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CHAPTER 1 INTRODUCTION 

The term ‘discrete event system’, or DES, is commonly used in a narrow meaning 

to refer to a process or simulation where the dynamics of the system is represented as a 

sequence of operations (arrival, delay, capturing the resource division, etc.) by some of the 

entities. DES is a special type of dynamic system that can be used to represent clients, 

documents, calls, data packets, vehicles, etc. These entities are generally acknowledged to 

be passive, as they do not control their dynamics. However, they are likely to have certain 

attributes that affect the process of treatment, such as the type of a call, the complexity of 

work, etc. A DES can be defined as a discrete-state, event-driven system, that is, the 

evolution of its states depends entirely on the occurrence of asynchronous discrete events 

over time. Such system can be defined in terms of set of states (including initial state), set 

of events and a transition function, which defines subsequent state or set of states based on 

the current state and the accruing event or sequence of events. 

1.1 Problem overview and motivation 

Knowledge of the system’s state is of great interest to decide actions to be taken in 

many applications. Numerous investigations in the area of discrete event systems (DES) 

and their detectability have been conducted. However, only few studies have addressed the 

detectability of fuzzy discrete event system (FDES). Let’s take the example of an 

automobile engine and model it as a system that has only 4 distinct states: off, cranking, 

idling, and running states. It is crucial to know the exact engine’s state to allow or disallow 

some specific actions. For example, if the engine is idling or running, there will be no need 

to crank the engine. Therefore, cranking while engine is running or idling should be 
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disallowed to protect the starter’s motor from being damaged. In real-world applications, 

not all the states are distinct as in the engine example. In fact, they can be in more than one 

state at the same time depending on subjectivity and human perceptions. Such systems 

cannot be accurately modeled using conventional DES. This vagueness in real-world 

problems prompted the extension of DES to FDES. 

In many situations, systems or activities can be seen to experience and undergo 

varying stages or state conditions. It may also be difficult to assess the state condition and 

ascertain the response to impacting factors at such varying stages or states. For instance, in 

medical field knowledge of illness stage of a patient or his/her response to a treatment is 

very important for doctors or care givers to decide how to proceed with the treatment plan. 

In such system’s state, i.e. illness stage, where characteristics and prognoses are not 

obvious, it is difficult to decide the necessary actions and the appropriate treatment plan to 

be followed. Hence, the treatment plans for such systems are subjective and dependent on 

the care givers’ perceptions. The best technique for modeling such systems is to utilize the 

fuzzy logic, which enables the representation of systems in terms of fuzzy states (i.e. 

patient’s state) and fuzzy events (i.e. treatment or surgery). Therefore, FDES can be applied 

to broader range of applications and systems. In addition, fuzzy logic allows a given system 

to be in many states at the same time based on individuals’ perceptions. Hence, establishing 

detectability criteria is essential in achieving successful and matured FDES in real-world 

applications.  
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A fuzzy state can be represented by a vector where each of its elements represents the 

possibility of being at a specific state. For example, for a state vector�0.8 0.2 0�, the 

system’s state can be interpreted as: 

• State 1� 80% possibility 

• State 2� 20% possibility 

• State 3� 0% possibility 

To investigate the detectability of FDES, which is the main focus of this research, we need 

to develop a criterion to address the fuzzy nature of the system and help estimate its current 

states and the subsequent states as well after the occurrence of an event sequence. In other 

words, we need to defuzzify the state vectors and check them for detectability. To do so, 

we introduced the certainty criterion, which can be used for the defuzzification process. 

1.2 Literature review 

The aim of this literature review is to study, analyze, and emphasize the essential 

findings in the fields of DES and FDES. It is assumed that the detectability of a DES is of 

great importance due to the fact that many control applications decide the next action or 

set of actions to be taken based on the detected state or states of the system. 

Control of DES has been extensively investigated over the past decades [3], [9], 

[12]-[13], [21], [23]; in particular, the supervisory control theory with the concepts of 

controllability and observability, which were established by (Ramadge and Wonham [20]) 

and (Lin and Wonham [10]), respectively. 
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In the supervisory control, as well as many applications, knowledge of the system’s 

state is crucial in action decisions. Therefore, state estimation (detectability) is of great 

significance in DES and hence has been investigated by many scholars [4], [19], [22], [34]. 

Shu et al. studied the determination of the current and subsequent state of DES 

based on sequences of observations (state observations and/or event observations) [29]. 

These investigations resulted in defining four types of detectabilities for the DES: strong 

detectability, (weak) detectability, strong periodic detectability, and (weak) periodic 

detectability. A system is strongly detectable if the current and subsequent states of the 

system can be uniquely determined after a finite number of observations for all trajectories 

of the system. On the other hand, a system is considered (weakly) detectable if the current 

and subsequent states of the system can be uniquely determined after a finite number of 

observations for some trajectories of the system. Strong periodic detectability and (weak) 

periodic detectability are readily defined based on periodic determinations of the system’s 

state. The authors derived necessary and sufficient conditions, which can be checked by 

constructing an observer for the defined detectabilities. In addition, the authors claimed 

that their findings can be used in feedback control. 

The investigation conducted by Shu and Lin [25] demonstrated that the discrete 

event systems of non-deterministic characteristics were of greater importance than those 

of deterministic ones. In this study, the authors were able to extend detectability definitions 

from deterministic systems to non-deterministic ones, which is very important as not all 

applications can be modeled by deterministic systems. Shu and Lin, in the same study, also 

developed a polynomial algorithm to check strong detectability by constructing a detector 
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rather than an observer in order to reduce the complexity. One of their most important 

achievements is the extension of D-detectability, which makes detectability theorems of 

DES more applicable in solving many problems as it focuses on distinguishing only certain 

pairs of states in the system after finite number of observations. 

Shu et al. introduced the concept of distinguishability in [31] based on strong 

detectability and strong periodic detectability. Distinguishability is used to characterize 

detectability for on-line detection and sensor activation. 

The study of detectabilities in probabilistic DES (also known as PDES) was carried 

out by Shu et al. [30]. The researchers performed this study to support the idea that the 

stability of the system can be identified by the ability to specify the system’s states along 

some trajectories. The authors assumed complete observation for PDES; they first 

converted the system into a non-deterministic one and then investigated the convergence 

of the event sequence. They claimed that an event sequence is convergent (and hence 

detectable) if along this sequence it is more certain that the system is in a particular state. 

The introduction of probability to the state estimation problem increases the complexity of 

the system, and as a result, it increases the opportunity of being used in different 

applications. The authors claimed that construction of an observer would not be sufficient 

to study detectability in PDES; therefore, they studied the asymptotical behavior of the 

system. 

Shu and Lin continued their work and extended their investigations to include 

delayed detectability in a DES [26]. In this study, the authors answered the question of 

whether it is possible to determine the state of a system at the time the k1th event was 
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observed after observing k1+k2 observable events. The system is then said to be delayed 

detectable if determination of the system’s state is possible. The authors also developed 

polynomial algorithms to check delayed detectability. Furthermore, observability and 

diagnosability were shown as special cases of delayed detectability. 

Prior to the investigations of the detectability, many researches carried out 

extensive studies in the diagnosability, which have been published in [11], [14]-[16], [32]-

[33]. These generally describe the ability to check for fault occurrences in a system. 

Another important aspect of detectabilities in DES, conducted by Shu and Lin, is 

the detectability of the initial state of the DES or I-detectability [28]. In this study, the 

authors proved that DES is strongly I-detectable if they can determine the initial state of 

the DES after a finite number of observations for all trajectories of the system and is weakly 

I-detectable if they can determine the initial state for some trajectories of the system. To 

perform their research, the authors constructed an I-detector to avoid exponential 

complexity. In addition, the authors developed algorithms to check the systems’ 

characteristics and for sublanguage calculations. 

The control the DES to enforce detectabilities was investigated by Shu and Lin 

[27]. In this study, control actions were used to ensure continuous or periodic determination 

of the current state of a closed-loop system after some observations in all the system’s 

trajectories. 

The work reviewed above assumes that all event observations are static; that is, if 

an event is observable, then all its occurrences are observable. However, this is not 

consistent with real-world applications, which prompted Shu and Lin to extend their 
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investigations to include DES with dynamic event observations [24]. In this study, the 

authors generalized the static event observation into a dynamic event observation, based 

on which the detectability problem was investigated. The authors developed necessary and 

sufficient conditions to check for different types of detectabilities: strong, weak, strong 

weak, and periodic weak detectability by constructing an observer and/or a detector. 

In many practical applications, particularly in biomedical applications, the state of 

a system is not crisp but rather vague. To handle this type of systems, the DES have been 

extended to the FDES [7]. A FDES is modeled by using fuzzy states and fuzzy events. 

Matrices are adopted for mathematical representations of fuzzy states and fuzzy events, 

where the elements of these matrices have values ranging between 0 and 1. Fuzzy 

operations, such as Max-Min operation, are used to calculate the next state after the 

occurrence of an event sequence. Such procedures and techniques were further followed 

and investigated by many researchers [5], [6], [8], [35], and [36]. 

The research carried out by Mekki et al. [1] addressed the detectability problem for 

a special case of FDES where all events are observable. The authors first introduced fuzzy 

discrete event system with constraints, which defines all the event sequences (language) 

allowed in the system. Furthermore, the authors extended the detectability of DES to N-

detectability by constructing an N-step look-ahead tree (from the initial state) that describes 

all possible event sequences of length N in the system. In addition, the authors proved that 

N-detectability implies detectability in crisp DES. Evolving from what has been 

established, the authors defined N-detectability of FDES and developed necessary 

algorithms to compute the corresponding fuzzy states for each event sequence defined in 
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the constraint system and then check computed fuzzy states for N-detectability by 

examining them against certainty criterion, which was developed by the authors for that 

purpose. Certainty is determined by computing the ratio of the maximal element in each 

fuzzy state over the sum of all elements in that state and then comparing it against a defined 

factor (threshold). If the outcome is greater or equal to the threshold, then the fuzzy state 

is said to be certain; otherwise, the fuzzy state is not certain. Based on the certainty outcome 

of all fuzzy states (nodes) along an event sequence (trajectory), a branch (trajectory) is 

classified as follows: detectable, periodically detectable, or not detectable. Based on that, 

FDES is said to be strongly N-detectable if all branches in the system are detectable and 

(weakly) N-detectable if some of the branches are detectable. Similarly, the FDES is said 

to be strongly periodically N-detectable if all branches are strongly periodically detectable 

and (weakly) periodically N-detectable if some of the branches are periodically detectable. 

Detectabilities investigated so far in the literature are for FDES with full 

observation. However, no research has addressed FDES with partial observations. Since in 

real-world applications not all events are observable (especially in medical field and many 

engineering applications), it is imperative to investigate detectabilities of FDES with partial 

observations which is going to be discussed in Chapter 5. 

1.3 Research objectives and contributions 

This research is aimed to generalize the already defined detectability definitions for 

DES and extend them to cover systems with substantial vagueness and inaccuracy such as 

fuzzy discrete event systems (FDES). In fact, detectability definitions of DES systems will 

be shown as a special case of detectability definitions of FDES. 
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One of the main contributions of this study is the extension of detectability 

definitions of a conventional DES to introduce 4 types of detectabilities for partially and 

fully observable FDES, which are: 

1 Strong N-detectability 

2 Weak N-detectability 

3 Periodic N-detectability 

4 Weak periodic N-detectability 

Also, other contributions of this study are the modeling of real-world applications 

such as vehicle dynamics control using the new detectability criteria (N-detectability), and 

demonstrating the practical aspect, with real-world filled-in data, to prove the potential 

applicability of this N-detectability in the automotive industry in general and active safety 

in particular.  

1.4 Organization of the dissertation 

This dissertation is organized as follows: chapter 2 gives broad introduction to DES, 

fuzzy logic, FDES, and FDES with constraints. Chapter 3 discusses the existing 

detectability definitions for DES as well as the extension of DES detectability definitions 

to introduce N-detectability of DES. Chapter 4 discusses N-detectability of fully observable 

and partially observable FDES. Chapter 5 discusses the practical aspect of the developed 

theorems and shows vehicle dynamic control as a potential application. Chapter 6 shows 

the conclusion and recommendation for future researches. 
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CHAPTER 2  DISCRETE EVENT SYSTEMS AND FUZZY 

DISCRETE EVENT SYSTEMS 

2.1 Discrete event systems 

As stated in Chapter 1, a DES is modeled in terms of states, events, dynamics, and 

initial state. Mathematically DES system is modeled as in Eq. (2.1). 

 � = (
, �, , ��) (2.1) 

where 

• 
 is the finite set of discrete states 

• �� ∈ 
 is the initial state 

• � is finite set of events 

• : � × � →  
 is the transition function from current state to subsequent state 

in the system after the occurrence of a given event or sequence of events 

The set of sequences/strings of events that can take place in a discrete event system 

are referred to as the language of the system �(�), which is defined in Eq. (2.2) 

 �(�) = {� ∈ �∗: (��, �) ≠ ∅} (2.2) 

where  Σ∗ is the Kleene closure of �, which is defined as all possible sequences of events 

in the event set Σ. 

The system in Figure 2.1 represents a printing machine that has 3 distinct states: 

idle (I), working (w), and down (D). The events of the system are: turn switch on ( �), turn 

switch off ( �), break down (  ), and repair (!). I, in this example, is the initial state of the 

system. 
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Figure 2.1 Discrete event system for printing machine 

The automation in Figure 2.1 can be modeled as follows: 

� = (
, �, , ��) 

where 


 = {", #, $} 

� = {�, �,  , !} 

: � × � →  
 

�� = {"} 

The printer machine operates as follows. It starts from the initial state (I) and when 

the switch is turned ‘ON’, it will make a transition to state 
(", �), which is the working state (W). At working state (W) and upon the occurrence of 

the event   (the machine breaks down) the system will make a transition to down state (D) 

and stay there until the machine is repaired by performing repair ( !). These two transitions 

can be expressed as follows, respectively: 
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(#,  ) = $ 

($, !) = " 

When the system is at the initial state (I) and the event sequence �  occurs, the subsequent 

state can be obtained as follows. 

(", � ) = ((", �),  ) =  (#,  ) = $ 

Depending on the definition of the transition function , the DES can be classified 

as deterministic or non-deterministic. For instance, if the occurrence of the event % ∈ � at 

a given state � ∈ 
 (the transition (�, %)) leads to a unique state in the system, then the system 

is considered deterministic. In contrast, if the transition (�, %) leads to multiple states, then the 

system is considered a nondeterministic one. The system shown in Figure 2.1 is considered a 

deterministic system as we can uniquely determine the subsequent state of the system after 

the occurrence of a defined event. Nondeterministic DES will be introduced in details in 

Section 2.1.1. 

2.1.1 Nondeterministic discrete event systems 

Unlike deterministic DES, the initial state of a nondeterministic DES can itself be 

a set of states. Furthermore, an occurrence of a given event can cause a transition to 

multiple states in the system. More generally, the automation of nondeterministic DES can 

be modeled as: 

 �&' = (
, � ∪ {)}, &', 
�) (2.3) 

where 

• 
, � are the same entities defined for the deterministic DES 

• &': � × � →  2* is the nondeterministic transition function 
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• 
₀ ⊆ 
 is the set of the initial states of the system 

2* is defined as the power set of 
 and can be obtained as in Eq. (2.4) 

 2* = {-: - ⊆ 
} (2.4) 

The set of the events �  is divided into two disjointed parts with respect to 

observability: 

• The observable part: Σ. 

•  The unobservable part:  Σ/. 

Mathematically this relation can be expressed as in Eq. (2.5) 

 � = �0 ∪  �10 (2.5) 

Unobservable events are the set of events defined in �, but are not observed when 

they take place. When a sequence or string that contains unobservable events occurs in a 

system, its observation is described in terms of projection as follows. Given large event set 

� and small event set �0 such that �0 ⊂ �, the projection of a string is a mapping 3: �∗ →
�0∗ that erases all events that are not in �0. Formally it is defined as in Eq. (2.6) 

 3(4)  =  4 , 3(�, 5) = 6P(s)5 if 5 ∈  �0P(s) if 5 ∉ �0  
(2.6) 

where 4  denotes the empty string. The projection 3  is then extended from strings to 

languages. 

 The inverse of projection 3 is denoted by 3<= and is given by Eq. (2.7). 

 3<=(�) = {> ∈ �∗: 3(>) = �} (2.7) 
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Nondeterministic systems can always be transformed into an equivalent 

deterministic one known as “observer” and denoted by �0?@, which is defined as in Eq. 

(2.8). 

 �0?@ = AB(
0?@, �0 , C, 
�,0?@) (2.8) 

where  
• AB(�) is the accessible part of automata � 

• 
0?@ = 2* is the power set of 
 

• �0 is the set of observable events 

• C is the transition function defined in Eq. (2.10) 

• 
�,0?@ = DE(��), is the initial states, which are defined in terms of the 

unobservable reach of �� defined in Eq. (2.9) 

For F ∈ -, where F ⊆ 
, the unobservable reach is given by 

 DE(F) = {� ∈ 
 ∶ (∃�I ∈ F)� ∈ &'(�I, 4)}  (2.9) 

For F ∈ - and 5 ∈ �0, 

 C(F, 5) = DE({� ∈ 
 ∶ (∃�I ∈ F)� ∈ &'(�I, 5)})  (2.10) 

Example 2.1 

Consider the nondeterministic DES shown in Figure 2.2 with the set of states 
 =
{��, �=, �J, �K}, the set of events � = {4, �, �}, wher 4 is the empty string, and the initial 

state is 
� = {��, �=}. 
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Figure 2.2 A nondeterministic DES 

The equivalent observer  �0?@  for the nondeterministic DES in Figure 2.2 is 

represented by the automata shown in Figure 2.3. 

If the system is at the initial state �� and the event � is observed, then the next state 

is obtained as follows: 

�&LMN = C(��, �) = DE({� ∈ 
 ∶ (∃�I ∈ ��)� ∈ &'(�I, �)}) = �K  
�K in this example is a unique state. On the other hand, if the event sequence �� is 

observed, then the next state cannot be uniquely determined as it falls in the set {��, �=}. 
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Figure 2.3 Equivalent observer for DES of Figure 2.2 

2.2 Fuzzy logic 

Fuzzy logic was first introduced in 1965 by Lotfi A. Zadeh [38], professor for 

computer science at the University of California in Berkeley. Fuzzy logic is a departure 

from classical two-valued sets and logic, that uses "soft" linguistic (e.g. large, hot, tall) 

system variables and a continuous range of truth values in the interval [0,1], rather than 

strict binary (True or False) decisions and assignments. Formally, fuzzy logic is a 

structured, model-free estimator that approximates a function through linguistic 

input/output associations. 

Fuzzy rule-based systems apply these methods to solve many types of real-world 

problems, especially where a system is difficult to model, controlled by a human operator 
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or expert, or where ambiguity or vagueness is common. A typical fuzzy system consists of 

a rule base, membership functions and an inference procedure [37]. 

Some fuzzy logic applications include: 

• Control (Robotics, Automation, Tracking, and Consumer Electronics) 

• Information Systems (DBMS, Info. Retrieval) 

• Pattern Recognition (Image Processing, Machine Vision) 

• Decision Support (Adaptive HMI, Sensor Fusion) 

Some of the key benefits of fuzzy design are: 

• Simplified and reduced development cycle 

• Ease of implementation 

• Can provide more user-friendly and efficient performance 

Fuzzy logic has been used as a powerful tool for the controlling of subway systems 

and complex industrial processes, as well as for household and entertainment electronics, 

diagnosis systems and other expert systems with substantial vagueness. 

Fuzzy logic is basically a multivalued logic that allows intermediate values to be 

defined between conventional evaluations like yes/no, true/false, black/white, 0/1 etc. 

Notions like rather warm or pretty cold can be formulated mathematically and processed 

by computers. In this way a more human-like way of thinking can be applied in computer 

programming and processing. 

Fuzzy logic has many operations that can be performed on fuzzy sets including 

union, intersection, complement, algebraic product, algebraic sum, etc. [37]. In this section, 
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we give more emphasis to the operations that are widely used in this thesis. Let’s first 

define the fuzzy sets and then define some of the operations that can be performed on it. 

A fuzzy set can be regarded as an extension of classical sets and can be defined as 

any set that allows different degree of membership for its elements. The main distinction 

of fuzzy sets is that its elements have varying degrees of membership in the set. 

2.2.1 Mathematical Concept 

A fuzzy set Z in the universe S can be defined as a set of ordered pairs that can be 

given by Eq. (2.11). 

 O = PQR, !S(R)T | R ∈ VW (2.112) 

where !S(R) is the degree of membership of R with values ranging from 0 to 1. 

To best illustrate the concept, let’s consider youngness example. Let set S (the 

universe of discourse) is the set of people. A fuzzy subset YOUNG is used to define the 

degree of youngness of each person in S. Let’s assign a degree of membership in the fuzzy 

subset YOUNG. The easiest way to do this is with a membership function based on the 

person's age as illustrated in Table 2.1. 

Person Age Degree of youngness 

Ali 25 1.00 

Chin 39 0.10 

Smith 34 0.60 

Nadia 65 0.00 

Khan 31 0.90 

Table 2.1 Degree of membership in the set S 
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Table 2.1 can be expressed in terms of Eq. (2.11) as follows: 

V = {AXY, BZY[, V\Y>Z, ]^_Y^, `Z^[} 

O = {(AXY, 1), (BZY[, 0.1), (V\Y>Z, 0.6), (]^_Y^, 0), (`Z^[, 0.9)} 

The fuzzy set YOUNG can be obtained from: 

Rde[f(F) = {1, Yg ^f%(F) h 30, 
40 k ^f%(F)10 , Yg 30 l ^f%(F) h 40, 

0, d>Z%mnY�%. } 

The membership function can be represented as in Figure 2.4.

 

Figure 2.4 Membership function that determines the degree of belonging of member x in S to fuzzy 

set Z 
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From Figure 2.4 and with the given definition, we can say that the degree of the 

truth of the statement “Smith is YOUNG” is 0.6. 

2.2.2 Fuzzy operations 

Union: 

The membership function of the union of fuzzy sets A and B with membership 

functions !o and !p respectively is defined as the maximum of two membership functions. 

Union operations on fuzzy sets is equivalent to OR operations in Boolean algebra. 

!o∪p = max (!o, !p) 

Intersection: 

The membership function of the intersection of fuzzy sets A and B with 

membership functions !o  and !p  respectively is defined as the minimum of two 

membership functions. Intersection operations on fuzzy sets is equivalent to AND 

operations in Boolean algebra. 

!o∩p = min (!o, !p) 

Composition of fuzzy relationship: 

Fuzzy relation in different product space can be combined with each other by the 

operation called “Composition”. There are many composition methods in use, e.g. max-

product, Max-Min, and Max-Average methods. Max-Min composition is widely used in fuzzy 

logic applications and is adopted in our computer program to compute the fuzzy state estimate 

after the occurrence of a fuzzy event sequence. 

Max-Min composition: 
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Take the product spaces Ev = PQ(F, R), !wv(F, R)T | (F, R) ∈ - × xW  and V̅ =
PQ(R, z), !{̅(R, z)T | (R, z) ∈ x × OW . The Max-Min composition\operation of Ev  and V̅ 
defines how X and Z are related, which denoted by Ev ∘ V̅. 

Ev ∘ V̅ = {(F, z), !wv∘{̅(F, z) | F ∈ -, R ∈ x, z ∈ O} 

where !wv∘{̅(F, z) =∨ {!wv(F, R) ∧ !{̅(R, z)} 

To explain how the operation Max-Min is performed, take the below two relations 

R and S respectively: 

  Ev R= RJ RK 

F= 0.1 0.3 0.7 

FJ 0.9 0.2 0.4 

FK 0 0.9 0.5 

  V̅ z= zJ zK 

R= 0 0.2 0.5 

RJ 0.4 0.6 1 

RK 0 0 1 

Ev ∘ V̅ = �0.1 0.3 0.70.9 0.2 0.40 0.9 0.5� ∘ � 0 0.2 0.50.4 0.6 10 0 1 � = �0.3 0.3 0.70.2 0.2 0.50.4 0.6 0.9� 

2.3 Fuzzy discrete event systems 

Conventional discrete event systems (DES) failed to effectively model and solve 

many real-world problems such as modeling and treatment of HIV and cancers as well as 

many other applications from different fields due to their imprecise and subjective nature. 

For instance, the description of human health, i.e. “good” or “bad” is subjective and 
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depends on the doctor’s or the care giver’s perceptions. The patient’s response to a 

treatment or medication (good or bad) can also be vague and subjective upon the patient’s 

mood and feelings. Even the transition from one state to another (good to bad or vice versa) 

is vague as well. This prompted many scholars to pursue alternative options to address the 

matter and include fuzzy logic in the modeling process of DES. Fuzzy discrete event 

systems (FDES) and its modeling techniques have been introduced since the early 2000’s 

by Lin and Ying [7], where their main focus was to establish the frame work for the 

modeling of complex problems using the FDES in order to effectively model and provide 

solutions to real-world problems with substantial vagueness, impreciseness, and inherent 

subjectivity such as biomedical applications. Unlike crisp DES, the use of nodes and arcs 

to graphically represent the FDES automata is not suitable. Instead, vectors and matrices 

were found to be the best tools for mathematical representations of system’s states and 

system’s events respectively. All the states of the FDES are modeled by vectors whose 

elements range from 0 to 1 ([0, 1]). All the events are modeled by square matrices that have 

sizes equivalent to the number of states in the FDES. Each element in an event matrix has 

a value ranging from 0 to 1. 

Furthermore, the supervisory control problem of the FDES with partial observation 

have been investigated in [36], where the observability, co-observability, and normality of 

the DES have been extended and redefined to include FDES. 

The extension of parallel composition of the DES in order to define parallel 

composition for the FDES has been introduced in [6], where max-product and max-min 
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automata were considered to model the FDES. The same investigation resulted in defining 

a uniform criteria to check for fuzzy controllability for the FDES. 

Definitions  

Fuzzy state: 

A fuzzy state is a state in DES where the system can simultaneously be in any state 

within the system with different degree of possibility (membership). 

Fuzzy event: 

A fuzzy event is an event that can cause transition in the system from any state 

within the system to any state within the same system with a different degree of possibility 

(membership). 

In [7], the FDES Automata is modeled as in Eq. (2.12). 

 �� = (
�, ��, �, ���) (2.12) 

where 
� , ��, �, and ��� are state space, set of fuzzy events, the transition function, and the 

initial state respectively. 
�  and �� describe the fuzziness of the systems as follows: 

 
� = �0,1�& (2.13) 

 �� ∈ �0,1�& (2.14) 

 �� = {5�=, 5�J, … , 5��} (2.15) 

 5� ∈ �0,1�&∗& (2.16) 

The transition from one state to another after the occurrence of a fuzzy event is 

obtained by �(��, 5�) = �� ∘ 5�, where ∘ is either the Max-Min or Product-Max operation of 

fuzzy inference.  
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Finite automata in Figure 2.5 describes the stages of the lower back injuries and the 

corresponding treatment plans to address such conditions. 

 

Figure 2.5 Finite automata describing lower back conditions 

Lower back conditions are modeled as: 

• Excellent (E) 

• Fair (F) 

• Poor (P) 

While the severity of lower back injuries are modeled by the following events: 

• Light injury ( �=) 

• Moderate injury ( �J) 

• Severe injury ( �K) 

On the other hand, treatment plans are modeled by the events: 

• Physical therapy ( � ) 

• Surgery ( �) 

The lower back of a healthy person is described as in excellent condition (E) and 

when he/she experiences a light injury in the lower back ( �=), his/her lower back condition 

deteriorates from excellent (E) to fare (F). With physical therapy ( �), the lower back 
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condition can be improved to reach excellent condition (E) again. With a moderate injury 

(�J) while in fair condition (F), a person’s lower back condition deteriorates to poor (P), 

which needs surgical intervention ( �) to reach fair condition (F) and further physical 

therapy ( � ) to recover back to excellent condition (E). When a person experiences sever 

injury ( �K) in lower back while his/her lower back condition is excellent (E), his/her lower 

back condition deteriorates to poor (P). At this state, a surgery ( �) is needed to improve 

the condition of the lower back to fair (F) followed by physical therapy ( � ) to reach 

excellent condition (E). 

To effectively model the system in Figure 2.5, vectors and matrices are adopted to 

represent fuzzy states and fuzzy events as follows: 

� = �0.9 0.1 0� 
� = �0.2 1 0.1� 
3 = �0 0.1 1� 

 �= = � 0 0.85 00.1 0 0.10 0.1 0 � 

 �J = � 0 0.2 0.10.2 0.2 0.90 0.1 0 � 

 �K = �0.2 0.2 0.80.1 0.1 0.10.1 0.1 0.1� 

� = �0.2 0.2 0.11 0 0.20 0.1 0 � 

� = � 0.1 0.1 0.10.1 0.1 0.100.1 0.9 0.1� 
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If the lower back condition of a person is excellent (E) and that person experiences 

a severe injury ( �K) in his/her lower back, then the new state of the lower back condition 

can be obtained by 

��&L� = �(��, 5�) = �0.9 0.1 0� ∘ �0.2 0.2 0.80.1 0.1 0.10.1 0.1 0.1� = �0.2 0.2 0.8� 
where ∘ is the Max-Min product operator. 

The above result can be interpreted as follows: 

• 20% � Excellent (E) 

• 20% � Fair (F) 

• 80% � Poor (P) 

This is a typical situation of a real-world problem. Depending on doctor’s 

perception, a specific treatment plan will be followed. 

2.4 Fuzzy discrete event system with constraints 

In Section 2.3, we showed the effectiveness and practicality of utilizing the FDES 

in modeling real-world problems with inherent subjectivity and impreciseness. However, 

FDESs have infinite and continuous state space, which means any sequence of events can 

occur in the system, which is not the case for many engineering, medicine, and other areas 

of applications. For example, in a fuzzy system an element of a state vector can take an 

infinite value between 0 and 1, which results in an infinite set of data that increases the 

complexity of the modeled system and hence becomes impossible to manage in real-world 

applications with the current technologies and available resources. Therefore, a crisp DES 

is introduced to act as a constraint to the fuzzy system. In that way, only sequences of 
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events that are permissible in the defined constraint system can take place in the fuzzy 

system. In other words, the language generated by the constraint system dictates the 

language generated by the FDES. 

To model the constraint system, a nondeterministic automata as in Eq. (2.17) is 

used. 

 � = (
, � ∪ {4}, , ��) (2.17) 

Where 

• 
 is the state space 

• Σ is the event set corresponding to Σ� 

• 4 is the empty string 

• : 
 × (Σ ∪ {4}) → 2* is the (nondeterministic) transition function 

• �� ⊆ 
 is the set of initial states 

Similar to ��, � can be represented in terms of vectors and matrices. If the number of states 

in �  is  \ = |
| , then a state is represented by an m-dimensional row vector whose 

elements are in the set  {0,1}  and an event is represented by a \ × \  matrix whose 

elements are in the set {0,1}. 

By combining the constraint system � and the FDES ��, a FDESwC is obtained as defined 

in Eq. (2.18). 

 �$�VnB = (�, ��) (2.18) 

Example 2.2 

This example illustrates the formulation and representation of a FDESwC. For ��: 

Suppose that 
� = �0,1�& with [ = 3, Σ� = {��, ��, ��} where 
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 �� = �0.1 0.9 0.20 0.8 0.10.3 0.75 0.1� 

�� = �0.1 0.1 0.80.8 0.1 0.10.9 0 0.1� 

�� = �0.1 0.1 0.10.2 0.1 0.10.1 0.7 0.6�  

 The initial state ��� = �0.9 0.1 0� 
Transition function is defined as: 

�(��, 5�) = �� ∘ 5� 

where ∘ is the Max-Min operator. 

The system illustrated in Figure 2.6 represents the constraint system � = (
, Σ ∪ 4, , ��), 

where 

 
 = {1,2,3,4} 

Σ = {�, �, �} 

�� = {1} = �1 0 0 0� 
4 is the empty string 

 is the transition function 
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Figure 2.6 Constraint System for Example 2.2 

From Figure 2.6, if an event causes a transition from a state i to a state j in the system, 

then the corresponding matrix entry  �^��� = 1 , otherwise  �^��� = 0 . This way we can 

obtain the event matrices for the constraint system as follows: 

� = �0 1 0 00 0 1 00 0 0 00 0 1 0� 

� = �0 0 0 11 0 0 01 0 0 00 0 0 0� 

� = �0 0 0 00 0 0 00 1 0 00 0 0 0� 

If the event � occurs at the initial state, the subsequent state in the constraint system 

can be obtained as follows: 
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�&L� = �� × � = �1 0 0 0� × �0 1 0 00 0 1 00 0 0 00 0 1 0� = �0 1 0 0� 
where × is the product operator. 

The corresponding transition in the fuzzy system is obtained as follows: 

��&L� = ��� ∘ �� = �0.9 0.1 0� ∘ �0.1 0.9 0.20 0.8 0.10.3 0.75 0.1� = �0.1 0.9 0.1�  
where ∘ is Max-Min operator. 

After the occurrence of the event �� at the initial state, the subsequent state of the 

fuzzy system is: 

• 10% � state 1 

• 90% � state 2 

• 10% � state 3 

DES can be shown as a special case of the FDESwC If the below conditions are 

satisfied: 

• \ = [ 

• 5 = 5� (in terms of matrix) 

• �� = ��� (in terms of vector) 

Then �$�VnB and � become the same system. 
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CHAPTER 3 DETECTABILITIES OF DISCRETE EVENT SYSTEMS 

The detectability problem for DES has been investigated since the mid 2000’s. In 

[29], Shu et al. focused on determining the current state and the subsequent states of a 

system based on event observations. They defined four types of detectabilities: strong, 

weak, strong periodic, and weak periodic detectabilities. They derived the necessary and 

sufficient conditions for these detectabilities by constructing an observer. The system 

considered in [29] is a deterministic system, which means if a system is at a given state and 

a given event takes place, then the subsequent state can be uniquely determined. However, 

not all the systems are deterministic in real-world applications. Therefore, in [25] Shu and 

Lin extended the detectability definitions of DES to include nondeterministic DESs. 

Furthermore, different type of detectabilities have been investigated by many 

scholars including: D-detectability [25], I-detectability [28], and delayed detectability [26]. 

These investigations included different type of discrete event systems, such as 

deterministic and nondeterministic systems [25], probabilistic discrete event systems [30], 

and discrete event systems with dynamic event observations [24]. 

 To make detectability definitions more realistic and extend them to DES with 

partial observations, nondeterministic DES was considered where the system’s state can’t 

uniquely be determined. Four types of detectabilities were defined for nondeterministic 

DES: (weak) detectability, strong detectability, (weak) periodic detectability, and strong 

periodic detectability [25], [29]. Detectability was extended from deterministic systems to 

nondeterministic systems. Such a generalization is necessary because there are many 

systems that need to be modeled as nondeterministic DES. In many applications, we need 
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to determine the current state of a system and subsequent states based on event 

observations. 

3.1 Extension of detectabilities of discrete event systems 

In many biomedical and engineering applications, knowing system state is 

important to decide next set of actions to be taken. The ability to know the system’s state 

can be referred to as detectability. In this research we extend the detectability definitions 

for DES to define N-detectability for DES. Then, we redefine N-detectability to include 

fuzzy discrete event systems with constraints. We cover both fully observable and partially 

observable systems  

 To make detectability meaningful, the following assumptions were made [25], 

[29]: 

Assumptions 

1. G is deadlock free, that is, for any state of the system, at least one event is 

defined at that state: 

 (∀� ∈ 
)(∃5 ∈ �)g(�, 5) ≠ ∅  

2. No loops in G contain only unobservable events:  

 ¬(∃� ∈ 
)(∃� ∈ �10∗ )� ≠ 4 ∧ � ∈ g(�, �)  

Under these assumptions, four types of detectabilities were defined in [25], [29]: 

1. Strong Detectability: A DES G is strongly detectable if one can determine the 

current and subsequent states of the system after a finite number of observations 

for all the trajectories of the system. That is, 

(∃[ ∈ ])(∀� ∈ �(�)(∀�I h �)|3(�I)| > [ ⇒ |E(�₀, 3(�I))| = 1 
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2. Weak Detectability: A DES G is weakly detectable if one can determine the 

current and subsequent states of the system after a finite number of observations 

for some trajectories of the system. That is, 

(∃[ ∈ ])(∃� ∈ �(�)(∀�I h �)|3(�I)| > [ ⇒ |E(�₀, 3(�I))| = 1 

3. Strong Periodic Detectability: A DES G is strongly periodically detectable if 

one can determine the current state of the system periodically after a finite 

number of observations for all the trajectories of the system. That is, 

(∃[ ∈ ])(∀� ∈ �(�)(∀�I h �)(∃�′′ ∈ �∗)�I�II h � ∧ |3(�II)|
l [ ∧ |E(�₀, 3(�′ �′′ ))| = 1) 

4. Weak Periodic Detectability: A DES G is weakly periodically detectable if one 

can determine the current state of the system periodically after a finite number 

of observations for some trajectories of the system. That is, 

(∃[ ∈ ])(∃� ∈ �(�)(∀�^′ h �)(∃�′′ ∈ �^ ∗)�^′ �^′′ h � ∧ |3(�^′′ )|
l [ ∧ |E(�₀, 3(�′ �′′ ))| = 1) 

In nondeterministic DES, some events may not observable. Therefore, we may not 

know the exact state of the system after observing an event sequence  > ∈ 3(�(�)) . 

However, we can determine the set of states in which the system is in. This set of states is 

called the state estimate (V�), which is used to reformulate the detectability definitions in 

[25], [29]. 

Formally, if > ∈ 3(�(�)) is observed, then the state estimate V�(>) is given by Eq. 

(3.1) 
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 V�(>) = {� ∈ 
: Q∃� ∈ �(�)T(��, �) = � ∧ 3(�) = >} (3.1) 

If V�(>) is a singleton, that is, the number of states in SE is equal to 1 (denoted 

as |V�(>)| = 1), then V�(>) is said to be certain and hence the state of the system can be 

exactly determined. Mathematically for DES represented by matrices and vectors, certainty 

of a state estimate is defined as in Eq. (3.2). 

 £%m>(V�) = ¤^F(%=, %J, … , %&)∑ %�&� ≥ 1 
(3.2) 

where % ∈ V� and [ is the number of elements in the state estimate vector. 

For example, if V�(>) = �0 0 1 0�, then £%m>(V�(>)) = §¨M(�,�,=,�)�©�©=©� = 1 and hence 

V�(>)  is certain. On the other hand, if  V�(>) = �0 0 1 1� , then £%m>(V�(>)) =
§¨M(�,�,=,=)�©�©=©= = 0.5 and consequently V�(>) is considered not certain. 

Using state estimates, detectability definitions can be reformulated as follows: 

1. Strong Detectability: A DES G is strongly detectable if and only if, for all 

the trajectories of the system, the current and future state estimates of the 

system are certain after a finite number of observations. 

2. Weak Detectability: A DES G is weakly detectable if and only if, for some 

trajectories of the system, the current and future state estimates of the 

system are certain after a finite number of observations. 

3. Strong Periodic Detectability: A DES G is strongly periodically detectable 

if and only if, for all the trajectories of the system, the current state estimates 

of the system are certain periodically after a finite number of observations. 
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4. Weak Periodic Detectability: A DES G is weakly periodically detectable if 

and only if, for some trajectories of the system, the current state estimates 

of the system are certain periodically after a finite number of observations. 

States involved in loops are of particular interest because the observer can stay in 

these states forever. Therefore, let us denote the set of all loops in the observer as 

�ddª = {(z, e) ∈ O × �0∗: |e| ≥ 1 ∧ C(z, e) = z} 

In [25], it was proven that a nondeterministic DES G is strongly detectable with 

respect to P if and only if in observer �0?@ 

(∀(z, e) ∈ �ddª)(∀n ∈ �0∗)C(z, n) ∈ O� 

where O� is the set of certain states. 

That is, any state reachable from any loop in �0?@ is in O�. 

Also, it was proven that a nondeterministic DES G is weakly detectable with respect 

to P if and only if in observer �0?@ 

(∃(z, e) ∈ �ddª)(∀n h e)C(z, n) ∈ O� 

That is, there are loops in �0?@ that are entirely within O�. 

For periodic detectability, it was proven that a nondeterministic DES G is strongly 

periodically detectable with respect to P if and only if in observer �0?@ 

(∀(z, e) ∈ �ddª)(∃n h e)C(z, n) ∈ O� 

That is, all loops in �0?@ must include at least one state that belongs to O�. 

Also, it was proven that a nondeterministic DES G is weakly periodically detectable 

with respect to P if and only if in observer �0?@ 

(∃(z, e) ∈ �ddª)(∃n h e)C(z, n) ∈ O� 
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That is, there are loops in �0?@ which include at least one state that belongs to O�. 

3.2 N-detectability of discrete event systems 

In crisp DES, a state estimate can involve only a finite number of states (it is 

bounded by 2«, where N is the number of states in the system), which are all possible states 

that the system can be in simultaneously. States within a state estimate range from 

�1 0 0 … 0�  to  �1 1 1 … 1� . This is not true in fuzzy discrete event systems, where an 

element in a state estimate can take unlimited number of degrees of membership to each 

state in the system, given the fact that each element in the state estimate can have a value 

ranging from 0 to 1. This imposes a significant problem for defining fuzzy detectability. 

To alleviate the problem and properly extend detectability of DES to detectability of FDES, 

we will construct an N-step look-ahead tree and investigate the detectability of each branch 

in the tree. We will first investigate N-detectabilities for crisp discrete event systems and 

then generalize it to include fuzzy discrete event systems. 

Consider all sequences of events with the number of observed event being less than 

or equal to the depth ] and construct N-step look-ahead tree. Denote the tree as in Eq. 

(3.3). 

 ¬m%%(�, ]) = (-, �0 , C, F0) (3.3) 

where 

• ] is the depth or the length of observable string 

• C is the transition function 

• - is the set of nodes in the tree 

• �0 is the set of observable events 
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• F0 the root of the tree 

Nodes in - can be partitioned according to the levels: - = -₀ ∪ -₁ ∪ -₂ ∪ … ∪
-«, where -� is the set of level i nodes. In particular, -₀ has only one node, that is, the root 

node. -« contains all the leaf nodes and can be reached after the occurrence of an event 

sequence of N observable events. Each leaf node in -«  corresponds to a branch or a 

trajectory in the N-Step look-ahead tree. Denote the set of branches or trajectories by Eq. 

(3.4). 

 ¬m¯(�, ]) = {>m¯=, >m¯J, … , >m¯°} (3.4) 

where ± is the maximum number of branches in the N-step look-ahead tree, ± h |�|«. 

By considering the assumptions above, all nodes in the tree, except the leaf nodes, 

have at least one continuation (transition). 

Each node in F ∈ (- k -₀) corresponds to an observed string, denoted by ξ<=(F). 

Note that ξ<=(F) ∈ 3(�(�)). Hence, the state estimate for  ξ<=(F), denoted by SE(ξ<=(F)), 

is defined according to Equation (3.1). We say that a node F ∈ - is certain if  SE(ξ<=(F)) is 

certain, that is, |SE(ξ<=(F))| = 1. 

Example 3.1 

The following example illustrated by Figure 3.1 represents an automaton for DES 

with 3 states and 3 events. 
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Figure 3.1 Example 3.1 automata with 3 states and 3 events 

Given � = {^, µ, £}, �0 = {^, µ}, and  �10 = {£} 

where 

 �� = �1 0 0� 
 �J = �0 1 0� 
 �� = �0 0 1� 
^ = �0 1 00 0 00 0 0� 

µ = �0 0 01 0 01 0 0� 

£ = �0 0 00 0 10 0 0� 

 For a string > = ^µ^  where > = 3(�)  which is the observable string 

of  � .Therefore   3<=(>) = {^µ^, ^µ^^µ^, ^µ^^µ^^µ^, … ^µ^£, ^µ^^µ^£, … } =
(^µ^)& ¶ (^µ^)&£, where[ ≥ 1. 
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V�(>) = (��, �)  =  (��, (^µ^)&)  ∪ (��, (^µ^)&£)  
= �dfY£^X(�0 1 0�  ¶ �0 0 1�) =  �0 1 1� 

where �dfY£^X(F) = ·0, F = 01, F ≥ 1 

N-step tree realization: 

 

Figure 3.2 N-step look-ahead tree for Example 2.2 

The tree in Figure 3.2 is constructed from the initial state ��. The root of the tree 

 F� is defined in terms of the unobservable reach (DE(. )) that can be obtained by Eq. (3.5). 

 F� = DE(��) = {� ∈ 
: (∃�I ∈ ��)� ∈ (�I, 4)} (3.5) 

If an event 5 occurs at any of the states �I ∈ F�, the tree extends as in Eq. (3.6). 

 C(F�, 5) = DE({� ∈ 
: (∃�I ∈ F�)� ∈ (�I, 5)}) (3.6) 
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To construct the N-step look-ahead tree in Figure 3.2, we will start with the root 

node that can be obtained as defined in Eq. (3.5). Since there is no unobservable event 

defined in the initial state �=, the root node F� is obtained as 

 F� = DE(�=) = {�=} 

which is the state vector �1 0 0�. 
Upon the observation of the event ^  at the initial state �= , the look-ahead tree 

extends as defined in Eq. (3.6) 

�&LMN = C(F�, ^) = DEQ(�=, ^)T = DE(�J) 

Since �J has the unobservable event £ defined, then �&LMN is obtained as below: 

 �&LMN = �J ∪ (�J, £) = �J ∪ �K = �0 1 0� ¶ �0 0 1� = �0 1 1� 
Similarly, the look-ahead tree can be extended to all branches. 

After setting ] = 3, the constructed N-step look-ahead tree in Figure 3.2 has 5 

trajectories, each of them consists of 3 nodes. These trajectories are: 

>m¯= = {�0 1 1�, �0 1 1�, �0 1 1�} 

>m¯J = {�0 1 1�, �1 0 0�, �0 1 1�} 

>m¯K = {�0 1 1�, �1 0 0�, �1 0 0�} 

>m¯̧ = {�0 0 1�, �0 1 1�, �0 1 1�} 

>m¯¹ = {�0 0 1�, �0 1 1�, �1 0 0�} 

After Appling certainty criterion on each node of the tree, we can conclude that the 

solid filled nodes in Figure 3.2 are certain while the others are not. 

3.3 Branch detectability in discrete event systems 

In N-step look-ahead tree, a branch detectability is defined as follows: 
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• Detectable: a branch said to be detectable if all the last D nodes within the 

branch are certain 

• Periodically detectable: a branch said to be periodically detectable if some 

the last D nodes within the branch are certain 

• Not detectable: a branch said to be not detectable if all the last D nodes 

within the branch are not certain 

In the above example, with D=50% only >m¯K and >m¯¹ is detectable. 

Based on branch detectability of DES, N-detectabilities for DES are defined as 

follows: 

1. Strong N-Detectability: A DES � is strongly N-detectable with respect to $ if 

all the branches in ¬m¯(�, ]) are detectable with respect to $. 

2. Weak N-Detectability: A DES � is weakly N-detectable with respect to $ if 

some branches in ¬m¯(�, ]) are detectable with respect to $. 

3. Strong Periodic N-Detectability: A DES � is strongly periodically N-detectable 

with respect to $ if all the branches in ¬m¯(�, ]) are periodically detectable 

with respect to $. 

4. Weak Periodic N-Detectability: A DES � is weakly periodically N-detectable 

with respect to $  if some branches in ¬m¯(�, ]) are periodically detectable 

with respect to $. 

By extending N-Detectability of DES to fuzzy discrete event system with 

constraints, detectabilities of FDES will be established. 

Theorem 3.1 
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For a DES�, let ] > 2|*|/(1 k $). � is strongly detectible (or detectable, strongly 

periodically detectable, periodically detectable) if and only if � is strongly N-detectable 

(or N-detectable, strongly periodically N-detectable, periodically N-detectable). 

We prove the result for strong detectability. Proofs for others are similar. 

It is proved in [25] that � is strongly detectable if and only if in the observer of �, 

all the states accessible from any loop are certain. From the construction of ¬m¯(�, ]), all 

the nodes in the tree correspond to some states in the observer of �. 

Since the maximal number of states in the observer of � is 2|*|, any trajectory of 

length  2|*| will already reach a loop in the observer of �. 

 (Only if) Assume that �  is strongly detectable. Then for any trajectory of 

length ] > 2|*|/(1 k $), the last $ of its nodes are at least 2|*| transitions away from the 

initial state, regardless of $ value (0% l $ l 100%). Therefore, they must be accessible 

from a loop and hence are certain. In other words, � is strongly N-detectable with respect 

to $. 

 (If) Assume that � is not strongly detectable. Then there exists at least one loop in 

the observer of � whose states are not all certain. Let µ be the trajectory starting from the 

initial state of the observer, reaching the loop and then moving along the loop until it 

reaches the length of ] > 2|*|/(1 k $). Clearly, for µ, the last $ of its nodes are in the 

loop and some of them are not certain. Therefore, �  is not strongly N-detectable with 

respect to $.■ 

Example 3.2 
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Consider the automation shown in Figure 3.1 to represent G with  � =
{^, µ, £} ,  �0 = {^, µ} , and  �10 = {£} . To better demonstrate theorem 3.1, we first 

enumerate the automation as in Figure 3.3 and then construct the observer for DES G as 

shown in Figure 3.4 to check for detectability. 

 

Figure 3.3 Example 3.2 automata with 3 enumerated states 

 

Figure 3.4 Observer automata for Figure 3.3 
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The observer in Figure 3.4 has 3 states, which means for any event sequence of a 

length longer than  2|*|(which is equal to 8), the system will make a loop within itself. If 

the system is strongly/weakly detectable, then any node within/accessible from a loop is 

singleton for all/some trajectories of the system. If the system is strongly/weakly 

periodically detectable, then some nodes within a loop are singleton for all/some 

trajectories of the system. 

For instance, at the initial state 1, if the event sequence µ^µ^^^^µµ^µ^ occurs, the 

system will make a transition to states {2,3}, which is not singleton. If we continue down 

this path to the event sequence µ^µ^^^^µµ^µ^µµ, then the system will arrive at state 3, 

which itself is singleton. 

For N-detectability, let’s extend the branches of the tree in Figure 3.2 to reach the 

depth of 16 observable events or more ($ = 50%). Let’s take >m¯¹ in Figure 3.2 as an 

example and extend it to the 16th observable event as in the event 

sequence µ^µ^^^^µµ^µ^µµ^^. The last 50% nodes of >m¯¹ are included in the below set 

of nodes: 

>m¯¹¼¹�% = 6�0 0 1�, �0 1 1�, �1 0 0�, �0 1 1�,�1 0 0�, �0 0 1�, �0 1 1�, �0 1 1�½ 

Each member of the above set of nodes is a state estimate that corresponds to a 

state in the observer. As can be noticed, some state estimates are certain and some are 

not, which is the same conclusion we reached using the observer. 

Similarly, we can show that for a given N, if the DES G strongly detectible (or 

detectable, strongly periodically detectable, periodically detectable), then it is strongly N-
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detectable (or N-detectable, strongly periodically N-detectable, periodically N-detectable) 

and vice versa. 
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CHAPTER 4 DETECTABILITIES OF FUZZY DISCRETE EVENT 

SYSTEMS 

4.1 Detectabilities of fully observable fuzzy discrete event systems 

In Section 2.3, we introduced fuzzy discrete event systems and presented a model 

using fuzzy automaton as follows. 

�� = (
�, ��, �, ���) 

The elements of �� are defined as follows. 
� = � 0,1�&
 is the state space, where n is 

the dimension of the state space. In other words, a state is represented by an n-dimensional 

(row) vector. When the system starts, it is in its initial states, which is denoted by ��� ∈  
� . 

As events occur, the system will change states. The set of events are denoted by �� . An 

event 5� is represented by an [ × [ matrix with elements in the interval [0, 1] (real numbers 

between 0 and 1). How the system changes from one state to another after the occurrence 

of an event is specified by the transition function �: 
� × �� → 
� . In other words, if at the 

current state ��, event 5� occurs, then the next state is �(��, 5�). We let �(��, 5�) = �� ∘ 5�, where 

∘ denotes a fuzzy reasoning operator. For example, we can let ∘ be the max-product or 

Max-Min operator. The theoretical results in this study, including all the theorems, are true 

for any fuzzy reasoning operator. 

The fuzzy discrete event systems that are considered in the literature so far are 

systems without constraints. In a fuzzy discrete event system without constraints, any 

sequences of events can occur in the system. In many applications, not all sequences of 

events can occur; rather, only some sequences of events can occur. To make our results 
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more applicable, in this research, we consider fuzzy discrete event systems with 

constraints. We use a nondeterministic automaton to specify constraints of the system [7]: 

� = (
, � ∪ {4}, , ��). 
where the elements 
,�,, �� are the same elements defined in Eq.(2.17) 

The transition function  can be extended to strings : 
 × (� ∪ {4})∗ → 2* in the usual 

way [3]. We say that (�, �) is defined, denoted by  (�, �)!, if (�, �) ≠ ∅. � can also be 

represented by vectors and matrices. Let the number of states in � be \ = |
|. Then a state 

can be represented by a vector � ∈ {0,1}�and an event can be represented by a \ × \ 

matrix with elements in the se t {0,1}. 

As in Eq. (2.18), a fuzzy discrete event system with constraints is then given by 

�$�VnB = (��, �) 

�$�VnB  is constrained in the sense that only sequences of events in �(�) can 

occur in the fuzzy system. 

To study N-detectability for the fully observed FDESwC, we need to construct an 

N-step look ahead tree from the initial state of the constraint system ��. This tree is denoted 

by 

 ¬m%%(�, ]) = (-, Σ, C, F�) 

 Where 

• - is the set of the nodes of the tree 

•  Σ is the set of the events 

•  C is the transition function 

•   F� is the root of the tree and can be obtained by Eq. (3.5) 
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For any event sequence occurs at the initial states, the tree extends as in Eq. (3.6). 

In addition to ¬m%%(�, ])  construction, the extension of N-detectability to 

�$�VnB requires construction of a fuzzy tree �¬m%%(�, ]) = (-, Σ, C, F�, g), where -, Σ, 

C, and F� are the same entities as in ¬m%%(�, ]) defined for the constraint system. The 

additional element g maps each node F ∈ - to the corresponding fuzzy state g(F). g(F) is 

represented by a row vector whose elements are in �0,1�. F� is given by  

F�� = g(F�) = ��� 

if FI = C(F, 5), then 

g(FI) = g(F) ∘ 5� 
where “∘” is a fuzzy reasoning operator (e.g., Max-Min operator). 

The fuzzy node g(F) in the fuzzy tree �¬m%%(�, ]) is calculated by merging all 

the fuzzy states that can be reached after observing an event sequence at the initial states. 

This way we calculate all nodes in �¬m%%(�, ]) and construct the fuzzy tree’s branches 

described by 

¬m¯(�, ]) = {>m¯=, >m¯J, … , >m¯°} 

For the node g(F) = �z= zJ … z&�, where z& ∈  �0,1�, g(F) is certain with respect to Á if the 

following condition is true: 

 \^F {z=, zJ, … , z&}∑ z�&�Â= ≥  Á 

where Á is a threshold in �0,1�. 
Example 4.1 
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Consider the FDES system defined in terms of fuzzy state set 
�  ={��=, ��J, ��K} and 

fuzzy event set �� = { �̂, µ�, £̃}, where 

�̂ = �0.1 0.95 00.2 0.2 0.90.1 0.1 0 � 

µ� = � 0.1 0.1 00.95 0 00.9 0.2 0.15� 

£̃ = � 0.1 0.1 00.85 0 00.7 0.2 0.1� 

 The constraint system is illustrated by the diagram of Figure 4.1. Take threshold Á =0.67, 

N =4, and �� = �1 0 0�. 

 

Figure 4.1 Constraint system for Example 4.1 

Event matrices for the constraint system can be obtained from Figure 4.1 as: 

^ = �0 1 00 0 10 0 0� 
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µ = �0 0 01 0 00 0 0� 

£ = �0 0 00 0 01 0 0� 

From given constraint system shown in Figure 4.1, the language generated by � 

with ] h 4 is 

�(�) = {4, ^, ^^, ^µ, ^^£, ^µ^, ^^£^, ^µ^^, ^µ^µ} 

Similarly, the fuzzy system will be constrained by the constraint system shown in 

Figure 4.1, that is 

�(��) = {4, �̂, �̂ �̂, �̂µ�, �̂ �̂£̃, �̂µ� �̂, �̂ �̂£̃ �̂, �̂µ� �̂ �̂, �̂µ� �̂µ�} 

 The realized fuzzy tree ¬m%%(�, ]) = (-, �0 , C, F0) is shown by the diagram of 

Figure 4.2 

 

Figure 4.2 Trajectories of Example 4.1 
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From Figure 4.2. 

¬m¯(�, ]) = {>m¯=, >m¯J, >m¯K} 

>m¯= consists of F=, FJ, F¸ and FÄ nodes and can be represented by the following 

matrix: 

>m¯= = ÅF=FJF¸FÄ
Æ 

Similarly: 

>m¯J = ÅF=FKF¹FÇ
Æ 

>m¯K = ÅF=FKF¹FÈ
Æ 

Since the system is fuzzy in nature and all events' matrices have elements ranging 

between 0 and 1(fuzzy events), elements in trajectory matrix (nodes) i.e. F� is the state 

estimate which corresponds to the current state of the system after observation of a fuzzy 

event sequence represented by C<=(F�), and hence: 

 F= = V�( C<=(F=)) =  V�( �̂) =  ξ(q�, �̂) = �1 0 0� ∘ �0.1 0.95 00.2 0.2 0.90.1 0.1 0 �
= �0.1 0.95 0� 

FJ = V�Q C<=(FJ)T =  V�( �̂ �̂) = ξ(q�, �̂ �̂)
= �1 0 0� ∘ �0.1 0.95 00.2 0.2 0.90.1 0.1 0 � ∘ �0.1 0.95 00.2 0.2 0.90.1 0.1 0 � = �0.2 0.2 0.9� 
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F¸ = V�Q C<=(F¸)T =  V�( �̂ �̂£̃) = ξ(q�, �̂ �̂£̃)
= �1 0 0� ∘ �0.1 0.95 00.2 0.2 0.90.1 0.1 0 � ∘ �0.1 0.95 00.2 0.2 0.90.1 0.1 0 �  
∘  � 0.1 0.1 00.85 0 00.7 0.2 0.1� = �0.7 0.2 0.1� 

FÄ = V�Q C<=(FÄ)T =  V�( �̂ �̂£̃ �̂) = ξ(q�, �̂ �̂£̃ �̂)
= �1 0 0� ∘ �0.1 0.95 00.2 0.2 0.90.1 0.1 0 � ∘ �0.1 0.95 00.2 0.2 0.90.1 0.1 0 �  
∘ � 0.1 0.1 00.85 0 00.7 0.2 0.1� ∘  �0.1 0.95 00.2 0.2 0.90.1 0.1 0 � = �0.2 0.7 0.2� 

where “∘” is a fuzzy operation and can be product operation or Max-Min operation. In this 

example Max-Min operation was used which resulted in below trajectories: 

>m¯= = Ê0.1 0.95 00.2 0.2 0.90.7 0.2 0.10.2 0.7 0.2Ë 

>m¯J = Ê 0.1 0.95 00.95 0.1 00.1 0.95 0.10.2 0.2 0.9 Ë 

>m¯K = Ê 0.1 0.95 00.95 0.1 00.1 0.95 0.10.95 0.1 0.1Ë 

In the above trajectory matrices, the order of the row corresponds to the node level 

of the trajectory, for example, the third row in >m¯K corresponds to F¹ node in Figure 4.2 , 
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which is level 3 node and the forth one corresponds to level 4 node (FÈ) and in this case it 

is the leaf of >m¯K as illustrated in Figure 4.2. 

 

Figure 4.3 Estate estimates for nodes in trj3 of Example 4.1 

A branch µ ∈ ¬m¯(�, ]) is regarded as detectable with respect to $ and Á if all of 

the last $ (which is a percentage number) nodes are certain with respect to Á. Also, µ is 

periodically detectable with respect to $ and Á if some of the last $ nodes are certain with 

respect to Á. 

Consequently, N-detectabilities of �$�VnB are defined as follows: 

1. Strong N-Detectability: A �$�VnB(�, ��)  is strongly N-detectable with 

respect to $  and Á  if all the branches in ¬m¯(�, ])  are detectable with 

respect to $ and Á. 
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2. Weak N-Detectability: A �$�VnB(�, ��)  is weakly N-detectable with 

respect to $  and Á  if some branches in ¬m¯(�, ])  are detectable with 

respect to $ and Á. 

3. Strong Periodic N-Detectability: A�$�VnB(�, ��) is strongly periodically 

N-detectable with respect to $ and Á if all the branches in ¬m¯(�, ]) are 

periodically detectable with respect to $ and Á. 

4. Weak Periodic N-Detectability: A �$�VnB(�, ��) is weakly periodically 

N-detectable with respect to $  and Á  if some branches in ¬m¯(�, ])  are 

periodically detectable with respect to $ and Á. 

For better accuracy the branch length N should be long enough to allow the system 

to make at least one loop around itself. This way the certainty criterion can be applied to 

more nodes along a certain path and consequently increase the chance of finding more 

certain nodes. By choosing  ] ≥ 2|*|/(1 k $) , the chance of finding a given branch 

detectable will increase. On the other hand, D identifies the set of nodes along a branch to 

be checked for certainty. The bigger is the D, the more likely to find certain nodes along 

the branch and consequently improve the branch detectability. 

The threshold Á is very important in the defuzzification process. It directly affects 

the certainty outcome for a given node and the branch detectability as well. Example 4.2 

clearly shows how increasing the threshold will decrease the possibility for a given node 

to be certain. Therefore, Á should be application dependent and its selection should be 

determined in collaboration with experts in that field.  
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Construction of a look-ahead tree for real-world applications requires reliable and 

efficient computer programs to handle its lengthy calculations and complexity. Therefore, 

a Computer program has been developed to construct a look-ahead tree for both the 

constraint system and the fuzzy system. In addition, the computer program is used to 

calculate the state estimate of each node in the tree and finally check it for detectability. 

Matrix computations techniques and algorithms were adopted to calculate estate estimates 

and hence apply developed criterion do decide detectability classes. 

4.2 Implementations and computer programming 

A computer program is developed using M-script language to perform calculations 

for state estimate in addition to the construction of the look-ahead tree for both the 

constrained system and fuzzy system and the determination of system detectability. 

As stated in above sections, FDESwC is actually a composition of a crisp system, 

which regarded as a constraints system, and the fuzzy system. The crisp system has the 

same number of events as in FDES but not necessary to have the same number of states. 

This way, FDES will allow only the event sequences that are permissible in the constraint 

system. 

To extend detectability definitions from conventional DES to FDES the below 

parameters were introduced: 

1- Detectability threshold 

Detectability Threshold is the threshold ranging between 0 and 1 and based on which 

the certainty of the state estimate can be determined. 

2- Detectability Checker 
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Detectability checker is the function that inspects the elements of a fuzzy state estimate 

and compares it against detectability threshold to decide membership of each state 

within state estimate. 

 $ÌÍ = ·1 Yg % ≥ >Zm0 d>Z%mnY�% 

 where % is the state’s element and >Zm is the threshold. 

3- Master Event (ME) 

Master event is the term used to reference to all possible combinations of events that 

can be generated by FDES system (Kleene closure). Since the master of event is 

infinite, it is imperative to restrict the ME that can be generated by a system. Defining 

a depth (size of string) and enforcing constraints are the procedures adopted to make 

ME finite. 

Algorithm 4.1 is developed to perform the followings: 

• Calculates the maximum number of trajectories that can be constructed in 

the N-step look-ahead tree of the constraint system based on the number of 

the system’s states and the given depth N 

• Predicts the next event to take place and calculates the state estimate 

• Constructs all trajectories in N-step look-ahead tree for FDES 

• Checks all the nodes in N-step look-ahead fuzzy tree for certainty based on 

the depth and the given threshold 

• Determines the detectability classification for all the trajectories of the 

fuzzy tree 

• Determines the detectability classification for the FDES 
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To explain the next occurring event prediction algorithm, let’s consider the 

constraints system of Figure 4.1 , where the event set � = {^, µ, £} is stored in an array 

whose first, second and third elements are the events ^,µ, and £ respectively. The master 

event ME is constructed as follows: 

The set of the events of length 1 

 �= = {^, µ, £} 

The set of the events of length 2 

�J = {^^, ^µ, ^£, µ^, µµ, µ£, £^, £µ, ££} 

The set of the vents of length 3 

�K = {^^^, ^^µ, ^^£, ^µ^, ^µµ, ^µ£, ^£^, ^£µ, ^££, 
µ^^, µ^µ, µ^£, µµ^, µµµ, µµ£, µ£^, µ£µ, µ££, 
£^^, £^µ, £^£, £µ^, £µµ, £µ£, ££^, ££µ, £££} 

This way ME is expanded to N number of events. The event sequences in the set 

�« represent the trajectories of the system, which are of a great importance in the definition 

of N-detectabilities. 

The maximum number of trajectories that can be constructed for a given system is 

obtained by 

¬m¯�¨M = |�|« 

For ] = 3 and |�| = 3 

¬m¯�¨M = 3K = 27 

The number of trajectory groups ]d_¬m¯�mdeª� is equivalent to the size of the 

event set. 
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In this example 

 ]d_¬m¯�mdeª� = |�| = 3 

The below tables represent the trajectory groups of the system for ] = 3. To obtain 

the trajectory group ¬m¯_fmdeª  for a given trajectory, the trajectory index ¬m¯�&'LM  is 

divided by the number of trajectories within the trajectory group ]d_¬m¯"[�mdeª , which 

is obtained by 

¬m¯_fmdeª = ¬m �̄&'LM/]d_¬m¯"[�mdeª 

where 

]d_¬m¯"[�mdeª = ¬m¯�¨M /|�| 
In this example ]d_¬m¯"[�mdeª = JÇK = 9 

 If the ¬m¯_fmdeª is a fraction, then it will be rounded to the closest higher integer. 

The number of times an event is repeated at the same level (depth) in a trajectory group is 

referred to as the repeat factor Eª�, which is obtained by 

Eª� = ]d_¬m¯"[�mdeª|�|('LÏNÍ<=)  

To calculate the event index recursively, the level transition element �ÐX_¬m[� is 

calculated to be used in next level (depth) calculations and is obtained by 

�ÐX_¬m[� = m%\(¬m �̄&'LM , Eª�) 

where 

m%\(A, Ñ) is the remainder of the operation 
op. 

In this example, for  >m¯=J , the trajectory group ¬m¯_fmdeª  and �ÐX_¬m[�  are 

obtained as follows: 
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¬m¯_fmdeª =  12/9 = 1.333 ≈ 2 

For depth=1 

�ÐX_¬m^[� = m%\(12,9) = 3 

The first event in an event sequence is always the same for a given Trajectory group.  

In this example the index of the first element is obtained as follows 

�Ð%[>_"[_%F = ¬m¯ÓÔ01Ï = 2 

which is event b 

Table 4.2 shows that event µ is always the first event in all event sequences in the 

table.  

For depth=2 

Eª� = ]d_¬m¯"[�mdeª|�|('LÏNÍ<=)  

In this example, for  >m¯=J 

Eª� = 9|3|(J<=) = 3 

Based on the Eª�, �ÐX_¬m[� calculate in previous level, and the _%ª>Z, the event 

index can be obtained as follows 

if ÕÖ×_ØÔ&@_ÏÔ�Ö wÏÙ > 0 

�Ð%[>_"[_%F = �ÐX_¬m[�_ªmYÐ Eª�  

else 

�Ð%[>_"[_%F = |�| 
In the case of  >m¯=J, the second event is obtained by 



60 

 

 

�ÐX_¬m[�_ªmYÐ Eª� = 33 = 1 

 which the index for the event ^. 

This way we can continue along the trajectory and calculate the third deeper event 

as follows 

Eª� = 9|3|(K<=) = 1 

�ÐX_¬m[�_ªmYÐ Eª� = 31 = 3 

which is the index for the event £. 

Based on this algorithm, the indices for  >m¯=J are 2-1-3 which correspond to the 

event sequence µ^£ as shown in the highlighted column of Table 4.4. 

 >m¯= >m¯J >m¯K >m¯̧  >m¯¹ >m¯Ä >m¯Ç >m¯È >m¯Ú 

depth=1 a a a a a a a a a 

depth=2 aa aa aa ab ab ab ac ac ac 

depth=3 aaa aab aac aba abb abc aca acb acc 

Table 4.1 Trajectory group 1 

 >m¯=� >m¯== >m¯=J >m¯=K >m¯=¸ >m¯=¹ >m¯=Ä >m¯=Ç >m¯=È 

depth=1 b b b b b b b b b 

depth=2 ba ba ba bb bb bb bc bc bc 

depth=3 baa bab bac bba bbb bbc bca bcb bcc 

Table 4.2 Trajectory group 2 

 >m¯=Ú >m¯J� >m¯J= >m¯JJ >m¯JK >m¯J¸ >m¯J¹ >m¯JÄ >m¯JÇ 
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depth=1 c c c c c c c c c 

depth=2 ca ca ca cb cb cb cc cc cc 

depth=3 caa cab cac cba cbb cbc cca ccb ccc 

Table 4.3 Trajectory group 3 

 >m¯=� >m¯== >m¯=J >m¯=K >m¯=¸ >m¯=¹ >m¯=Ä >m¯=Ç >m¯=È 

depth=1 2 2 2 2 2 2 2 2 2 

depth=2 21 21 21 22 22 22 23 23 23 

depth=3 211 212 213 221 222 223 231 232 233 

Table 4.4 Event indices for trajectory group 2 

Algorithm 4.1 

Input: �� = (
�, ��, �, ���), � = (
, � ∪ {4}, , ��),], Á; 

Output: SD, D, SPD, PD; 

1: Construct ¬m%%(�, ]) = (-, �, C, F�): 

-� = {F�} = {DE(��)}; 

for n=1, 2,…, N do begin 

-& = Û; 

for all F ∈ -&<= and 5 ∈ � do begin 

if (∃� ∈ F)(�, 5)!, then 

C(F, 5) = DE({� ∈ 
: (∃�I ∈ F)� ∈ (�I, 5)}); 

-& = -& ∪ { C(F�, 5)}; 

end; 

end;  
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- = -� ∪  -= ∪ -J ∪ … -«; 

2: Compute all fuzzy states: 

g(F�) = ���; 

for n=1, 2,…, N do begin 

for all F ∈ -&<= and 5 ∈ � do begin 

if FI = C(F, 5)!, then 

g(FI) = g(F) ∘ 5�; 

end; 

end; 

3: Check all branches for detectability: 

for F ∈ -« do 

µ(F) = (F�, 5=, F=, … , F«<=, 5«<=, F« = F), 

(∀Y = 1, … , [ k 1)F�©= = C(F�, 5�); 

for Y = �(1 k 0.01$)]�, … , ], do begin 

if F� = �z=, zJ, … , z&�ʌ�ÝÞß {àá,àâ,…,àã}∑ (àã)ãäåá ≥  Á 

then _(F�) = ¬me%, 

else _(F�) = �^X�%; 

end; 

if (∀Y = �(1 k 0.01$)]�, … , ])_(F�) = ¬me%, 

then gezzR_%>(F) = ¬me%, 

else gezzR_%>(F) = �^X�%; 

if (∃Y = �(1 k 0.01$)]�, … , ])_(F�) = ¬me% 
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then ª%mYgezzR_%>(F) = ¬me%, 

else ª%mYgezzR_%>(F) = �^X�%; 

end; 

4: Check N-detectabilities: 

if (∀F ∈ -«)gezzR_%>(F) = ¬me%  

Then V$ = ¬me%, 

else V$ = �^X�%; 

if (∃F ∈ -«)gezzR_%>(F) = ¬me%  

Then $ = ¬me%, 

else $ = �^X�%; 

if (∀F ∈ -«)ª%mYgezzR_%>(F) = ¬me% 

Then V3$ = ¬me%, 

else V3$ = �^X�%; 

if (∃F ∈ -«)ª%mYgezzR_%>(F) = ¬me% 

Then 3$ = ¬me%, 

else 3$ = �^X�%; 

5: Stop. 

Example 4.2 

In this example, we consider the following fuzzy discrete event system with 

constraints �$�VnB = (��, �). All events that take place in the system are considered to 

be fully observable. 

For the fuzzy automaton ��, 
�  = �0,1�&
 with [ =  3, �� = {��, ��, ��} where 
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�� = �0.1 0.9 0.20 0.2 0.10.3 0.1 0.1� 

�� = �0.1 0.1 0.80 0.7 0.10.9 0 0.1� 

�� = �0.1 0.1 0.80 0.7 0.10.9 0 0.1� 

��� = �0.9 0.1 0� 
 �(��, 5�) = �� ∘ 5� 

where ∘ is the Max-Min operator. 

The constraint automaton � = (
, � ∪ {4}, , ��)  is shown in Figure 4.4, 

where 
 = {1, 2, 3, 4}, � = {�, �, �}, �� = �1 0 0 0�, and  is given below. 

� = Å0 1 0 00 0 0 10 0 0 10 0 0 0Æ 

� = Å0 0 1 00 1 0 00 0 0 01 0 0 0Æ 

� = Å0 0 0 00 0 0 00 0 0 00 0 1 0Æ 

In general, [ and \ may be different. 
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Figure 4.4 Constraint System G in Example 4.2 

Figure 4.4 shows the constructed look-ahead tree for the constraint system � 

with ] = 3. 



66 

 

 

 

Figure 4.5 N-step look-ahead tree Tree (G, N) for Example 4.2 

After calculating all the corresponding fuzzy nodes for the tree in Figure 4.5, the 

fuzzy tree �¬m%%(�, ]) shown in Figure 4.6 is constructed. 
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Figure 4.6 Fuzzy tree FTree (G, N) for Example 4.2 

For the system in Example 4.2 with threshold Á = 0.6, $ = 50%, and ] = 7, the 

m-script in Figure 4.6 was executed and 51 trajectories were obtained as shown in Table 

4.5. 
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Figure 4.7 M-script for Example 4.2 

From the results in Table 4.5, trajectory 51 is detectable, Trajectory 33 is 

periodically detectable, and trajectory 1 and 32 are not detectable. Since we have at least 

one trajectory is detectable and at least 1 trajectory is periodically detectable, the FDESwC 

is both weakly detectable and weakly periodically detectable. On the other hand, the system 

is not strongly detectable nor strongly periodically detectable because there is at least one 

trajectory i.e. Trajectory 1 that is not detectable. 

Trajectory 1 
[�������] 

Trajectory 32 
[�������] 

Trajectory 33 
[�������] 

Trajectory 51 
[�������] 

0.1 0.9 0.2 0.1 0.9 0.2 0.1 0.9 0.2 0.1 0.1 0.8 

0.2 0.2 0.1 0.2 0.7 0.1 0.2 0.7 0.1 0.3 0.1 0.1 

0.1 0.2 0.2 0.1 0.7 0.2 0.1 0.7 0.2 0.1 0.1 0.3 
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0.2 0.2 0.1 0.2 0.7 0.1 0.2 0.7 0.1 0.3 0.1 0.1 

0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.7 0.2 0.1 0.1 0.3 

0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.3 0.1 0.1 

0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2  0.1 0.1 0.3 

Branch is: ND Branch is: ND Branch is: PD Branch is: D 

Table 4.5 Sample trajectories for Example 4.2 

In general, selection of D and Á should be application dependent. In Example 4.2, 

if we select deferent values for D and Á, we will get different branch detectability and 

consequently different overall system detectability. To illustrate the effect of tuning these 

2 parameters, let’s keep $ = 50% and change Á to 0.4. The results show that all of the 51 

trajectories constructed for the fuzzy N-step tree are detectable with respect to $ and Á and 

consequently the system is strongly detectable with respect to $ = 50% and Á = 0.40. 

Table 4.6 shows only 4 trajectories as a sample of the m-script outcome. 

Trajectory 1 
[�������] 

Trajectory 32 
[�������] 

Trajectory 33 
[�������] 

Trajectory 51 
[�������] 

0.1 0.9 0.2 0.1 0.9 0.2 0.1 0.9 0.2 0.1 0.1 0.8 

0.2 0.2 0.1 0.2 0.7 0.1 0.2 0.7 0.1 0.3 0.1 0.1 

0.1 0.2 0.2 0.1 0.7 0.2 0.1 0.7 0.2 0.1 0.1 0.3 

0.2 0.2 0.1 0.2 0.7 0.1 0.2 0.7 0.1 0.3 0.1 0.1 

0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.7 0.2 0.1 0.1 0.3 

0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.3 0.1 0.1 
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0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2  0.1 0.1 0.3 

Branch is: D Branch is: D Branch is: D Branch is: D 

Table 4.6 Sample trajectories for Example 4.2 with D=50% and change τ=0.4 

Let’s change D to be 60% and select Á to be 0.5. The results in Table 4.7 are 

obtained. As can be notice in Table 4.7, trajectory 32 is now periodically detectable with 

respect to D=60% and Á = 0.5 compares to the same trajectory in Table 4.5 . 

Trajectory 1 
[�������] 

Trajectory 32 
[�������] 

Trajectory 33 
[�������] 

Trajectory 51 
[�������] 

0.1 0.9 0.2 0.1 0.9 0.2 0.1 0.9 0.2 0.1 0.1 0.8 

0.2 0.2 0.1 0.2 0.7 0.1 0.2 0.7 0.1 0.3 0.1 0.1 

0.1 0.2 0.2 0.1 0.7 0.2 0.1 0.7 0.2 0.1 0.1 0.3 

0.2 0.2 0.1 0.2 0.7 0.1 0.2 0.7 0.1 0.3 0.1 0.1 

0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.7 0.2 0.1 0.1 0.3 

0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.3 0.1 0.1 

0.1 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.2  0.1 0.1 0.3 

Branch is: ND Branch is: PD Branch is: PD Branch is: D 

Table 4.7 Sample trajectories for Example 4.2 with D=60% and change τ=0.6 

As can be seen in Table 4.8, different values of D and Á results in different branch 

detectability outcome. 

D Á D Branches % PD Branches % ND Branches % 

40% 0.4 100.00% 0.00% 0.00% 
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40% 0.45 23.53% 9.80% 66.67% 

50% 0.5 13.73% 23.53% 62.74% 

50% 0.6 13.73% 11.76% 74.51% 

60% 0.7 1.96% 5.88% 92.16% 

60% 0.8 0.00% 0.00% 100% 

Table 4.8 Branch detectability based on different D and τ and N=7 

4.3 Detectabilities of partially observable fuzzy discrete event systems 

In this section we introduce partially observable fuzzy discrete event systems with 

constraints (3æ�$�VnB) and investigate their detectabilities.  

Consider the language generated by the DES � as defined in Eq. (1.3). Since the 

constraint system �  under study is partially observable, only observable sequences of 

events can be observed, which are defined in terms of the projection 3(�(�)), where 

3: Σ∗ → Σ0∗  is defined in Eq. (1.4). For example, if an event string � = ���� occurs, where 

both � and � are observable events and � is an unobservable event, then only 3(�) can be 

observed, and 3(�) = 3(����) = ���. 

Unlike the conventional DES, FDES have infinite and continuous state space. 

Therefore N-detectabilities are more appropriate than detectabilities in investigating the 

detectabilities in FDES, and we will consider it here. 

For the case of partial observation, we construct an N-step look-ahead tree under 

partial observation denoted by Eq. (4.1). 

 3æ¬m%%(�, ]) = (x,  �0 , ç, R�) (4.1) 

where 
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• x is the set of nodes 

•  Σ0 is the set of observable events 

• ç is the transition function 

• R� is the root of the tree 

The construction of the partial observation tree 3æ¬m%%(�, ]) in Eq. (4.1) requires 

extension of the constraint automata � from the initial states to all branches that have up to 

N observable events. This tree is denoted by  ¬m%%(�, l ] >) = (F, Σ, C, F�)  that is 

constructed in the same way as ¬m%%(�, ]) = (F, Σ, C, F�), except its branches have ] 

observable events and hence may have a length exceeding ] . We then replace all the 

unobservable events by empty string 4. Furthermore, all the nodes separated by the empty 

string (4) in ¬m%%(�, l ] >) are combined (merged) to construct corresponding nodes in 

the partial observation tree  3æ¬m%%(�, ]) . Accordingly, R�  is defined in terms of the 

unobservable reach of the initial states F� as in Eq. (4.2). 

 R� = DE(F�) = {F ∈ -: (∃FI ∈ F�)F ∈ C(FI, 4)} (4.2) 

If an event 5 ∈  Σ0  is observed in any state FI ∈ R�, then the tree is extended by 5 as 

expressed in Eq. (4.3). 

 ç(R�, 5) = DE{F ∈ -: (∃FI ∈ R�)(∃� ∈ �∗) 5 = 3(�) ∧ F ∈ C(FI, �) } (4.3) 

Similar to fully observed FDES, the extension of N-detectability to 3æ�$�VnB 

also requires construction of a fuzzy tree �¬m%%(�, l ] >) = (-, Σ, C, F�, g) where -, Σ, 

C, and F� are the same entities as in ¬m%%(�, l ] >) defined for the constraint system. The 

additional element g maps each node F ∈ - to the corresponding fuzzy state g(F). g(F) is 

represented by a row vector whose elements are in �0,1�. F� is given by 
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F�� = g(F�) = ��� 
if FI = C(F, 5), then 

g(FI) = g(F) ∘ 5� 
where “∘” is a fuzzy reasoning operator (e.g., Min-Max operator). 

The fuzzy partial observation tree is then obtained by 

�3æ¬m%%(�, ]) = (x,  �0 , ç, R�, Z) 

where x,  Σ0 , ç, and R� are the same entities as in 3æ¬m%%(�, ]). The additional element 

Z maps each node R ∈ x to the corresponding fuzzy state Z(R) as follows: 

Z(R) = ʘM∈ég(F) 

where ʘ is a fuzzy OR operator (e.g., Max() operator). 

The fuzzy node Z(R) in the partial observation tree �3æ¬m%%(�, ]) is calculated 

by merging all the fuzzy states that can be reached unobservably after observing an event 

sequence at the initial states. 

For example, if a node R� ∈ x� in �3æ¬m%%(�, ])  is constructed by merging 

nodes F�=, F�J, and F�K in �¬m%%(�, l ] >), then the corresponding fuzzy state of node R is 

calculated as follows: 

Z(R) = g(F=) ∪ g(FJ) ∪ g(FK) 

For  g(R) = �z= zJ … z&� , where  z& ∈  �0,1� , g(R)  is certain with respect to Á  if the 

following condition is true: 

 \^F {z=, zJ, … , z&}∑ z�&�Â= ≥  Á 
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Accordingly, a branch µ ∈ ¬m¯(�, ]) is regarded as detectable with respect to $ 

and Á if all of the last $ (which is a percentage number) nodes are certain with respect to Á. 

Also, µ is periodically detectable with respect to $ and Á if some of the last $ nodes are 

certain with respect to Á. 

Consequently, N-detectabilities of 3æ�$�VnB are defined as follows: 

1. Strong N-Detectability: A 3æ�$�VnB(�, ��) is strongly N-detectable with 

respect to $  and Á  if all the branches in ¬m¯(�, ])  are detectable with 

respect to $ and Á. 

2. Weak N-Detectability: A 3æ�$�VnB(�, ��) is weakly N-detectable with 

respect to $  and Á  if some branches in ¬m¯(�, ])  are detectable with 

respect to $ and Á. 

3. Strong Periodic N-Detectability: A 3æ�$�VnB(�, ��)  is strongly 

periodically N-detectable with respect to $  and Á  if all the branches in 

¬m¯(�, ]) are periodically detectable with respect to $ and Á. 

4. Weak Periodic N-Detectability: A 3æ�$�VnB(�, ��)  is weakly 

periodically N-detectable with respect to $  and Á  if some branches in 

¬m¯(�, ]) are periodically detectable with respect to $ and Á. 

In addition to the features of Algorithm 4.1, algorithm 4.2 is capable of constructing 

the partial observation tree for both the constraints and fuzzy systems and then check the 

fuzzy system for detectability based on given parameters. 

Algorithm 4.2 

Input: �� = (
�, ��, �, ���), � = (
, � ∪ {4}, , ��),], Á; 
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Output: SD, D, SPD, PD; 

1: Construct ¬m%%(�, l ] >) = (-, �, C, F�): 

-� = {F�} = {DE(��)}; 

for n=1, 2,…, N do begin 

-& = Û (the empty set); 

for all F ∈ -&<= and 5 ∈ � do begin 

if (∃� ∈ F)(�, 5)!, then 

 C(F, 5) = DE({� ∈ 
: (∃�I ∈ F)� ∈ (�I, 5)}); 

-& = -& ∪ { C(F, 5)}; 

end; 

end; 

- = -� ∪  -= ∪ -J ∪ … -«; 

2: Construct 3æ¬m%%(�, ]) = (x,  �0 , ç, R�): 

x� = {R�} = {DE(F�)} =  {F ∈ -: (∃FI ∈ F�)F ∈  C(FI, 4)}; 

for n=1, 2,…, N do begin 

x& = Û (the empty set); 

for all R ∈ x&<= and 5 ∈  �0 do begin 

if (∃� ∈ R)(�, 5)!, then 

ç(R, 5) = DE({F ∈ -: (∃FI ∈ R)(∃� ∈ �∗) 5 = 3(�)  ∧  F ∈ C(FI, �)}); 

x& = x& ∪ { ç(R, 5)}; 

end; 

end; 
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x = x� ∪  x= ∪ xJ ∪ … x«; 

3: Construct �3æ¬m%%(�, ]) = (x, �0 , ç, R�, Z(R)): 

Z(R�) = ʘM∈éêg(F); 

for n=1, 2,…, N do begin 

for all R ∈ x&<= and 5 ∈ �0 do begin 

if RI = ç(R, 5)!, then 

 R′ë = Z(R) ∘ 5� = (ʘM∈ég(F)) ∘ 5�; 

end; 

end; 

4: Check all branches for detectability: 

for R ∈ x« do 

µ(R) = (R�, 5=, R=, … , R«<=, 5«<=, R« = R), 

(∀Y = 1, … , [ k 1)R = ç(R�, 5�); 

for Y = �(1 k 0.01$)]�, … , ], do begin 

if R = �z=, zJ, … , z&�ʌ�ÝÞß {àá,àâ,…,àã}∑ (àã)ãäåá ≥  Á 

then _(R�) = ¬me%, 

else _(R�) = �^X�%; 

end; 

if (∀Y = �(1 k 0.01$)]�, … , ])_(R�) = ¬me%, 

then gezzR_%>(R) = ¬me%, 

else gezzR_%>(R) = �^X�%; 
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if (∃Y = �(1 k 0.01$)]�, … , ])_(R�) = ¬me% 

then ª%mYgezzR_%>(R) = ¬me%, 

else ª%mYgezzR_%>(R) = �^X�%; 

end; 

5: Check fuzzy N-detectabilities: 

if (∀R ∈ x«)gezzR_%>(R) = ¬me% 

Then V$ = ¬me%, 

else V$ = �^X�%; 

if (∃R ∈ x«)gezzR_%>(R) = ¬me% 

Then $ = ¬me%, 

else $ = �^X�%; 

if (∀R ∈ x«)ª%mYgezzR_%>(R) = ¬me% 

Then V3$ = ¬me%, 

else V3$ = �^X�%; 

if (∃R ∈ x«)ª%mYgezzR_%>(R) = ¬me% 

Then 3$ = ¬me%, 

else 3$ = �^X�%; 

6: Stop. 

Example 4.3 

This example illustrates the formulation and representation of a POFDESwC. 

For  �� , suppose that 
� = �0,1�&  with  [ = 3 , Σ� = Σ�0 ∪ Σ�10  with Σ�0 = {��, ��} and Σ�10 =
{��}  
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where 

�� = �0.1 0.9 0.20 0.8 0.10.3 0.75 0.1� 

�� = �0.1 0.1 0.80.8 0.1 0.10.9 0 0.1� 

�� = �0.1 0.1 0.10.2 0.1 0.10.1 0.7 0.6� 

��� = �0.9 0.1 0� 
�(��, 5�) = �� ∘ 5� 

 where ∘ is the Max-Min operator. The system illustrated in Figure 4.8 represents the 

constraint system  � = (
, Σ ∪ 4, , ��) , where  
 = {1,2,3,4} ,  Σ0 = {�, �} ,  Σ10 = {�} , 

�� = {1} = �1 0 0 0�, $ = 50%, and Á = 0.67. 

 

Figure 4.8 Constraint system for Example 4.3 
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This example illustrates how to construct ¬m%%(�, l ] >) and 3æ¬m%%(�, ]) for 

the system in Figure 4.8 with N =3. Figure 4.9 shows ¬m%%(�, l ] >). If a transition at 

any given node includes an unobservable event, the branch is further extended until N 

observable events are reached. In addition, if the last node has an unobservable event 

defined, that unobservable transition will be included in the tree. 

 

 

Figure 4.9 Tree (G,<N>) for Example 4.3 

The partial observation tree 3æ¬m%%(�, ]) can be derived from ¬m%%(�, l ] >) 

by combining all the nodes connected by unobservable events, as shown in Figure 4.9. 

Each node  R  in the constructed partial observation tree corresponds to a state 

estimate of > ∈ 3(�(�)): 

R = V�(>) = ç(R�, >) 
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Figure 4.10 POTree (G, N) for Example 4.3 

If the node R  is singleton ( i. e. , |R| = 1), then R  is certain and hence V�(>)  is 

certain. Each sequence of events with ] observable events forms a branch in the partial 

observation tree. A branch is denoted by 

¬m¯(�, ]) = {>m¯=, >m¯J, … >m¯°} 

where µ° is the kth branch in 3æ¬m%%(�, ]). 

An N-step tree with ] = 9 is considered, which represents the length of observable 

sequences of events in the system. Then all the nodes in all possible branches of the system 

and their corresponding fuzzy states are calculated and further checked for certainty to 

determine branch detectability. With the aid of a computer program, 230 branches were 

constructed. Only 6 branches were selected and shown in Table 4.9 and Table 4.10 . As an 

example, Trajectory 115 corresponds to the event sequence ���������. 
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Trajectory 115 
[���������] 

Trajectory 116 
[���������] 

Trajectory 117 
[���������] 

0.10 0.90 0.20  0.10 0.90 0.20  0.10 0.90 0.20  

0.80 0.10 0.10 0.80 0.10 0.10 0.80 0.10 0.10 

0.10 0.80 0.20  0.10 0.80 0.20  0.10 0.80 0.20  

0.80 0.10 0.10 0.80 0.10 0.10 0.80 0.10 0.10 

0.10 0.80 0.20 0.10 0.80 0.20 0.10 0.80 0.20 

0.80 0.10 0.10 0.80 0.10 0.10 0.80 0.10 0.10 

0.10 0.80 0.20 0.10 0.80 0.20 0.10 0.10 0.80 

0.80 0.10 0.10 0.80 0.10 0.10 0.30 0.75 0.20 

0.10 0.80 0.20 0.10 0.10 0.80 0.75 0.10 0.30 

Branch is: FD Branch is: FD Branch is: FPD 

Table 4.9 Sample trajectories for Example 4.3 

Trajectory 159 
[���������] 

Trajectory 228 
[���������] 

Trajectory 167 
[���������] 

0.10 0.10 0.80  0.10 0.10 0.80  0.10 0.10 0.80  

0.30 0.75 0.20 0.30 0.75 0.20 0.30 0.75 0.20 

0.75 0.10 0.30  0.20 0.75 0.20  0.20 0.10 0.30  

0.30 0.75 0.20 0.75 0.10 0.20 0.30 0.75 0.20 

0.20 0.75 0.20 0.20 0.10 0.75 0.75 0.10 0.30 

0.20 0.75 0.20 0.30 0.75 0.20 0.30 0.75 0.20 
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0.20 0.75 0.20 0.20 0.75 0.20 0.75 0.10 0.30 

0.20 0.75 0.20 0.20 0.75 0.20 0.30 0.75 0.20 

0.75 0.10 0.20 0.20 0.75 0.20 0.20 0.75 0.20 

Branch is: FPD Branch is: FPD Branch is: FND 

Table 4.10 Sample trajectories for Example 4.3 

For each branch in the tables above, the Y>Z row describes the fuzzy state after the 

observation of the Y>Z event. The ¯>Z column represents the membership of the fuzzy state 

to the ¯>Z state of the FDES. The number of rows in each table corresponds to the depth of 

the branch N. 

The highlighted rows shown in the above tables represent the last $ nodes of each 

trajectory, and they are inspected for certainty. The branch detectability of each branch is 

shown at the bottom of the table. 

Based on our criteria for detectability, the system in Example 4.1 is both N-

detectable and periodically N-detectable because the results show at least one branch is 

detectable and that at least one branch is periodically detectable. On the other hand, since 

there is at least one branch that is not detectable or periodically detectable, 

3æ�$�VnB(�, ��) is not strongly detectable nor strongly periodically detectable. 

The following theorem shows that N-detectabilities for crisp DES are special cases 

of N-detectabilities for 3æ�$�VnB(�, ��) when the conditions for the DES to be a special 

case of FDES are satisfied. 

Theorem 4.1 
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For a 3æ�$�VnB(�, ��) and a DES �, if \ = [, 5 = 5� (in terms of the matrix), 

and �� = ���  (in terms of the vector), then �  is strongly N-detectable (N-detectable, 

strongly periodically N-detectable, and periodically N-detectable) with respect to D if and 

only if 3æ�$�VnB(�, ��) is strongly N-detectable (N-detectable, strongly periodically N-

detectable, and periodically N-detectable, respectively) with respect to D and Á > 0.5. 

Proof: 

Consider any partially observation tree 3æ¬m%%(�, ]) = (x, Σ, ç, R�). If it can be 

proven that for all nodes R ∈ x in the partially observation tree, R is certain if and only if 

Z(R) is certain with respect to Á > 0.5, then it can be concluded that N-detectability of the 

constraint system implies N-detectability of the FDES and vice versa. 

Let R = ç(R�, >) and Z(R) = �z=, zJ, … , z&�, to prove the theorem, it is necessary to 

show that |R| = 1 if and only if 

\^F {z=, zJ, … , z&}∑ z�&�Â= > 0.5 

Since \ = [, 5 = 5� (in terms of the matrix), and �� = ��� (in terms of the vector), �� ∈ R 

(where1 h ¯ h [) if and only if z� = 1 and hence the following is true: 

|R| = 1 ⇔  î z�&
�Â= = 1 

⇔  \^F {z=, zJ, … , z&}∑ z�&�Â= > 0.5 
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CHAPTER 5 APPLICATION OF DETECTABILITY OF FUZZY 

DISCRETE EVENT SYSTEMS 

In control field and many other engineering applications, the knowledge of the 

current state of the system is important to allow or disallow the occurrences of certain 

events in a system. 

In previous sections we laid out the frame work of detectability criteria for fuzzy 

discrete event system with constraints. In this section, we show how to model a real-world 

application using the developed theorem. In addition, we demonstrate the value-added 

features of such modeling in terms of robustness and cost savings. 

5.1 Vehicle dynamics control 

One of the potential applications for the detectability of FDES is the control of 

vehicle dynamics in modern automobiles. Automobiles are widely used in our daily life 

and they are driven in different weather and road conditions as well as at different speeds, 

which leads to safety hazards that are often fatal. Most fatal car accidents occur due to loss 

of driver’s control of a vehicle, which may lead to driving in unintended directions and 

possibly colliding with another vehicle, highway walls, or any other object on the road, or 

even rolling over pedestrians. To address these hazards, automobile manufactures came up 

with electronic controls for vehicle dynamics to assist drivers to avoid potential accidents 

and also improve comfort. 

A real vehicle equipped with a brake control module that has a typical ESP 

(Electronic Stability Program) system has been used to take measurements in order to 

identify the suitability of FDES in vehicle dynamics control applications.  
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The calibration setup shown in Figure 5.1 is used for data acquisition from the brake 

ECU and vehicle busses such as CAN (Controller Area Network). In such setup, INCA 

(INtegrated Calibration and Acquisition Systems) tool is used as a measuring, calibration, 

and diagnostic system that provides comprehensive measuring support, supports in all 

essential tasks during control unit calibration, evaluates the measured data, and documents 

and stores measurement and calibration results. Quantities derived from measurements and 

calibration variables can be calculated and displayed online. 

INCA tools are used for ECU development and test as well as for validation and 

calibration of electronically controlled systems in the vehicle, on the test bench, or in a 

virtual environment on the PC. They are comprised of hardware that connects to the 

vehicle’s ECUs and a user interface software that runs in a PC to communicate to the 

hardware and the connected ECU. 
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Figure 5.1 Vehicle’s measurement and calibration setup 

During track testing, which continued for about 5 minutes, the following sensors 

and actuation signals were captured and stored: 

1. Wheel speed sensors 

2. Steering angle sensor 

3. Brake pressure at the wheel 

4. Lateral acceleration sensor 

5. Yaw rate sensor 

6. ABS (Anti-lock Brake System) flag 

7. TCS (Traction Control System) flag 

8. VDC (Vehicle Dynamic Control) flag 
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Sensors’ data and actuation signals were captured as the vehicle underwent various 

maneuvers and driving scenarios. These Maneuvers included the followings: 

1. Double lane change maneuver 

2. Applying high torque while driving on a surface that has a low friction 

coefficient  

3. Applying full brake while driving at 60 mile/hour or more 

4. Applying dynamic deceleration using APB (Automatic Park Brake) button only 

while driving at high speed (>60 mile/hour)  

5. Applying a large steering angle on a road surface that has a low friction 

coefficient 

6. Applying a small steering angle on a road surface that has a high friction 

coefficient 

This experiment showed that the vehicle can be in ABS, TCS, and VDC states at 

the same time. This means the wheels are locked, the wheels are slipping, and the vehicle 

is understeering or oversteering at the same time, which is a typical fuzzy situation. 

Therefore, vehicle dynamic control is a good application for the detectability of FDES as 

the knowledge of vehicle state (wheels locked, wheels are slipping, or vehicle is 

understeering/oversteering) is crucial to decide the right reaction to stabilize the vehicle 

and improve the comfort level. 

Figure 5.3 shows the automation of a system that represents vehicle dynamics in 

terms of stability control. The system is modeled with the following assumptions [17-18]: 

1. The vehicle is front wheel drive. 
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2. Spring and dampers effects are ignored. 

3. Longitudinal and lateral load transfers are ignored. 

4. Rolling and pitching motion dynamics with yaw motions are ignored. 

Six different discrete states are involved, including normal, which is the initial state, 

oversteering, understeering, rollover, spinning, and skidding. When the vehicle is in the 

normal state, it is assumed to be driven forward in the intended direction with full wheel 

traction on the road’s surface. When the driver wants to change direction, he or she will 

turn the steering wheel towards the intended direction. However, the front wheel may slide 

in the lateral direction, putting the vehicle in the understeering state, or the rear wheels may 

slide laterally to move the vehicle into the oversteering state, depending on vehicle speed, 

road conditions, wheel conditions, and some other factors. If the linear wheel speed is faster 

or slower than the vehicle speed, then the vehicle is considered to be in the spinning or 

skidding state, respectively. All these states with the exception of the normal state are not 

desirable, and hence the controller’s or driver’s intervention is necessary to correct the 

situation. 

The transition from one state to another takes place after observing some events. 

For example, when the vehicle is driven in a given direction and the steering wheel angel, 

measured by a steering angle sensor, is greater or smaller than the yaw angle measured by 

a yaw rate sensor, the vehicle transitions from the normal state to the understeering or 

oversteering state, respectively. When the vehicle is sliding laterally and with the lateral 

force being greater than the overturning resisting force, the vehicle moves to the rollover 

state. The normal state is the desired state for the vehicle to be in. However, if any of the 
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other states is detected, intervention of an automatic controller or driver is needed to rectify 

the situation. 

 

Figure 5.2 Left side shows understeered vehicle and right side shows oversteered vehicle 

[40] 

The 6 states are modeled as 6 DES states with the same names (Figure 5.3). The 

following events are captured in the DES model that cause state transition: 

�1: occurs when the driver requests a large steering angle  on a road and friction 

coefficient ! is low. 

�2: occurs when the driver requests a small steering angle  on a road and ! is 

high. 

�3:  occurs when the vehicle control overreacts in mitigating oversteering or 

understeering situation. 

AÑV: Anti-lock braking system (ABS) is enabled. 
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¬BV: Traction Control System (TCS) is enabled. 

ï$B: Vehicle Dynamic Control (VDC) is enabled. 

�4: occurs when the driver requests a large torque. 

�5: occurs when the driver requests a large braking pressure while driving forward. 

 

Figure 5.3 DES representing stability control for vehicle dynamics 

When loss of steering is detected while cornering, i.e. oversteering or understeering 

state is detected, braking is applied to individual wheels, such as the outer front wheel to 

counter oversteering, or the inner rear wheel to counter understeering. 

Typically, a vehicle on the road can be in multiple states at the same time. For 

example, when a vehicle is driven on a slippery road or on a curve, varying multiple states 

can be detected at the same time, including normal, spinning/skidding, or 
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oversteering/understeering states. Therefore, application of our new detectability theorems 

for the FDES model is particularly suitable for representing such state conditions to trigger 

corrective reactions. 

Vehicle dynamic control relies heavily on the following high precision devices: 

steering wheel angle sensor, yaw rate sensor, acceleration sensor, and a set of wheel speed 

sensors. If any of these sensors is faulty, then the control will be degraded, and 

understeering and oversteering rectifications will be switched off. Therefore, detectability 

of 3æ�$�VnB(�, ��) is suitable in such applications. 

To model the vehicle dynamic control system using FDESwC, the automation 

shown in Figure 5.3 is considered as the constraint system. Let the states be enumerated as: 

normal=1, oversteering=2, understeering=3, rollover=4, spinning=5, and skidding=6. Then 


 = {1,2,3,4,5,6} , Σ = {�1, �2, �3, AÑV, ¬BV, ï$B, �4, �5} , �� = {1} =
�1 0 0 0 0 0�, and :  × Σ ∪ {4} → 2* 

Accordingly, the crisp events can be modeled as: 

�1 =  
ðññ
ññò
0 0 1 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0óôô

ôôõ, �2 =
ðññ
ññò
0 1 0 0 0 00 0 0 1 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0óôô

ôôõ, 

�3 =  
ðññ
ññò
0 0 0 0 0 00 0 1 0 0 00 1 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0óôô

ôôõ, AÑV =
ðññ
ññò
0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 01 0 0 0 0 0óôô

ôôõ, 
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¬BV =
ðññ
ññò
0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 01 0 0 0 0 00 0 0 0 0 0óôô

ôôõ, �4 =
ðññ
ññò
0 0 0 0 1 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0óôô

ôôõ, 

ï$B =  
ðññ
ññò
0 0 0 0 0 01 0 0 0 0 01 0 0 0 0 00 1 0 0 0 00 0 0 0 0 00 0 0 0 0 0óôô

ôôõ, �5 =
ðññ
ññò
0 0 0 0 0 10 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0óôô

ôôõ. 
It is not necessary that the number of states in the FDES match that in the constraint system. 

To demonstrate this, �� is defined as  �� = (
�, Σ�, �, ���) , where 
� = �0,1�&  with  [ = 5 . 

Rollover state is not included in the FDES and hence fuzzy event matrix �^��� defines only 

the transition from state Y to state ¯, where both Y and ¯ are in the set of states {normal, 

oversteering, understeering, spinning, skidding}. Members of event set Σ� are chosen in 

collaborative effort with experts in the field of active safety system. Each element of a 

given fuzzy event matrix (�^���) is determined based on the experts’ best evaluation of the 

possibility for the vehicle’s state to transition from the current state Y to state ¯ after the 

occurrence of that fuzzy event. Accordingly, the event matrices of the fuzzy system are 

filled in as follows: 

�1ö =
ðññ
ñò0.1 0.1 0.9 0.1 0.10.1 0.1 0.0 0.1 0.10.1 0.1 0.0 0.0 0.10.1 0.1 0.1 0.0 0.10.1 0.1 0.1 0.1 0.1óôô

ôõ
, �2ö =

ðññ
ñò0.1 0.9 0.2 0.1 0.10.1 0.4 0.3 0.1 0.10.1 0.3 0.2 0.1 0.10.1 0.1 0.1 0.1 0.10.1 0.1 0.1 0.1 0.1óôô

ôõ
, 
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�3ö =
ðññ
ñò0.1 0.0 0.1 0.1 0.10.2 0.0 0.8 0.1 0.10.2 0.8 0.2 0.1 0.10.1 0.1 0.1 0.1 0.10.1 0.1 0.1 0.1 0.1óôô

ôõ
, AÑV÷ =

ðññ
ñò0.1 0.1 0.1 0.1 0.10.1 0.1 0.1 0.1 0.10.1 0.1 0.1 0.1 0.10.1 0.1 0.1 0.1 0.10.9 0.1 0.1 0.1 0.1óôô

ôõ
, 

¬BVö =
ðññ
ñò0.1 0.1 0.1 0.1 0.10.1 0.1 0.1 0.1 0.10.1 0.1 0.1 0.1 0.10.9 0.1 0.1 0.1 0.10.1 0.1 0.1 0.1 0.1óôô

ôõ
, ï$B÷ =

ðññ
ñò0.1 0.1 0.1 0.1 0.10.9 0.1 0.1 0.1 0.10.9 0.9 0.1 0.1 0.10.1 0.1 0.1 0.0 0.10.1 0.1 0.1 0.1 0.1óôô

ôõ
, 

�4ö =
ðññ
ñò0.1 0.4 0.4 0.9 0.10.1 0.5 0.3 0.1 0.10.1 0.2 0.2 0.1 0.10.1 0.1 0.2 0.1 0.10.1 0.1 0.1 0.1 0.1óôô

ôõ
, �5ö =

ðññ
ñò0.1 0.4 0.4 0.1 0.90.1 0.2 0.2 0.1 0.20.1 0.3 0.2 0.1 0.20.1 0.2 0.3 0.1 0.40.1 0.1 0.1 0.1 0.1óôô

ôõ
. 

The fuzzy initial state, threshold Á, and depth ] are chosen as: 

��� = �0.9 0.2 0.1 0.0 0.0�, Á = 0.67, and ] = 8. 

Based on the given inputs, a fuzzy tree with 1701 trajectories is constructed. Each 

trajectory in the constructed tree corresponds to a specific maneuver or driving scenario. 

Table 5.1, Table 5.2, and Table 5.3 show some sample fuzzy trajectories with detectability 

classifications. Around 20% of the overall constructed trajectories have been analyzed in 

collaboration with experts in the field. This analysis showed that branch detectability 

classifications are somehow consistent with both design assumptions and experts’ 

anticipations especially in driving scenarios that include longitudinal accelerations and 

decelerations. 

Based on the evaluation of all trajectories in the fuzzy tree, the system is weakly 

periodically detectable because there are some trajectories classified as PD. Moreover, the 

system in not strongly detectable nor weakly detectable. 
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Trajectory 1365 [E4 TCS E4 TCS 

E4 TCS E1 VDC] 

Trajectory 1366 [ E4 TCS E4 TCS 

E4 TCS E2 E2] 

0.10 0.40 0.40 0.90 0.10 0.10 0.40 0.40 0.90 0.10  

0.90 0.10 0.10 0.10 0.10 0.90 0.10 0.10 0.10 0.10  

0.10 0.40 0.40 0.90 0.10 0.10 0.40 0.40 0.90 0.10 

0.90 0.10 0.10 0.10 0.10 0.90 0.10 0.10 0.10 0.10 

0.10 0.40 0.40 0.90 0.10 0.10 0.40 0.40 0.90 0.10 

0.90 0.10 0.10 0.10 0.10  0.90 0.10 0.10 0.10 0.10 

0.10 0.10 0.90 0.10 0.10 0.10 0.90 0.20 0.10 0.10 

0.90 0.90 0.10 0.10 0.10 0.10 0.40 0.30 0.10 0.10  

Branch is PD Branch is PD 

Table 5.1 Detectabilities of vehicle dynamics example 

Trajectory 1626 [E5 ABS E4 TCS 

E2 E2 VDC E2] 

Trajectory 1660 [ E5 ABS E5 ABS 

E1 E3 VDC E1] 

0.10 0.40 0.40 0.10 0.90 0.10 0.40 0.40 0.10 0.90  

0.90 0.10 0.10 0.10 0.10 0.90 0.10 0.10 0.10 0.10  

0.10 0.40 0.40 0.90 0.10 0.10 0.40 0.40 0.10 0.90 

0.90 0.10 0.10 0.10 0.10 0.90 0.10 0.10 0.10 0.10 

0.10 0.90 0.20 0.10 0.10 0.10 0.10 0.90 0.10 0.10 

0.10 0.40 0.30 0.10 0.10  0.20 0.80 0.20 0.10 0.10 

0.40 0.30 0.10 0.10 0.10 0.80 0.20 0.10 0.10 0.10 
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0.10 0.40 0.30 0.10 0.10 0.10 0.10 0.80 0.10 0.10  

Branch is ND Branch is PD 

Table 5.2 Detectabilities of vehicle dynamics example 

Trajectory 1674 [E5 ABS E5 ABS 

E2 E3 E3 E2] 

Trajectory 1701 [ E5 ABS E5 ABS 

E5 ABS E5 ABS] 

0.10 0.40 0.40 0.10 0.90 0.10 0.40 0.40 0.10 0.90  

0.90 0.10 0.10 0.10 0.10 0.90 0.10 0.10 0.10 0.10  

0.10 0.40 0.40 0.10 0.90 0.10 0.40 0.40 0.10 0.90 

0.90 0.10 0.10 0.10 0.10 0.90 0.10 0.10 0.10 0.10 

0.10 0.90 0.20 0.10 0.10 0.10 0.40 0.40 0.10 0.90 

0.20 0.20 0.80 0.10 0.10  0.90 0.10 0.10 0.10 0.10 

0.20 0.80 0.20 0.10 0.10 0.10 0.40 0.40 0.10 0.90 

0.10 0.40 0.30 0.10 0.10 0.90 0.10 0.10 0.10 0.10  

Branch is ND Branch is PD 

Table 5.3 Detectabilities of vehicle dynamics example 

Table 5.3 shows that trajectory 1674 is not detectable (ND) due to the fact that all 

the highlighted nodes failed the certainty check and hence mapping to crisp states led to 

inconclusive states (corresponding crisp states are not singleton). In other words, detection 

of system’s state is not possible. We observe that after the skidding correction, the vehicle 

has turned while braking (ABS event), which led to oversteering. This triggered 

oversteering overreaction, which, as a result, led to understeering. Further understeering 

overreaction followed by the occurrence of oversteering event (E2) should have led to 
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rollover state, which is not included in the fuzzy system. This explains why the last fuzzy 

node of this trajectory (�0.1 0.4 0.3 0.1 0.1�) is not certain. 

By analyzing trajectory 1701 in Table 5.3, we observe that the vehicle was driven 

in longitudinal direction and a sudden brake has been applied, causing the vehicle to skid. 

This led to the triggering of ABS multiple times to stabilize the vehicle. This is consistent 

with design assumptions and hence the trajectory is classified as PD. As a result, the FDES 

is weakly periodically N-detectable, which means the system’s state can be periodically 

detected in some trajectories. Therefore, triggering of control actions can be taken with 

some degree of confidence. 
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CHAPTER 6  CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

This research focused on fuzzy detectabilities of fuzzy discrete event systems with 

full and partial observation. The main contributions highlighted by the study included: 

1- Introduction of fuzzy discrete event system with constraints (FDESwC) 

2- Reformulation of existing definitions of detectability for conventional DES to be 

defined in terms of the state estimate 

3- Introduction of N-detectability for DES 

4- Extension of N-detectability for DES to FDES with full observation and under 

partial observation. 

5- Derive necessary and sufficient conditions for N-detectability of FDES with full 

observation and under partial observation. 

6- Develop algorithms to check N-detectability of FDES with full observation and 

under partial observation. 

7- Apply the results to vehicle dynamics control. 

6.2 Future work 

Future development for the application of fuzzy detectabilities of fuzzy discrete 

event systems to lung cancer treatment decision making is of greater beneficial potentials. 

Because patients’ conditions and treatment outcomes are often fuzzy, they can be most 

effectively modeled as fuzzy discrete event systems. The theory developed in this research 

can then be used to develop algorithms and computer tools for optimal decision making for 

lung cancer treatments. Also, the control of vehicle dynamics is a potential application for 
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fuzzy N-detectability. Driving in an unintended direction due to road and weather 

conditions is one of the major causes of accidents and has claimed many lives. A research 

by the National Highway Traffic Safety Administration (NHTSA) in the United States 

shows that accidents due to loss of vehicle control are the second most dangerous form of 

accident in the Unites States, after head-on collisions. In the year 2000 alone, 9882 people 

lost their lives. 8,146 of those were killed in accidents involving only a single vehicle [39]. 

While the majority of these fatal accidents involved loss of control of a vehicle, it is clear 

that an active safety system capable of preventing accidents due to understeering, 

oversteering, and rollover will save lives, and as such is worthy of investigation. 

In addition to cost savings, application of N-detectability in vehicle dynamics 

control may lead to reducing the number of high precision sensors needed in vehicles today 

to capture the vehicle’s orientation and intended direction. 

Furthermore, fuzzy systems can be combined with artificial inelegance and deep 

learning algorithms to develop self-learning systems that can enhance vehicle stability 

especially in self-driving automobiles. 

Also, computations of state estimates for deep trajectories seemed to be a bottle-

neck and hence any improvement in the algorithm used for such calculation will be of a 

great interest to optimize the use of resources and hence improve run time performance. 
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APPENDIX 

Example 3.1 code: 

%************************************************** ********************
****  
% Constraint System Parameters  
%************************************************** ********************
****  
a=[0 1 0;0 1 0;0 1 0];  
b=[0 0 1;1 0 0;0 0 0];  
c=[0 0 0;0 0 1;0 0 0];  
%Event matrix of the constraint system  
Sigma_C={a,b,c};  
%Observable event matrix of the constraint system  
sigma_Observ={a,b};  
%Observable event matrix of the constraint system  
sigma_UnObserv={c};  
%Initial state of the constraint system  
q0_C=[1 0 0];  
%************************************************** ********************
****  
% Fuzzy System Parameters  
%************************************************** ********************
****  
A=[0.1 0.95 0;.2 .2 .9;.1 .1 0];  
B=[.1 .1 0;.95 0 0;.9 .2 .15];  
C=[.1 .1 0;.85 0 0;.7 .2 .1];  
%Event matrix of the fuzzy system  
Sigma={A,B,C};  
%Observable event matrix of the fuzzy system  
sigma_Observ_FDES={A,B};  
%Observable event matrix of the fuzzy system  
sigma_UnObserv_Fuz={C};  
%Initial state of the fuzzy system  
q0=[0.9 0.1 0];  
Lookup_Matrix={ 'a ' , 'b ' , 'c ' };  
%Fuzzy resoning oprator, if set to 0 product operat or will be used  
MaxMinswt=1;  
%Threshold  
thr=0.67;  
%Depth (N)  
depth=7;  
%The last D% nodes of a branch  
D=0.5;  
display_ctrl=1;  
debug=1;  
%************************************************** ********************
****  
% Calculate accessible tree for both constraint and  fuzz system  
%************************************************** ********************
****  
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 if  debug==0  
 tic;  
 tstart=tic;  
 [Q_Constraint Q_FDESwC Tracker_Tree]=Tree_Construc tor(q0_C,q0, ...  
 Sigma_C,Sigma,sigma_Observ,sigma_Observ_FDES, ...  
 sigma_UnObserv,sigma_UnObserv_Fuz,depth,MaxMinswt) ;  
 fprintf( '%s t=%f\n' , 'Trj_Constructor Calculations Done !' , ...  
 toc(tstart));  
 else  
 [Q_Constraint Q_FDESwC Tracker_Tree]=Tree_Construc tor(q0_C,q0, ...  
 Sigma_C,Sigma,sigma_Observ,sigma_Observ_FDES, ...  
 sigma_UnObserv,sigma_UnObserv_Fuz,depth,MaxMinswt) ;  
 end  
 cert=cell(1,size(Q_FDESwC,1));  
 for  i=1:size(Q_FDESwC,1)  
 %Extract Nodes for each Trajectory in the system  
 k=int2str(i);  
 B_temp=Tracker_Tree{i};  
 Event_String=num2char_convertor(B_temp,Lookup_Matr ix);  
 A=cell2mat(Q_FDESwC{i});  
 B=cell2mat(Q_Constraint{i});  
 %strcat('Traj',k)=A  
 temp_para=strcat( 'Traj' ,k);  
 %Check for Detectability against defined critrion  
 rslt=certainity(A,thr,depth,D,i);  
 %display trajectories' strings and corresponding No des  
 %comment out if not needed  
 if  display_ctrl==1  
 fprintf( '[%s] corresponds to EventString [%s] = \n' ,temp_para, ...  
 Event_String);  
 disp(B);  
 disp(A);  
 if  rslt==1  
 Branch_Detectability_Class= 'FD'  
 elseif  rslt==2  
 Branch_Detectability_Class= 'FPD'  
 elseif  rslt==0  
 Branch_Detectability_Class= 'FND'  
 end  
 end  
 %Store Detectability classifications in array each element is the  
 %detectability clasification of a branch\trajectory  
 cert{1,i}=rslt;  
 end  
 Detectability_Matrix = cell2mat(cert);  
 %Detectability_Matrix=[0,0,0]  
 if  Allones(Detectability_Matrix)==1  
 Detectability_Class= 'FSD' ;  
 elseif  Someones(Detectability_Matrix)==1  
 Detectability_Class= 'FD' ;  
 elseif  Alltwos(Detectability_Matrix)==1  
 Detectability_Class= 'FSPD' ;  
 elseif  Sometwos(Detectability_Matrix)==1  
 Detectability_Class= 'FPD' ;  
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 else  
 Detectability_Class= 'ND' ;  
 end  
Tree constructor code: 

function  [POT_Constraint POT_FDES Event_TrackerBaseTrj]= ...  
 Tree_Constructor(q0_C,q0_FUZ,sigma,sigma_FDES,sigm a_Observ, ...  
 sigma_Observ_FDES,sigma_UnObserv,sigma_UnObserv_Fu z, ...  
 depth,MaxMinswt);  
% Check_Unobservability(sigma_UnObserv,gama);  
%Caluclate the number of events in Constained Syste m, which is the same 
in  
%Fuzzy System  
 No_Ev=size(sigma,2);  
 %Calculate maximum number of Trajectories in the Sy stem  
 No_Trj=power(No_Ev,depth);  
%initialization of the cell array Event_Matrix  
%Event_MatrixBaseTrj = cell(No_Trj,1);  
Event_TrackerBaseTrj = cell(No_Trj,1);  
POT_Constraint=cell(No_Trj,1);  
POT_FDES=cell(No_Trj,1);  
%Q_NodeTree=cell(No_Trj,1);  
% for i=1:No_Ev  
% sigma{i};  
% end  
%calculate Trajectory's nodes  
No_TrjInGroup=No_Trj/No_Ev;  
No_Trj_start=1;  
No_Trj_end=No_Trj;  
cnt=0;  
dep=0;  
%h = waitbar(0,'Initializing waitbar...');  
for  trj=No_Trj_start:No_Trj_end  
 %perc=trj/No_Trj_end;  
 %waitbar( perc/100,h,sprintf('%d%% along...',perc))  
 %Event_Matrix_t=cell(depth,1);  
 POT_Constraint_t=cell(depth,1);  
 POT_FDES_t=cell(depth,1);  
 %Q_Matrix_t=cell(depth,1);  
 Event_Tracker=cell(depth,1);  
 %strg=sigma{1}  
 %Event_Matrix{};  
 skip=0;  
 %Initialize current state of constraint system and  
 %fuzzy system [0 0 .. 0]  
 q_current=zeros(1,size(q0_C,2));  
 q_currentFUZ=zeros(1,size(q0_FUZ,2));  
 %detemine the groupe the trajectory falls in, which  determins the 
first  
 %string of event  
 %Trj_Group = ceil(trj/No_TrjInGroup);  
 %claculates the index of the trajectory within traj ectory group  
% if(mod(trj,No_TrjInGroup)==0)  
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% Trj_InternalIndex = No_TrjInGroup;  
% else  
% Trj_InternalIndex = mod(trj,No_TrjInGroup);  
% end  
 Event_Index=ceil(trj/No_TrjInGroup);  
 first_strg=sigma{Event_Index};  
 sigma_e=first_strg;  
 first_strg_FDES=sigma_FDES{Event_Index};  
 sigma_eFUZ=first_strg_FDES;  
 temp=sigma_e;  
 temp_FDES=sigma_eFUZ;  
 %check if the string is defined from intial state  
 %if (IfDefined(q0_C,temp,0))  
 if  any(q0_C*temp)  
 %check if segma_e is observable or not  
 if  IsItObserv(sigma_e,sigma_Observ)  
 %if due event is observable, then move to next stat e 
 q_current=logical(q0_C*sigma_e);  
 q_currentFUZ=FzOperation(q0_FUZ,sigma_eFUZ,MaxMins wt);  
 %check for unobservable reach  
 if  istherUOb_events(q_current,sigma_UnObserv)  
 [q_current_t q_currentFUZ_t]= UnObsevReach_Calc ...  
 (q_current,q_currentFUZ,sigma_UnObserv, ...  
 sigma_UnObserv_Fuz,MaxMinswt);  
 q_current=q_current|q_current_t;  
 q_currentFUZ=max(q_currentFUZ,q_currentFUZ_t);  
 end  
 %push calculated node in to the tree  
 POT_Constraint_t{1,1}=double(q_current);  
 POT_FDES_t{1,1}=double(q_currentFUZ);  
 %track event causing trasnsition  
 Event_Tracker{1,1}=Event_Index;  
 else  
 %calculate unobservable reach caused by current  
 % unobservable event  
 q_unobser=logical(q0_C*sigma_e);  
 q_unobservFUZ=FzOperation(q0_FUZ,sigma_eFUZ,MaxMin swt);  
 %combine current state with unobservable reach  
 q_current=q_current | q_unobser;  
 q_currentFUZ=max(q_currentFUZ,q_unobservFUZ);  
 %check for further observable reach from calculated  combined  
 %states  
 for  j=1:size(sigma_Observ)  
 %if IfDefined(q_current,sigma_Observ{j},0)  
 if  any(q_current*sigma_Observ{j})  
 q_current=logical(q_current*sigma_Observ{j});  
 q_currentFUZ=FzOperation(q_currentFUZ, ...  
 sigma_Observ_FDES{j},MaxMinswt);  
 %check for unobservable reach  
 if  istherUOb_events(q_current,sigma_UnObserv)  
 [q_current_t q_currentFUZ_t]= UnObsevReach_Calc ...  
 (q_current,q_currentFUZ,sigma_UnObserv, ...  
 sigma_FDES,MaxMinswt);  
 q_current=q_current|q_current_t;  
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 q_currentFUZ=max(q_currentFUZ,q_currentFUZ_t);  
 end  
 POT_Constraint_t{1,1}=double(q_current);  
 POT_FDES_t{1,1}=double(q_currentFUZ);  
 Event_Tracker{1,1}=j;  
 break ;  
 end  
 end  
 end  
 rem_elem = rem(trj,No_TrjInGroup);  
 Event_Index=ceil(trj/No_TrjInGroup);  
% Event_Tracker{1,1}=Trj_Group;  
% POT_Constraint_t{1,1}=q_current;%double(q_next);  
% POT_FDES_t{1,1}=double(q_currentFUZ);  
else  continue  ;  
 end  
 %for NE=1:No_Ev  
 for  dep=2:depth  
 %repeat_factor "RpF" calculations  
 RpF=No_TrjInGroup/power(No_Ev,dep-1);  
 %calculation of event index within the event matrix  
 if (ceil(rem_elem/RpF)==0)  
 Event_Index =No_Ev;  
 else  
 Event_Index =ceil(rem_elem/RpF);  
 end  
 rem_elem = rem(trj,RpF);  
% temp=temp*sigma{Event_Index};  
% temp_FDES=temp_FDES*sigma_FDES{Event_Index};  
 % Calculate next string of event in contraint syste m 
 %temp=FzOperation(temp,sigma{Event_Index},0);  
 %calculate current due event  
 sigma_e=sigma{Event_Index};  
 sigma_eFUZ=sigma_FDES{Event_Index};  
  
 %calculate sequence of event  
 temp=temp*sigma_e;  
 % Check if the string of event is part of L(G)  
 %if (IfDefined(q0_C,temp,0))  
 if  any(q0_C*temp)  
 %check if segma_e is observable or not  
 if  IsItObserv(sigma_e,sigma_Observ)  
 %if due event is observable, then move to next stat e 
 q_current=logical(q_current*sigma_e);  
 q_currentFUZ=FzOperation(q_currentFUZ, ...  
 sigma_eFUZ,MaxMinswt);  
 %Event_Tracker{dep,1}=Event_Index;  
 %check for unobservable reach  
 if  istherUOb_events(q_current,sigma_UnObserv)  
 [q_current_t q_currentFUZ_t]= UnObsevReach_Calc ...  
 (q_current,q_currentFUZ,sigma_UnObserv, ...  
 sigma_FDES,MaxMinswt);  
 q_current=q_current|q_current_t;  
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 q_currentFUZ=max(q_currentFUZ,q_currentFUZ_t);  
 end  
 %push calculated node in to the tree  
 POT_Constraint_t{dep,1}=double(q_current);  
 POT_FDES_t{dep,1}=double(q_currentFUZ);  
 %track event causing trasnsition  
 Event_Tracker{dep,1}=Event_Index;  
 else  
 %calculate unobservable reach caused by current eve nt  
 q_unobser=logical(q_current*sigma_e);  
 q_unobservFUZ=FzOperation(q_currentFUZ, ...  
 sigma_eFUZ,MaxMinswt);  
 %cumbine current state with unobservable reach  
 q_current=q_current | q_unobser;  
 q_currentFUZ=max(q_currentFUZ,q_unobservFUZ);  
 for  j=1:size(sigma_Observ)  
 %if IfDefined(q_current,sigma_Observ{j},0)  
 if  any(q_current*sigma_Observ{j})  
 q_current=logical(q_current*sigma_Observ{j});  
 q_currentFUZ=FzOperation(q_currentFUZ, ...  
 sigma_Observ_FDES{j},MaxMinswt);  
 %check for unobservable reach  
 if  istherUOb_events(q_current,sigma_UnObserv)  
 [q_current_t q_currentFUZ_t]= ...  
 UnObsevReach_Calc(q_current, ...  
 q_currentFUZ,sigma_UnObserv, ...  
 sigma_FDES,MaxMinswt);  
 q_current=q_current|q_current_t;  
 q_currentFUZ=max(q_currentFUZ, ...  
 q_currentFUZ_t);  
 end  
 POT_Constraint_t{dep,1}=double(q_current);  
 POT_FDES_t{dep,1}=double(q_currentFUZ);  
 Event_Tracker{dep,1}=j;  
 break ;  
 end  
 end  
 %update stored node to reflect unobservable reach  
% POT_Constraint_t{dep-1,1}=double(q_current);  
% POT_FDES_t{dep-1,1}=double(q_currentFUZ);  
 if  ((dep==depth) && ( size(POT_Constraint_t,1) ...  
 < depth))  
 %BranchOutObservably(q_current,sigma_Observ)  
 end   
 end   
 else  
 dep=depth;  
 skip=1;  
 continue ;  
 end  
 end  
  
 %end 
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 if  skip==0  
 cnt=cnt+1;  
 %Event_MatrixBaseTrj{cnt,1}=Event_Matrix_t;  
 POT_Constraint{cnt,1}=POT_Constraint_t;  
 POT_FDES{cnt,1}=POT_FDES_t;  
 %Q_NodeTree{cnt,1}=Q_Matrix_t;  
 Event_TrackerBaseTrj{cnt,1}=Event_Tracker;  
 %Q_trj=Event_Matrix;  
 end  
end  
emptyCells = cellfun( 'isempty' , POT_Constraint);  
POT_Constraint(emptyCells)=[];  
emptyCells = cellfun( 'isempty' , POT_FDES);  
POT_FDES(emptyCells)=[];  
emptyCells = cellfun( 'isempty' , Event_TrackerBaseTrj);  
Event_TrackerBaseTrj(emptyCells)=[];  
end  
Observable events checker code: 
function  rtrn=IsItObserv(segma_e,sigma_Observ)  
% this fucnctions checks if a given event is observ able or not and 
returns  
% true or false accordingly  
k=size(sigma_Observ,2);  
e=segma_e;  
rtrn=0;  
for  i=1:k  
 if  isequal(sigma_Observ{i},e)  
 rtrn=rtrn|1;  
 break ;  
 else  
 rtrn=rtrn|0;  
 end  
end  
end  
Further unobservable events checker code 
function  rtrn = istherUOb_events(q_new,Set_UnObservale_Even ts)  
k= size(Set_UnObservale_Events,2);  
rtrn=0;  
for  i=1:k  
 if  any(q_new*Set_UnObservale_Events{i})  
 rtrn =1;  
 break ;  
 else  
 rtrn=0;  
 end  
end  
end  
Max-Min Operation code: 
function  C = Min_Max(q,e)  
%q=[3 6 8 10];e=[1 2 3 1;13 41 12 5; 8 6 7 4; 30 2 1 8];  
[raws,cols]=size(q);  
N_States=cols;  
[m,n]=size(e);  
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C=zeros(raws,N_States);  
%C=q; 
for  k=1:raws  
 for  i=1:N_States  
 for  j=1:m  
 temp=min(q(k,j),e(j,i));  
 C(k,i)=max(C(k,i),temp);  
 %(k,i)=C(k,i)+q(k,j)*e(j,i);  
 end  
 end  
end  
end  
Event observability checker code: 
function  rtrn=IsItObserv(segma_e,sigma_Observ)  
% this fucnctions checks if a given event is observ able or not and 
returns  
% true or false accordingly  
k=size(sigma_Observ,2);  
e=segma_e;  
rtrn=0;  
for  i=1:k  
 if  isequal(sigma_Observ{i},e)  
 rtrn=rtrn|1;  
 break ;  
 else  
 rtrn=rtrn|0;  
 end  
end  
end 
Unobservable reach calculator code: 
function  [q_new q_newFUZ] = 
UnObsevReach_Calc(q,q_FUZ,sigma_UnObserv,sigma_UnOb serv_Fuz,MaxMinswt)  
q;  
k=size(sigma_UnObserv,2);  
for  i=1:k  
 e=sigma_UnObserv{i};  
 e_FUZ=sigma_UnObserv_Fuz{i};  
 if  any(q*e)  
 [q_new q_newFUZ]=Recur_Check(q,q_FUZ,e,e_FUZ,MaxMi nswt);  
 end  
end  
end  
Recursive calculator code: 
function  [q_new q_newFUZ]=Recur_Check(q,q_FUZ,e,e_FUZ,MaxMi nswt)  
q_new= logical(q*e);  
q_newFUZ= FzOperation(q_FUZ,e_FUZ,MaxMinswt);  
if  any(q_new*e)  
 [q_new_t q_newFUZ_t]=Recur_Check(q_new,q_newFUZ,e, e_FUZ,MaxMinswt);  
 q_new=q_new|q_new_t;  
 q_newFUZ=max(q_newFUZ,q_newFUZ_t);  
end  
end  
Kleene closure calculator code: 
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function  [C ]=Master_Event(q0,Sigma,depth,Min_Max_swt)  
 a=[0.7 0.3 0;0.4 0.4 0.2;0.2 0.3 0.8];b=[0.2 0.4 0 .7;0.4 0.6 0;0.4 0.3 
0.3];c=[0.6 0.2 0.3;0.4 0.4 0.3;0 0.7 0.4];  
 Sigma ={a,b,c} ; depth=2;  
 Min_Max_swt=0;  
q0=[1 0 0];  
temp=depth-1;  
Cell_Size=0;  
%Calculation of number of events by adding number o f events of depth 1 
to  
%number of events of depth 2 +......  
for  z=1 : depth  
 Cell_Size=Cell_Size + power(size(Sigma,2),z);  
end  
%Intializations of cell  
C=cell(1,Cell_Size);  
C=Sigma;  
temp_cell=Sigma;  
offset=size(Sigma,2);  
ct=0;  
while (temp)  
 [temp_cell,ct]=ME_Calc(Sigma,temp_cell,Min_Max_swt )  
% for i= (offset+1): (offset+ct)  
% C{i}=temp_cell{(i-offset)};  
%  
% end  
C={C{:},temp_cell{:}}  
 offset=offset+ct;  
 temp=temp-1;  
end  
end 
Certainty checker code: 
function  cert=certainity(Q,thr,Depth,D,cnt)  
% Q=[0.1 0.9;0 0.2];  
% thr=0.1;  
% Depth=2;  
%[x,y,z]=size(Q);  
%cert=char(zeros(x,1,z));  
%Q=cell2mat(Q)  
Index=ceil(Depth*(1-D)+1);  
if  Index > Depth  
 Index=Depth;  
elseif  Index < 1  
 Index =1;  
end  
cert_temp=[];  
for  i=Index:Depth;  
 temp = max(Q(i,:))/sum(Q(i,:));  
 if  temp >=thr  
 cert1=1;  
 else  
 cert1=0;  
 end  
 cert_temp(i-Index+1,1)=cert1;  
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end  
%cert_temp  
cert=cert_temp;  
if  all(cert)  
 detect_est=1;  
elseif  any(cert)  
 detect_est =2;  
else  
 detect_est=0;  
end  
cert=detect_est;  
%cell2mat(cert);  
% for i=1:z  
% cnt=1;  
% for j=Index:x  
% %for k=1:y  
% temp = max(Q(j,:,i)/sum(Q(j,:,i)));  
% if temp >= thr  
% cert(j,1,i)='T';  
% else  
% cert(j,1,i)='F';  
% end  
% cnt=cnt+1;  
% %end 
% end  
% end  
% %Q 
% A=size(cert)  
end  
Event retriever code: 
function [rslt_t]= num2char_convertor(temp,Lookup_Matrix)  
%temp=6;  
temp;  
emptyCells = cellfun( 'isempty' , temp);  
temp(emptyCells)=[];  
size(temp);  
for  i=1:size(temp)  
 rslt_n=temp{i,1};  
 %rslt_shift=char(rslt_n+96);  
 rslt_shift=Lookup_Matrix{rslt_n};  
 rslt=rslt_shift;  
 if  i==1  
 B=rslt;  
 else  
 B=horzcat(B,rslt);  
 end   
 rslt_t=B;  
end  
end  
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Dynamic systems that can be modeled in terms of discrete states and a synchronous 

events are known as discrete event systems (DES). A DES is defined in terms of states, 

events, transition dynamics, and initial state. Knowing the system’s state is crucial in many 

applications for certain actions (events) to be taken. A DES system is considered a fuzzy 

discrete event system (FDES) if its states and events are vague in nature; for such systems, 

the system can be in more than one state at the same time with different degrees of 

possibility (membership). In this research we introduce a fuzzy discrete event system with 

constraints (FDESwC) and investigate its detectabilities. This research aims to address the 

gap in previous studies and extend existing definitions of detectability of DES to include 

the detectability in systems with substantial vagueness such as FDES. These definitions 

are first reformulated to introduce N-detectability for DES, which are further extended to 

define four main types of detectabilities for FDES: strong N-detectability, (weak) N-

detectability, strong periodic N-detectability, and (weak) periodic N-detectability. We first 
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partition the FDES into trajectories of a length dictated by the depth of the event’s string 

(length of the event sequence); each trajectory consists of a number of nodes, which are 

further investigated for detectability by examining them against the newly introduced 

certainty criterion. Matrix computation algorithms and fuzzy logic operations are adopted 

to calculate the state estimates based on the current state and the occurring events. Vehicle 

dynamics control example is used to demonstrate the practical aspect of developed 

theorems in real-world applications. 
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