8,435 research outputs found

    Fuzzy Image Segmentation based upon Hierarchical Clustering

    Get PDF
    In this paper we introduce the concept of Fuzzy Image Segmentation, providing an algorithm to build fuzzy boundaries based on the existing relations between the fuzzy boundary set problem and the (crisp) hierarchical image segmentation problem. In particular, since a crisp image segmentation can be characterized in terms of the set of edges that separates the adjacent regions of the segmentation, from these edges we introduce the concept of fuzzy image segmentation. Hence,each fuzzy image segmentation is characterized by means of a fuzzy set over the set of edges, which can be then understood as the fuzzy boundary of the image. Some computational experiences are included in order to show the obtained fuzzy boundaries of some digital images

    Hierarchical Image Segmentation

    Get PDF
    V mnoha aplikacích počítačového vidění je segmentace obrazu jedním z nekritičtějších kroků jeho analýzy. V této práci je prezentována segmentační metoda založená na shlukovacích algoritmech fuzzy c-means a k-means. Je použita hierarchická datová struktura společně se shlukovacími algoritmy pro segmentaci na každém stupni pyramidy. Výsledky ukazují, že výpočetní čas je mnohem menší, než v případě klasického shlukování.In many vision applications image segmentation is one of the most critical steps of analysis,which has the objective of extracting information from an image. In this work a segmentation method based upon fuzzy c-means  and k-means clustering is presented. A hierarchical data structure together with clustering algorithms for the segmentation in each level of the pyramid is used.The results show that the computation time is much less then that of a classical clustering.

    Cluster validity in clustering methods

    Get PDF

    Fuzzy-based Propagation of Prior Knowledge to Improve Large-Scale Image Analysis Pipelines

    Get PDF
    Many automatically analyzable scientific questions are well-posed and offer a variety of information about the expected outcome a priori. Although often being neglected, this prior knowledge can be systematically exploited to make automated analysis operations sensitive to a desired phenomenon or to evaluate extracted content with respect to this prior knowledge. For instance, the performance of processing operators can be greatly enhanced by a more focused detection strategy and the direct information about the ambiguity inherent in the extracted data. We present a new concept for the estimation and propagation of uncertainty involved in image analysis operators. This allows using simple processing operators that are suitable for analyzing large-scale 3D+t microscopy images without compromising the result quality. On the foundation of fuzzy set theory, we transform available prior knowledge into a mathematical representation and extensively use it enhance the result quality of various processing operators. All presented concepts are illustrated on a typical bioimage analysis pipeline comprised of seed point detection, segmentation, multiview fusion and tracking. Furthermore, the functionality of the proposed approach is validated on a comprehensive simulated 3D+t benchmark data set that mimics embryonic development and on large-scale light-sheet microscopy data of a zebrafish embryo. The general concept introduced in this contribution represents a new approach to efficiently exploit prior knowledge to improve the result quality of image analysis pipelines. Especially, the automated analysis of terabyte-scale microscopy data will benefit from sophisticated and efficient algorithms that enable a quantitative and fast readout. The generality of the concept, however, makes it also applicable to practically any other field with processing strategies that are arranged as linear pipelines.Comment: 39 pages, 12 figure

    Automated detection of brain abnormalities in neonatal hypoxia ischemic injury from MR images.

    Get PDF
    We compared the efficacy of three automated brain injury detection methods, namely symmetry-integrated region growing (SIRG), hierarchical region splitting (HRS) and modified watershed segmentation (MWS) in human and animal magnetic resonance imaging (MRI) datasets for the detection of hypoxic ischemic injuries (HIIs). Diffusion weighted imaging (DWI, 1.5T) data from neonatal arterial ischemic stroke (AIS) patients, as well as T2-weighted imaging (T2WI, 11.7T, 4.7T) at seven different time-points (1, 4, 7, 10, 17, 24 and 31 days post HII) in rat-pup model of hypoxic ischemic injury were used to assess the temporal efficacy of our computational approaches. Sensitivity, specificity, and similarity were used as performance metrics based on manual ('gold standard') injury detection to quantify comparisons. When compared to the manual gold standard, automated injury location results from SIRG performed the best in 62% of the data, while 29% for HRS and 9% for MWS. Injury severity detection revealed that SIRG performed the best in 67% cases while 33% for HRS. Prior information is required by HRS and MWS, but not by SIRG. However, SIRG is sensitive to parameter-tuning, while HRS and MWS are not. Among these methods, SIRG performs the best in detecting lesion volumes; HRS is the most robust, while MWS lags behind in both respects

    Text Line Segmentation of Historical Documents: a Survey

    Full text link
    There is a huge amount of historical documents in libraries and in various National Archives that have not been exploited electronically. Although automatic reading of complete pages remains, in most cases, a long-term objective, tasks such as word spotting, text/image alignment, authentication and extraction of specific fields are in use today. For all these tasks, a major step is document segmentation into text lines. Because of the low quality and the complexity of these documents (background noise, artifacts due to aging, interfering lines),automatic text line segmentation remains an open research field. The objective of this paper is to present a survey of existing methods, developed during the last decade, and dedicated to documents of historical interest.Comment: 25 pages, submitted version, To appear in International Journal on Document Analysis and Recognition, On line version available at http://www.springerlink.com/content/k2813176280456k3

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging
    • …
    corecore