dual-rail AND-OR or

AND-OR-Majority logic is considered for the scaling up of the digital circuits in such DNA

circuits. In this research letter, we are introducing a new logic inverter gate or NOT gate

design using enzyme-free DSD operations. The use of DNA logic gate inverters in a circuit

will reduce the number of unique strands required for that circuit into approximately half.

A modular design of DNA subtraction operation is used for the design of the logic inverter

gate.

63

4.2: DNA Inverter Gate Design

The basic operation associated with any enzyme-free DNA circuit is the toehold mediated

strand displacement operation. The DNA inverter can be developed from the subtraction

gate proposed by Song et al. in [84], by treating the second input as a constant. The subtrac-

tion operation given in [84] is not having modularity property. Here, the second input itself

is acting as the output of the subtraction gate. If a circuit is connected to this subtraction

gate directly, then the input may get consumed before the inversion operation, and it may

lead to inaccurate results. To make the subtraction operation modular, a switching circuit

called gate enable is used. The gate enable can be considered as an electrical relay switch,

which passes the signal when a control signal is present. The control signal is generated by

the delay circuit [91]. The delay is programmable and hence, this control signal can be used

to control the inversion operations in different levels. Such a subtraction gate is shown in

Fig. 4.1. The DNA strands in the figure are drawn using Visual DSD software [68].

The standard concentration of the inverter gate is considered as rmin. The input (Iinv)

to the subtraction gate is a single-stranded DNA (ssDNA). The concentration of the DNA

strand is considered as the signal. If the concentration is in the range (0, 0.2 × rinv), then

the signal can be considered as a logic low. Similarly, if the input concentration is in the

range (0.8× rinv, rinv), then the signal can be considered as a logic high. The DNA strands

used in the logic inverter gate design (Ds and Gs) are similar to that given in [84] for the

subtraction gate. The initial concentration of Ds and Gs is set at rinv. The second input in

this subtraction operation IS is kept constant at logic high (rinv) such that Iinv ≤ IS. The

DNA reactions associated with the subtraction operation are reaction 3, 4, and 5 given in

Fig. 4.2.

The output of the subtracting gate is the equilibrium concentration of the second input

64

Figure 4.1: Block diagram of the proposed DNA Inverter

IS. Hence, this subtracting gate is not modular. A delayed signal with a gate enable switch

will make the subtraction gate into modular. The delayed signal is produced from a delay

gate which uses an initiator (ID), a source (S), and a delay (D) strand [91]. The DNA

reactions associated with the delay gate are reaction 1 and 2 in Fig. 4.2. Reaction 1 is

having a very small rate constant. The sp13 strand produced from the reaction 1 bind to the

D strand to produce two waste strands (sp23 and sp24). This reaction (reaction 2) is a faster

reaction, and the D strand fully gets consumed by the sp13 strand. When the concentration

of the D strand becomes zero, the sp13 signal can react with the GE strand and switch the

gate enable to allow further reactions. The concentration of the D strand determines the

delay of the signal sp13 to reach the GE strand. The delay is chosen in such a way that

the subtraction operation is completed and the output of the subtraction operation is at

equilibrium. The concentration of the initiator strand (ID) and source strand (S) are very

65

Figure 4.2: The DNA reactions associated with the DNA Inverter

high (approximately 1000× rinv).

The sp13 strand reacts with the GE strand to produce sp26 which can further react

with the output of the subtraction gate. The GE strand prevents the subtraction gate

output from reacting with the next level DNA strands until the subtraction operation is

completed. Reaction 6 and 7 in Fig. 4.2 represents the gate enable operation. The initial

concentration of GE is also set at rinv. The next level in the inverter design is a seesaw gate

motif [5, 6], which consists of a threshold strand (Th), a gate strand (G) and a fuel strand

(F). The detailed description of the seesaw gate motif operation can be found in [5,6]. The

concentration of G and F are set to rinv, and that of threshold gate is set to 0.5× rinv. The

seesaw gate operation consists of reaction 8, 9 and 10. The output from the seesaw gate is

the strand sp36. This strand is further reacted with the reporter strand (R) to produce the

66

Figure 4.3: Simulation results of the proposed DNA Inverter

output signal Oinv. This reaction is given in Fig. 4.2 as reaction 11.

4.3: Simulation Results and Discussion

The proposed DSD based circuits are implemented in visual DSD software using the

programming language developed by Phillips and Cardelli [66]. The standard concentration

rinv of the design is selected as 50nM (1× = 50nM). 0.2× is considered as a logic low and

0.8× is considered as logic high. The toehold domain (t) is having a toehold dissociation rate

constant of 26s−1 and a toehold binding rate constant of 5×10−5nM−1s−1. The reaction rate

constant of the slow reaction in the delay gate (reaction 1 in Fig. 4.2) is 3.6nM/hour. The

initial concentration of the initiator strand (ID) and the source strand (S) are set at 1000×rinv

to produce a delay of approximately 1× 104 seconds for a 30nM concentration of the delay

67

Figure 4.4: Full adder circuit using majority gates and inverter

strand (D). The delay time linearly increases with increase in the initial concentration of

the D strand [91]. A MATLAB file is generated from the visual DSD software, and the

simulations are performed in MATLAB. The concentration of the inverter output strand

(Oinv) is observed for input (Iinv) logic low (0.2×) and logic high (0.8×) conditions and it is

shown in Fig. 4.3.

In order to check the modular property of the proposed inverter gate, we use the logic

inverter gate in the design of a full adder. The full adder takes three inputs, x, y, and z and

produces the sum (S) and carry (Cout) outputs:

S = x⊕ y ⊕ z (4.1)

Cout = xy + yz + xz (4.2)

These functions can be implemented using a three input majority gate (M3), a five input

majority gate (M5), and an inverter [98] as shown in Fig. 4.4. The abstract diagram of the

full adder seesaw circuit is shown in Fig. 4.5. Here, the three input majority gate is designed

by selecting the threshold as 1.4× and five input majority gate by selecting threshold as

2.8×. The control signal with a switch in the diagram indicates the gate enable operation.

68

Figure 4.5: Full adder abstract diagram using seesaw gates and inverter gate with gate enable

Subtraction operation is represented by a subtraction gate symbol as given in [84].

The simulation of full adder circuit using majority gates and inverter gate for different

input combinations is shown in Fig. 4.6. It can be noted that the Cout response is faster

compared to the S response. This is due to that fact that, the S output is a function of Cout.

We can observe a faster response for S, when x = 1, y = 1 and z = 1, since the Cout has no

effect in this particular case, and hence, no extra delay in the output.

The modular design approach proposed in this letter is not limited to digital designs.

It can also be used with the analog circuits [84] for the modular designs of the subtraction

gate. The proposed method can reduce the number of unique strands required for the seesaw

DNA digital design into approximately half by removing the dual rail design.

69

Table 4.1: Abstract diagram for the 16 basic Boolean expressions with two variables

Boolean Function Name Abstract diagram

F0 = 0 Null

F1 = xy AND

-0.2
1

2

F

-0.2
1

2

F

x

y

2 -1.4 1
2

F

F1

F2 = xy′ Inhibition

-0.2
1

2

F

-0.2
1

2

F

x

y

2 -1.4 1
2

F

F2

Control Signal

1 -0.5 1
2

F

F3 = x Transfer

-0.2 1

2

F

x F3

F4 = x′y Inhibition

-0.2
1

2

F

-0.2
1

2

F

y

x

2 -1.4 1
2

F

F4

Control Signal

1 -0.5 1
2

F

F5 = y Transfer

-0.2 1

2

F

y F5

F6 = xy′ + x′y Exclusive-OR

-0.2

F

-0.2
1

4

F

x

y

2 -1.4 1
2

F

F6Control Signal

1
-0.5 1

2

F

1

1

4
1

2 -1.4 1
2

F

Control Signal

1 -0.5 1
2

F

2 -0.6 1
2

F

F7 = x+ y OR

-0.2
1

2

F

-0.2
1

2

F

x

y

2 -0.6 1
2

F

F7

70

Table 4.1 continued from previous page

F8 = (x+ y)′ NOR

-0.2
1

2

F

-0.2
1

2

F

x

y

2 -0.6 1
2

F

Control Signal

1 -0.5 1
2

F

F8

F9 = xy + x′y′ Equivalence

-0.2

F

-0.2
1

4

F

x

y

2 -1.4 1
2

F

F9Control Signal

1
-0.5 1

2

F

1

1

4
1

2 -1.4 1
2

F

Control Signal

1 -0.5 1
2

F

2 -0.6 1
2

F

F10 = y′ Complement
-0.2

1

2

F

y

Control Signal

1 -0.5 1
2

F

F10

F11 = x+ y′ Implication

-0.2
1

2

F

-0.2
1

2

F

x

y

2 -0.6 1
2

F

F11

Control Signal

1 -0.5 1
2

F

F12 = x′ Complement
-0.2

1

2

F

x

Control Signal

1 -0.5 1
2

F

F12

F13 = x′ + y Implication

-0.2
1

2

F

-0.2
1

2

F

y

x

2 -0.6 1
2

F

F13

Control Signal

1 -0.5 1
2

F

F14 = (xy)′ NAND

-0.2
1

2

F

-0.2
1

2

F

x

y

2 -1.4 1
2

F

Control Signal

1 -0.5 1
2

F

F14

F15 = 1 Identity

The abstract diagram for the 16 basic Boolean expression with two variables are shown

in Table. 4.1. Here, we are limiting the designs to two variables. This can be expanded to

functions with any number of input variables. The abstract diagrams shown in the Table.

4.1 are not the optimum circuits, but a direct representation of the function using AND, OR,

71

and NOT gates. For larger circuits further simplification is possible by designing the circuits

with threshold logic gates, and inverters. Further optimization in the number of strands can

be achieved by optimizing the number of NOT gates in the circuit. The design of such a

synthesis tool is problem for future research. The reduction in the number of inputs in the

circuit is another major advantage of circuits with NOT logic gate. For instance, if we are

designing a Boolean function with two variables in dual rail logic, we need four inputs. The

conversion of the inputs and output into the dual rail mode is another major burden for the

circuit since the inputs are in a mono-rail mode in the practical scenario. Often additional

circuitry is required for this conversion.

4.4: Conclusion

A logic inverter gate using DSD operation is proposed in this chapter. A gate enable

switch which operates on a control signal from a delay circuit is employed to make the

circuit modular. Approximately, 50% reduction in number of DNA strands required for the

DNA circuit design can be achieved by using the proposed approach. The logic inverter

gate is modular and is capable of using anywhere in the circuit. The modularity property

of the proposed logic inverter gate is tested by designing a full adder circuit. The proposed

gate-enable operation proposed in this work can be used in analog circuits to give them the

modular property.

72

Figure 4.6: Full adder simulation results for different input combinations

73

CHAPTER 5: DNA STRAND DISPLACEMENT BASED
FUZZY INFERENCE ENGINE

5.1: Introduction

Conventional computing devices are made up of electronic circuits. Electronic circuits

have many notable merits such as high-speed operation, a higher degree of automation,

higher precision, higher complexity, etc. The bio-medical devices currently available in the

market are also using some kind of electronic circuitry for their operation. There are some

other situations where the electronic circuits cannot be used. In such situations, computa-

tional systems with biological mechanisms are preferred. Consider a targeted drug delivery

system, which searches for biomarkers of cancer and delivers the drug to the particular cell

affected by cancer [99]. Here, a bio-compatible device which is purely made up of biological

components is required to perform the task. Deoxyribonucleic Acid (DNA) is considered as a

suitable candidate for designing nanostructures and circuits for future medical applications.

Translators can be used to convert the bio-markers to nucleic acid strands [21]. The struc-

ture, size, programmability and bio-compatibility of DNA are the main characteristics which

make them a suitable candidate for such designs. The computing power of DNA was first

explored by Adleman in his famous seven city Hamiltonian path problem [24]. The Watson-

Crick base pairing which exists in nucleic acids, make their operations more predictable, and

hence easily programmable to carry out different operations [20]. A survey of recent devel-

opments in the field of nucleic acid based devices can be found in [100]. The nucleic acid

based computations available in the literature uses either an enzyme based or an enzyme-free

platform [60]. In an enzyme-based platform, the operation is driven by enzyme-biocatalyzed

reactions [58, 101]. On the other hand, the enzyme-free systems use the base pairing prin-

ciple for hybridization proposed by Watson and Crick [20] for their operation. Studies are

74

available in the literature which investigates the thermodynamics of DNA motifs [29].

Most of the enzyme-free systems work on the basis of a toehold mediated DNA strand

displacement (DSD) operation. These circuits can be broadly classified into digital and

analog circuits. Digital circuits which will perform basic logic operations such as AND,

OR, Majority, and other functions using these basic logic operations are available in the

literature [1, 2, 6, 7, 45, 52, 53, 93]. The analog circuits require fewer resources and are more

efficient compared to their digital counterparts in a biological perspective [70]. A fixed gain

amplifier and linear classifier circuit using DNA strands were developed by Zhang and Seelig

in reference [78]. Analog arithmetic circuits [84] and control circuits [36, 87, 89, 102] which

uses DSD operation is also available in the literature. With the recent developments in

the implantable medical devices, targeted drug delivery systems, bio-nanorobots etc. [22,96,

103,104], the development of control and decision-making systems in the bio-molecular level

using bio-compatible materials becomes a necessity. Currently, the decision-making process

is primarily carried out using digital logic circuits and some chemical controllers. Analog

DNA circuits can provide a more precise real-time control, compared to purely digital control.

The analog computational models could be a complex mathematical model or a rule-

based model. The fuzzy logic approach is a popular technique for designing decision-making

systems based on human expert knowledge. The human expert knowledge is implemented in

a fuzzy system as a set of rules defined in the linguistic form. The biological data is generally

noisy and imprecise, hence, fuzzy logic is more suitable for bio-medical applications [105–107].

For example, the exact protein interaction data may be difficult to define mathematically,

but it could be easily defined by a set of rules in linguistic form with the help of a human

expert. Another example could be a “DNA Doctor” [108], where the system will make

some decision on the amount of drug to be delivered based on the concentration of different

75

mRNAs. The fuzzy based models can be either used to predict the output or to control the

output.

In this research, we are proposing an analog fan-out gate, minimum gate, and maximum

gate using enzyme-free DSD operations. We further used these analog gates to implement

the basic fuzzy operations such as fuzzy intersection, and fuzzy union. These fuzzy operators

are further used to develop a Mamdani fuzzy inference engine which produces a fuzzy output,

from a set of fuzzy inputs, based on a set of predefined rules. As far as our knowledge, no

fuzzy inference circuit is available in the literature which uses enzyme-free DSD operations.

5.2: Minimum and Maximum Functions Using DNA

5.2.1: Basic Concepts

There are some basic concepts associated with all the analog circuits such as input range,

and valid output range. Input range can be defined as the range in which the inputs of a gate

will give results within the required precision. Similarly, the valid output range is the range

of the output of the analog gate within which it is considered correct. The performance

of the analog gate can be expressed in terms of the time in which the output reaches the

valid output range and stays within this range. The DNA strands used in the figures in this

chapter are taken from the Visual DSD software [68] simulation. The syntax for representing

DNA strands are based on the programming language rules for DSD operated devices [66,67].

In our designs, the concentration of the single stranded DNA (ssDNA) is considered as the

signal.

5.2.2: Minimum Gate

A minimum gate computes the minimum between two input signals. Consider the DNA

design of the minimum gate given in Fig. 5.1. Here, i1 and i2 represents the input strands,

76

M1

M2

M

i2

i1

Figure 5.1: DNA design of minimum gate

M represents the minimum gate in which there are two DNA strands M1 and M2. The t

domains are the toehold and Xi domains are the branch migration domains. The initial

concentrations of the input species [i1]0 and [i2]0 are the two input signals to the minimum

gate.

Consider that the input range of the minimum gate is (0, rmin). Hence, [i1]0, [i2]0 ∈

(0, rmin). The initial concentration of the chemical species M is set to rmin. i.e., [M1]0 =

[M2]0 = rmin. The output of the minimum gate is Omin which is the strand < X2 t∧ X3 >

(5′ to 3′ direction) in the figure. The ∧ symbol is used to differentiate the toehold domain

from the branch migration domains [67]. The concentration of Omin at equilibrium will give

the minimum of [i1]0 and [i2]0. Hence,

[Omin]∞ = min([i1]0, [i2]0) (5.1)

where, [Omin]∞ and min() represents the concentration of the output strand at equilibrium

and minimum function, respectively.

The DNA reaction diagram of the minimum gate is shown in Fig. 5.2. Each reaction

in this diagram is given with a number. The DNA strands inside the bold boxes are the

reactants initially used (which are available in Fig. 5.1). The DNA strands at the end of the

77

M1 i1

1

2

3

i2

4

Omin

5

M2

sp5

sp6
sp10

sp7

sp8

sp11
sp12

Figure 5.2: DNA reaction diagrams in the minimum gate

gray line with arrows indicate the products of forward reaction while those at the end of the

black arrow indicate the products of the backward reaction. The DNA strands/complexes

with edges without arrow represents the reactants.

Ideally, i1 will bind to M1 to produce sp6 and sp10 as shown in reaction 1 and 2 in Fig.

5.2. If i2 is not present, then the whole i1 will be consumed to produce sp6 and sp10. The

78

equilibrium concentration of sp6 will be equal to [i1]0 in this case. If i2 is not present then

there will not be any further reactions and no Omin is produced.

Now consider [i1]0 ≥ [i2]0. In this case also, the reaction 1 and 2 will occur and produce

sp6 and sp10. The input i2 will be consumed by the sp6 to produce sp8 and Omin. The sp8

will further react with M2 to produce sp11 and sp12 by preventing the backward reaction.

Therefore, the concentration of Omin at equilibrium will be equal to the initial concentration

of i2. i.e., [Omin]∞ = min([i1]0, [i2]0) = [i2]0. If [i1]0 < [i2]0, the sp6 concentration will not

exceed [i1]0, hence, the whole of the i2 will not react with sp6. The equilibrium concentration

of Omin in this case will be equal to [i1]0. i.e., [Omin]∞ = min([i1]0, [i2]0) = [i1]0.

Minimum Gate as Subtraction Gate

It is interesting to note that the minimum gate can act as a subtraction gate when i2 is

considered as the output. Consider that [i1]0 < [i2]0, in this case, the whole i1 will react with

M1 to produce sp6 whose equilibrium concentration will be equal to [i1]0. The i2 will bind

to sp6 such that there [sp6]∞ is zero. Therefore, the equilibrium concentration of i2 will be

[i2]∞ = [i2]0− [i1]0. The subtraction operation is valid only when [i1]0 ≤ [i2]0. If [i1]0 > [i2]0,

then i2 will fully react with sp6 and [i2]∞ will be zero in that case.

5.2.3: Fan-out Gate

A fan-out gate produces multiple output signals from a single input. The DNA implemen-

tation of a fan-out gate which gives two outputs is shown in Fig. 5.3. The input strand (i1)

and output strands (Of1 and Of2) are ssDNAs. Here, F is the fan-out gate which contains

the DNA strands F1 and F2. The initial concentration of input strand [i1]0 is considered as

the input signal for the fan-out gate. The input range of the fan-out gate is (0, rf). The

initial concentration of the fan-out gate is set to rf . Thus, [F1]0 = [F2]0 = rf . The outputs

79

F

i1

F1

F2

Figure 5.3: DNA design of fan-out gate

of the fan-out gate are the concentration of Of1 and Of2. Under equilibrium,

[Of1]∞ = [Of2]∞ = [i1]0 (5.2)

The DNA reaction diagram of the fan-out gate is shown in Fig. 5.4. Each reaction in

the figure is assigned a number. The initially available DNA strands F1, F2, and i1 are

given in bold boxes. The input DNA strand i1 first reacts with F1 to produce sp7 and an

output strand Of1. Now, sp7 will further react with F2 to produce sp8 and the second

output Of2. The sp8 thus produced does not have any exposed toehold and consequently,

no further reactions will occur. Since the initial concentration of F1 and F2 are greater than

the initial concentration of i1, the whole of the i1 will be consumed to produce Of1 and

Of2. Here, the fan-out gate is producing two outputs and hence the gate is said to have

a fan-out of two. The same method can be extended to produce a fan-out of 3 by using

F1, F2 and F3 as shown in Fig. 5.5. The outputs will be < X1 t∧ X4 >,< X2 t∧ X5 >,

and < X3 t∧ X6 >. In a similar way, this method can be extended to produce a fan-

out of n by using n DNA strands (F1, F2, ...Fn) in the fan-out gate, where, F1 is given by

{t∧∗}[X1 t
∧] < Xn+1 >: [X2 t

∧] < Xn+2 >:[Xn t
∧] < X2n >, for 2 ≤ i < n, Fi is given by

80

F1 i1

1

2

F2
3

Of1

Of2

sp6

sp7

sp8

Figure 5.4: DNA reaction diagrams in the fan-out gate

< t∧ Xi > and Fn is of the form < t∧ Xn t
∧ >.

5.2.4: Maximum Gate

The maximum gate will provide the maximum of the inputs applied to the gate as output.

The maximum of two inputs A and B can be given by:

max(A,B) = (A+B)−min(A,B) (5.3)

81

F

i1

F1

F2 F3

Figure 5.5: DNA design of fan-out gate with a fan-out of 3

Fan-out gate 1

Fan-out gate 2

Addition gate

Minimum Gate

Subtraction Gate

Input i1

Input i2

Output Omax

A1

A2

Figure 5.6: Block diagram of the proposed maximum gate

The maximum gate based on DSD operation consists of two fan-out gates, one minimum

gate, one adder gate, and one subtraction gate. The block diagram of the proposed maximum

gate is shown in Fig. 5.6. The minimum gate and the fan-out gates proposed in this chapter

are having a modular design, i.e, the output of one gate can be used as an input to another

gate. However, the subtraction gate does not have the modular property. For this reason,

the maximum gate should be made in such a way that the subtraction operation should

82

be the last operation in the circuit. The initial concentration of the fan-out gates and the

minimum gate is set at rf = rmin = r, and the initial concentration of adder ra should be

greater than or equal to 2× r. Similarly, the initial concentration of the subtraction gate in

the circuit should also be greater than or equal to 2× r.

The inputs i1 and i2 are given to the fan-out gate 1 and 2, respectively. The fan-out gates

used in this design are having a fan-out of two. The fan-out gate 1 outputs < X2 t∧ X4 >

and < X1 t∧ X3 > are going as input to the A1 block of addition gate and minimum gate,

respectively. Similarly, the second fan-out gate produces two outputs < X6 t∧ X8 > and

< X5 t∧ X7 >, and they are given as input to the A2 block of addition gate and the minimum

gate, respectively. The addition gate [84] consists of two blocks A1 and A2. The first input

< X2 t∧ X4 > reacts with the A1 block to produce < X12 t∧ X11 > with a concentration

equivalent to the concentration of the input < X2 t∧ X4 > i.e., concentration of i1. Similarly,

the second input < X6 t∧ X8 > react with the A2 block of the addition gate to produce

< X12 t∧ X11 > with a concentration equivalent to < X6 t∧ X8 > i.e., concentration

of i2. Now, the concentration of < X12 t∧ X11 > produced will be equal to the sum of

concentrations of the inputs i1 and i2. The minimum gate will react with < X1 t∧ X3 >

(having concentration equal to [i1]) and < X5 t∧ X7 > (having concentration equal to [i2]) to

produce an output strand < X7 t∧ X9 > whose concentration will be equal to the minimum

of two inputs [i1] and [i2]. Now, the subtraction gate takes < X7 t∧ X9 > as the first input

and < X12 t∧ X11 > as the second input. The second input is considered as the output of

a subtraction gate. Hence, the equilibrium concentration of the output strand Omax is given

83

Fuzzification
Fuzzy

Inference
Engine

Defuzzification

Crisp
inputs

Fuzzy
inputs

Fuzzy
output

Crisp
output

Fuzzy Rule Base

Figure 5.7: Architecture of fuzzy expert system

by:

[Omax]∞ = ([i1]0 + [i2]0)−min([i1]0, [i2]0)

= max([i1]0, [i2]0) (5.4)

Some of the properties of the minimum and maximum functions can be found in [109].

The minimum and maximum functions are very strong mathematical operators for many

non-linear systems. One of such systems which uses the minimum and maximum operators

is the fuzzy inference engine.

5.3: Fuzzy Logic

Fuzzy set theory was first proposed by Zadeh in 1965 [110]. Fuzzy logic is a heuristic

approach in which there is a non-linear mapping of input attributes to output, which is

possible by defining a set of rules. As compared to the Boolean logic, a smooth transition

from true to false is possible in fuzzy logic.

5.3.1: Modeling of Fuzzy Expert System

The fuzzy expert system is based on if-then rules and fuzzy reasoning. The block diagram

of a fuzzy expert system is given in Fig. 5.7. It consists of a fuzzification block, an inference

84

engine which acts on the fuzzy rule base, and a defuzzification block. The fuzzification block

converts the crisp input into a fuzzy input (membership and degree of membership). Let X

be the universe of discourse, then a fuzzy set A, on X is defined by:

A = {(x, µA(x)) | x ∈ X} (5.5)

where, µA(x) is the membership function (MF) for the fuzzy set A i.e., the degree to which

the input x has the property A. The MF maps each element of X to a membership value

between 0 and 1. The shape of the MF can be triangular, trapezoidal, Gaussian, etc. [111].

Linguistic variables can be used to represent these properties. For example, if the height of

a patient is considered as the input, then the linguistic variables could be very short, short,

medium, tall, and very tall. If we say that ‘the patient’s height is short’, this could be true to

some degree between 0% to 100%, where 0% indicates non-membership and 100% indicates

full membership. For example, ‘The grade of membership of the patient’s height being short

is 0.8’ indicates that the probability that the patient would be considered as short is 0.8.

The fuzzy input generated from the fuzzifier is then sent to an inference engine. The

inference is created using the fuzzy logic operators. Similar to the Boolean logic, a fuzzy

AND and OR logic operations can be used to define the rules [112, 113]. The Zadeh fuzzy

logic AND operation (fuzzy intersection operation) is given by:

µA∩B(x) = min(µA(x), µB(x)) (5.6)

where min() is the minimum operator, and µA(x) and µB(x) are the degrees of memberships

corresponding to fuzzy sets A and B for an input x. Similarly, the Zadeh fuzzy logic OR

operation (fuzzy union operation) is defined as:

µA∪B(x) = max(µA(x), µB(x)) (5.7)

85

where max() is the maximum operator.

A fuzzy logic system can be considered as an expert system which operates on a set of

rules [114]. Rules are some conditional statements which link the inputs and output. The rule

base uses if-then conditions. The fuzzy inference system may be a Mamdani fuzzy inference

system which uses the minimum and maximum operators [115, 116], or a Takagi-Sugeno

fuzzy inference system which uses a weighted linear combination of crisp inputs [117, 118].

The Mamdani fuzzy inference engine takes fuzzy inputs and produces fuzzy output based

on the pre-defined rules. On the other hand, Takagi-Sugeno fuzzy inference system takes

fuzzy inputs and produces crisp outputs. The Mamdani model requires a defuzzification

block to convert the membership degrees of fuzzy output to a real value. There are different

defuzzification methods available in the literature [119]. In this chapter, we are designing a

DSD based Mamdani fuzzy inference using the minimum and maximum operators.

5.3.2: DNA Implementation of Mamdani Fuzzy Inference

The Mamdani fuzzy inference engine takes fuzzy inputs and produces a fuzzy output

based on a pre-defined set of rules. For the DNA implementation of the Mamdani fuzzy

inference, we assume that the fuzzy inputs are already available. The different DNA strands

can be used as the different memberships and the concentration of these DNA strands can

be considered as the degree of membership. The DNA circuit can be designed based on the

rule set. The minimum gate discussed in this chapter have a modular design, hence they

can be connected in cascades to implement the rules.

Consider a system which has two inputs (x and y) and one output (f). For simplicity,

we assume that the inputs and output are having two membership functions (low and high).

The following rules are considered for the DNA fuzzy inference engine:

86

Rule 1: If x is low and y is low, then f is low

Rule 2: If x is low and y is high, then f is high

Rule 3: If x is high and y is low, then f is high

Rule 4: If x is high and y is high, then f is low

From these rules, it can be seen that the output f is low for Rule 1 and Rule 4. Hence, these

two conditions can be combined with OR logic. Similarly, the Rule 2 and 4 can be combined

using OR logic to define the high condition of the output. Therefore, we can define the MFs

for output as:

µlow(f) = max(min(µlow(x), µlow(y)),

min(µhigh(x), µhigh(y))) (5.8)

µhigh(f) = max(min(µlow(x), µhigh(y)),

min(µhigh(x), µlow(y))) (5.9)

where, µlow(x), µlow(y), and µlow(f) corresponds to the degree of membership for the fuzzy

set low for input x, y, and output f , respectively. Similarly, µhigh(x), µhigh(y), and µhigh(f)

correspond to the degree of membership for the fuzzy set high for input x, y, and output f ,

respectively. The expressions given in eq. (5.8) and eq. (5.9) are using only the minimum

and maximum operations and correspondingly, it can be implemented using DNA minimum

and maximum gates. This fuzzy inference could be considered as a system which checks

the similarity between two inputs concentration. The system will produce a high output

when the inputs are not equal and produce a low output when the inputs are similar. These

conditions are very similar to well known exclusive-OR logic gate, which has got a variety

of applications. It could be noted that our research is focused only on the fuzzy inference

87

block. The output of the fuzzy inference engine is not a crisp output. A defuzzification

block is required to convert the fuzzy output to a crisp output. In future, with DNA circuits

which can perform the complex arithmetic operations such a division, averaging etc. it

could be possible to implement fuzzification and defuzzification blocks. The DSD based

fuzzy inference engine discussed here can be extended to use any number of fuzzy inferences

with the help of minimum, fan-out and maximum gates. Even though, the Takagi-Sugeno

fuzzy inference system uses the fuzzy operators discussed in this chapter, the output of the

inference system is a polynomial function. Hence, the DSD based fuzzy inference engine

discussed here will not fit to the Takagi-Sugeno fuzzy system.

5.4: Simulation Results and Discussion

All the circuits proposed in this chapter are designed and tested in Visual DSD [68]. We

use a programming language described in [66] to write the program in the Visual DSD. The

Visual DSD also generated the MATLAB code and we used this code in MATLAB to speed

up the simulation. We choose 10nM as the unit for concentration in the simulation. We

used a toehold binding rate of 2 × 10−3nM−1s−1 and unbinding rate of 10s−1 for all the

designs [6]. The settling time (ts) of the analog gate is the time required for the response to

reach the valid output range. Here, the valid output range is set with an error bank of 5%.

5.4.1: Minimum Gate

The minimum gate is simulated in different ranges such as (0, 1), and (0, 2). The corre-

sponding rmin for the design is 1 and 2, respectively. As we discussed in section 5.2.2, the

minimum gate can give both the minimum and subtraction outputs. The response of the

system for [i2]0 = 0.6 and [i1]0 = 0.4 for the rmin equal to 1 and 2 are shown in Fig. 5.8

and 5.9, respectively. The minimum output [Omin]∞ is obtained at 0.4 and the subtracted

88

0 0.5 1 1.5 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time (s)

C
o

n
ce

n
tr

at
io

n
 (

x1
 =

 1
0n

M
)

[O
min

]

[i
2

]
0

 - [i
1

]
0

Figure 5.8: Simulation results of minimum gate in Visual DSD. Response of minimum gate

for [i2]0 = 0.6 and [i1]0 = 0.4 for the range rmin = 1

0 0.5 1 1.5 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time (s)

C
o

n
ce

n
tr

at
io

n
 (

x1
 =

 1
0n

M
)

[O
min

]

[i
2

]
0

 - [i
1

]
0

Figure 5.9: Simulation results of minimum gate in Visual DSD. Response of minimum gate

for [i2]0 = 0.6 and [i1]0 = 0.4 for the range rmin = 2

output [i2]∞ is obtained as 0.2. It was found that the minimum gate with rmin = 2 is giving

a faster response than the minimum gate with rmin = 1. The subtraction operation will give

a result only when [i2]0 ≥ [i1]0. In all other cases, it gives a zero output.

89

[i
1
]
0

[i
2
] 0

9

10

11

12

13

14

15

16

17

10.1 0.5

0.5

1

0.1

Figure 5.10: A heat map showing the variation of settling time (ts) with changes in the

inputs [i1]0 and [i2]0 for the range (0, 1)

We simulated the minimum gate for the input values in the range (0, 1) with increments

of 0.1 and in the range (0, 2) with increments of 0.2. The variation in settling time with the

input combinations in the range (0, 1) with rmin = 1, and (0, 2) with rmin = 2 is shown in

Fig. 5.10 and 5.11, respectively. The settling time is taken in log2 scale while plotting to

clearly show the variation in ts with changes in [i1]0 and [i2]0. It can be seen from this figure

that, the settling time is more when the inputs initial concentrations are close to each other.

Similarly, when the difference between input initial concentrations increases, the settling

time decreases. Another observation from the figures is that when the range increases, ts

decreases.

5.4.2: Fan-out Gate

The 2 output fan-out gate is simulated for the ranges rf = 1 and rf = 2. The response

obtained for the input [i1]0 = 0.5 for rf = 1 and rf = 2 are shown in Fig. 5.12 and 5.13,

90

[i 1] 0

[i
2
] 0

9

10

11

12

13

14

15

16

17

0.2 1 2

1

2

0.2

Figure 5.11: A heat map showing the variation of settling time (ts) with changes in the

inputs [i1]0 and [i2]0 for the range (0, 2).

0 1000 2000 3000 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

time (s)

C
o

n
ce

n
tr

at
io

n
 (

x1
 =

 1
0

n
M

)

[O
f1

]

[O
f2

]

Figure 5.12: Simulation results of 2 output fan-out gate in Visual DSD. Response of fan-out

gate for [i1]0 = 0.5 for the range rf = 1

respectively. There is a small delay in the response of the outputs [Of1] and [Of2]. It is clear

from the figure that [Of2] lags behind [Of1]. When the range increases, this lag decreases.

91

0 1000 2000 3000 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

time (s)

C
o

n
ce

n
tr

at
io

n
 (

x1
 =

 1
0

n
M

)

[O
f1

]

[O
f2

]

Figure 5.13: Simulation results of 2 output fan-out gate in Visual DSD. Response of fan-out

gate for [i1]0 = 0.5 for the range rf = 2

0 0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

5000

6000

input [i
1
]

0

Se
tt

lin
g

ti
m

e
t s

 (
s)

t
s

 for [O
f1

]

t
s

 for [O
f2

]

Figure 5.14: A graph showing the variation of settling time (ts) with changes in the inputs

[i1]0 for the range (0, 1)

The fan-out gate gives a faster response for higher ranges.

The variations in settling time of [Of1] and [Of2] with changes in [i1]0 for the range (0, 1)

and (0, 2) are shown in Fig. 5.14 and 5.15, respectively. The input values in the range (0, 1)

92

0 0.5 1 1.5 2
0

500

1000

1500

2000

2500

3000

input [i
1
]

0

se
tt

lin
g

ti
m

e
t s

 (
s)

t
s

 for [O
f1

]

t
s

 for [O
f2

]

Figure 5.15: A graph showing the variation of settling time (ts) with changes in the inputs

[i1]0 for the range (0, 2).

are taken with increments of 0.1 and in the range (0, 2) with increments of 0.2. The settling

time increases with an increase in the input [i1]0. This graph is exponential in nature. From

Fig. 5.14 and 5.15, it can be observed that the settling time decreases with increase in range.

This is because when the concentration of the reactants increases, the reactions run more

quickly.

5.4.3: Maximum Gate

The maximum gate consists of two fan-out gates, two minimum gates, and an addition

gate. The input range is selected as r = 1. The simulation result of the maximum gate

[Omax] for [i1]0 = 0.4 and [i2]0 = 0.6 is shown in Fig. 5.16. The variation in the settling time

(ts) of the maximum gate with changes in input initial concentrations is shown in Fig. 5.17.

Here also, the settling time is taken in log2 scale to clearly show the variations. It can be

seen that the settling time is maximum when the inputs are equal. This high settling time

is due to the effect of minimum gates, which also gives the maximum settling time when

93

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time (s)

C
o

n
ce

n
tr

at
io

n
 (

x1
 =

 1
0

n
M

)

[O
max

]

Figure 5.16: Simulation results of the maximum gate in Visual DSD. Response of maximum

gate for [i1]0 = 0.4 and [i2]0 = 0.6 for r = 1

[i 1] 0

[i
2
] 0

9

10

11

12

13

14

15

16

17

0.1

0.5

0.9

0.90.5

0.1

Figure 5.17: Heat-map showing the variation of settling time (ts) with changes in the inputs

[i1]0 and [i2]0 for the range (0, 1).

the inputs are equal. When one of the inputs approach the range r, there is an increase in

settling time. This comes from the fan-out gates, which shows a sudden increase in settling

94

time while the input approaches range r.

5.4.4: Mamdani Fuzzy Inference System

The inference engine with the rules defined in section 5.3.2 is implemented in Visual DSD

software using the minimum and maximum gates. We consider that the fuzzy inputs and

outputs are having a triangular membership function. For the x input in the range (0, 1),

the membership function µlow(x) and µhigh(x) can be defined as:

µlow(x) = 1− x (5.10)

µhigh(x) = x (5.11)

Similarly, for the y input also, the µlow(y) and µhigh(y) membership functions are assigned

with values (y − 1) and y, respectively. There is no restriction that we should use the

triangular membership function for the operation of the Mamdani fuzzy inference system.

It can be any membership function such as triangular, Gaussian, trapezoidal, etc. The

generation of fuzzy input from the crisp input is assigned to the fuzzifier. In our simulation,

we are manually giving these fuzzy inputs (µlow(x), µhigh(x), µlow(y), and µhigh(y)). We

simulated our design for x and y by taking values in the range (0, 1) with increments of 0.1.

The variations in fuzzy outputs µlow(f) and µhigh(f) for the inputs x and y (as given in eq.

5.8 and 5.9) obtained from the simulation is shown in Fig. 5.18 and 5.19, respectively.

The variation in the settling time (ts) of outputs µlow(f) and µhigh(f) is also analyzed.

The log2(ts) is calculated for µlow(f) and µhigh(f) as shown in Fig. 5.20 and 5.21, respectively.

It could be noted that the settling time is maximum when µlow(x) = µlow(y) or µhigh(x) =

µhigh(y). Similarly, a sudden increase in settling time can be observed when µlow(x) =

µhigh(y) or µlow(y) = µhigh(x). The variation is also symmetrical with respect to the diagonal,

i.e, x = y. These sudden changes in settling time are due to the properties of the minimum,

95

input y

in
p

u
t

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.5 0.9

0.1

0.5

0.9

Figure 5.18: Variation of µlow(f) with changes in inputs x and y

input y

in
p

u
t

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.5 0.9

0.1

0.5

0.9

Figure 5.19: Variation of µhigh(f) with changes in inputs x and y

maximum gates used in the DNA fuzzy inference engine.

96

input y

in
p
u
t
x

0.1 0.5 0.9

0.1

0.5

0.9

12

12.5

13

13.5

14

14.5

15

15.5

16

16.5

17

17.5

Figure 5.20: Variation in the settling time (ts) of µlow(f) with changes in inputs x and y

input y

in
p
u
t
x

0.1 0.5 0.9

0.1

0.5

0.9

12

12.5

13

13.5

14

14.5

15

15.5

16

16.5

17

17.5

Figure 5.21: Variation in the settling time (ts) of µhigh(f) with changes in inputs x and y.

5.4.5: Novelty of the Work

As far as the authors’ knowledge, there is no DSD based designs available in the liter-

ature for the enzyme-free DNA implementation of minimum, maximum, or analog fan-out

97

circuits. The minimum and maximum gate circuits can be used as a building block for many

applications such as fuzzy inference engine, neural network, non-linear signal processing,

function fitting, etc. [120]. The fan-out gates can be used in any analog circuit, to produce

the copies of the signal. We hope that the introduction of minimum, maximum, and fan-

out gates will pave the way for developing many other complex DNA circuits. Here, we

are limiting our discussion to the fuzzy inference engine using the minimum and maximum

gates. Even though fuzzy logic circuits implemented at the molecular level are available in

the literature [17,121], such circuits have a fixed function associated with it, in other words,

they are not programmable. These molecular circuits also lack the modular property. The

inputs and outputs of such circuits are of different types, and hence, they cannot be used as

part of a large complex circuit. The inference engine developed here is programmable and

the rules for the inference engine can be changed. The DNA based decision making systems

currently available in the literature are fully digital [6, 7, 45]. The introduction of fuzzy in-

ference based decision-making systems will give more control over systems with uncertainty

such as biological systems.

5.5: Wet Lab Implementation of Minimum Gate

5.5.1: Sequence Design

The sequence used for the minimum gate was first generated from the Visual DSD code,

based on the visual DSD program. The toeholds are chosen such that the number of nu-

cleotides in the toehold is very less compared to the recognition domains.The Visual DSD

code generated a length of 6nt for the toeholds and 20nt for the recognition domains. The

software generated base pairs were then optimized in the NUPCK software [122]. The strand

details of each domain used in the minimum gate are shown in Table 5.1. It can be seen

98

Table 5.1: The domains and corresponding base pair sequences for minimum gate obtained

from NUPACK software

Domain Name Domain Sequence

t TCACTC

t1 AAAGCAAGATAAAGACGAAA

in1 ACTCCCACTCACCTCACTAC

in2 TTCACTCCACATCCTCACCC

X1 ACTCCATCCACTTCACATCC

X2 CACTCCTACACTCCTAACCC

X3 GTCGTTATTGTAGTTAGTTC

X4 CCACTCACATCCCTACCTAC

M ACCATCTATCTCGCCCTTAA

that these domains are optimized to be functionally independent of each other in order to

minimize the leak reactions. It can be observed from the table that the domains are using

either A, C, or T in most of the cases and the use of G is minimized to avoid the generation

of the secondary structures [123–125]. The C content in the sequence is chosen between 30%

to 70% to ensure the normal melting temperatures [126]. The NUPACK software took all

these constraints into consideration while designing the strands. Different DNA strands used

in the design are generated by cascading the domains given in Table 5.1. A common toehold

domain (t) is used for all the strands.

The final complexes for the minimum gate as given in Fig. 5.1 are generated using the

NUPACK software and analyzed them. The different designs generated in the NUPACK for

99

in1 t X1

A
C
G
T

(a) I1

in2 t X2

A
C
G
T

(b) I2

X3
X3*

t*

M

A
C
G
T

(c) Reporter

X1
X1*

t
t*

X2

X2*

t

t*
X4

X4*
t

t*

t*

t1

X3

A
C
G
T

(d) M1

t X4 t

A
C
G
T

(e) M2

Figure 5.22: Different DNA strands generated from NUPACK

various complexes are shown in Fig. 5.22.

5.5.2: Circuit Preparation

After analyzing the strands designed from the Visual DSD and NUPACK, the strands are

purchased from Integrated DNA Technologies (IDT). The details of the different strands of

the design are shown in Table 5.2. It could be noted that the fluorophore and quencher are

connected to the leg8 and leg9 respectively. The fluorophore used here is 6-FAM which can be

100

Table 5.2: The details of different strands used in the design of minimum gate

Strand Doamins Sequence

leg1 In1 t X1 ACTCCCACTCACCTCACTACTCACTCACTCCATCCACTTCACATCC

leg2 in2 t X2 TTCACTCCACATCCTCACCCTCACTCCACTCCTACACTCCTAACCC

leg3 X1 t t1 ACTCCATCCACTTCACATCCTCACTCAAAGCAAGATAAAGACGAAA

leg4 X2 t X3 CACTCCTACACTCCTAACCCTCACTCGTCGTTATTGTAGTTAGTTC

leg5 X4 t CCACTCACATCCCTACCTACTCACTC

leg6 t* X4* t* X2* t* X1* t*
GAGTGAGTAGGTAGGGATGTGAGTGGGAGTGAGGGTTAGGAGTGTA

GGAGTGGAGTGAGGATGTGAAGTGGATGGAGTGAGTGA

leg7 t X4 t TCACTCCCACTCACATCCCTACCTACTCACTC

leg8 X3-F GTCGTTATTGTAGTTAGTTC-/36-FAM/

leg9 Q-X3* t* /5IABkFQ/-GAACTAACTACAATAACGACGAGTGA

connected to the 3’ end of the strand and the quencher used is the Iowa Black FQ which can be

connected to the 5’ end of the strand. We modified the reporter strand used in the simulation

by adding fluorophore and quencher to the reporter strand for the experimental setup. All

the strands except the reporter strands are ordered from IDT, purified by polyacrylamide

gel electrophoresis (PAGE). On the other hand, the reporter strand with a fluorophore and

quencher were ordered with high-performance liquid chromatography (HPLC) purification.

All the strands are ordered as 250 nM DNA oligos.

The strands are shipped to us as a chemical powder after purification from IDT. At

first, we dissolve the DNA strands in 500 mL DM water. The solution is placed in a

Vertex to fully dissolve the strands in the DM water. The concentrations of each of the

strands were calculated by measuring the absorbance at 260 nm. The instrument we used for

measuring the absorbance was Multiskan GO Microplate Spectrophotometer. The absorption

is measured by taking 2 µL of sample and diluted it in 98 µL of DM water. The extinction

101

coefficient (in L/(mol. cm) given in the specification sheet of the DNA strands (provided by

the IDT) were used for calculating the concentrations of the DNA strands. The formula we

used for the calculation of the concentration (c) of the DNA strands in µM is given by:

c = 100×OD260/e× 106 (5.12)

were, OD260 is the absorbance measured at 260 nm, and e is the extinction coefficient.

Please note that the Cuvette we are using for the experiment is having 1cm pathlength and

hence we can use the extinction coefficient directly in the equation. We verified the results

by comparing it with the equivalent concentration of the strands given in the specification

sheet for 100 µM provided by IDT.

The DNA strands are then annealed at 100 µM in Tris-acetate-EDTA buffer containing

12.5 mM Mg2+ (1 × TAE/Mg2+). The 1 × TAE/Mg2+ solution is prepared by mixing

0.5 mL of TAE 10× solution, Magnesium Acetate Tetrahydrate, and 4.5 mL of DI water.

The TAE 10× solution and Magnesium Acetate Tetrahydrate were purchased from Fisher

Scientific. The annealing was performed by heating the strands to 950 C and slowly cooling

it down to atmospheric temperature. The complex strands such as M1 and Reporter were

annealed by mixing the domains used in them together. For example, for the M1 complex,

we mixed the strands leg3, leg4, leg5, and leg6 together.

5.5.3: Kinetic Experiments

The kinetic experiments for the minimum gate were performed with a spectrofluorom-

eter (FluoroMax-4 from Horiba Scientific). For the 6-FAM fluorophore, the excitation and

emission wavelengths were set at 495 nm and 515 nm, respectively. The data points were

recorded in the experiment and the cuvette is thoroughly cleaned with TAE buffer in between

experiments. The raw data from the experiment were normalized to the relative concentra-

102

Table 5.3: The volume of different strands in the solution for different set of input concen-

trations

in1 (nM) in2 (nM) M1+M2+Reporter(µL) Buffer (µL) in2 (µL) in1 (µL)

20 20 180 0 60 60

0 20 180 60 0 60

5 15 180 60 15 45

10 10 180 60 30 30

15 5 180 60 45 15

20 0 180 60 60 0

5 10 180 75 15 30

10 5 180 75 30 15

15 5 180 60 45 15

5 15 180 60 15 45

tion of the output strands. The amount of different strands volumes that must be used

in the experiment for the different set of input concentrations are given in Table 5.3. In

the experiment, the maximum output concentration (20nM) is taken as 1. The simulation

results for the different set of input concentrations are shown in Fig. 5.23. Even though the

wet lab experimental results are encouraging, it can be seen that there are some errors in

the experimental results while comparing it with the simulation result. This is due to the

presence of leakage reactions in the experiments. This error is high when the inputs are high.

The leakage reactions are due to the design imperfections of the DNA strands. We use the

best available software (NUPACK) for the design of the strands. More competitive software

is required to get optimum strands which can minimize the leakage reactions in the wet lab

103

Figure 5.23: Experimental results for the minimum gate with different set of input concen-

trations

experiment.

5.6: Conclusion

In this research, we developed the analog minimum and maximum gates using DSD op-

erations. We also implemented the analog fan-out gate. Using these DNA gates, a fuzzy

inference engine which is capable of making decisions based on a set of pre-defined rules is

designed. We analyzed the performance of the analog DNA gates and the fuzzy inference

engine for different input ranges. All the proposed DNA implementations were tested in

Visual DSD and analyzed by importing the code into MATLAB. To the best of our knowl-

edge, the fuzzy inference engine using DSD operation proposed in this chapter is the first

of its kind. These systems can be used for the design of decision-making systems for the

bio-nanorobots, smart drugs, and engineered viruses for the treatment of genetic diseases in

future. The minimum and maximum gates proposed in this research can also be used for

the design of more complex non-linear mathematical functions.

104

CHAPTER 6: CHALLENGES AND FUTURE RESEARCH

6.1: Introduction

The circuits using DNA provide many advantages such as small size, programmability,

and bio-compatibility, but its wide applications will be based on their interface with the

biology. In this research, we developed different DNA strand displacement (DSD) based

circuits such as majority logic gate, inverter logic gate, and a fuzzy inference engine. Even

though these circuits and all the other DNA circuits available in the literature are valuable

towards the design of autonomous devices and structures for future medical applications,

there are many challenges that need to be addressed. In this section, we are discussing those

challenges and the future research directions. The challenges discussed in this chapter are

not limited to the designs proposed in this thesis, but also to most of the DNA based circuits

available in the literature. We are giving the future directions in the field of DNA circuit

design such as developing a full fuzzy system, the design of analog to digital and digital to

analog converters, and synthesis tools.

6.2: Challenges

Even though there are different techniques available for the enzyme-free DNA imple-

mentation of digital and analog circuits, they are not user-friendly to people from other

disciplines. A language for representing the DSD reactions was first developed by Lakin et.

al. [127]. There are very powerful simulation tools available such as seesaw compiler which

can take a Boolean expression and generate the equivalent DSD code [6, 128]. Visual DSD

is a software for analyzing the circuits made up of DSD operations [68] and is compatible

with the language developed for DNA hybridization reactions [127]. This software can be

used to simulate analog and digital circuits. Initially, this software was not able to handle

105

localized designs. In 2014, the software was updated to support the localized circuits [69].

Recently, Peterson and co-workers developed the calculus for the modeling of DNA circuits

with secondary structures such as CRN on surface-based circuits [129]. A complete synthesis

flow is still not available for designing the digital circuits using DNA strands. Even though

software like Visual DSD is available, it cannot take the common circuit representations such

as schematic diagrams or hardware description language codes. Further research is needed in

developing a design flow, which can take a hardware description language code and generate

the DNA strands which are required for the circuit.

The verification of the DNA circuits is one of the major challenges. The conventional

verification techniques will not work with the DNA circuits. This is because the faults and

errors in conventional electronic circuits are entirely different from those in a DNA circuit.

For example, the major source of error in conventional electronic circuits could be physical

faults such as device failure or systematic errors [130, 131]. On the contrary, the errors in

DNA circuits are primarily due to the spurious reactions. The spurious reactions will affect

the concentration of the output strand and it will lead to inaccurate results. Another issue is

the improper design of the strands which may cause some unwanted reactions and the signal

may be stuck at some intermediate stage. In the localized circuits, the reaction is always

associated with the reaction probability of two neighboring strands and this inherently has

some errors.

Even though different analog circuits are available in the literature, most of the designs

are not practically implemented in a wet lab. Background noise is a major issue in the

analog circuits compared to its digital counterpart. For example, even though there is no

trigger, the output signal can be produced because of the background noise. But in case

of digital designs, we always consider a threshold to determine OFF and ON states. Thus

106

the presence of noises will not make severe issues in the digital circuits as compared to the

analog circuits. The design of DNA strands is very critical and improper design may lead

to leakage reactions. Another source of leakage reaction is the triggering of the DNA circuit

by unwanted DNA strands. The leakage reactions are not limited to analog circuits, but

are common to all DSD based circuits. Another major issue is the number of unique DNA

strands that are required for the designs. If we are not using unique strands for each gate,

there is a chance of spurious reactions. One efficient method to counter this issue is the

use of localized circuits, but the localized circuits are available only for the digital circuits.

Most of the circuits which are practically implemented are use once type. Once the circuit

reacts to the inputs, it cannot be used again for further reactions. Reusable designs of DNA

circuits are a topic for future research.

The majority logic gate proposed in this research is a valuable addition to the family of

the spatially localized digital circuits, but the practical implementation of localized designs is

very difficult to achieve. The design requires a precise spatial arrangement of DNA hairpins

within the Origami, which is a difficult task to achieve in the wet lab. The fuzzy inference

engine proposed in this research cannot be used for medical applications in its current form.

The inputs to the proposed fuzzy inference engine should be a fuzzy value, therefore we

need a fuzzifier. Similarly, the output of the fuzzy inference engine is also a fuzzy value. To

convert this fuzzy value to a crisp output we need a defuzzifier. In order to develop fuzzifiers

and defuzzifiers, we need modular DNA circuits which can perform exponential operations,

division operation, and many different complex mathematical operations. We hope that

the future developments in DNA analog computing will produce modular architectures that

can be used for the design of fuzzifier and defuzzifier functions. If the DNA circuits for

fuzzifier and defuzzifier are available, it could be possible to integrate these circuits with the

107

proposed fuzzy inference engine to design a complete fuzzy system. Such a fuzzy system will

have DNA strand concentrations as inputs and outputs. We have done the implementation

of minimum logic gate in the wet lab. However, the development of more complicated DNA

circuits in the wet lab is highly challenging, time consuming, would require major funding.

6.3: Future Research

In this research work, we have developed an approach by which any Boolean function

can be realized using DNA strands. This has opened a way for several challenging problems

which can be taken up such as a generalized design of threshold gate, neural network, and

fuzzy systems. We have performed the realization of well-known circuits such as full adder

using manual method and also limited to a few number of variables. Sophisticated software

programs are required to design generalized synthesis software, which could be applicable to

any Boolean functions. Even though there are different DSD based circuits available in the

literature, there is a lack of synthesizing software which can produce the DNA strands from

the schematic design or from a code given in any hardware description language (HDL). The

development of such a system, which can produce the DNA strand details of the schematic

circuit or the HDL code is a fruitful problem for the future research. In our current research,

we developed a DSD based fuzzy inference engine. The development of a full decision-making

system, which consists of fuzzifier, fuzzy inference engine, and de-fuzzifier is a future research

problem. The fuzzifier will convert the input signal to a fuzzy input, which is having a set

of memberships and corresponding membership degrees. A particular DNA strand could be

considered as a membership function and the concentration of the DNA strand as the degree

of the membership function. The fuzzifier can be connected to the fuzzy inference engine

and the output of the fuzzy inference engine can be connected to the defuzzifier. The fuzzy

108

inference engine produces a fuzzy output based on a predefined set of rules. The defuzzifier

converts the fuzzy output to a crisp output. For defuzzifier, the DNA circuit can take

different DNA strands with different concentrations, and produce a single output strand.

The fuzzifier and defuzzifier require complex mathematical operations. The implementation

of such strong mathematical operations using DNA is a problem for future research.

Some of the bio-markers and bio-signals are analog and some are digital. The analog

computing circuits use a much less strands compared to their digital counterpart, but they

are highly affected by leak reactions. Hence, we have to select the computation based on

the application. We can make a bridge between the analog and digital world of the DSD

based circuits by developing an analog to digital converter and a digital to analog converter.

The design of such analog to digital, and digital to analog converters are problems for future

research. Another important component of any DNA devices is a signal processing unit.

There are some control circuits, amplification circuits, arithmetic circuits, and timer circuits,

which are available in the literature. Most of these circuits are based on chemical reaction

networks, but proper DNA implementation is not available. Further research is required on

the DNA implementation of different signal processing elements.

All the research discussed previously in this article was developed and tested in a cell-

free setting. The transition from the test-tube to cell introduces a lot of challenges and

opportunities to researchers. There are significant differences between a cellular environment

and a cell-free wet-lab experimental set-up. In a cellular environment, there may be different

elements which will adversely affect the dynamics of the circuits which are not considered in

the cell-free environment. The structured nature of the cell and different proteins are some

of the examples of such elements.

A detailed review of the challenges and future opportunities while integrating synthetic

109

DNA circuits into the cellular environment is given by Chen et. al. [132]. The major

challenges while integrating synthetic DNA circuits into the cell can be summarized as the

delivery of the circuit into the cell, sensing of bio-signals in the cellular environment, the

stability of the nucleic acid circuits inside the cell, circuit functioning in the crowded cells,

and prevention of immune activation. We hope that in a near future it will be possible to

overcome these challenges and researchers could be able to produce biological devices that

will bring revolutionary changes in the field of DNA nanotechnology and medicine.

6.4: Conclusion

Even though the future research of DNA functional nanotechnology revolves around the

development of DNA circuits and their applications in the medical field, such circuits have

to face many challenges to fulfill this dream. The development of more user friendly, strong,

and efficient synthesis tools, verification methodologies specific to the DNA circuits, more

accurate software for the design of DNA strand domains, and development of circuits that

can perform more complex mathematical operations are some of the challenges that needs

to be addressed by the engineering community. The circuits with complex structures such

as spatially localized circuits are difficult to implement in the wet lab. Re-usability of the

strands in the design, continuous use of the circuit, and the transition from test tube-based

circuits to cell-based circuits are some of the other challenges identified. Based on the

research presented in this thesis, we also gave the directions for future research.

110

CHAPTER 7: SUMMARY AND DISCUSSION

Circuits that can perform a pre-programmed function are an integral part of any au-

tonomous device. These circuits that can directly interact with the biological signals are

useful in case of biological devices. DNA is considered as a suitable candidate for designing

such biological circuits because of the bio-compatibility, small size, light weight, programma-

bility, well-known thermodynamics and structure formations, and exponentially decreasing

cost of the synthesis. In this research, we investigated the possibility of using enzyme-free

DNA strand displacement (DSD) operations for designing various logical operations. The

DNA circuits can be modeled either as a digital circuit, or as an analog circuit.

The contributions presented in this research are summarized as follows:

• A comprehensive study of all the existing digital, as well as analog DNA circuits, is

done.

• A spatially localized DSD based majority logic gate is presented.

• An inverter logic gate which could be used with the existing seesaw logic gates is

developed.

• A fuzzy inference engine which is useful for the design of analog decision-making sys-

tems using DNA strands is presented.

The comprehensive study of the existing DSD based circuits gives the state of the art of the

research in this direction and the problems of the existing techniques. The most popular

methods available in the literature were discussed and a comparison of the existing techniques

was also presented. In the second part of our research, a spatially localized architecture for

majority logic gate is developed. The majority logic operations can reduce the size of the

circuits considerably since many operations can be implemented with the majority logic gate

111

at the expense of very few numbers of extra strands. The three input majority logic gate

and five input majority logic gates were developed. We also gave the procedure for designing

an n - input majority logic gate. The introduction of majority logic gate will provide more

flexibility to the designer while designing large complex circuits.

In the third part of our research, an inverter logic gate is developed. This logic gate uses

a subtraction gate and a gate enable circuit. The gate enable technique used in this design

provides modularity property to the NOT gate. This NOT gate design can be used with the

existing seesaw-based logic gates. Currently, the seesaw logic operations are using a dual-rail

approach because of the unavailability of the NOT operation. With the introduction of an

inverter logic gate, it could be possible to use mono-rail designs and thus reduce the number

of unique strands required for the seesaw circuit design into approximately half.

Even though there are well-studied circuits and methods available for developing digital

circuits, the number of unique strands required for computing more complex operations are

very high. Such operations can be performed with less number of strands if we use analog

circuits. For instance, the circuit for calculating the minimum between two numbers (each

number represented by at least 3 bits) will result in a very complex circuit in the digital

world. On the other hand, the same circuit can be designed with only two strands in an

analog circuit as given in chapter 5. In this research, we developed different analog circuits

such as the minimum gate, maximum gate, and fan-out gate using DSD operation. The

concentration of the strands is used to represent the analog signal. The minimum logic

gate will produce an output strand concentration which will be the minimum between the

two input strand concentrations. The fan-out gate is used for producing multiple copies of

the input strand concentrations. Similarly, the maximum gate will produce the maximum

between two input concentrations in the output. The minimum and maximum operations

112

are very powerful non-linear operations and have many applications. In view of developing

powerful decision making systems using DNA strands, we gave an algorithm for implementing

Mamdani fuzzy inference engine using the proposed minimum, maximum, and fan-out gates.

The fuzzy inference rules were written using the minimum and maximum operators. The

fuzzy inference engine could be useful for a future complete fuzzy system for designing

sophisticated control and decision-making applications.

All the circuits were tested in the Visual DSD software. The minimum gate proposed in

this thesis is further analyzed using NUPACK and tested in wet-lab. Even though the DNA

circuits proposed in this thesis will be a strong addition to the family of logic gates and analog

gates using DNA strands, there are still many challenges that needed to be addressed. These

challenges are discussed and the future research directions are also presented in chapter 6.

One of the major challenges in this field is the transformation of these circuits from test tube

to the cell. By considering the pace at which the research is going on in this field, it could

be expected to have DNA decision making circuits even inside human body used for the

treatment of many critical genetic disorders and other life-threatening diseases. We strongly

believe that the logic gates and the fuzzy inference engine we developed during this research

will be a valuable addition to the DNA circuits family and the proposed gates could be used

for making such circuits for medical applications in future.

113

APPENDIX: VISUAL DSD CODES

Spatially localized majority logic gate

Three input majority logic gate

(∗ Spa t i a l l y l o c a l i z e d three input Major ity gate des ign

Author : Aby K George ∗)

d i r e c t i v e sample 700000.0 1000

d i r e c t i v e polymers

d i r e c t i v e s imu la t i on d e t e rm i n i s t i c s t i f f

d i r e c t i v e l o c a l c o n c e n t r a t i o n s [(a , 1000000) ; (b , 1000000) ; (c , 1000000) ;

(d , 100000) ; (e , 100000) ; (f , 100000)]

d i r e c t i v e plot Z()

dom a = { co l our = ” red ” }

dom x = { co l our = ” green ” }

dom y = { co l our = ”blue ” }

dom b = { co l our = ” purple ” }

dom c = { co l our = ” ye l low ” }

dom blank = { co l our = ”black ” }

de f inputA () = <aˆ s>

de f inputB () = <bˆ s>

de f inputC () = <cˆ s>

de f f u e l () = <yˆ∗>[s ∗]{ xˆ>

de f probe () = <zˆ∗>[s ∗]<Q>{F}

de f Z () = { s F}

de f Origami () = [[{ t e th e r (a , d) a ˆ∗} [s]{ yˆ>

| { t e th e r (b , e) b ˆ∗} [s]{ yˆ>

| { t e th e r (c , f) c ˆ∗} [s]{ yˆ>

114

| { t e th e r (a , b , c) x ˆ∗} [s]{ blankˆ>

| { t e th e r (d , e , f) x ˆ∗} [s]{ zˆ>

]]

(1 ∗ inputA ()

| 1 ∗ inputB ()

| 0 ∗ inputC ()

| 3 ∗ f u e l ()

| Origami ()

| probe ()

| 0 ∗ Z()

)

Five input majority logic gate

(∗ Spa t i a l l y l o c a l i z e d f i v e input Major ity gate des ign

Author : Aby K George ∗)

d i r e c t i v e sample 40000.0 1000

d i r e c t i v e polymers

d i r e c t i v e s imu la t i on j i t

d i r e c t i v e l o c a l c o n c e n t r a t i o n s [(a , 1000000) ; (b , 1000000) ; (c , 1000000) ;

(d , 1000000) ; (e , 1000000) ; (f , 1000000) ; (g , 1000000) ; (h , 1000000) ;

(i , 1000000) ; (j , 1000000) ; (k , 100000) ; (l , 100000) ; (m, 100000) ;

(n , 100000) ; (o , 100000)]

d i r e c t i v e plot Z1 ()

dom a = { co l our = ” red ” }

dom x = { co l our = ” green ” }

dom y = { co l our = ”blue ” }

dom b = { co l our = ” purple ” }

115

dom c = { co l our = ” ye l low ” }

dom blank = { co l our = ”black ” }

de f inputA () = <aˆ s>

de f inputB () = <bˆ s>

de f inputC () = <cˆ s>

de f inputD () = <dˆ s>

de f inputE () = <eˆ s>

de f f u e l () = <yˆ∗>[s ∗]{ xˆ>

de f probe1 () = <z1ˆ∗>[s ∗]<Q>{F1}

de f Z1 () = { s F1}

de f Origami () = [[(∗ F i r s t Major ity Operation ∗)

{ t e th e r (a , f , k) a ˆ∗} [s]{ yˆ>

| { t e th e r (b , g , l) b ˆ∗} [s]{ yˆ>

| { t e th e r (c , h ,m) c ˆ∗} [s]{ yˆ>

| { t e th e r (d , i , n) dˆ∗} [s]{ yˆ>

| { t e th e r (e , j , o) e ˆ∗} [s]{ yˆ>

| { t e th e r (a , b , c , d , e) x ˆ∗} [s]{ blankˆ>

| { t e th e r (f , g , h , i , j) x ˆ∗} [s]{ blankˆ>

| { t e th e r (k , l ,m, n , o) x ˆ∗} [s]{ z1ˆ>

]]

(1 ∗ inputA ()

| 0 ∗ inputB ()

| 1 ∗ inputC ()

| 0 ∗ inputD ()

| 1 ∗ inputE ()

| 5 ∗ f u e l ()

116

| Origami ()

| probe1 ()

| 0 ∗ Z1 ()

)

Inverter logic gate

(∗ I nv e r t e r C i r cu i t

Author : Aby K George ∗)

d i r e c t i v e sample 80000.0 100

d i r e c t i v e s imu la t i on d e t e rm i n i s t i c

d i r e c t i v e plot < Oinv>

(∗ Rates at 25 C from the Qian and Winfree 2011 (page 48 SI) ∗)

(∗ Long toeho ld s bind f a s t and unbind s low ly while shor t toeho ld s bind slow

and unbind f a s t e r ∗)

d i r e c t i v e toeho ld s 2 . 0E−3 1 .3 (∗ Long toeho ld binding ra t e 2x10ˆ−3 /nM/s ,

unbinding r a t e s 1 .3/ s ∗)

d i r e c t i v e l eak 1 .0E−8 (∗ Leak ra t e 10ˆ−8 /nM/ s ∗)

d i r e c t i v e tau 1 .0 (∗ Branch migrat ion ra t e 1/ s (from Zhang and Winfree 2009) ∗)

de f short toeho ldunbind = 26 .0 (∗ Short toeho ld d i s s o c i a t i o n ra t e constant 26/ s

∗)

de f shor t toeho ldb ind = 5 .0E−5 (∗ Short toeho ld binding ra t e constant 5x10ˆ−5/

nM/ s ∗)

(∗ Short toeho ld ∗)

dom t={seq = TCT; bind=shor t toeho ldb ind ; unbind=shorttoeho ldunbind }

dom fL = { seq=CATT}

117

dom f = { seq=TTTTTTT}

dom fR = { seq=TTCA}

(∗ Set concent ra t i on with 1x = 50 nM ∗)

de f N = 5

(∗ a seesaw s i g n a l ∗)

de f s i g n a l (N, (iL , i , iR) , (jL , j , jR)) = (N∗ <iL ˆ i iRˆ t ˆ jLˆ j jRˆ>)

(∗ a seesaw gate with s i g n a l bound by the l e f t s i d e ∗)

de f gateL (N, (iL , i , iR) , (jL , j , jR)) = (N∗ { t ˆ ∗ } : [iL ˆ i iRˆ t ˆ]< jLˆ j jRˆ>)

(∗ Enable gate for making Inv e r t e r modular ∗)

de f ga t e enab l e (N, (dL , d ,dR) , (iL , i , iR) , (jL , j , jR)) =

(N∗{ t ˆ∗} [dLˆ d dRˆ t ˆ] : [iL ˆ i iRˆ t ˆ]< jLˆ j jRˆ>)

(∗ a seesaw thre sho ld with s i g n a l coming in from the l e f t s i d e ∗)

de f thresho ldL (N, (iL , i , iR) , (jL , j , jR)) = (N∗ { iRˆ∗ t ˆ∗} [jLˆ j jR ˆ])

(∗ a seesaw r epo r t e r ∗)

de f r epo r t e r (N, (iL , i , iR) , Fluor) = (N∗ { t ˆ ∗ } : [iL ˆ i iRˆ]<Fluor>)

(∗ I nv e r t e r ∗)

de f Gs(N, (iL , i , iR) , (jL , j , jR)) = (N∗{ t ˆ∗} [jLˆ j jRˆ t ˆ] : [iL ˆ i iR ˆ])

de f Ds(N, (jL , j , jR)) = (N∗ [jLˆ j jR ˆ]{ t ˆ∗})

de f I nv e r t e r (N, (iL , i , iR) , (jL , j , jR)) =(Gs(N, (iL , i , iR) , (jL , j , jR)) | Ds(N, (jL , j ,

jR)))

118

(∗ Delay ∗)

de f d e l ay ga t e (N, (iL , i , iR) , (jL , j , jR)) = (1000.0∗50.0∗< iL ˆ i iRˆ tˆ> |

1000 . 0∗50 . 0∗ [iL ˆ i iRˆ t ˆ]< jLˆ j jRˆ> |

rxn <iL ˆ i iRˆ tˆ> + [iLˆ i iRˆ t ˆ]< jLˆ j jRˆ> −> {10 .0E−13} <iL ˆ i iRˆ t ˆ jLˆ

j jRˆ> + [iLˆ i iRˆ t ˆ] | (∗ k 0bp = 0.49 /M. s . ∗)

N∗{ iRˆ t ˆ∗} [jLˆ j jR ˆ] (∗ x10 = 10000 s . de lay ∗)

)

de f X1 = (S1L , S1 , S1R)

de f X2 = (S2L , S2 , S2R)

de f X3 = (S3L , S3 , S3R)

de f X4 = (S4L , S4 , S4R)

de f X5 = (S5L , S5 , S5R)

de f X6 = (S6L , S6 , S6R)

de f X7 = (S7L , S7 , S7R)

de f X8 = (S8L , S8 , S8R)

de f F = (fL , f , fR)

(

s i g n a l (1∗N,X1 ,X2) | (∗ x=1 OFF, x=8 ON ∗)

(∗ I nv e r t e r ∗)

s i g n a l (10∗N,X3 ,X4) |

I nv e r t e r (10∗N,X4 ,X2) |

de l ay ga t e (30 ,X5 ,X6) |

ga t e enab l e (10∗N,X6 ,X4 ,X7) |

thresho ldL (5∗N,X4 ,X7) |

gateL (10∗N,X7 ,X8) |

119

s i g n a l (20∗N,X7 ,F) |

r epo r t e r (100∗N,X8 , Oinv)

)

Fuzzy inference engine

(∗ I n f e r en c e Rule Set XOR

Author : Aby K George ∗)

d i r e c t i v e sample 100000.0 100

d i r e c t i v e s imu la t i on d e t e rm i n i s t i c

d i r e c t i v e plot <S47Lˆ S47 S47Rˆ t ˆ S44Lˆ S44 S44Rˆ>; <S61Lˆ S61 S61Rˆ t ˆ S58Lˆ

S58 S58Rˆ>

de f X1 = (S1L , S1 , S1R)

de f X2 = (S2L , S2 , S2R)

de f X3 = (S3L , S3 , S3R)

de f X4 = (S4L , S4 , S4R)

de f X5 = (S5L , S5 , S5R)

de f X6 = (S6L , S6 , S6R)

de f X7 = (S7L , S7 , S7R)

de f X8 = (S8L , S8 , S8R)

de f X9 = (S9L , S9 , S9R)

de f X10 = (S10L , S10 , S10R)

de f X11 = (S11L , S11 , S11R)

de f X12 = (S12L , S12 , S12R)

de f X13 = (S13L , S13 , S13R)

de f X14 = (S14L , S14 , S14R)

de f X15 = (S15L , S15 , S15R)

de f X16 = (S16L , S16 , S16R)

120

de f X17 = (S17L , S17 , S17R)

de f X18 = (S18L , S18 , S18R)

de f X19 = (S19L , S19 , S19R)

de f X20 = (S20L , S20 , S20R)

de f X21 = (S21L , S21 , S21R)

de f X22 = (S22L , S22 , S22R)

de f X23 = (S23L , S23 , S23R)

de f X24 = (S24L , S24 , S24R)

de f X25 = (S25L , S25 , S25R)

de f X26 = (S26L , S26 , S26R)

de f X27 = (S27L , S27 , S27R)

de f X28 = (S28L , S28 , S28R)

de f X29 = (S29L , S29 , S29R)

de f X30 = (S30L , S30 , S30R)

de f X31 = (S31L , S31 , S31R)

de f X32 = (S32L , S32 , S32R)

de f X33 = (S33L , S33 , S33R)

de f X34 = (S34L , S34 , S34R)

de f X35 = (S35L , S35 , S35R)

de f X36 = (S36L , S36 , S36R)

de f X37 = (S37L , S37 , S37R)

de f X38 = (S38L , S38 , S38R)

de f X39 = (S39L , S39 , S39R)

de f X40 = (S40L , S40 , S40R)

de f X41 = (S41L , S41 , S41R)

de f X42 = (S42L , S42 , S42R)

de f X43 = (S43L , S43 , S43R)

de f X44 = (S44L , S44 , S44R)

121

de f X45 = (S45L , S45 , S45R)

de f X46 = (S46L , S46 , S46R)

de f X47 = (S47L , S47 , S47R)

de f X48 = (S48L , S48 , S48R)

de f X49 = (S49L , S49 , S49R)

de f X50 = (S50L , S50 , S50R)

de f X51 = (S51L , S51 , S51R)

de f X52 = (S52L , S52 , S52R)

de f X53 = (S53L , S53 , S53R)

de f X54 = (S54L , S54 , S54R)

de f X55 = (S55L , S55 , S55R)

de f X56 = (S56L , S56 , S56R)

de f X57 = (S57L , S57 , S57R)

de f X58 = (S58L , S58 , S58R)

de f X59 = (S59L , S59 , S59R)

de f X60 = (S60L , S60 , S60R)

de f X61 = (S61L , S61 , S61R)

de f minimum gate ((iL , i , iR) , (jL , j , jR) , (kL , k , kR) , (lL , l , lR)) =

(100 .0∗ { t ˆ∗} [iL ˆ i iRˆ t ˆ]< t1 > : [jLˆ j jRˆ t ˆ] <kLˆ k kRˆ> : [lL ˆ l lRˆ t ˆ] |

10.0∗< t ˆ lL ˆ l lRˆ tˆ>)

de f r epo r t e r (N, (iL , i , iR) , Fluor) = (N ∗ { t ˆ ∗ } : [iL ˆ i iRˆ]<Fluor>)

de f input (j , (iL , i , iR)) = (< j t ˆ iL ˆ i iRˆ>)

de f Fanout ((iL , i , iR) , (jL , j , jR) , (kL , k , kR) , (i1L , i1 , i1R) , (j1L , j1 , j1R) , (k1L , k1 , k1R

)) =

122

(<t ˆ jLˆ j jRˆ > | <t ˆ kLˆ k kRˆ tˆ> |

{ t ˆ∗} [iL ˆ i iRˆ t ˆ]< i1Lˆ i 1 i1Rˆ>: [jLˆ j jRˆ t ˆ]< j1Lˆ j1 j1Rˆ>: [kLˆ k kRˆ

t ˆ]<k1Lˆ k1 k1Rˆ>)

de f gateL (N, (iL , i , iR) , (jL , j , jR)) = (N∗ { t ˆ ∗ } : [iL ˆ i iRˆ t ˆ]< jLˆ j jRˆ>)

de f Gs(N, (iL , i , iR) , (jL , j , jR)) = (N∗{ t ˆ∗} [jLˆ j jRˆ t ˆ] : [iL ˆ i iR ˆ])

de f Ds(N, (jL , j , jR)) = (N∗ [jLˆ j jR ˆ]{ t ˆ∗})

de f Subtractor (N, (iL , i , iR) , (jL , j , jR)) =(Gs(N, (iL , i , iR) , (jL , j , jR)) | Ds(N, (jL , j

, jR)))

de f ga t e enab l e (N, (dL , d ,dR) , (iL , i , iR) , (jL , j , jR)) =

(

N∗{ t ˆ∗} [dLˆ d dRˆ t ˆ] : [iL ˆ i iRˆ t ˆ]< jLˆ j jRˆ>

)

de f d e l ay ga t e (N, (iL , i , iR) , (jL , j , jR)) = (1000.0∗50.0∗< iL ˆ i iRˆ tˆ> |

1000 . 0∗50 . 0∗ [iL ˆ i iRˆ t ˆ]< jLˆ j jRˆ> |

rxn <iL ˆ i iRˆ tˆ> + [iLˆ i iRˆ t ˆ]< jLˆ j jRˆ> −> {10 .0E−13} <iL ˆ i iRˆ t ˆ jLˆ

j jRˆ> + [iLˆ i iRˆ t ˆ] | (∗ k 0bp = 0.49 /M. s . ∗)

N∗{ t ˆ∗} [jLˆ j jR ˆ] (∗ x10 = 10000 s . de lay ∗)

)

(∗ Adder Gate ∗)

de f Fa ((iL , i , iR)) = <bˆ iLˆ i iRˆ tˆ>

de f Ga((iL , i , iR) , (jL , j , jR) , (kL , k , kR)) = { t ˆ∗} [iL ˆ i iRˆ b ˆ] : [kLˆ k kRˆ t ˆ]< jLˆ

j jRˆ>

de f Da((iL , i , iR)) = [iL ˆ i iR ˆ]{bˆ∗}

123

de f Adder ((iL , i , iR) , (i1L , i1 , i1R) , (jL , j , jR) , (kL , k , kR)) =

(Fa ((kL , k , kR)) | Ga((iL , i , iR) , (jL , j , jR) , (kL , k , kR)) | Da((iL , i , iR)) |

Fa ((kL , k , kR)) | Ga((i1L , i1 , i1R) , (jL , j , jR) , (kL , k , kR)) | Da((i1L , i1 , i1R)))

de f x = 3 .0 (∗Range 0 to 10 ∗)

de f y = 6 .0 (∗Range 0 to 10 ∗)

(

(10.0−x) ∗ input (XL,X1) |

x ∗ input (XH,X7) |

100 .0 ∗ Fanout (X1 ,X2 ,X3 ,X4 ,X5 ,X6) | (∗ Fanout XL ∗)

100 .0 ∗ Fanout (X7 ,X8 ,X9 ,X10 ,X11 , X12) | (∗ Fanout XH ∗)

(10.0−y) ∗ input (YL,X14) |

y ∗ input (YH,X20) |

100 .0 ∗ Fanout (X14 ,X15 ,X16 ,X17 ,X18 , X19) | (∗ Fanout YL ∗)

100 .0 ∗ Fanout (X20 ,X21 ,X22 ,X23 ,X24 , X25) | (∗ Fanout YH ∗)

100 .0 ∗ minimum gate (X5 ,X17 ,X27 , X26) | (∗ Min(XL, YL) ∗)

100 .0 ∗ minimum gate (X11 ,X23 ,X29 , X28) | (∗ Min(XH, YH) ∗)

100 .0 ∗ minimum gate (X4 ,X24 ,X31 , X30) | (∗ Min(XL, YH) ∗)

100 .0 ∗ minimum gate (X10 ,X18 ,X33 , X32) | (∗ Min(XH, YL) ∗)

(∗ Max(Min(XL,YL) ,Min(XH,YH)) ∗)

100 .0 ∗ Fanout (X27 ,X34 ,X35 ,X36 ,X37 , X38) |

100 .0 ∗ Fanout (X29 ,X39 ,X40 ,X41 ,X42 , X43) |

100 .0 ∗ minimum gate (X37 ,X41 ,X46 , X45) |

124

100 .0 ∗ Adder (X36 ,X42 ,X44 , X47) |

Subtractor (100 . 0 ,X44 , X46) | (∗ The output i s FL ; <X36 t ˆ X44> ∗)

(∗ Max(Min(XL,YH) ,Min(XH,YL)) ∗)

100 .0 ∗ Fanout (X31 ,X48 ,X49 ,X50 ,X51 , X52) |

100 .0 ∗ Fanout (X33 ,X53 ,X54 ,X55 ,X56 , X57) |

100 .0 ∗ minimum gate (X51 ,X55 ,X60 , X59) |

100 .0 ∗ Adder (X50 ,X56 ,X58 , X61) |

Subtractor (100 . 0 ,X58 , X60) (∗ The output i s FH; <X50 t ˆ X58> ∗)

)

125

PUBLICATIONS

Journal Publications

1. George, A. K., and Singh, H., “DNA implementation of fuzzy inference engine: Towards

DNA decision-making systems,” IEEE Transactions on NanoBioscience, 2017, DOI:

10.1109/TNB.2017.2760821

2. George, A. K., Singh, H., Dattathreya, M. S., and Meitzler, T., “A fuzzy simulation

model for military vehicle mobility assessment,” Advances in Fuzzy Systems, Hindawi,

2017.

3. George, A. K., and Singh, H., “DNA strand displacement based logic inverter gate

design,” IET Micro and Nano letters, vol. 12, no. 9, pp 611-614, 2017.

4. George, A. K., and Singh, H., “Three-input majority gate using spatially localized

DNA hairpins,” IET Micro and Nano Letters, vol. 12, no. 3, pp 143-146, Mar. 2017,

DOI: 10.1049/mnl.2016.0535.

5. George, A. K., and Singh, H., “Enzyme-free scalable DNA digital design techniques:

A review,” IEEE Transactions on NanoBioscience, vol. 15, no. 8, pp 928-938, Dec.

2016, DOI: 10.1109/ TNB.2016.2623218.

6. George, A. K., and Sumathi, P., “Pre-filtered phase locking scheme for multi-component

AM-FM signal decomposition,” Circuits, Systems, and Signal Processing, Springer,

2017, DOI: 10.1007/s00034-017-0576-8.

7. George, A. K., and Sumathi, P., “Mono-component AM-FM signal decomposition

based on discrete second order generalized integrator - phase locked loop,” Circuits,

Systems, and Signal Processing, Springer, vol. 36, no. 4, pp 1604-1620, 2017, DOI:

10.1007/s00034-016-0380-x

http://ieeexplore.ieee.org/document/8063340/
http://ieeexplore.ieee.org/document/8063340/
https://www.hindawi.com/journals/afs/2017/3982753/abs/
https://www.hindawi.com/journals/afs/2017/3982753/abs/
http://digital-library.theiet.org/content/journals/10.1049/mnl.2017.0142
http://digital-library.theiet.org/content/journals/10.1049/mnl.2017.0142
http://ieeexplore.ieee.org/document/7866995/
http://ieeexplore.ieee.org/document/7866995/
http://ieeexplore.ieee.org/abstract/document/7765024/
http://ieeexplore.ieee.org/abstract/document/7765024/
https://link.springer.com/article/10.1007/s00034-017-0576-8
https://link.springer.com/article/10.1007/s00034-017-0576-8
http://link.springer.com/article/10.1007/s00034-016-0380-x
http://link.springer.com/article/10.1007/s00034-016-0380-x

126

8. George, A. K., Ishak, O. K., Alazzawi, L., Singh, H., Dattathreya, M. S., and Meit-

zler, T., “Development of a Fuzzy Chip for Mobility Assessment,” Advances in Fuzzy

Systems, Hindawi, Under review.

9. Vineet V., Sumathi, P., and George, A. K., “A frequency demodulator based on adap-

tive sampling frequency phase locking scheme for large deviation FM signals,” Circuits,

Systems, and Signal Processing, Springer, Under review.

Conference Publications

1. George, A. K., and Singh, H., “Design of Computing Circuits using Spatially Localized

DNA Majority Logic Gates,” in proceedings of 2017 IEEE International Conference on

Rebooting Computing (ICRC), pp 314-320, Nov. 2017.

2. George, A. K., Almatrood, A., and Singh, H., “Design of arithmetic and control cells for

a DNA binary processor,” in proceedings of international conference on computational

science and computational intelligence (CSCI 15), IEEE, pp 7-12, Dec 2015.

3. George, A. K., and Sumathi, P., “Mono-component AM-FM signal decomposition

using SRF-PLL,” in proceedings of international conference on communication and

signal processing (ICCSP 14), IEEE, pp 792-796, April 2014.

4. Almatrood, A., George, A. K., and Singh, H., “On the development of multi-input

multi-output nano digital circuits for molecular medicine,” in proceedings of interna-

tional conference on computational science and computational intelligence (CSCI 15),

IEEE, pp 873-878, Dec 2015.

5. Kumar, A., George, A. K., Singh, H., Singh, H. P., “Development of a fuzzy chip for

predicting the confidence level of soldiers in the army vehicle,” proceedings of second

international conference on innovative trends in electronics engineering (ICITEE2-

2016), Nov. 2016.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7424055&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7424055&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6949849
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6949849
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7424221
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7424221

127

6. Sharma, A., Kamthan, S., George, A.K., Almatrood, A., Singh, H., and Pal, H.,

“On development of chip to control laser time for cell-selective arrhythmia ablation of

heart,” in proceedings of international conference on innovative trends in electronics

engineering (ICITEE-2016), Jan 2016.

7. Gowrisankar, S., Almatrood, A., George, A.K., Singh, H., and Singh, H.P., “On the

development of arithmetic processors,” in proceedings of international conference on

innovative trends in electronics engineering (ICITEE-2016), Jan 2016.

8. Twal, R., Singh, H., Almatrood, A., and George, A. K., “On the development of

Boolean algebra approach to terminal-electromagnetic-compatibility of networks,” in

proceedings of IEEE international symposium on electromagnetic compatibility (EMC

2016), pp 67-72, Jul 2016.

Posters Presented

1. George, A. K., and Singh, H., “Enzyme free DNA digital circuit design: A majority

logic based approach,” Genomics@Wayne 2016 symposium, Oct. 28, 2016, Detroit,

MI, USA.

2. George, A. K., “A Novel dual rail AND-OR-Majority synthesizing technique for future

implantable medical devices using DNA circuits,” IEEE Southeast Michigan section

(SEM) humanitarian technology conference, Jul. 09, 2016, Dearborn, MI, USA.

3. George, A. K., “On the development of digital nano circuits for predicting the severity

of asthma,” IEEE Southeast Michigan section (SEM) fall conference, Nov.17, 2015,

U-M Dearborn, MI, USA.

4. George, A. K, Almatrood, A., Twal, R., Ali, O., and Singh, H., “Terminal vulnerability

of Internet of things for big data applications in defense,” Big data & business analytics

symposium, March 23-24, 2016, Wayne State University, Detroit, MI, USA.

http://ieeexplore.ieee.org/abstract/document/7571609/
http://ieeexplore.ieee.org/abstract/document/7571609/

128

5. Almatrood, A., George, A. K, Twal, R., Ali, O., and Singh, H., “Reduction of big data

by combination of factor analysis and clustering for business applications,” Big data

& business analytics symposium, March 23-24, 2016, Wayne State University, Detroit,

MI, USA.

6. Singh, H., and George, A. K.,“On the development of a functional simulation of bone

marrow using fuzzy logic approach and implementation with nanotechnology,” Tenth

Cooley’s Anemia symposium, Oct.18-22, 2015, Chicago, IL, USA.

7. Nam, D. H., Kamthan, S., George, A. K., Almatrood, A., and Singh, H., “Estimation

of equity risk premium using preprocessed correlation based dimension reduction,” Big

data & business analytics symposium, March 23-24, 2016, Wayne State University,

Detroit, MI, USA.

8. Singh, H., Kamthan, S., George, A. K., and Xie, Y.,“An effective way to convert your

requirements into integrated circuits (chip design),” IEEE Southeast Michigan section

(SEM) spring conference, Apr. 28, 2015, U-M Dearborn, MI, USA.

129

BIBLIOGRAPHY

[1] L. Qian and E. Winfree, “Parallel and scalable computation and spatial dynamics

with DNA-based chemical reaction networks on a surface,” in DNA Computing and

Molecular Programming. Springer, 2014, pp. 114–131.

[2] D. Mo, M. R. Lakin, and D. Stefanovic, “Logic circuits based on molecular spider

systems,” Biosystems, 2016.

[3] R. Carlson, “The changing economics of DNA synthesis,” Nature biotechnology, vol. 27,

no. 12, pp. 1091–1094, 2009.

[4] “I’m loving my “genes”,” https://sites.google.com/site/imlovingmygenes/

dna-structure, accessed: 2017-10-31.

[5] L. Qian and E. Winfree, “A simple DNA gate motif for synthesizing large-scale cir-

cuits,” Journal of the Royal Society Interface, p. rsif20100729, 2011.

[6] ——, “Scaling up digital circuit computation with DNA strand displacement cascades,”

Science, vol. 332, no. 6034, pp. 1196–1201, 2011.

[7] R. A. Muscat, K. Strauss, L. Ceze, and G. Seelig, “DNA-based molecular architecture

with spatially localized components,” in ACM SIGARCH Computer Architecture News,

vol. 41, no. 3. ACM, 2013, pp. 177–188.

[8] G. E. Moore, “Cramming more components onto integrated circuits,” Proceedings of

the IEEE, vol. 86, no. 1, pp. 82–85, Jan 1998.

[9] “The law that’s not a law,” IEEE Spectrum, vol. 52, no. 4, pp. 38–57, April 2015.

[10] M. Fuechsle, J. A. Miwa, S. Mahapatra, H. Ryu, S. Lee, O. Warschkow, L. C. Hollen-

berg, G. Klimeck, and M. Y. Simmons, “A single-atom transistor,” Nature Nanotech-

nology, vol. 7, no. 4, pp. 242–246, 2012.

https://sites.google.com/site/imlovingmygenes/dna-structure
https://sites.google.com/site/imlovingmygenes/dna-structure

130

[11] J. Mart́ınez-Blanco, C. Nacci, S. C. Erwin, K. Kanisawa, E. Locane, M. Thomas,

F. von Oppen, P. W. Brouwer, and S. Fölsch, “Gating a single-molecule transistor

with individual atoms,” Nature Physics, vol. 11, no. 8, pp. 640–644, 2015.

[12] F. A. Ran, P. D. Hsu, J. Wright, V. Agarwala, D. A. Scott, and F. Zhang, “Genome

engineering using the CRISPR-Cas9 system,” Nature protocols, vol. 8, no. 11, pp.

2281–2308, 2013.

[13] C. Calude and G. Paun, Computing with cells and atoms: an introduction to quantum,

DNA and membrane computing. CRC Press, 2000.

[14] C. S. Lent, P. D. Tougaw, W. Porod, and G. H. Bernstein, “Quantum cellular au-

tomata,” Nanotechnology, vol. 4, no. 1, p. 49, 1993.

[15] P. D. Tougaw and C. S. Lent, “Logical devices implemented using quantum cellular

automata,” Journal of Applied physics, vol. 75, no. 3, pp. 1818–1825, 1994.

[16] P. L. Gentili, “The fundamental fuzzy logic operators and some complex boolean logic

circuits implemented by the chromogenism of a spirooxazine,” Physical Chemistry

Chemical Physics, vol. 13, no. 45, pp. 20 335–20 344, 2011.

[17] P. Luigi Gentili, “Molecular processors: from qubits to fuzzy logic,” ChemPhysChem,

vol. 12, no. 4, pp. 739–745, 2011.

[18] Q.-Q. Wu, X.-Y. Duan, and Q.-H. Song, “Resettable multiple-mode molecular arith-

metic systems based on spectral properties of 2-quinolin-2-ylmethylene-malonic acids,”

The Journal of Physical Chemistry C, vol. 115, no. 48, pp. 23 970–23 977, 2011.

[19] P. L. Gentili, V. Horvath, V. K. Vanag, and I. R. Epstein, “Belousov-zhabotinsky”

chemical neuron” as a binary and fuzzy logic processor.” IJUC, vol. 8, no. 2, pp.

177–192, 2012.

131

[20] J. D. Watson, F. H. Crick et al., “Molecular structure of nucleic acids,” Nature, vol.

171, no. 4356, pp. 737–738, 1953.

[21] J. M. Picuri, B. M. Frezza, and M. R. Ghadiri, “Universal translators for nucleic acid

diagnosis,” Journal of the American Chemical Society, vol. 131, no. 26, pp. 9368–9377,

2009.

[22] S. M. Douglas, I. Bachelet, and G. M. Church, “A logic-gated nanorobot for targeted

transport of molecular payloads,” Science, vol. 335, no. 6070, pp. 831–834, 2012.

[23] P. B. Allen, S. A. Arshad, B. Li, X. Chen, and A. D. Ellington, “DNA circuits as

amplifiers for the detection of nucleic acids on a paperfluidic platform,” Lab on a Chip,

vol. 12, no. 16, pp. 2951–2958, 2012.

[24] L. M. Adleman, “Molecular computation of solutions to combinatorial problems,” Sci-

ence, vol. 266, no. 5187, pp. 1021–1024, 1994.

[25] R. J. Liptony, “Using DNA to solve np-complete problems,” 1995.

[26] L. Kari, G. Gloor, and S. Yu, “Using DNA to solve the bounded post correspondence

problem,” Theoretical Computer Science, vol. 231, no. 2, pp. 193–203, 2000.

[27] L. M. Adleman, “Computing with DNA,” Scientific american, vol. 279, no. 8, pp.

34–41, 1998.

[28] Q. Ouyang, P. D. Kaplan, S. Liu, and A. Libchaber, “DNA solution of the maximal

clique problem,” Science, vol. 278, no. 5337, pp. 446–449, 1997.

[29] J. SantaLucia Jr and D. Hicks, “The thermodynamics of DNA structural motifs,”

Annu. Rev. Biophys. Biomol. Struct., vol. 33, pp. 415–440, 2004.

[30] J. Chen and N. C. Seeman, “Synthesis from DNA of a molecule with the connectivity

of a cube.” Nature, vol. 350, no. 6319, pp. 631–633, 1991.

132

[31] N. C. Seeman, “Nucleic acid junctions and lattices,” Journal of theoretical biology,

vol. 99, no. 2, pp. 237–247, 1982.

[32] ——, “Nanomaterials based on DNA,” Annual review of biochemistry, vol. 79, p. 65,

2010.

[33] E. Winfree, “Algorithmic self-assembly of DNA,” Ph.D. dissertation, California Insti-

tute of Technology, 1998.

[34] B. Yurke, A. J. Turberfield, A. P. Mills, F. C. Simmel, and J. L. Neumann, “A DNA-

fuelled molecular machine made of DNA,” Nature, vol. 406, no. 6796, pp. 605–608,

2000.

[35] A. K. George, A. Almatrood, and H. Singh, “Design of arithmetic and control cells for

a DNA binary processor,” in 2015 International Conference on Computational Science

and Computational Intelligence (CSCI), 2015, pp. 7–12.

[36] R. Sawlekar, F. Montefusco, V. V. Kulkarni, and D. G. Bates, “Implementing nonlinear

feedback controllers using DNA strand displacement reactions,” IEEE transactions on

nanobioscience, vol. 15, no. 5, pp. 443–454, 2016.

[37] D. Y. Zhang and G. Seelig, “Dynamic DNA nanotechnology using strand-displacement

reactions,” Nature chemistry, vol. 3, no. 2, pp. 103–113, 2011.

[38] H.-W. Fink and C. Schönenberger, “Electrical conduction through DNA molecules,”

Nature, vol. 398, no. 6726, pp. 407–410, 1999.

[39] B. Xu, P. Zhang, X. Li, and N. Tao, “Direct conductance measurement of single DNA

molecules in aqueous solution,” Nano letters, vol. 4, no. 6, pp. 1105–1108, 2004.

[40] G. I. Livshits, A. Stern, D. Rotem, N. Borovok, G. Eidelshtein, A. Migliore, E. Penzo,

S. J. Wind, R. Di Felice, S. S. Skourtis et al., “Long-range charge transport in single

133

g-quadruplex DNA molecules,” Nature nanotechnology, vol. 9, no. 12, pp. 1040–1046,

2014.

[41] H. Bui, H. Chandran, S. Garg, N. Gopalkrishnan, R. Mokhtar, T. Song, and J. H.

Reif, “DNA computing, chapter in computing handbook, volume i: Computer science

and software engineering, section 3: Architecture and organization, edited by teofilo f.

gonzalez,” 2013.

[42] M. S. Meselson and C. M. Radding, “A general model for genetic recombination,”

Proceedings of the National Academy of Sciences, vol. 72, no. 1, pp. 358–361, 1975.

[43] I. G. Panyutin and P. Hsieh, “The kinetics of spontaneous DNA branch migration,”

Proceedings of the National Academy of Sciences, vol. 91, no. 6, pp. 2021–2025, 1994.

[44] L. P. Reynaldo, A. V. Vologodskii, B. P. Neri, and V. I. Lyamichev, “The kinetics

of oligonucleotide replacements,” Journal of molecular biology, vol. 297, no. 2, pp.

511–520, 2000.

[45] H. Chandran, N. Gopalkrishnan, A. Phillips, and J. Reif, “Localized hybridization

circuits,” in DNA Computing and Molecular Programming. Springer, 2011, pp. 64–

83.

[46] P. W. Rothemund, “Folding DNA to create nanoscale shapes and patterns,” Nature,

vol. 440, no. 7082, pp. 297–302, 2006.

[47] J. D. Le, Y. Pinto, N. C. Seeman, K. Musier-Forsyth, T. A. Taton, and R. A. Kiehl,

“DNA-templated self-assembly of metallic nanocomponent arrays on a surface,” Nano

Letters, vol. 4, no. 12, pp. 2343–2347, 2004.

[48] C. M. Niemeyer, “Self-assembled nanostructures based on DNA: towards the devel-

opment of nanobiotechnology,” Current opinion in chemical biology, vol. 4, no. 6, pp.

609–618, 2000.

134

[49] Y. Ke, Y. Liu, J. Zhang, and H. Yan, “A study of DNA tube formation mechanisms

using 4-, 8-, and 12-helix DNA nanostructures,” Journal of the American Chemical

Society, vol. 128, no. 13, pp. 4414–4421, 2006.

[50] B. Yurke and A. P. Mills Jr, “Using DNA to power nanostructures,” Genetic Program-

ming and Evolvable Machines, vol. 4, no. 2, pp. 111–122, 2003.

[51] D. Y. Zhang and E. Winfree, “Control of DNA strand displacement kinetics using

toehold exchange,” Journal of the American Chemical Society, vol. 131, no. 47, pp.

17 303–17 314, 2009.

[52] A. K. George and H. Singh, “Enzyme-free scalable DNA digital design techniques: A

review,” IEEE Transactions on NanoBioscience, vol. 15, no. 8, pp. 928–938, 2016.

[53] ——, “Three-input majority gate using spatially localised DNA hairpins,” Micro &

Nano Letters, vol. 12, no. 3, pp. 143–146, 2017.

[54] ——, “Design of computing circuits using spatially localized DNA majority logic

gates,” 2017.

[55] ——, “DNA strand displacement-based logic inverter gate design,” Micro & Nano

Letters, vol. 12, no. 9, pp. 611–614, 2017.

[56] ——, “DNA implementation of fuzzy inference engine: Towards DNA decision-making

systems,” IEEE Transactions on NanoBioscience, 2017.

[57] H. Yan, S. H. Park, G. Finkelstein, J. H. Reif, and T. H. LaBean, “DNA-templated

self-assembly of protein arrays and highly conductive nanowires,” Science, vol. 301,

no. 5641, pp. 1882–1884, 2003.

[58] M. N. Stojanovic and D. Stefanovic, “A deoxyribozyme-based molecular automaton,”

Nature biotechnology, vol. 21, no. 9, pp. 1069–1074, 2003.

135

[59] I. Willner, B. Shlyahovsky, M. Zayats, and B. Willner, “DNAzymes for sensing,

nanobiotechnology and logic gate applications,” Chemical Society Reviews, vol. 37,

no. 6, pp. 1153–1165, 2008.

[60] T. Miyamoto, S. Razavi, R. DeRose, and T. Inoue, “Synthesizing biomolecule-based

boolean logic gates,” ACS synthetic biology, vol. 2, no. 2, pp. 72–82, 2012.

[61] D. Y. Zhang, “Towards domain-based sequence design for DNA strand displacement

reactions,” in DNA Computing and Molecular Programming. Springer, 2010, pp.

162–175.

[62] S. F. Wickham, J. Bath, Y. Katsuda, M. Endo, K. Hidaka, H. Sugiyama, and A. J.

Turberfield, “A DNA-based molecular motor that can navigate a network of tracks,”

Nature nanotechnology, vol. 7, no. 3, pp. 169–173, 2012.

[63] K. Lund, A. J. Manzo, N. Dabby, N. Michelotti, A. Johnson-Buck, J. Nangreave,

S. Taylor, R. Pei, M. N. Stojanovic, N. G. Walter et al., “Molecular robots guided by

prescriptive landscapes,” Nature, vol. 465, no. 7295, pp. 206–210, 2010.

[64] J.-S. Shin and N. A. Pierce, “A synthetic DNA walker for molecular transport,” Journal

of the American Chemical Society, vol. 126, no. 35, pp. 10 834–10 835, 2004.

[65] F. Dannenberg, M. Kwiatkowska, C. Thachuk, and A. J. Turberfield, “DNA walker cir-

cuits: computational potential, design, and verification,” Natural Computing, vol. 14,

no. 2, pp. 195–211, 2015.

[66] A. Phillips and L. Cardelli, “A programming language for composable DNA circuits,”

Journal of the Royal Society Interface, vol. 6, no. Suppl 4, pp. S419–S436, 2009.

[67] M. R. Lakin, S. Youssef, L. Cardelli, and A. Phillips, “Abstractions for DNA circuit

design,” Journal of The Royal Society Interface, vol. 9, no. 68, pp. 470–486, 2012.

[68] M. R. Lakin, S. Youssef, F. Polo, S. Emmott, and A. Phillips, “Visual dsd: a design and

136

analysis tool for DNA strand displacement systems,” Bioinformatics, vol. 27, no. 22,

pp. 3211–3213, 2011.

[69] M. R. Lakin, R. Petersen, K. E. Gray, and A. Phillips, “Abstract modelling of tethered

DNA circuits,” in DNA Computing and Molecular Programming. Springer, 2014, pp.

132–147.

[70] R. Daniel, J. R. Rubens, R. Sarpeshkar, and T. K. Lu, “Synthetic analog computation

in living cells,” Nature, vol. 497, no. 7451, pp. 619–623, 2013.

[71] A. P. Mills, B. Yurke, and P. M. Platzman, “Article for analog vector algebra compu-

tation,” Biosystems, vol. 52, no. 1, pp. 175–180, 1999.

[72] A. J. Turberfield, J. Mitchell, B. Yurke, A. P. Mills Jr, M. Blakey, and F. C. Simmel,

“DNA fuel for free-running nanomachines,” Physical review letters, vol. 90, no. 11, p.

118102, 2003.

[73] G. Seelig, B. Yurke, and E. Winfree, “Catalyzed relaxation of a metastable DNA fuel,”

Journal of the American Chemical Society, vol. 128, no. 37, pp. 12 211–12 220, 2006.

[74] D. Y. Zhang, A. J. Turberfield, B. Yurke, and E. Winfree, “Engineering entropy-driven

reactions and networks catalyzed by DNA,” Science, vol. 318, no. 5853, pp. 1121–1125,

2007.

[75] R. M. Dirks and N. A. Pierce, “Triggered amplification by hybridization chain reac-

tion,” Proceedings of the National Academy of Sciences of the United States of America,

vol. 101, no. 43, pp. 15 275–15 278, 2004.

[76] P. Yin, H. M. Choi, C. R. Calvert, and N. A. Pierce, “Programming biomolecular

self-assembly pathways,” Nature, vol. 451, no. 7176, pp. 318–322, 2008.

[77] B. Li, A. D. Ellington, and X. Chen, “Rational, modular adaptation of enzyme-free

137

DNA circuits to multiple detection methods,” Nucleic acids research, vol. 39, no. 16,

pp. e110–e110, 2011.

[78] D. Y. Zhang and G. Seelig, “DNA-based fixed gain amplifiers and linear classifier

circuits,” DNA, vol. 16, pp. 176–186, 2010.

[79] X. Chen, N. Briggs, J. R. McLain, and A. D. Ellington, “Stacking nonenzymatic

circuits for high signal gain,” Proceedings of the National Academy of Sciences, vol.

110, no. 14, pp. 5386–5391, 2013.

[80] C. Jung and A. D. Ellington, “Diagnostic applications of nucleic acid circuits,” Ac-

counts of chemical research, vol. 47, no. 6, pp. 1825–1835, 2014.

[81] X. Zhang, Y. Wang, Z. Chen, J. Xu, and G. Cui, “Arithmetic computation using self-

assembly of DNA tiles: subtraction and division,” Progress in Natural Science, vol. 19,

no. 3, pp. 377–388, 2009.

[82] A. J. Genot, J. Bath, and A. J. Turberfield, “Combinatorial displacement of DNA

strands: application to matrix multiplication and weighted sums,” Angewandte Chemie

International Edition, vol. 52, no. 4, pp. 1189–1192, 2013.

[83] W. Li, F. Zhang, H. Yan, and Y. Liu, “DNA based arithmetic function: a half adder

based on DNA strand displacement,” Nanoscale, vol. 8, no. 6, pp. 3775–3784, 2016.

[84] T. Song, S. Garg, R. Mokhtar, H. Bui, and J. Reif, “Analog computation by DNA

strand displacement circuits,” ACS synthetic biology, vol. 5, no. 8, pp. 898–912, 2016.

[85] C. Zou, X. Wei, Q. Zhang, C. Liu, C. Zhou, and Y. Liu, “Four-analog computation

based on DNA strand displacement,” ACS Omega, vol. 2, no. 8, pp. 4143–4160, 2017.

[86] D. Soloveichik, G. Seelig, and E. Winfree, “DNA as a universal substrate for chemical

kinetics,” Proceedings of the National Academy of Sciences, vol. 107, no. 12, pp. 5393–

5398, 2010.

138

[87] K. Oishi and E. Klavins, “Biomolecular implementation of linear i/o systems,” IET

Systems Biology, vol. 5, no. 4, pp. 252–260, 2011.

[88] T.-Y. Chiu, H.-J. K. Chiang, R.-Y. Huang, J.-H. R. Jiang, and F. Fages, “Synthesizing

configurable biochemical implementation of linear systems from their transfer function

specifications,” PloS one, vol. 10, no. 9, p. e0137442, 2015.

[89] B. Yordanov, J. Kim, R. L. Petersen, A. Shudy, V. V. Kulkarni, and A. Phillips,

“Computational design of nucleic acid feedback control circuits,” ACS synthetic biol-

ogy, vol. 3, no. 8, pp. 600–616, 2014.

[90] C. Briat, C. Zechner, and M. Khammash, “Design of a synthetic integral feedback

circuit: dynamic analysis and DNA implementation,” ACS synthetic biology, vol. 5,

no. 10, pp. 1108–1116, 2016.

[91] J. Fern, D. Scalise, A. Cangialosi, D. Howie, L. Potters, and R. Schulman, “DNA

strand-displacement timer circuits,” ACS synthetic biology, vol. 6, no. 2, pp. 190–193,

2016.

[92] D. Mo, M. R. Lakin, and D. Stefanovic, “Logic circuits based on molecular spider

systems,” Biosystems, pp. –, 2016. [Online]. Available: http://www.sciencedirect.

com/science/article/pii/S0303264716300259

[93] J. Zhu, L. Zhang, S. Dong, and E. Wang, “Four-way junction-driven DNA strand

displacement and its application in building majority logic circuit,” ACS nano, vol. 7,

no. 11, pp. 10 211–10 217, 2013.

[94] W. Li, Y. Yang, H. Yan, and Y. Liu, “Three-input majority logic gate and multiple

input logic circuit based on DNA strand displacement,” Nano letters, vol. 13, no. 6,

pp. 2980–2988, 2013.

http://www.sciencedirect.com/science/article/pii/S0303264716300259
http://www.sciencedirect.com/science/article/pii/S0303264716300259

139

[95] R. Akeela and M. D. Wagh, “A five-input majority gate in quantum-dot cellular au-

tomata,” in NSTI Nanotech, vol. 2, 2011, pp. 978–981.

[96] E. Torelli, M. Marini, S. Palmano, L. Piantanida, C. Polano, A. Scarpellini, M. Laz-

zarino, and G. Firrao, “A DNA origami nanorobot controlled by nucleic acid hybridiza-

tion,” Small, vol. 10, no. 14, pp. 2918–2926, 2014.

[97] J. Fu and H. Yan, “Controlled drug release by a nanorobot,” Nature biotechnology,

vol. 30, no. 5, pp. 407–408, 2012.

[98] K. Navi, S. Sayedsalehi, R. Farazkish, and M. R. Azghadi, “Five-input majority gate,

a new device for quantum-dot cellular automata,” Journal of Computational and The-

oretical Nanoscience, vol. 7, no. 8, pp. 1546–1553, 2010.

[99] S. Venkataraman, R. M. Dirks, C. T. Ueda, and N. A. Pierce, “Selective cell death me-

diated by small conditional RNAs,” Proceedings of the National Academy of Sciences,

vol. 107, no. 39, pp. 16 777–16 782, 2010.

[100] Y. Krishnan and F. C. Simmel, “Nucleic acid based molecular devices,” Angewandte

Chemie International Edition, vol. 50, no. 14, pp. 3124–3156, 2011.

[101] R. Penchovsky and R. R. Breaker, “Computational design and experimental validation

of oligonucleotide-sensing allosteric ribozymes,” Nature biotechnology, vol. 23, no. 11,

pp. 1424–1433, 2005.

[102] Y.-J. Chen, N. Dalchau, N. Srinivas, A. Phillips, L. Cardelli, D. Soloveichik, and

G. Seelig, “Programmable chemical controllers made from DNA,” Nature nanotech-

nology, vol. 8, no. 10, pp. 755–762, 2013.

[103] A. Dance, “Smart drugs: A dose of intelligence,” Nature, vol. 531, no. 7592, pp. S2–S3,

2016.

140

[104] X. Yang, Y. Tang, S. D. Mason, J. Chen, and F. Li, “Enzyme-powered three-

dimensional DNA nanomachine for DNA walking, payload release, and biosensing,”

ACS nano, vol. 10, no. 2, pp. 2324–2330, 2016.

[105] G. Rau, K. Becker, R. Kaufmann, and H.-J. Zimmermann, “Fuzzy logic and control:

principal approach and potential applications in medicine,” Artificial Organs, vol. 19,

no. 1, pp. 105–112, 1995.

[106] S. Barro and R. Maŕın, Fuzzy logic in medicine. Physica, 2013, vol. 83.

[107] M. Mahfouf, M. F. Abbod, and D. A. Linkens, “A survey of fuzzy logic monitoring

and control utilisation in medicine,” Artificial intelligence in medicine, vol. 21, no. 1,

pp. 27–42, 2001.

[108] Y. Benenson, B. Gil, U. Ben-Dor, R. Adar, and E. Shapiro, “An autonomous molecular

computer for logical control of gene expression,” Nature, vol. 429, no. 6990, pp. 423–

429, 2004.

[109] A. Trybulec and C. Bylinski, “Some properties of real numbers operations: min, max,

square, and square root,” Journal of Formalized Mathematics, vol. 1, no. 198, p. 9,

1989.

[110] L. A. Zadeh, “Fuzzy sets,” Information and control, vol. 8, no. 3, pp. 338–353, 1965.

[111] J.-S. Jang and C.-T. Sun, “Neuro-fuzzy modeling and control,” Proceedings of the

IEEE, vol. 83, no. 3, pp. 378–406, 1995.

[112] R. E. Bellman and L. A. Zadeh, “Decision-making in a fuzzy environment,” Manage-

ment science, vol. 17, no. 4, pp. B–141, 1970.

[113] M. M. Gupta and J. Qi, “Theory of t-norms and fuzzy inference methods,” Fuzzy sets

and systems, vol. 40, no. 3, pp. 431–450, 1991.

141

[114] A. Abraham, “Rule-based expert systems,” Handbook of measuring system design,

2005.

[115] E. H. Mamdani and S. Assilian, “An experiment in linguistic synthesis with a fuzzy

logic controller,” International journal of man-machine studies, vol. 7, no. 1, pp. 1–13,

1975.

[116] E. H. Mamdani, “Application of fuzzy logic to approximate reasoning using linguistic

synthesis,” in Proceedings of the sixth international symposium on Multiple-valued logic.

IEEE Computer Society Press, 1976, pp. 196–202.

[117] T. Takagi and M. Sugeno, “Derivation of fuzzy control rules from human operator’s

control actions,” in Proceedings of the IFAC symposium on fuzzy information, knowl-

edge representation and decision analysis, vol. 6. sn, 1983, pp. 55–60.

[118] ——, “Fuzzy identification of systems and its applications to modeling and control,”

IEEE transactions on systems, man, and cybernetics, no. 1, pp. 116–132, 1985.

[119] W. V. Leekwijck and E. E. Kerre, “Defuzzification: criteria and classification,” Fuzzy

Sets and Systems, vol. 108, no. 2, pp. 159 – 178, 1999.

[120] R. Carvajal, J. Ramirez-Angulo, and J. Martinez-Heredia, “High-speed high-precision

min/max circuits in cmos technology,” Electronics Letters, vol. 36, no. 8, pp. 697–699,

2000.

[121] P. L. Gentili, “Boolean and fuzzy logic implemented at the molecular level,” Chemical

physics, vol. 336, no. 1, pp. 64–73, 2007.

[122] J. N. Zadeh, C. D. Steenberg, J. S. Bois, B. R. Wolfe, M. B. Pierce, A. R. Khan, R. M.

Dirks, and N. A. Pierce, “NUPACK: analysis and design of nucleic acid systems,”

Journal of computational chemistry, vol. 32, no. 1, pp. 170–173, 2011.

142

[123] K. U. Mir, “A restricted genetic alphabet for DNA computing,” DNA Based Computers

II, pp. 243–246, 1999.

[124] R. S. Braich, N. Chelyapov, C. Johnson, P. W. Rothemund, and L. Adleman, “Solution

of a 20-variable 3-SAT problem on a DNA computer,” Science, vol. 296, no. 5567, pp.

499–502, 2002.

[125] D. Faulhammer, A. R. Cukras, R. J. Lipton, and L. F. Landweber, “Molecular com-

putation: RNA solutions to chess problems,” Proceedings of the National Academy of

Sciences, vol. 97, no. 4, pp. 1385–1389, 2000.

[126] M.-Y. Kao, M. Sanghi, and R. Schweller, “Randomized fast design of short DNA

words,” ACM Transactions on Algorithms (TALG), vol. 5, no. 4, p. 43, 2009.

[127] M. R. Lakin, S. Youssef, L. Cardelli, and A. Phillips, “Abstractions for DNA circuit

design,” Journal of The Royal Society Interface, vol. 9, pp. 470–486, 2012.

[128] A. J. Thubagere, C. Thachuk, J. Berleant, R. F. Johnson, D. A. Ardelean, K. M.

Cherry, and L. Qian, “Compiler-aided systematic construction of large-scale DNA

strand displacement circuits using unpurified components,” Nature Communications,

vol. 8, 2017.

[129] R. L. Petersen, M. R. Lakin, and A. Phillips, “A strand graph semantics for DNA-based

computation,” Theoretical computer science, vol. 632, pp. 43–73, 2016.

[130] J. Von Neumann, “Probabilistic logics and the synthesis of reliable organisms from

unreliable components,” Automata studies, vol. 34, pp. 43–98, 1956.

[131] A. Avizienis, “Fault-tolerance: The survival attribute of digital systems,” Proceedings

of the IEEE, vol. 66, no. 10, pp. 1109–1125, Oct 1978.

[132] Y.-J. Chen, B. Groves, R. A. Muscat, and G. Seelig, “DNA nanotechnology from the

test tube to the cell,” Nature nanotechnology, vol. 10, no. 9, pp. 748–760, 2015.

143

ABSTRACT

DESIGN OF DNA STRAND DISPLACEMENT BASED CIRCUITS

by

ABY KONAMPURATH GEORGE

May 2018

Advisor: Dr. Harpreet Singh

Major: Electrical and Computer Engineering

Degree: Doctor of Philosophy

DNA is the basic building block of any living organism. DNA is considered a popular

candidate for future biological devices and circuits for solving genetic disorders and several

other medical problems. With this objective in mind, this research aims at developing novel

approaches for the design of DNA based circuits. There are many recent developments in the

medical field such as the development of biological nanorobots, SMART drugs, and CRISPR-

Cas9 technologies. There is a strong need for circuits that can work with these technologies

and devices. DNA is considered a suitable candidate for designing such circuits because of

the programmability of the DNA strands, small size, lightweight, known thermodynamics,

higher parallelism, and exponentially reducing the cost of synthesizing techniques. The

DNA strand displacement operation is useful in developing circuits with DNA strands. The

circuit can be either a digital circuit, in which the logic high and logic low states of the DNA

strand concentrations are considered as the signal, or it can be an analog circuit in which

the concentration of the DNA strands itself will act as the signal.

We developed novel approaches in this research for the design of digital, as well as ana-

log circuits keeping in view of the number of DNA strands required for the circuit design.

144

Towards this goal in the digital domain, we developed spatially localized DNA majority

logic gates and an inverter logic gate that can be used with the existing seesaw based logic

gates. The majority logic gates proposed in this research can considerably reduce the num-

ber of strands required in the design. The introduction of the logic inverter operation can

translate the dual rail circuit architecture into a monorail architecture for the seesaw based

logic circuits. It can also reduce the number of unique strands required for the design into

approximately half. The reduction in the number of unique strands will consequently reduce

the leakage reactions, circuit complexity, and cost associated with the DNA circuits.

The real world biological inputs are analog in nature. If we can use those analog signals

directly in the circuits, it can considerably reduce the resources required. Even though analog

circuits are highly prone to noise, they are a perfect candidate for performing computations

in the resource-limited environments, such as inside the cell. In the analog domain, we are

developing a novel fuzzy inference engine using analog circuits such as the minimum gate,

maximum gate, and fan-out gates. All the circuits discussed in this research were designed

and tested in the Visual DSD software. The biological inputs are inherently fuzzy in nature,

hence a fuzzy based system can play a vital role in future decision-making circuits. We hope

that our research will be the first step towards realizing these larger goals. The ultimate aim

of our research is to develop novel approaches for the design of circuits which can be used

with the future biological devices to tackle many medical problems such as genetic disorders.

145

AUTOBIOGRAPHICAL STATEMENT

Education
PhD Wayne State University, Detroit, MI, USA 4.0/4.0 (GPA), 2017
M.Tech. IIT Roorkee, India 9.576/10.0 (GPA), 2014
B.Tech. University of Calicut, Kerala, India 72.7%, 2007

Personal Details
Full Name Aby Konampurath George
E-mail Address aby.100@gmail.com
Date of Birth (mm/dd/yyyy) 01/21/1986
City of Birth Tripunithura - Kerala
Country of Birth India

Work Experience
Sep 2014 - Present Graduate Teaching Assistant, Wayne State University, Detroit, USA
Aug 2013 - Jun 2014 Teaching Assistant, Indian Institute of Technology, Roorkee, India
Nov 2009 - May 2011 Service Engineer, Gulf Incon Controls Intl. LLC, Dubai, UAE
Feb 2009 - Nov 2009 Graduate Engineer, Keltron Controls, Kerala, India
Nov 2007 - Nov 2008 Graduate Apprentice, The FACT Ltd., Kerala, India

Research Interests
• DNA circuit design
• Non-linear control system
• Nano circuit design
• Functional nanotechnology

	Design Of Dna Strand Displacement Based Circuits
	Recommended Citation

	Dedication
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Motivation and Context
	Preliminaries
	Structure of DNA
	DNA Strand Displacement Operation

	Summary of Contributions

	Literature Review: DNA Circuits
	Introduction
	Enzyme-free DNA Digital Design
	Seesaw Gate Motif Based Circuits
	Localized DNA Hairpins Based Circuits
	DNA-based CRN on a Surface qian2014parallel
	Molecular Spider System Based Circuits mo2016logic
	Comparison of Different Methods

	DNA Analog Design
	Amplification Circuits
	Arithmetic Circuits
	Control Circuits
	Timer Circuits
	Challenges for Analog Circuits

	Conclusion

	Spatially Localized Majority Gates
	Introduction
	Spatially Localized DNA Majority Gate
	Methodology
	Simulation Results and Discussion

	Spatially Localized Five Input Majority Gate
	Input Strand
	Input Translator Hairpin Strand
	Fuel Strand
	Threshold Strand
	Output Translator Strand

	Simulation Results
	Implementation of Five Input Majority Gate in Visual DSD
	Circuit Design Using Majority Gates
	Case Study: Full Adder Design
	Design of an n-Input Majority Gate

	Conclusion

	DNA Strand Displacement Based Inverter Logic Gate
	Introduction
	DNA Inverter Gate Design
	Simulation Results and Discussion
	Conclusion

	DNA Strand Displacement Based Fuzzy Inference Engine
	Introduction
	Minimum and Maximum Functions Using DNA
	Basic Concepts
	Minimum Gate
	Fan-out Gate
	Maximum Gate

	Fuzzy Logic
	Modeling of Fuzzy Expert System
	DNA Implementation of Mamdani Fuzzy Inference

	Simulation Results and Discussion
	Minimum Gate
	Fan-out Gate
	Maximum Gate
	Mamdani Fuzzy Inference System
	Novelty of the Work

	Wet Lab Implementation of Minimum Gate
	Sequence Design
	Circuit Preparation
	Kinetic Experiments

	Conclusion

	Challenges and Future Research
	Introduction
	Challenges
	Future Research
	Conclusion

	Summary and Discussion
	APPENDIX: Visual DSD Codes
	publications
	Bibliography
	Abstract
	AUTOBIOGRAPHICAL STATEMENT

