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ABSTRACT: Given the fact that neural networks have been widely reported in the research community of 

medical imaging, we provide a focused literature survey on recent neural network developments in computer-

aided diagnosis, medical image segmentation and edge detection toward visual content analysis, and medical 

image registration for its pre-processing and post processing, with the aim of increasing awareness of how 

neural networks can be applied to these areas and providing a foundation for further research and practical 

development. Representative techniques and algorithms are explained in detail to provide inspiring examples 

illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to 

resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by 

neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to 

medical imaging. In the concluding section, a highlight of comparisons among all neural networks is included to 

provide a global view on computational intelligence with neural networks in medical imaging. 

 

Indexing terms: neural networks, medical imaging analysis, and intelligent computing.     

 

1. Introduction 

 

Inspired by the way how biological nervous systems such as human brains process information, an artificial 

neural network (ANN) is an information processing system which contains a large number of highly 

interconnected processing neurons. These neurons work together in a distributed manner to learn from the input 

information, to coordinate internal processing, and to optimise its final output. For the past decades, neural 

networks have been successfully applied to a wide range of areas, including computer science, engineering, 

theoretical modelling, and information systems, and medical imaging is another fruitful area for neural networks 

to play crucial roles in resolving problems and providing solutions.  As numerous algorithms have been reported 

in the literature applying neural networks to medical image analysis, we provide a focused survey on 

computational intelligence with neural networks in terms of: (i) computer-aided detection and diagnosis with 

specific coverage on mammogram analysis towards breast cancer screening; (ii) segmentation and edge 

detection for medical image content analysis; (iii) medical image registration and (iv) other applications covering 

medical image compression etc, providing a global view on the variety of neural network applications and their  

potential for further research and developments. 
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Neural network applications in computer-aided diagnosis represent the main stream of computational 

intelligence in medical imaging [1~14]. Their penetration and involvement are almost comprehensive for all 

medical problems due to the fact that: (i) neural networks have the nature of adaptive learning from input 

information and, using a suitable learning algorithm, can improve themselves in accordance with the variety and 

the change of input content; (ii) neural networks have the capability of optimising the relationship between the 

inputs and outputs via distributed computing, training, and processing, leading to reliable solutions desired by 

specifications; (iii) medical diagnosis relies on visual inspection, and medical imaging provides the most 

important tool for facilitating such inspection and visualization.   

Medical image segmentation and edge detection remains a common problem and foundational for all 

medical imaging applications [15~25]. Any content analysis and regional inspection requires segmentation of 

featured areas, which can be implemented via edge detection and other techniques. Conventional approaches are 

typified by a range of well researched algorithms, including watershed [15], snake modelling [16], region-

growing [17, N26], and contour detection etc [52]. In comparison, neural network approaches exploit the 

learning capability and training mechanism to classify medical images into content consistent regions to 

complete segmentations as well as edge detections [23-25]. 

Another fundamental technique for medical imaging is registration, which plays important roles in many 

areas of medical applications [26~32]. Typical examples include wound care, disease prediction, health care 

surveillance and monitoring etc. Neural networks can be designed to provide alternative solutions via 

competitive learning, self-organising and clustering to process input features and find the best possible alignment 

between different images or data sets.  

Other applications of ANN include data compression [33-38, 41], image enhancement and noise 

suppression [39, 40, 43, 44], and disease prediction [N12, N16] etc. More recently, application of ANN for 

functional magnetic resonance imaging (MRI) simulation becomes a new research hotspot, where certain 

structured ANNs are employed to simulate the functional connectivity of brain networks [N1, N6]. Due to the 

similar nature of ANN and human neurons, ANN has been proved to be a very useful for this new task [N23, 

N34]. 

To provide useful insights for neural network applications in medical imaging and computational 

intelligence, we structure the rest of this paper in six further sections, where Section 2 provides some basics 

about neural networks to enable beginners to understand the structure, the connections, and the neuron 

functionalities. After this section, four sections are organised to provide detailed descriptions of neural network 

applications in the areas of computer aided diagnosis, image segmentation and edge detection, image registration, 

and other applications. Finally, conclusion and discussions are covered in section 7, providing concluding 

remarks to complete the paper. 

 

2. Neural Networks Fundamentals 
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To enable understanding of neural network, to facilitate possible repetition of those neural networks introduced 

and successfully applied in medical imaging, and to inspire further development of neural networks, we cover 

essential basics in this section to pave the way for the rest of the chapter in surveying neural networks. We start 

from a theoretical model of a single neuron and then introduce a range of different types of neural networks to 

reveal their structure, training mechanism, operation, and functions.  

2.1 Basic Structure 

The basic structure of a neuron can be theoretically modelled as shown in Figure 1, where X {xi, i = 1, 2, …, n} 

represent the inputs to the neuron and Y represents the output. Each input is multiplied by its weight wi, a bias b 

is associated with each neuron and their sum goes through a transfer function f. As a result, the relationship 

between input and output can be described as follows. 
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Figure 1 The model of a neuron 

 
There are a range of transfer functions available to process the weighted and biased inputs, among which 

four basic transfer functions widely adopted for medical image processing are illustrated in Figure 2. 
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Figure 2 Four widely adopted transfer functions 
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Via selection of suitable transfer functions and connection of neurons, various neural networks can be 

constructed to be trained for producing the specified outputs. Neural network types that are commonly used for 

medical image processing are classified as feed-forward neural networks, feedback networks and self-organizing 

maps. The learning paradigms for neural networks in medical image processing generally include supervised 

learning and unsupervised learning. In supervised learning, a network is trained using a set of inputs and outputs 

(targets). For each training case there will be a set of input values and one or more associated output values, and 

the goal is minimise the network’s overall output error for all training cases by iteratively adjusting the neuron 

connection weights and bias values using a specific training algorithm. 

In unsupervised learning, the training data set does not include any target information. Instead a function 

is defined that measures the suitability or accuracy of the network. This function, often referred to as a cost 

function, is dependent on the network’s application and normally uses both the input values and the network’s 

output value(s) to produce a cost for the current network configuration. Normally the aim of unsupervised 

learning is to minimise or maximise the cost for all input vectors in the training set. 

2.2 Feed-forward Network 

There are several different neural network architectures available for medical imaging applications, but one of 

the most common is the Feed-forward network. They often consist of multiple layers, typically including one 

input layer, a number of hidden layers, and an output layer. In a feed-forward network, the neurons in each layer 

are only connected with the neurons in the next layer. These connections are unidirectional, which means signals 

or information being processed can only pass through the network in a single direction, from the input layer, 

through the hidden layer(s) to the output layer. Fig. 3 illustrates the typical structure of a feed-forward network. 

 

 

 

 

 

 

 

 

Figure 3 An example feed-forward network with a single hidden layer and two outputs 

 

Feed-forward networks commonly use the Backpropagation (supervised) learning algorithm to 

dynamically alter the weight and bias values for each neuron in the network. The algorithm works by iteratively 

altering the connection weight values for neurons based on the error in the network’s actual output value when 

compared to the target output value. The output error is first used to alter the weights between the final hidden 
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layer and the output layer neurons by calculating the change in weight values needed to correct the output error. 

The weights between the final hidden layer and the previous layer (the input layer in a three-layer network) are 

then updated, and in this fashion the error is propagated backwards through the network to try and improve the 

output accuracy.  The actual modification of weights is carried out using a (normally stochastic) gradient descent 

algorithm, where the weights are modified after each training example is present to the network. Alternatively 

the weights can be altered after all of the training cases have been processed in a batch fashion. A Multilayer 

Perceptron (MLP) is a special type of feed-forward network employing three or more layers, with nonlinear 

transfer functions in the hidden layer neurons. MLPs are able to associate training patterns with outputs for 

nonlinearly separable data. Feed-forward networks are particularly suitable for applications in medical imaging 

where the inputs and outputs are numerical and pairs of input/output vectors provide a clear basis for training in 

a supervised manner.  

A Radial basis function (RBF) network is a three-layer supervised feed-forward network that uses a 

nonlinear transfer function (normally Gaussian) for the hidden neurons and a linear transfer function for the 

output neurons. The Gaussian function is applied to the net input to produce a radial function of the distance 

between each pattern vector and each hidden unit weight vector. 

2.3 Feed-back Network 

The feed-back (or recurrent) neural network can have signals travelling in both directions by introducing loops, 

propagating values from the hidden and output layers backwards to earlier layers. Their state is changing 

continuously until they reach an equilibrium point. They remain at the equilibrium point until the input changes 

and a new equilibrium needs to be found. They are potentially powerful processing tools but can become 

extremely complicated. 

A Hopfield network is a specific type of feedback network and its inspiration is to act as a form of 

associative memory, in a similar way to certain parts of the human brain. The purpose of associative memory is 

to converge to a state remembered from training when only part of the state is presented as an input. The 

Hopfield network has no special input or output neurons; all neurons are both input and output, and all are 

connected to every other neuron in both directions. After receiving the input simultaneously by all the neurons, 

they output to each other and the process does not stop until a stable state is reached. In a Hopfield network, it is 

simple to set up the weights between neurons in order to attempt to set up a desired set of patterns as stable class 

patterns. They are potentially useful for medical imaging applications such as tumour classification where the 

output value (e.g. benign or malignant) must be derived from partial or similar patterns to those seen during 

training. 

2.4 Self-Organising Map 

Quite different from the above networks types, a Kohonen Neural Network (Self-Organising Map, SOM) learns 

to map input values to an (often two-dimensional) output space. SOMs maintain the topology of the input data 
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while reducing the dimensionality, making them particularly useful for visualisation problems. SOMs can also 

be especially useful for medical imaging applications such as edge detection and segmentation, as their ability to 

automatically organise their neuron structures based on the topographical structure of the inputs can serve either 

as a first step in an algorithm incorporating many different approaches, or as a stand-alone method of 

dimensionality reduction and pattern recognition.  Each neuron in a SOM stores a weight vector (an array of 

weights), each of which corresponds to one of the inputs in the data and a representation of its position within 

the map. When presented with a new input pattern, the neuron whose weight is closest in Euclidian space to the 

new input pattern is allowed to adjust its weights so that it gets closer to the input pattern. This type of training 

process is known as competitive learning, and is of course an extension of unsupervised learning. 

In Kohonen neural networks, each neuron is fed by input vector (data point) x   R
n
 through a weight 

vector w  R
n
. Each time a data point is input to the network, only the neuron j whose weight vector resembles 

most the input vector, is selected to fire, according to the following rule: 

 

, .. m, i=wxj 21   ),min(arg
2

                                              (2) 

 

The firing or winning neuron j and its neighbouring neurons i have their weight vectors w modified according to 

the following rule: 
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Where hij(||ri - rj||, t) is a kernel defined on the neural network space as a function of the distance ||ri - rj|| between 

the firing neuron j and its neighbouring neurons i, and the time t here defines the number of iterations. Its 

neighbouring neurons modify their weight vectors so they also resemble the input signal, but less strongly, 

depending on their distance from the winner. 

2.5 Training of Neural Network 

The training of a neural network can be a computationally expensive process, particularly where a combination 

of large network size, sometimes necessary to provide sufficient discriminatory power, and a large training 

dataset with many features and training examples results in a very high number of iterations of the training 

algorithm. Increasingly powerful hardware continues to alleviate this problem but it should be taken into account 

when considering the use of ANNs. In addition, how to deal with imbalanced datasets in training the ANN is 

also an important issue for the overall performance [N3]. 

 Neural networks trained using supervised learning are susceptible to so-called overfitting, whereby they 

learn to correctly model the input-output relationship for the training examples to a high degree of accuracy, but 
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perform extremely poorly on testing data that was not used during the training process. Overfitting can occur 

when the training data is not of sufficient size, when it is not representative of the entire feature space, or most 

significantly when the dimensionality of the data is too high. 

This inability to generalise for unseen data renders a trained network useless for subsequent use in real 

applications, and several approaches are used to try and prevent overfitting from occurring. Gathering data to 

form the largest dataset possible, and maximising the distribution of training examples throughout the feature 

space can minimise the chances of overfitting. An extremely important pre-processing step before training a 

neural network is to select only the most relevant features from the dataset, reducing the amount of potentially 

irrelevant features that the network could overfit to, and often as a highly related side-effect increasing the 

accuracy of the network outputs. 

Additionally, networks are often trained only until one or more criteria are met. Often this will involve 

training the network for a specified number of iterations and then stopping, or using an external validation set, 

not presented as training examples, to measure the output accuracy during training and stopping if and when the 

accuracy on validation data begins to fall while accuracy on training data rises. 

 

From the next section onwards, detailed descriptions are provided for computational intelligence in medical 

imaging with neural networks, and their applications over the recent years are classified into four categories: 

computer aid diagnosis, image segmentation, registration and other applications. Each section gives more details 

on an application in one of these categories and overviews the other relevant applications. The comparison 

between neural networks is made in the concluding section.  

 

3. Neural Networks for Computer Aided Detection and Diagnosis 

 

Neural networks have been incorporated into many computer-aided diagnosis systems, most of which distinguish 

the cancerous signs from normal tissues. Generally, these systems enhance the images first and then extract 

interesting regions from the images. The values of many features are calculated based on the extracted regions 

and are forwarded to neural works that make decisions in terms of learning, training and optimizations. Among 

all applications, early diagnosis of breast cancers and lung cancers represents the most typical examples in the 

developed computer aided detection or diagnosis (CAD) systems. Some relevant survey papers can be found in 

[N4, N9, N28]. 

3.1 Detection and Diagnosis of Breast Cancer using Digital Mammograms 

Ge et al. [1] developed a computer-aided detection system to identify microcalcification clusters automatically 

on full field digital mammograms (FFDMs). The whole system includes six stages: pre-processing; image 
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enhancement; segmentation of microcalcification candidates; false positive (FP) reduction for individual 

microcalcifications; regional clustering; and FP reduction for clustered microcalcifications.  

To reduce FP individual microcalcifications, a convolution neural network (CNN) was employed to 

analysis 16 × 16 region of interest centred at the candidate derived from segmentations. CNN was designed to 

simulate the vision of vertebrate animals and can be considered as a simplified vision machine designed to 

perform the classification of the regions into two output types: disease and non-disease. Their CNN contains an 

input layer with 14 neurons, two hidden layers with 10 neurons each, and one output layer. The convolution 

kernel sizes of the first group of filters between the input and the first hidden layer were designed as 5 × 5, and 

those of the second group of filters between the first and second hidden layers were 7 × 7. The images in each 

layer were convolved with convolution kernels to obtain the pixel values to be transferred to the following layer. 

The logistic sigmoid function was chosen as the transfer function for both the hidden neurons and output neurons. 

An illustration of the neural network structure and its internal connections between the input layer, hidden layer 

and output layers is given in Figure 4. 

The convolution kernels are organized in a way to emphasize a number of image characteristics rather 

than those less correlated values obtained from feature spaces for input. These characteristics include: (a) the 

horizontal versus vertical information; (b) local versus non-local information and (c) image processing (filtering) 

versus signal propagation[2]. 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

Figure 4 Schematic diagram of a CNN 
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The CNN was trained using back-propagation learning rule with the sum-of-squares error (SSE) 

function, which allows a probabilistic interpretation of the CNN output, i.e. the probability of correctly 

classifying the input sample as a true microcalcification ROI.  

At the stage of FP reduction for clustered microcalcifications, morphological features (such as the size, 

the mean density, the eccentricity, the moment ratio, the axis ratio features and number of microcalcifications in 

a cluster) and features derived from the CNN outputs (such as the minimum, the maximum and the mean of the 

CNN output values) were extracted from each cluster. A total of 25 features (21 morphological features plus 4 

CNN features) were extracted for each cluster. A linear discriminating analysis classifier was then used to 

differentiate clustered microcalcifications from false positives. The Stepwise LDA feature selection involves the 

selection of three parameters. 

In their study, a set of 96 images is split into a training set and a validation set, each with 48 images. An 

appropriate set of parameters is selected by searching in the parameter space for the combination of three 

parameters of LDA that could achieve the highest classification accuracy with a relatively small number of 

features in the validation set. Then the three parameters of LDA are used to select a final set of features and LDA 

coefficients by using the entire set of 96 training images which contain 96 TP and over 500 FP clusters. The 

trained classifier is applied to a test subset to reduce the false positives (FP) in the CAD system, and through 

ROC analysis was shown to achieve FP reduction rates of 86%, 74% and 72% at sensitivities of 70%, 80% and 

90% respectively when compared to classification without the CNN/LDA approach. 

To develop a computerized scheme for the detection of clustered microcalcifications in mammograms, 

Nagel et al. [3] examined three methods of feature analysis: rule based (the method currently used), an artificial 

neural network (ANN), and a combined method. The ANN method uses a three layer error-back-propagation 

network with five input units corresponding to the radiographic features of each microcalcification, and one 

output unit corresponding to the likelihood of being a microcalcification. The reported work reveals that two 

hidden units are insufficient for good performance of the ANN and it is necessary to have at least three hidden 

units to achieve adequate performances. However, the performance is not improved any further when the 

number of hidden units is increased over three. Therefore, the finalised ANN has five inputs, three hidden units, 

and one output unit. The hybrid approach incorporating both a rule-based classifier and an ANN achieved an 

error rate of 0.8 false positives per image at 83% sensitivity, compared to 1.9 and 1.6 for the rule-based method 

and the ANN alone respectively. 

Papadopoulossa et al. [ 4 ] presented a hybrid intelligent system for the identification of 

microcalcification clusters in digital mammograms, which can be summarised in three-steps: (a) preprocessing 

and segmentation, (b) regions of interest (ROI) specification and (c) feature extraction and classification. In the 

classification schema, 22 features are automatically computed which refer either to individual 

microcalcifications or to groups of them. The reduction of false positive cases is performed using an intelligent 

system containing two subsystems: a rule-based and a neural network based. The rule construction procedure 
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consists of the feature identification step as well as the selection of the particular threshold value for each feature. 

Before using the neural network, the reduction in the number of features is achieved through principal 

component analysis (PCA), which transforms each 22-dimensional feature vector into a 9-dimensional feature 

vector as the input to the neural network. The neural network that is used for ROI characterisation is a 

feedforward neural network with sigmoid hidden neuron (Multiplayer Perceptron—MLP). 

In Halkiotis [N18], ANN along with mathematical morphology is employed for the detection of 

clustered microcalcifications even under a non-uniform background. Considering each mammogram as a 

topographic representation, each microcalcification appears as an elevation constituting a regional maximum. 

Morphological filters are applied to suppress noise and regional maxima that do not correspond to calcifications. 

Two multi-layer perceptrons (MLP) and two radial basis function neural networks (RBFNN) with different 

number of hidden nodes are applied for classification. The MLP with ten hidden nodes achieved the best 

classification score with a true positive detection rate of 94.7% and 0.27 false positives per image. 

Verma et al [N17] proposed a soft cluster neural network (SCNN) for the classification of suspicious 

areas in digital mammograms. The idea of soft clusters was employed to increase the generalisation ability of 

ANN by providing a mechanism to more aptly depict the relationship between the input features and the 

subsequent classification as either a benign or malignant class. Soft clusters with least square based optimisation 

made the training process faster and avoid iterative processes. The proposed neural network technique was tested 

on the DDSM benchmark database, and the accuracy achieved was over 93% in comparison with 83% from k-

means clustering.  

Christoyiani et al. [5] presented a method for fast detection of circumscribed mass in mammograms 

employing a RBF neural network (RBFNN). In the method, each neuron output is a nonlinear transformation of 

a distance measure of the neuron weights and its input vector. The non-linear operator of the RBFNN hidden 

layer is implemented using a Cauchy-like probability density function. The implementation of RBFNN could be 

achieved by using supervised or unsupervised learning algorithms for an accurate estimation of the hidden layer 

weights. The K-means unsupervised algorithm is used to estimate the hidden-layer weights from a set of training 

data containing statistical features from both circumscribed lesions and normal tissue. After the initial training 

and the estimation of the hidden-layer weights, the weights in the output layer are computed by using Wincer-

filter theory, or minimizing the mean square error (MSE) between the actual and the desired filter output. The 

method was tested using the The MIAS MiniMammiographic Database, and achieved a mean overlap value of 

0.868 for true positives for both normal and abnormal mammograms. 

Patrocinio et al. [ 6 ] demonstrate that only certain features such as irregularity, number of 

microcalcifications in a cluster, and cluster area, are needed as the inputs of a neural network to separate images 

into two distinct classes: suspicious and probably benign. Setiono [7] developed an algorithm by pruning a feed-

forward neural network, which produces high accuracy rates for breast cancer diagnosis with small number of 

connections. The algorithm extracts rules from a pruned network by considering only a finite number of hidden 
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unit activation values. Connections in the network are allowed only between input units and hidden units as well 

as between hidden units and output units. The algorithm finds and eliminates as many unnecessary network 

connections as possible during the training process. The accuracy of the extracted rules from the pruned network 

is almost as high as the accuracy of the original network.   

The abovementioned applications cover different aspects of applying neural networks such as the 

number of neurons in the hidden layer, the reduction of features in classifications, the reduction of connections 

for better efficiency. Similar improvements could be made in applying ANN to other practical utilisations rather 

than just in identifying microcalcification clusters. For other approaches rather than ANN in detection and 

classification of microcalcifications and masses in mammograms, please refer to the papers [N28] and [N29].  

3.2 Detection and Diagnosis of Lung Diseases 

ANNs also plays an important role in detecting cancerous signs in lungs. Xu et al. [8] developed an 

improved computer-aided diagnosis (CAD) scheme for the automated detection of lung nodules in digital chest 

images to assist radiologists, who could miss up to 30% of the actually positive cases in their daily practice. In 

the CAD scheme, nodule candidates were selected initially by multiple gray-level thresholds of the difference 

image (subtraction of a signal-enhanced image and a signal suppressed image) and then classified into six groups. 

Between 50% and 70% of false positives were eliminated by adaptive rule-based tests and an ANN. 

Zhou et al. [9] proposed an automatic pathological diagnosis procedure named Neural Ensemble-based 

Detection (NED) that utilizes an ANN ensemble to identify lung cancer cells in the specimen images of needle 

biopsies obtained from the bodies of the subjects to be diagnosed. An ANN ensemble is a learning paradigm 

where several ANNs are jointly used to solve a problem. The ensemble is built on a two-level ensemble 

architecture and the predictions of those individual networks are combined by plurality voting.  

Keserci et al. [10] developed a computer-aided diagnosis scheme for automated detection of lung 

nodules in digital chest radiographs based on a combination of morphological features and the wavelet snake. In 

their scheme, an ANN was used to efficiently reduce false positives by using the combined features. The scheme 

was applied to a publicly available database of digital chest images for pulmonary nodules. Qian et al. [11] 

trained a computer-aided cytologic diagnosis (CACD) system to recognize expression of the cancer biomarkers 

histone H2AX in lung cancer cells and then tested the accuracy of this system to distinguish resected lung cancer 

from preneoplastic and normal tissues. The major characteristics of CACD algorithms are to adapt detection 

parameters according to cellular image contents. Coppini et al. [12] described a neural-network-based system for 

the computer aided detection of lung nodules in chest radiograms. The approach is based on multi-scale 

processing and feed-forward neural networks that allow an efficient use of a priori knowledge about the shape of 

nodules and the background structure. 

3.3 Detection and Diagnosis in MRI 
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ANN has also been widely applied in diagnosis of diseases in MR images. In Guo et al [N8], a 

computer-aided diagnostic system was proposed to classify rat liver lesions from MR imaging. Six parameters of 

texture characteristics and Variance of 161 ROIs were calculated and assessed by gray-level co-occurrence 

matrices, then fed into a BP neural network (NN) classifier to classify the liver tissue into two classes namely 

cirrhosis and HCC.  The accuracy of classification of HCC nodules from cirrhosis achieved was 91.67%.  

In Yamashita et al [N10], ANN was utilised to evaluate the performance of radiologists for differential 

diagnosis of intra-axial cerebral tumors on MR Images. A single 3-layer feed-forward ANN with a Levenberg-

Marquardt algorithm was employed to differentiate among 4 categories of tumors with use of 2 clinical 

parameters and 13 radiologic findings in MR images. Subjective ratings for the 13 radiologic findings were 

provided independently by 2 attending radiologists. In total 126 cases were used for training and testing of the 

ANN based on a leave-one-out-by-case method. In the observer test, MR images were viewed by 9 radiologists, 

first without and then with ANN outputs. The averaged area under the ROC curve for ANN alone was 0.949. 

The diagnostic performance of the 9 radiologists increased from 0.899 to 0.946 when they used ANN outputs.  

Döhler et al [N11] proposed a cellular ANN for the detection of hippocampal sclerosis in MRI. Using an 

exemplary database that consisted of a large number of volumes of interest extracted from T1-weighted 

magnetic resonance images from 144 subjects, the authors demonstrated that the network allowed classifying 

brain tissue with respect to the presence or absence of mesial temporal sclerosis. Results indicated the general 

feasibility of the proposed computer-aided systems for diagnosis and classification of images generated by 

medical imaging systems. 

3.3 Detection and Diagnosis of Other Diseases 

Apart from the applications in breast cancer and lung cancer, ANN has been adopted in many other 

analyses and diagnosis. Mohamed et al. [13] compare bone mineral density (BMD) values for healthy persons 

and identify those with conditions known to be associated with BMD obtained from Dual X-ray absorptiometry 

(DXA). An ANN was used to quantitatively estimate site-specific BMD values in comparison with reference 

values obtained by DXA (i.e. BMDspine, BMDpelvis, and BMDtotal). Anthropometric measurements (i.e. sex, 

age, weight, height, body mass index, waist-to-hip ratio, and the sum of four skinfold thicknesses) were fed to an 

ANN as independent input variables. The estimates based on four input variables were generated as output and 

were generally identical to the reference values for all studied groups. 

Scott [14] tried determining whether a computer based scan analysis could assist clinical interpretation 

in this diagnostically difficult population. Artificial neural networks (ANNs) were created using only objective 

image-derived inputs to diagnose the presence of pulmonary embolism. The ANN predictions performed 

comparably to clinical scan interpretations and with the results of angiography. 

In Zhang et al [N2], a computer-aided diagnosis system named LiverANN was proposed for classifying 

the pathologies of focal liver lesions into five categories using the artificial neural network (ANN) technique. On 
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each MR image, a region of interest (ROI) in the focal liver lesion was delineated by a radiologist. The intensity 

and homogeneity within the ROI were calculated automatically, producing numerical data that were analyzed by 

feeding them into the LiverANN as inputs. Of the 320 MR images obtained from 80 patients with liver lesions, 

the ANN classifier can achieve a training accuracy of 100% and a testing accuracy of 93% in classifying the 

cases into five classes. 

Tägil et al [N14] employed ANN for quality assurance of image reporting in terms of automatic 

interpretation in myocardial perfusion imaging. The networks were used to identify potentially suboptimal or 

erroneous interpretations of myocardial perfusion scintigrams (MPS). Reversible perfusion defects in each of 5 

myocardial regions, as interpreted by one experienced nuclear medicine physician, were assessed by ANN in 

316 consecutive patients undergoing MPS. After training, the ANNs were used to select 20 cases in each region 

that were more likely to have a false clinical interpretation. These cases, together with 20 detected control cases 

with no likelihood of false clinical interpretation, were randomly presented to three experienced physicians for a 

consensus re-interpretation. Due to small and mild perfusion defects and localization of defects, clinical routine 

interpretation by an experienced nuclear medicine expert and ANN differed in 53 of the 200 cases. The results 

demonstrated that ANN could identify those MPS that might have suboptimal image interpretations. 

In Pan et al [N22], BP based ANN was utilised for bleeding detection in wireless capsule endoscopy 

(WCE). Colour texture features distinguishing the bleeding regions from non-bleeding regions were extracted in 

RGB and HSI colour spaces, and used as the feature vector inputs to the ANN to recognize the bleeding regions. 

The experiments demonstrated that the bleeding regions could be correctly recognized with a sensitivity of 93% 

and a specificity of 96%. 

3.4 Summary 

In all the applications mentioned above, the roles of ANNs have a common principle in the sense that they all are 

applied to reduce FP detections in both mammograms and chest images via examining the features extracted 

from the suspicious regions. As a matter of fact, ANNs are not limited to academic research, but also play 

important roles in commercially available diagnosis systems, such as ImageChecker for mammograms. 

Others 

According to the results reported in [N29] and [n16], it is interesting to note that combined classifiers 

tend to yield better results than single ones. However, ANN still can generate good results as an expert 

mammographer [N29], although in some work it is suggested that SVM may produce better results in detecting 

microcalcification [N27]. In Chen et al [N7], it is found that the diagnostic performance of ANN is not different 

from that of SVM and LRA (Logistic regression analysis) as demonstrated by ROC curve analysis. The 

inconsistency here may refer to the differences between the test data and test conditions, i.e. how much of the 

data is used for training and how the classifiers are optimised et al.  
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4. Neural Networks for Medical Image Segmentation and Edge Detection 

 

Medical image segmentation is a process for dividing a given image into meaningful regions with homogeneous 

properties. Image segmentation is an indispensable process in outlining boundaries of organs and tumours, and 

in the visualization of human tissues during clinical analysis. Therefore, segmentation of medical images is very 

important for clinical research, diagnosis, and applications, leading to requirement of robust, reliable and 

adaptive segmentation techniques.  

4.1 Segmentation 

Kobashi et al. [15] proposed an automated method to segment the blood vessels from 3D time of flight 

(TOF) MRA volume data. The method consists of three steps: (1) removal of the background, (2) volume 

quantization, and (3) classification of primitives by using an artificial neural network.  

After volume quantization by using a watershed segmentation algorithm, the primitives in the MRA 

image stand out. To further improve the result of segmentation, the obtained primitives have to been separated 

into the blood vessel class and the fat class. Three features and a feed-forward three-layered neural network are 

adopted for the classification. Compared with the fat, the blood vessel is like a tube - long and narrow. To this 

end, two features including vascularity and narrowness were introduced to measure such properties. As the 

histogram of blood vessels is quite different from that of the fat in shapes, a third feature, histogram consistency, 

is added for further improvement of the segmentation.  

The feed-forward NN is composed of 3 layers: an input layer, a hidden layer and an output layer. The 

structure of the described neural network is illustrated in Figure 5. 

 

 
Figure 5 Three layer feed-forward neural network 

 

As seen, three input units are included at the input layer, which is decided by the number of features 

extracted from medical images. The number of neuron in the output layer is one to produce and represent two 

classes. The number of neurons in the hidden layer is usually decided by experiments. Generally, a range of 

different numbers is tried in the hidden layer, and the number that achieves the best training results is selected. 
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In the proposed method, the ANN classifies each primitive, which is a clump of voxels, by evaluating 

the intensity and the 3D shape.  

In their experiments, the ANN was trained using 60 teaching data sets derived from an MRA data set. 

Each primitive is classified into the blood vessel (indicated by the value of 1) or the fat (indicated by the value of 

0) and the values of the three features are calculated. All these values were fed into the feed-forward ANN for 

training the weights of the neurons. Seven new MRA data, whose primitives were unclassified, were fed into the 

trained NN for testing. The segmentation performance is measured by the value of accuracy as defined below, 

and the rate achieved by the reported algorithm is 80.8%. 

 

%100
itiveser of primTotal numb

s primitiveclassifiedcorrectly Number of 
Accuracy        (4) 

 

Apart from the work proposed by Kobashi in ANN based segmentation, there are many applications for the 

images generated by CT and MRI. Middleton et al. [16] combined use of a MLP and active contour model 

('snake') to segment structures in magnetic resonance (MR) images. The reported work can be highlighted by the 

following two steps: 

 1) The perceptron is trained to produce a binary classification of each pixel as either a boundary or a non-

boundary;  

2) Subsequently, the resulting binary (edge-point) image forms the external energy function for a snake model, 

which is used to link the candidate boundary points into a continuous and closed contour.  

 

Lin [17] applied a Hopfield neural network with penalized fuzzy c-means technique (called PFHNN) to 

medical image segmentation. In the algorithm, the pixels with their first and second order moments constructed 

from their n nearest neighbours as a training vector are mapped to a two-dimensional Hopfield neural network 

for the purpose of classifying the image into suitable regions.  

Lin et al. [18] generalized Kohonen's competitive learning (KCL) algorithm with fuzzy and fuzzy-soft 

types called fuzzy KCL (FKCL) and fuzzy-soft KCL (FSKCL). These KCL algorithms fuse the competitive 

learning with soft competition and fuzzy c-means (FCM) membership functions. These generalized KCLs were 

applied to MRI and MRA ophthalmological segmentations. It is found that these KCL-based MRI segmentation 

techniques are useful in reducing medical image noise effects using a learning mechanism. The FSKCL 

algorithm is recommended for use in MR image segmentation as an aid to small lesion diagnosis.  

Dokur [19] proposed a Quantizer Neural Network (QNN) for the segmentation of MR and CT images. 

QNN is a novel neural network structure, which is trained by genetic algorithms. It was comparatively examined 

with a multilayer perceptron and a Kohonen network for the segmentation of MR and CT head images. The 

QNN was reported to have the best classification performance with fewer neurons after a short training time. 
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Stalidis et al. [ 20 ] presented an integrated model-based processing scheme for cardiac magnetic 

resonance imaging (MRI), embedded in an interactive computing environment suitable for quantitative cardiac 

analysis, which provides a set of functions for the extraction, modeling, and visualization of cardiac shape and 

deformation. In the scheme, a learning segmentation process incorporating a generating-shrinking neural 

network is combined with a spatiotemporal parametric modeling through functional basis decomposition.  

Chang et al. [21] developed an approach for medical image segmentation using a fuzzy Hopfield neural 

network based on both global and local gray-level information. The membership function simulated with neuron 

outputs is determined using a fuzzy set, and the synaptic connection weights between the neurons are 

predetermined and fixed to improve the efficiency of the neural network.  

Shen et al. [22] proposed a segmentation technique based on an extension to the traditional fuzzy c-

means (FCM) clustering algorithm. In the paper, a neighbourhood attraction, which is dependent on the relative 

location and features of neighbouring pixels, is shown to improve the segmentation performance and the degree 

of attraction is optimized by a neural-network model. Synthetic and real brain MR images with different noise 

levels are segmented to demonstrate the superiority of the proposed technique compared to other FCM-based 

methods.  

Fu et al [N21] proposed an automatic hybrid model, in which the statistical expectation maximization 

(EM) and the spatial pulse coupled neural network (PCNN) were integrated for brain MRI segmentation. In 

addition, an adaptive mechanism was developed to fine tune the PCNN parameters. The EM model served two 

functions including evaluation of the PCNN image segmentation and adaptive adjustment of the PCNN 

parameters for optimal segmentation. They concluded the adaptive EM–PCNN yielded the best results for gray 

matter and brain parenchyma segmentation. 

4.2 Edge Detection 

Chang et al [23] designed a two-layer Hopfield neural network called the competitive Hopfield edge-finding 

neural network (CHEFNN) to detect the edges of CT and MRI images. The CHEFNN extends the one-layer 2-D 

Hopfield network at the original image plane to a two-layer 3-D Hopfield network with edge detection to be 

implemented on its third dimension. With the extended 3-D architecture, the network is capable of incorporating 

a pixel's contextual information into a pixel-labelling procedure. As a result, the effect of tiny details or noises 

will be effectively removed by the CHEFNN and the drawback of disconnected fractions can be overcome. In 

addition, they [ 24 ] discovered that high-level contextual information cannot be incorporated into the 

segmentation procedure in techniques using traditional Hopfield neural networks and thus proposed contextual 

constraint-based Hopfield neural cube (CCBHNC) for image segmentation. The CCBHNC uses a three-

dimensional architecture with pixel classification implemented on its third dimension. With the three-

dimensional architecture, the network is capable of taking into account each pixel's feature and its surrounding 

contextual information, achieving up to 95.86% segmentation accuracy on real MRI images. Recently, still for 
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the edge detection, Chang [25] presented a special design Hopfield neural network called the contextual 

Hopfield neural network (CHNN). The CHNN maps the 2-D Hopfield network at the original image plane. With 

the direct mapping, the network is capable of incorporating pixels' contextual information into an edge-detecting 

procedure. As a result, the CHNN can effectively remove the influence of tiny details and noise.  

In Suzuki et al [N25], a neural edge detector (NED) is proposed to extract contours from left 

ventriculograms. A modified multilayer neural network is employed and trained using a modified back-

propagation algorithm through supervised learning from a set of images with manually extracted edges by a 

cardiologist. It is found that the NED is able to extract the contours in agreement the ground truth, where an 

average contour error of 6.2% and an average difference between the ejection fractions at 4.1% are reported.  

4.3 Summary 

Although most of these applications are developed based on CT or MRI images but the neural networks adopted 

are quite different. ANN is able to reduce the influence of noise in the image and hence make the segmentation 

more robust. Further, ANN could also classify different tissues and then combine them according to the 

requirements of segmentations, which is beyond the power of traditional segmentation.    

New part! 

 

 

5. Neural Networks for Medical Image Registration 

 

Image registration is the process of transforming the different sets of data into one coordinate system. 

Registration is necessary to enable the comparison, integration and fusion of images from different 

measurements, which may be taken at different points in time from the same modality or obtained from the 

different modalities such as CT, MR, Angiography and Ultrasound. Medical imaging registration often involves 

elastic (or non-rigid) registration to cope with elastic deformations of the body parts imaged. Non-rigid 

registration of medical images can also be used to register a patient's data to an anatomical atlas. Medical image 

registration is pre-processing needed for many medical imaging applications with strong relevance to the result 

of segmentation and edge detection. 

5.1 Techniques 

Generally, image registration algorithms could be classified into two groups: area based methods and feature 

based methods. For area based image registration methods, the algorithm looks at the structure of the image via 

correlation metrics, Fourier properties and other means of structural analysis. Most feature based methods fine 

tunes its mapping to the correlation of image features: lines, curves, points, line intersections, boundaries, etc.  

To measure the volume change of lung tumour, Matsopoulos et al. [26] proposed  an automatic three-

dimensional non-rigid registration scheme that applied self-organizing maps (SOMs) to thoracic computed 
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tomography (CT) data of patients for establishing correspondence between the feature points. The practical 

implementation of this scheme could provide estimations of lung tumour volumes during radiotherapy treatment 

planning. In the algorithm, the automatic correspondence of the interpolant points is based on the initialization of 

the Kohonen neural network model capable to identify 500 corresponding pairs of points approximately in the 

two CT sets S1 and S2. An overview of the described algorithm is illustrated in Figure 6. 

 
 

Figure 6 The elastic registration scheme 
 

In the algorithm, two sets of points are defined: S2 is the set of points for vertebrae, ribs and blades segmented 

from the reference data, and S1 the set of points for the same anatomical structures from the second dataset called 

float data. Pre-registration takes place between these sets of points, and triangulation of S1 is performed. The pre-

registration process is applied in three dimensions and is applied in order to realign the two datasets in all 

coordinate. After pre-registration, two steps are performed to obtain the interpolant points, which are described 

below: 

 

1. Triangulating S1 and producing a wire frame based on the topology of S1;  

The triangulation is based on Feitzke’s work [27] and is performed by defining a SOM with the 

following characteristics: 

a. A grid of neurons with 20 rows by 100 columns (20 x 100) is chosen for the specific 

implementation. 

b. The initial weighting vectors of the neurons of the grid are set equal to the coordinates of a set of 

points extracted from an enclosing surface, typically a cylindrical surface. 

c. The input to the neural network consists of the Cartesian coordinates of the set of points that 

need to be triangulated. 

After the process of adaptation of the neural network, the weighting vectors of the neurons have values 

identical to the appropriate points of S1. A wire frame consisting of one node for each neuron can be 

constructed, with Cartesian coordinates of each node equal to the weight vector of the corresponding 

neuron. The wire frame is triangulated according to the connectivity of the neurons.  

  

2. Establishing a SOM in terms of the topology of S1 and training the SOM by using S2;  
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The search for corresponding points is based on replicating the topology of the set S1 on the input layer 

of a SOM model. In the SOM model, one neuron is assigned to each node of the wired frame and the 

connections between the neurons are identical with the connections of the wired frame. No connection 

between two neurons is allowed if the two corresponding nodes are not directly connected on the float 

set. The initial weight vector of the neurons is the Cartesian co-ordinates of the corresponding wired 

frame nodes in the 3D space. 

 

The training of the network is performed by presenting the network with the coordinates of randomly 

selected points sampled from the reference set S2. The neuron with weight vector closest to signal is selected to 

fire. The firing neuron adjusts its weight vector and its neighbouring neurons modify their weight vectors as well 

but less strongly. The neighbouring neurons are confined to a window of 3 × 3 neurons throughout the network 

training. 

The convergence of the SOM network during the triangulation of S1 set of points results in a triangulated 

subset of points (S1'). Each node of subset S1’ corresponds to a neuron of the SOM network (20 × 100 neurons), 

whose initial weighting vector (x0,y0,z0) of S1 is equal to the initial Cartesian coordinates of this node. In S1, this 

node is displaced to new coordinates and equal to the final weighting vector (x1,y1,z1). The new position always 

coincides with a point in S2.  

Although SOM lateral interactions between neurons generate a one to one point correspondence, more 

than one point from S1’ may correspond to one point in S2. However, most of such point mismatches are 

avoided by using a distance threshold criterion that excludes corresponding points exceeding a distance more 

than five voxels. This process also prohibits excessive deformation of the final warped image. Therefore, the 

total number of successful corresponding points is reduced to approximately 500 pairs of points for all patient 

data. 

SOM has also been used in many other registration-related applications. Shang et. al. [28] developed an 

automatic method to register computed tomography (CT) and magnetic resonance (MR) brain images by using 

first principal directions of feature images. In the method, principal component analysis (PCA) neural network is 

used to calculate the first principal directions from feature images, and then the registration is accomplished by 

simply aligning feature images' first principal directions and centroids.  

Coppini [29] presented a general approach to the problem of image matching which exploits a multi-

scale representation of local image structure. In the approach, a given pair of images to be matched, named target 

and stimulus respectively, are represented by Gabor Wavelets. Correspondence is computed by exploiting the 

learning procedure of a neural network derived from Kohonen's SOM. The SOM neurons coincide with the 

pixels of the target image and their weight are pointers to those of the stimulus images. The standard SOM rule 

is modified so as to account for image features.  
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Fatemizadeh et al. [30] proposed a method for automatic landmark extraction from MR brain images. In 

the method, landmark extraction is accomplished by modifying growing neural gas (GNG), which is a neural-

network-based cluster-seeking algorithm. Using modified GNG (MGNG, a splitting-merging SOM) 

corresponding dominant points of contours extracted from two corresponding images are found. The contours 

are the boundaries of the regions generated by segmenting the MR brain image.  

Di Bona et al. [31] developed the "Volume-Matcher 3D" project - an approach for a data-driven 

comparison and registration of three-dimensional (3D) images. The approach is based on a neural network model 

derived from self-organizing maps and extended in order to match a full 3D data set of a "source volume" with 

the 3D data set of a "target volume."  In Zhang et al [N13], an automatic surface-based rigid registration system 

using a neural network representation was proposed. The system was applied to register 3D volumes of human 

bone structures for image-guided surgery. A multilayer perceptron neural network was used to construct a 

patient-specific surface model from pre-operative images. A surface representation function derived from the 

resultant neural network model was then employed for intra-operative registration. The optimal transformation 

parameters were obtained via an optimization process. Experiments using image datasets of the calcaneus and 

vertebrae demonstrated that the segmentation/registration system could achieve sub-voxel accuracy comparable 

to that of conventional techniques, and was significantly faster. 

Markaki et al [N24->32] proposed automatic point correspondence of unimodal medical images using 

Kohonen Network. Given a pair of 2D medical images of the same anatomical region and a set of interest points 

in one of the images, the algorithm detected effectively the set of corresponding points in the second image, by 

exploiting the properties of the Kohonen self organizing maps (SOMs) and embedding them in a stochastic 

optimization framework. The correspondences were established by determining the parameters of local 

transformations of point mapping in an iterative way, using a modified competitive learning as implemented by 

SOMs. Experimental results from three different modalities (CT, MR and red-free retinal images) had used to 

validate both the accuracy and efficiency of the proposed algorithm, even in the case of noise corrupted data.  

5.2 Summary 

These applications suggest that SOM is a promising algorithm for elastic registration, which is probably 

due to the clustering characteristics of SOM.   

 

Need new material 

 

 

6. Other Medical Applications using Neural Network 
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In addition to the areas mentioned above, ANN has also been applied to other relevant areas such as medical 

image compression [33-38], enhancement [39-44], restoration [46], disease prediction [N12, N16] as well as the 

more recent application in functional MRI simulation [N1, N6] et al. 

6.1 Compression and Coding 

In image compression [32], medical images such as mammograms are usually quite large in size and 

stored in the databases inside hospitals, which brings some difficulties in image transfer over the Internet. Some 

researchers have applied ANN to existing compression algorithms to select interesting regions for transmission 

or reduce the errors during the quantization in compression [33~37, 41]. 

Panagiotidis et al. [33] proposed a neural network architecture to perform lossy compression of medical 

images. To achieve higher compression ratio while retain the significant (from medical point of view) image 

content, the neural architecture adaptively selects regions of interest (ROI) in the images. 

Karlik [34] presented a novel and combined technique for image compression based on the Hierarchical 

Finite State Vector Quantization (HFSVQ) and neural networks. The algorithm performs nonlinear restoration of 

diffraction-limited images concurrently with quantization. The neural network is trained on image pairs 

consisting of a lossless compression named hierarchical vector quantization.   

Meyer-Base et al. [35] developed a method based on topology-preserving neural networks to implement 

vector quantization for medical image compression. The method can be applied to larger image blocks and 

represents better probability distribution estimation methods. The quantization process is performed by a 

"neural-gas" network which applied to vector quantization converges quickly to low distortion errors and reaches 

a distortion error lower than that resulting from Kohonen's feature map or the LBG algorithm. The influence of 

the neural compression method on the phantom features and the mammo-graphic image is not visually 

perceptible up to a high compression rate. 

Jaiswal et al. [36] trained a resilient back propagation neural network to encode and decode the input 

data so that the resulting difference between input and output images is minimized. Lo et al [37] developed a 

neural-network-based framework to search for an optimal wavelet kernel that can be used for a specific image 

processing task. In the algorithm, a linear convolution neural network was employed to seek a wavelet that 

minimizes errors and maximizes compression efficiency for an image or a defined image pattern such as 

microcalcifications in mammograms and bone in computed tomography (CT) head images.  

In Dokur [N15], ANN was applied to medical images like magnetic resonance (MR), computer 

tomography (CT) head images and ultrasound imaging for compression and decision making, where Kohonen 

map and incremental self-organizing map (ISOM) were employed. In the proposed method, the image was first 

decomposed into blocks of 8 × 8 pixels, from which 2D discrete cosine transform (DCT) coefficients were 

computed. The dimension of the DCT coefficients vectors was reduced by low-pass filtering, a similar way like 

vector quantization. The decision making was realised simultaneously with compression to cluster codewords 
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into several classes, which also formed a kind of segmentation of the original image. Higher compression rates 

with large signal to noise ratio were gained compared to the JPEG standard. 

6.2 Image Enhancement and Noise Suppression 

To enhance original images, ANN has been used to suppress unwanted signals such as noise and tissues 

affecting cancerous sign. Suzuki et. al. [38] proposed an analysis method that makes clear the characteristics of 

the trained NF (i.e. Nonlinear filters based on multilayer neural networks) and developed approximate filters that 

achieves very similar results but is efficient at computational cost.  

To detect lung nodules overlapped with ribs or clavicles in chest radiographs, Suzuki et al. [39] 

developed an image-processing technique for suppressing the contrast of ribs and clavicles in chest radiographs 

by means of a multi-resolution massive training artificial neural network (MTANN). The structure of this neural 

network is illustrated in Figure 7, in which ―bone‖ images are obtained by use of a dual-energy subtraction 

technique [40] as the teaching images to facilitate the neural network training. After that, the multi-resolution 

MTANN is able to provide ―bone-image-like‖ images which are similar to the teaching bone images. By 

subtracting the bone-image-like images from the corresponding chest radiographs, they are able to produce 

―soft-tissue-image-like‖ images where ribs and clavicles are substantially suppressed. 

 

 
Figure 7 Architecture of MTANN 

 

The MTANN consists of a linear-output multilayer ANN model, which is capable of operating on image 

data directly. The linear-output multilayer ANN model employs a linear function as the transfer function in the 

output layer because the characteristics of an ANN were improved significantly with a linear function when 

applied to the continuous mapping of values in image processing [41]. The inputs of the MTANN are the pixel 

values in a size-fixed sub-image and can be rewritten as },...,,{ 21, Nyx IIII  , where N is the number of inputs 

i.e. the number of pixels inside a sub-image. The output of the nth neuron in the hidden layer is represented by 
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Where wmn is a weight between the mth unit in the input layer and the nth neuron in the hidden layer, and fh is a 

sigmoid function. The output of the neuron in the output layer is represented by: 
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where w
o

m is a weight between the mth neuron in the hidden layer and the neuron in the output layer, bo is an 

offset of the neuron in the output layer. 

To train MTANN, a dual-energy subtraction technique is used to obtain the teaching image T (i.e. 

―bone‖ images) for suppression of ribs in chest radiographs. Input chest radiographs are divided pixel by pixel 

into a large number of overlapping sub-images. Each sub-image I(x,y) corresponds to a pixel T(x, y) in teaching 

image, and the MTANN is trained with massive sub-image pairs as defined below: 

 

            (7) 

 

where RT is a training region corresponding to the collection of the centres of sub-images, NT is the number of 

pixels in RT.  After training, the MTANN is expected to produce images similar to the teaching images, i.e. 

―bone-image-like‖ images. The technique was evaluated using a set of 118 images by applying the algorithm to 

each image and then quantitatively comparing it to a dual-energy soft-tissue image where the bone regions had 

been deemphasised. 

Since Ribs in chest radiographs include various spatial-frequency components and it is difficult in 

practice to train the MTANN with a large sub-image, multi-resolution decomposition/ composition techniques 

are employed in the algorithm. Three MTANNs for different resolutions are trained independently with the 

corresponding resolution images: a low-resolution MTANN is in charge of low-frequency components of ribs, a 

medium-resolution MTANN is for medium-frequency components, and a high-resolution MTANN for high-

frequency components. After training, the MTANNs produce a complete high-resolution image based on the 

images with different resolution. 

Hainc et al. [42] found the artificial neural network can also be used as a kind of a sophisticated non-

linear filter on local pixel neighbourhood (3x3) since linear systems are not good in their sensitivity to impulse 

(isolated) noise.  

Chen et al. [43] introduced an ANN architecture for reducing the acoustic noise level in magnetic 

resonance (MR) imaging processes. The proposed ANN consists of two cascaded time-delay ANN. The ANN is 

used as the predictor of a feedback active noise control (ANC) system for reducing acoustic noises. Preliminary 
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results also show that, with the proposed ANC system installed, acoustic MR noises are greatly attenuated while 

verbal communication during MRI sessions is not affected.  

6.3 Functional MRI (fMRI) Simulation 

Since the mid of 1990s, functional connectivity study using fMRI has drawn increasing attention of 

neuroscientists and computer scientists, which opens a new window to explore functional network of human 

brain [N34]. Among quite a few work reported, ANN has been found as a natural way and powerful tool for 

simulating the connectivity and function of special areas of brain [N1, N6, N33]. A comprehensive survey in this 

topic can be referred to [N23], [N31] and [N34]. 

In Kim and Horwitz [N1], different kinds of fMRI functional connectivity are analysed to reflect the 

underlying interregional neural interactions, where a biologically realistic neural model is employed to simulate 

both neuronal activities and multiregional fMRI data from a blocked design. Topics involved include psycho-

physiological interaction (PPI) analysis and interregional correlation analysis, and a large-scale neural model is 

applied to simulate the neurobiological underpinnings of PPI. The experimental results have clearly shown that 

neural modelling can be used to help validate the inferences one can make about functional connectivity based 

on fMRI data. 

In Marrellec et al [N6], a novel approach based on the partial correlation matrix is proposed to develop 

data-driven measures of effective connectivity in functional MRI. To achieve this target, a large-scale, 

neurobiologically realistic neural network model is employed to generate simulated data with both structural 

equation modelling (SEM) and the partial correlation approach. Unlike real experimental data, where the 

interregional anatomical links are not necessarily known, the links between the nodes of the neural model are 

fully specified for easily judging the results of SEM and partial correlation analyses. The results reported have 

fully validated the partial correlation method with respect to the underlying neuroarchitecture 

In Guenther et al [N33], a neural model of speech acquisition and production is described that 

accounts for a wide range of acoustic, kinematic, and neuroimaging data concerning the control of 

speech movements. The components of the ANN model correspond to regions of the cerebral cortex 

and cerebellum, including premotor, motor, auditory, and somatosensory cortical areas. Computer 

simulations of the model verify its ability to account for compensation to lip and jaw perturbations 

during speech. Specific anatomical locations of the model’s components are estimated, and these 

estimates are used to simulate fMRI experiments of simple syllable production.  

6.4 Disease Prediction 

The application of ANN in prediction of outcomes using clinical data is being increasingly used. In Chiu 

[N12] et al, ANN model is employed for predicting skeletal metastasis in patients with prostate cancer. Through 

analysis of data consecutively collected from patients in five years, the predictors in terms of the patient’s age 
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and radioimmunometric serum PSA concentration are analysed. To assess the classification performance for 

clinical study, the discrimination and calibration of an ANN model is estimated and the one of the best 

performance is determined as four-layered perceptrons. Evaluations using the area under the receiver-operating 

characteristics curve and the Hosmer–Lemeshow statistics suggest that ANN appears to be a promising method 

in forecasting of the skeletal metastasis in patients with prostate cancer.  

In Goodband et al [N16], application of ANN in image-guided radiation therapy is presented, aiming to 

improve the accuracy of treatment delivery by tracking tumor position and compensating for observed 

movement. Due to system latency it is sometimes necessary to predict tumor trajectory evolution in order to 

facilitate changes in beam delivery. A comparison is made between four different adaptive algorithms for 

training time-series prediction ANNs in analyzing optimized training and potential errors. A hybrid algorithm 

combining Bayesian regularization with conjugate-gradient backpropagation is demonstrated to give the best 

average prediction accuracy, whilst a generalized regression NN is shown to reduce the possibility of isolated 

large prediction errors. 

In Bathen et al [N30], multivariate models are proposed for the prediction of histological grade, 

hormone status, and axillary lymphatic spread in breast cancer patients. The multivariate methods applied are 

variable reduction by principal component analysis (PCA), and modelling by probabilistic neural network (PNN). 

Finally, the model is verified using prediction of blind samples. The verification results show that hormone 

status is well predicted by both PNN and PLS (partial least-squares regression) as a supplement for future 

clinical decision-making-concerning adjuvant treatment and the adaptation to more individualised treatment 

protocols. 

6.5 Other Applications 

Apart from the above four categories of applications, ANN has been applied to medical image processing for 

other purposes. Wu et al. [44] presents a new method to extract the patient information number (PIN) field 

automatically from the film-scanned image using a multilayer cluster neural network. Cerveri et al. [45] 

presented a hierarchical radial basis function (HRBF) network to correct geometric distortions in X-ray image 

intensifier, which reduces the accuracy of image-guided procedures and quantitative image reconstructions.  

Hsu et al. [46] establish a method to predict and create surface a profile of bone defects by a well-trained 

3-D orthogonal neural network. The coordinates of the skeletal positions around the boundary of bone defects 

are input into the 3-D orthogonal neural network to train it to team the scattering characteristic. The 3-D 

orthogonal neural network avoids local minima and converges rapidly. After the neural network has been well 

trained, the mathematic model of the bone defect surface is generated, and the pixel positions are derived.  

It is difficult to generalise all these applications of ANN into to several united models. However, it 

might be possible to analysis the general pattern of applying ANNs. In the next Section, a comparison is made 

by studying the applications as described in all previous Sections.   
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7. Discussions and Conclusions 

 

As described in the previous five sections, applications of neural networks have been classified into four major 

categories. These applications seem quite different from each other and cover many aspects of medical image 

processing. The various different architectures available for medical imaging problems can present a dilemma 

for a prospective user. There are no rules or defined criteria that can be used to select the best network type, 

though the authors are confident that the examples presented throughout this paper will offer rules-of-thumb and 

guided inspiration for future efforts. To this end, all the neural networks successfully applied to medical imaging 

are highlighted and compared based on their application patterns, structures, operations, and training design etc. 

in Table 1. Since there is no theory to indicate what is the best neural network structure for medical image 

processing and pattern recognition, the information such as ―Type of Network‖, "Type of input", "Number of 

Inputs", "Neurons in Hidden" and "Neurons in Output" is listed to help with searching and designing similar 

neural networks for the future applications. Although these applications may come from different areas such as 

CAD and segmentation, and inputs for neural networks are various, the essential purpose of applying these 

neural networks lies in their classifications, providing inspiring summary for existing modes of neural network 

applications and thus leading to further developments. Since the dataset for these applications are quite different, 

it is not possible to compare their results and the performance of these algorithms.  Some applications are 

ignored in the list since the details about their neural networks are limited. The total number of neurons needed 

in the hidden layers somewhat depends on the total number of training samples. 

 
Table 1 Comparative summary of feed-forward neural network applications in medical imaging 

Source Type of 

Network 

Purpose Type of 

Input 

Number 

of Inputs 

Neurons 

in Hidden 
layers 

Neurons 

in Output 

Train/Test 

/validation 

[1] CNN* 

(BP*) 

Detect FP* Intensity of 

pixels 

256 14/10 1 268ROI*/ 

267ROI 

[3] BP Reduce 
FP 

Value of 
features 

5 5 1 1448 clusters/ 
leave-one-out 

[4] MLP* Reduce 

FP 

Value of 

features 

9 20/10 1 Unknown 

[5] RBFNN* Classify 

tissues 

Value of 

features 

4 5 2 44 regions 

/54 images 

[8] BP Detect FP Value of 

features 

11 9 1 100 images / 

100 images/ 

Jackknife[47] 

[10] BP Detect FP Value of 

features 

10 5 1 397ROI/397 

ROI/Jackknife 

[12] Feed-

forward 

Classify 

boundary 

Coordinate 

/magnitude 

3 30/10 1 100 images/ 

147 images & 

65 image CV Classify 

region 

Coordinate 

/intensity 

3 50 1 

[14] BP Predict Value of 8 5 1 262/leave-one-
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tissue features 7 3 1 out/Jackknife 

[15] BP Classify 

tissues 

Value of 

features 

3 10 1 60 primitives   

/983 primitives 

[22] MLP Classify 

boundary 

Intensity of 

pixels 

49 30 1 1200 patterns / 

400 slices 

[20] BP Classify 
tissues 

Statistical 
indexes 

3 Unknown 3 Small number, 
improved by 

interaction 

[38] BP Remove 

noise 

Intensity of 

pixels 

25 20 1 Unknown 

[39] MTANN
* (BP) 

Classify 

tissues 

Intensity of 

pixels 

81 20 1 5000 Regions 

/118 images 

[48] BP Classify 

MC 

Value of 

features 

14 13 1 100 ROI/ 

leave-one-out 

[49] MLBNN
*(BP) 

Classify 

MC 

Vectors 

from SOM 

5 25/14 7 32 cases/ 64 

cases 

[50] BP Classify 

tissues 

Vectors 

from SOM 

3 7 7 Unknown/ 80 

images 

[51] BP Detect 

Edge 

Intensity of 

pixels 

121 20 1 24 images/ 

fourfold CV 

[N10] BP Classify & 

evaluation 

Clinic and 

radiological 

findings 

15 9 4 MR images of 

126 cases, 

leave-one-out 

[N18] MLP 

/RBFNN 

Detect 

MCCs 

intensity 5 10 1 107 RIO/ 19 

images? 

 BP: Back-propagation (feed forward) 

 CNN: Convolution neural network 

 CV: Cross validation 

 FP: False positive MC or regions 

 MC: Microcalcification cluster 

 MLBNN: Multi-layered BP neural network 

 MLP: Multiplayer perceptron 

 RBFNN: Radial basis function neural 

network 

 ROI: Region of interest 

 SOM: Self-organizing map 

 MTANN: Massive training artificial neural 

network 

 

 

In contrast to feed forward neural network, the applications of feedback neural networks for medical image 

processing are quite limited in the past decade and most of them are in the area of image segmentation, which 

are primarily based on Hopfield neural networks. The similarities between these applications are quite limited 

but all of them need to minimise an energy function during convergence of the network. The energy function has 

to be designed individually, which might affect its application in medical imaging. Since the Hopfield neural 

network is unsupervised, it may not work for CAD like feed forward neural network that requires priori 

knowledge in classifications.  

Although the applications of Kohonen’s SOM are not as many as those of feed forward neural networks, 

its clustering and unsupervised properties make it very suitable for image registration. SOM converges to a 

solution that approximates its input data by adapting to prototype vectors. During this process, the relation of its 

neighbourhood neurons is also taken into account, leading to preservation of topology and mapping of training 

sets. This makes them particularly suitable for applications where dimensionality reduction is desirable and an 

output that can be easily interpreted is a necessary feature. In this sense SOMs may be more suitable for certain 

applications than other neural network architectures, and other pattern recognition and classification approaches. 
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For the applications of image registration, the input vectors of the neurons in SOM usually contain the spatial 

coordinate and intensity of pixels. For applications in image compression, SOM is used as a topology preserving 

feature map to generate vector quantization for code words. Sometimes, SOM produces the segmentation results 

for feed forward neural networks due to its unsupervised clustering property.   

In summary, the applications of ANN in medical image processing have to be analysed individually 

although many successful models have been reported in the literature. ANN has been applied to medical images 

to deal with the issues that can not be addressed by traditional image processing algorithms or by other 

classification techniques. By introducing artificial neural networks, algorithms developed for medical image 

processing and analysis often become more intelligent than conventional techniques. While this paper provided a 

focused survey on a range of neural networks and their applications to medical imaging, the main purpose here is 

to inspire further research and development on new applications and new concepts in exploiting neural networks. 

 

 

While neural networks are undoubtedly powerful tools for classification, clustering and pattern 

recognition there are potential disadvantages when applying them to a given problem. Neural networks are 

notoriously hard to interpret and analyse, and in situations where it is desirable to simply and concisely define 

the process transforming inputs to output values it can be difficult to justify their use. While analysis of the 

internal weight and bias values for neurons in a network is possible, and a network itself can be represented 

formulaically, they are usually too large to be explained in a way that a human can easily understand. Despite 

this, they are still widely used in situations where a black-box solution is acceptable, and where experimental 

evidence of their accuracy is sufficient for testing and validation. 

When compared to other machine learning approaches neural networks have many positive 

characteristics that must be considered by a prospective user. The variety of different network architectures and 

learning paradigms available, coupled with a theoretically limitless number of combinations of layers amounts, 

connections topologies, transfer functions and neuron amounts, make ANNs incredibly flexible processing tools. 

They can be applied to data with almost any number of inputs and outputs, and are well supported in different 

programming languages and software suites. Through manual modification of weights prior to training, and 

through imposing custom limitations on their modification during training, existing expert knowledge can be 

incorporated into their design and construction. Additionally, neural networks are usually computationally 

inexpensive to use after they have been trained, making them ideal for real-time applications where immediate 

output is desirable. 

 

Recent results suggests they can still generate comparable results to state-of-art classifiers like SVM [N7] 

Although this paper focuses on the various types of neural networks and how they can be applied to 

medical imaging, there are a variety of other approaches available for such an application. There are no clear 
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rules or procedures that can be followed to determine if using a neural network is the best choice for a specific 

imaging problem, though guidance can be laid out to assist those that might consider their use. Neural networks 

undoubtedly possess strong potential for accurate output prediction, data clustering and topography-based 

mapping as can be seen by their widespread use in almost every discipline involving modelling and prediction. 

However, as discussed above, their inherent complexity makes them generally unsuitable for applications where 

post-training analysis of the way outputs are formed is necessary. In these situations there are clearly better 

choices of algorithm, such as decision trees, rule induction or Bayesian Networks where the impact that each 

input has upon the final result can bee seen more clearly, and often in an inherently human-understandable way. 

 

Finally, the authors wish to acknowledge the financial support from the Breast Cancer Research Trust, in which 
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