14 research outputs found

    Detectability Of Fuzzy Discrete Event Systems

    Get PDF
    Dynamic systems that can be modeled in terms of discrete states and a synchronous events are known as discrete event systems (DES). A DES is defined in terms of states, events, transition dynamics, and initial state. Knowing the system’s state is crucial in many applications for certain actions (events) to be taken. A DES system is considered a fuzzy discrete event system (FDES) if its states and events are vague in nature; for such systems, the system can be in more than one state at the same time with different degrees of possibility (membership). In this research we introduce a fuzzy discrete event system with constraints (FDESwC) and investigate its detectabilities. This research aims to address the gap in previous studies and extend existing definitions of detectability of DES to include the detectability in systems with substantial vagueness such as FDES. These definitions are first reformulated to introduce N-detectability for DES, which are further extended to define four main types of detectabilities for FDES: strong N-detectability, (weak) N-detectability, strong periodic N-detectability, and (weak) periodic N-detectability. We first partition the FDES into trajectories of a length dictated by the depth of the event’s string (length of the event sequence); each trajectory consists of a number of nodes, which are further investigated for detectability by examining them against the newly introduced certainty criterion. Matrix computation algorithms and fuzzy logic operations are adopted to calculate the state estimates based on the current state and the occurring events. Vehicle dynamics control example is used to demonstrate the practical aspect of developed theorems in real-world applications

    Efficient Detection on Stochastic Faults in PLC Based Automated Assembly Systems With Novel Sensor Deployment and Diagnoser Design

    Get PDF
    In this dissertation, we proposed solutions on novel sensor deployment and diagnoser design to efficiently detect stochastic faults in PLC based automated systems First, a fuzzy quantitative graph based sensor deployment was called upon to model cause-effect relationship between faults and sensors. Analytic hierarchy process (AHP) was used to aggregate the heterogeneous properties between sensors and faults into single edge values in fuzzy graph, thus quantitatively determining the fault detectability. An appropriate multiple objective model was set up to minimize fault unobservability and cost while achieving required detectability performance. Lexicographical mixed integer linear programming and greedy search were respectively used to optimize the model, thus assigning the sensors to faults. Second, a diagnoser based on real time fuzzy Petri net (RTFPN) was proposed to detect faults in discrete manufacturing systems. It used the real time PN to model the manufacturing plant while using fuzzy PN to isolate the faults. It has the capability of handling uncertainties and including industry knowledge to diagnose faults. The proposed approach was implemented using Visual Basic, and tested as well as validated on a dual robot arm. Finally, the proposed sensor deployment approach and diagnoser were comprehensively evaluated based on design of experiment techniques. Two-stage statistical analysis including analysis of variance (ANOVA) and least significance difference (LSD) were conducted to evaluate the diagnosis performance including positive detection rate, false alarm, accuracy and detect delay. It illustrated the proposed approaches have better performance on those evaluation metrics. The major contributions of this research include the following aspects: (1) a novel fuzzy quantitative graph based sensor deployment approach handling sensor heterogeneity, and optimizing multiple objectives based on lexicographical integer linear programming and greedy algorithm, respectively. A case study on a five tank system showed that system detectability was improved from the approach of signed directed graph's 0.62 to the proposed approach's 0.70. The other case study on a dual robot arm also show improvement on system's detectability improved from the approach of signed directed graph's 0.61 to the proposed approach's 0.65. (2) A novel real time fuzzy Petri net diagnoser was used to remedy nonsynchronization and integrate useful but incomplete knowledge for diagnosis purpose. The third case study on a dual robot arm shows that the diagnoser can achieve a high detection accuracy of 93% and maximum detection delay of eight steps. (3) The comprehensive evaluation approach can be referenced by other diagnosis systems' design, optimization and evaluation

    VERIFICATION AND APPLICATION OF DETECTABILITY BASED ON PETRI NETS

    Get PDF
    In many real-world systems, due to limitations of sensors or constraints of the environment, the system dynamics is usually not perfectly known. However, the state information of the system is usually crucial for the purpose of decision making. The state of the system needs to be determined in many applications. Due to its importance, the state estimation problem has received considerable attention in the discrete event system (DES) community. Recently, the state estimation problem has been studied systematically in the framework of detectability. The detectability properties characterize the possibility to determine the current and the subsequent states of a system after the observation of a finite number of events generated by the system. To model and analyze practical systems, powerful DES models are needed to describe the different observation behaviors of the system. Secondly, due to the state explosion problem, analysis methods that rely on exhaustively enumerating all possible states are not applicable for practical systems. It is necessary to develop more efficient and achievable verification methods for detectability. Furthermore, in this thesis, efficient detectability verification methods using Petri nets are investigated, then detectability is extended to a more general definition (C-detectability) that only requires that a given set of crucial states can be distinguished from other states. Formal definitions and efficient verification methods for C-detectability properties are proposed. Finally, C-detectability is applied to the railway signal system to verify the feasibility of this property: 1. Four types of detectability are extended from finite automata to labeled Petri nets. In particular, strong detectability, weak detectability, periodically strong detectability, and periodically weak detectability are formally defined in labeled Petri nets. 2. Based on the notion of basis reachability graph (BRG), a practically efficient approach (the BRG-observer method) to verify the four detectability properties in bounded labeled Petri nets is proposed. Using basis markings, there is no need to enumerate all the markings that are consistent with an observation. It has been shown by other researchers that the size of the BRG is usually much smaller than the size of the reachability graph (RG). Thus, the method improves the analysis efficiency and avoids the state space explosion problem. 3. Three novel approaches for the verification of the strong detectability and periodically strong detectability are proposed, which use three different structures whose construction has a polynomial complexity. Moreover, rather than computing all cycles of the structure at hand, which is NP-hard, it is shown that strong detectability can be verified looking at the strongly connected components whose computation also has a polynomial complexity. As a result, they have lower computational complexity than other methods in the literature. 4. Detectability could be too restrictive in real applications. Thus, detectability is extended to C-detectability that only requires that a given set of crucial states can be distinguished from other states. Four types of C-detectability are defined in the framework of labeled Petri nets. Moreover, efficient approaches are proposed to verify such properties in the case of bounded labeled Petri net systems based on the BRG. 5. Finally, a general modeling framework of railway systems is presented for the states estimation using labeled Petri nets. Then, C-detectability is applied to railway signal systems to verify its feasibility in the real-world system. Taking the RBC handover procedure in the Chinese train control system level 3 (CTCS-3) as an example, the RBC handover procedure is modeled using labeled Petri nets. Then based on the proposed approaches, it is shown that that the RBC handover procedure satisfies strongly C-detectability

    Degradation Monitoring Using Probabilistic Inference.

    Full text link
    In order to increase safety and improve economy and performance in a nuclear power plant (NPP), the source and extent of component degradations should be identified before failures and breakdowns occur. It is also crucial for the next generation of NPPs, which are designed to have a long core life and high fuel burnup to have a degradation monitoring system in order to keep the reactor in a safe state, to meet the designed reactor core lifetime and to optimize the scheduled maintenance. Model-based methods are based on determining the inconsistencies between the actual and expected behavior of the plant, and use these inconsistencies for detection and diagnostics of degradations. By defining degradation as a random abrupt change from the nominal to a constant degraded state of a component, we employed nonlinear filtering techniques based on state/parameter estimation. We utilized a Bayesian recursive estimation formulation in the sequential probabilistic inference framework and constructed a hidden Markov model to represent a general physical system. By addressing the problem of a filter’s inability to estimate an abrupt change, which is called the oblivious filter problem in nonlinear extensions of Kalman filtering, and the sample impoverishment problem in particle filtering, we developed techniques to modify filtering algorithms by utilizing additional data sources to improve the filter’s response to this problem. We utilized a reliability degradation database that can be constructed from plant specific operational experience and test and maintenance reports to generate proposal densities for probable degradation modes. These are used in a multiple hypothesis testing algorithm. We then test samples drawn from these proposal densities with the particle filtering estimates based on the Bayesian recursive estimation formulation with the Metropolis Hastings algorithm, which is a well-known Markov chain Monte Carlo method (MCMC). This multiple hypothesis testing algorithm using MCMC in particle filtering helps the filter to explore the state space more effectively in the direction of the degradations. We extended this algorithm for degradation detection and isolation to complete the degradation monitoring framework. We successfully tested our algorithms in degradation monitoring of balance of plant of a boiling water reactor.Ph.D.Nuclear Engineering & Radiological SciencesUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/60690/1/balpay_1.pd

    Multi-Robot Systems: Challenges, Trends and Applications

    Get PDF
    This book is a printed edition of the Special Issue entitled “Multi-Robot Systems: Challenges, Trends, and Applications” that was published in Applied Sciences. This Special Issue collected seventeen high-quality papers that discuss the main challenges of multi-robot systems, present the trends to address these issues, and report various relevant applications. Some of the topics addressed by these papers are robot swarms, mission planning, robot teaming, machine learning, immersive technologies, search and rescue, and social robotics

    The Twenty-Fifth Lunar and Planetary Science Conference. Part 3: P-Z

    Get PDF
    Various papers on lunar and planetary science are presented, covering such topics as: impact craters, tektites, lunar geology, lava flow, geodynamics, chondrites, planetary geology, planetary surfaces, volcanology, tectonics, topography, regolith, metamorphic rock, geomorphology, lunar soil, geochemistry, petrology, cometary collisions, geochronology, weathering, and meteoritic composition
    corecore