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ABSTRACT 

 

Efficient Detection on Stochastic Faults in PLC Based Automated Assembly Systems 

with Novel Sensor Deployment and Diagnoser Design. 

(May 2012) 

Zhenhua Wu, B.S., M.S., Hefei University of Technology; 

M.S., The University of Texas-Pan American 

Chair of Advisory Committee: Dr. Sheng-jen Hsieh 

 

In this dissertation, we proposed solutions on novel sensor deployment and 

diagnoser design to efficiently detect stochastic faults in PLC based automated systems.  

First, a fuzzy quantitative graph based sensor deployment was called upon to 

model cause-effect relationship between faults and sensors. Analytic hierarchy process 

(AHP) was used to aggregate the heterogeneous properties between sensors and faults 

into single edge values in fuzzy graph, thus quantitatively determining the fault 

detectability. An appropriate multiple objective model was set up to minimize fault 

unobservability and cost while achieving required detectability performance. 

Lexicographical mixed integer linear programming and greedy search were respectively 

used to optimize the model, thus assigning the sensors to faults.  

Second, a diagnoser based on real time fuzzy Petri net (RTFPN) was proposed to 

detect faults in discrete manufacturing systems. It used the real time PN to model the 

manufacturing plant while using fuzzy PN to isolate the faults. It has the capability of 

handling uncertainties and including industry knowledge to diagnose faults. The 
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proposed approach was implemented using Visual Basic, and tested as well as validated 

on a dual robot arm. 

Finally, the proposed sensor deployment approach and diagnoser were 

comprehensively evaluated based on design of experiment techniques. Two-stage 

statistical analysis including analysis of variance (ANOVA) and least significance 

difference (LSD) were conducted to evaluate the diagnosis performance including 

positive detection rate, false alarm, accuracy and detect delay. It illustrated the proposed 

approaches have better performance on those evaluation metrics. 

The major contributions of this research include the following aspects: (1) a 

novel fuzzy quantitative graph based sensor deployment approach handling sensor 

heterogeneity, and optimizing multiple objectives based on lexicographical integer linear 

programming and greedy algorithm, respectively. A case study on a five tank system 

showed that system detectability was improved from the approach of signed directed 

graph’s 0.62 to the proposed approach’s 0.70. The other case study on a dual robot arm 

also show improvement on system’s detectability improved from the approach of signed 

directed graph’s 0.61 to the proposed approach’s 0.65. (2) A novel real time fuzzy Petri 

net diagnoser was used to remedy nonsynchronization and integrate useful but 

incomplete knowledge for diagnosis purpose. The third case study on a dual robot arm 

shows that the diagnoser can achieve a high detection accuracy of 93% and maximum 

detection delay of eight steps. (3) The comprehensive evaluation approach can be 

referenced by other diagnosis systems’ design, optimization and evaluation. 
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CHAPTER I  

INTRODUCTION  

 

1.1 Motive 

Programmable logic controller (PLC) based automated assembly systems are 

widely used in manufacturing lines, semiconductor fabrication facilities etc. The success 

of PLC automated assembly systems critically depends on fault-free operations and low 

machine down time. The faults involved in assembly systems can be induced by 

underlying causes such as hardware/software failures, design errors, manufacturing 

defects, improper application of parts, or users programs not following the protocols etc. 

[1]. Fault diagnosis is the action to identify whether a system is deviating from the 

normal behavior, and determine the fault types, locations and potential root causes for 

the abnormal behaviors. Traditionally, fault diagnosis on assembly systems was 

performed by humans. It was time-consuming and mainly depended on the technicians’ 

experience and skills. When systems get more complex, the causality mapping between 

fault symptoms and root causes becomes highly nonlinear.  

Besides this, for stochastically faulty systems, the exact fault time and modes are 

not completely known due to the insufficient input/output that can be observed from the 
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system. These stochastic faults may not be observed directly but “hiding” under the 

observed signals. This challenges the technicians’ expertise and hinders the efficiency 

and accuracy of human-based machine maintenance. Design of a computer-aided 

diagnosis system on stochastic faults is desired for the purpose of improving accuracy, 

enhancing time-effectiveness and lowering the diagnosis cost.  

1.2 Research question 

When designing a computer based diagnosis system with excellent accuracy and 

efficiency, researchers and engineers need to consider many factors. In literature [2], 

authors summarized the main obstacles for the designers of diagnosis systems. They are 

listed as below: 

1. Design an architecture that can integrate technologies including sensor, signal 

processing, communication etc to resolve the diagnosis work; 

2. Select the types, numbers and locations of sensors. 

3. Design the effective diagnoser along with the selected sensors; 

4. Design an effective fusion algorithm to combine sensors and signal processing 

methods to improve performance; 

5. Reduce the cost of the diagnosis system without losing the performance merits; 

6. Automate the design process of a diagnosis system. 

To address the difficulties proposed in [2] in diagnosing PLC based automated 

assembly system, we have investigated system architectures’ effects on the diagnosis 

performance [3, 4].What remain incomplete are sensor deployment and diagnoser’s 

effects on diagnosing PLC based automated systems. Sensors and diagnosers work in 
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tandem to affect diagnosing performances, instead of individually affecting the diagnosis 

work, so the study of them together can help researchers to understand how they 

facilitate the diagnosis on systems. PLC based automated systems are typical discrete 

event systems (DES). A Discrete Event System (DES) is a discrete-state, event-driven 

system, that is, its state evolution depends entirely on the occurrence of asynchronous 

discrete events over time [5]. Major systems’ classification is shown as below Figure 1. 

The conventional differential or difference equation based diagnostics are not effective 

in analyzing discrete event systems. Therefore this problem calls for a unique 

methodology on deploying sensor and designing diagnoser on DES.  

 

 
Figure 1 Major system classifications 

[5] 
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Firstly, sensors and sensing technology constitute the fundamental basis for the 

fault diagnosis. Diagnosis systems’ performance critically depends on whether sensor 

measurements can monitor faulty symptoms accurately and efficiently. Sometimes one 

sensor can monitor several symptoms; sometimes one symptom needs to be detected by 

several sensors. Due to the budgetary or physical constraints, it is impossible to install 

every necessary sensor to monitor the fault signature. Insufficient or inaccurate 

measurements resulting from improper sensor deployment will significantly deteriorate 

fault diagnosis system’s performance. Although redundantly sensing every physical 

system parameter can minimize information loss, the redundant sensor network may be 

cursed with overburden on data amount as well as analysis cost. A good sensor 

deployment strategy can result in a network configuration at the minimum cost while 

observing pre-specified performance criteria. Currently, the sensor deployment strategies 

in diagnosis are mainly based on ad hoc or heuristics method, it is mostly an “artistic” 

procedure, instead of a scientific technique [6]. Although analytical techniques on sensor 

deployment optimization have been suggested in recent years through qualitative 

methods such as directed graph [7] or signed directed graph [8]; or quantitative methods 

such as mathematic programming [9-10] or quantitative graph [11-12], literature survey 

[13] also noted that current research reported in the area of sensor deployment for fault 

diagnosis lacks a methodology to handle heterogeneous sensors-fault information and 

distribute sensors. Besides this, Sensor deployment for fault diagnosis is a delicate work 

which tackles multiple objectives including observability, reliability, accuracy and 

efficiency under the constraints of cost, resources and environment etc. Most sensor 
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deployments only tackle a single objective such as either cost or reliability. Multiple-

objective decision-making to optimize cost, reliability, accuracy and efficiency under the 

constraints of available resources and environment, is a prominent issue in sensor 

deployment. 

Secondly, when PLC automated systems get more sophisticated and complex, the 

identification of fault root cause also becomes more complicated. This case is even 

worse for the stochastic faults, because it is hard to get the detailed fault modes [14]. 

Finite state automaton (FSA) and Petei net (PN) are the most popular approaches to 

model and diagnose DES systems. Diagnoser designers have worked on diagnosing 

deterministic faults with FSA [15-22] or PN [23-39], some researchers also tried to 

detect undetermined stochastic faults with stochastic timed automaton [40-41], 

stochastic automaton [42-43] or stochastic timed Petri net [39]. Both FSA and PN based 

diagnosis are both model based approaches. An important issue to the success of these 

diagnosers is whether they can incorporate the knowledge about the faultless and faulty 

system behavior [41]. For stochastic faults, it often has incomplete fault messages and 

data rendering analysis or diagnose automated system faults ineffective. In order to 

improve the efficiency of diagnosis, how can we integrate the useful but incomplete 

knowledge about the fault into the diagnoser design? 

Initiated by these, we get our research question: can we propose a methodology 

including the selection of crucial sensors and the design of effective diagnosers to 

diagnose stochastic faults in PLC based automated assembly systems? 
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1.3 Research objective and methodology 

1.3.1 Research objective 

Based on the challenges identified in the section 1.2, the objective of this 

research includes four aspects: 

1) Understand the effects of sensors and diagnosers on diagnosing stochastic faults in 

PLC based automated systems; 

2) Develop a novel sensor deployment approach that can handle sensor heterogeneity 

and multiple-objective optimization in sensor allocation;   

3) Design a capable diagnoser that can integrate knowledge from industrial experience 

to accurately diagnose stochastic faults on PLC based automated assembly systems; 

4) Develop a comprehensive methodology to analyze performance parameters, thus 

evaluating how the sensor deployment and diagnoser design facilitate diagnosis 

work. 

This goal is deemed complex, because the diagnosis work requires the 

integration of many disparate applications including sensors, signal processing, 

information fusion, and decision making, etc. However, if successful, the outcome of 

this research will provide designers with a tool that can aid the design process of 

diagnosis systems by arranging all the resources with high efficiency, short development 

time, and cost-effective numbers of sensors. 

1.3.2 Research methodology 

Before describing methodologies to reach the objective, we would like to 

propose the assumptions of this work: 
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1) We focus on the PLC based automated assembly system with discrete event systems 

(DES) characteristics which are event-driven and discrete input/output state spaces. 

2) We assume that the faults in the system are stochastic. According to literature [14], 

the faults in the system can be classified as either deterministic or stochastic. The 

occurrence of deterministic failure is nonrandom. The deterministic failures can be 

observed instantaneously. For stochastic failure, it is hard to get the stochastic 

failure mode about the system due to the insufficient output that can be observed 

from the system; only part is available instead of complete failure mode about the 

system.  

3) We focus on the system or equipment faults, rather than the product faults. The 

difference lies in that products are manufactured by systems; good products can be 

manufactured if and only if the manufacturing system behaves normal, but a good 

system can manufacture bad products as well due to improper process planning. The 

fault detection on products is usually solved with statistical process control (SPC) or 

defect analysis, which is not the emphasis of this dissertation. 

4) In this dissertation, we use failures and faults interchangeably. In the literature [44], 

the researchers defined the difference between faults and failures. Failures occur 

when a resource--which is a collection of entities such as controllers, machine, tools 

and software program--ceases to deliver the expected task. An error occurs when 

some part of the resource reaches an undesired state. A fault is the cause of an error, 

a sequence of errors, or a failure.  
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5) The failure modes about the system including the failure rates, severities, priority 

and fault effects, are known or partially known to the researchers. 

6) We focus on the single fault situation. The investigation on the simultaneous 

multiple faults scenario is the future research. 

7) The proposed approach is for guiding sensor placement for a new designed system, 

not for improving the existed system. 

8) The life time cost for sensors is not a factor considered as affect sensor deployment. 

How to include the sensor’s life time cost into sensor deployment optimization is a 

future direction. 

To target aforementioned objectives identified in section 1.3.1, we would like to 

propose solutions in three major stages: 1) optimize sensor deployment strategy that can 

handle heterogeneous sensor-fault information and target multiple objectives; 2) design a 

Petri net (PN) diagnoser for detecting stochastic faults in realtime; and 3) evaluate the 

proposed sensor deployment and diagnoser in a PLC controlled manufacturing system.  
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As the research architecture shown in Figure 2, the detailed tasks for the 

dissertation have four aspects. 

Task1) Propose sensor deployment based on fuzzy quantitative graph to handle 

heterogeneous properties for different sensors and multiple-objective optimization on 

distributing sensors to detect faults. This deployment strategy will optimize the cost and 

reliability of the sensor system under the constraints of detectability, limited resources 

etc. 

Task2) Propose and implement fault diagnosis methodology based on real-time 

Petri net and fuzzy Petri net to detect faults in the discrete manufacturing system. This 

diagnosis approach should overcome the shortcoming initiated by partial information, 

computation complexity and knowledge integration etc. 

Task3) Implement fault diagnoser based on finite state automaton and sequential 

function chart to detect faults in automated assembly systems. This is a benchmark 

diagnoser that is going to be compared with the proposed diagnoser in Task 2). 

Task4) Design and analyze experiments based on the factors involved--sensors, 

diagnosers, and faults--to comprehensively evaluate the factors on detecting the faults 

with a dual robot system in the System Integration Laboratory at Texas A&M 

University.  

1.4 Organization of the dissertation 

The organization of the rest of the dissertation is as follows: Chapter II presents 

the state of arts in the area of: 1) faults with automated assembly systems, 2) sensor 

deployment, and 3) DES diagnoser design. Existing gaps were summarized in this 
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chapter. Chapter III presents the sensor deployment design considering heterogeneity 

and multiple objectives for diagnosing manufacturing systems. The result of this chapter 

has been submitted to “Robotics and Computer Integrated Manufacturing”, and is in the 

second round review. Chapter IV presents the realtime fuzzy Petri net diagnoser design. 

The result of this chapter has been published in “International Journal of Advanced 

Manufacturing Technology”. Chapter V describes the diagnoser design based on finite 

state automaton model and sequential function chart. The result of this chapter has been 

published and presented in “International Symposium of Flexible Automation” 2010 and 

2012. Chapter VI presents the comprehensive performance evaluation of sensor 

deployment and diagnoser for fault diagnosis in a discrete manufacturing system. 

Chapter VII highlights the contributions and suggests the directions for future work. 

  



 11 

CHAPTER II 

LITERATURE REVIEW 

In this section, a literature review of the studies on faults in automated systems, 

sensor deployments for diagnosis purpose, and diagnoser on discrete event systems, is 

presented. It also summarizes the existing gap identified in literature and formulates the 

problems to be addressed. 

2.1 Faults in automated assembly systems 

The faults in automated assembly systems can be classified either according to 

the occurrence rate or root cause types. 

2.1.1 Faults classification according to the occurrence rate 

In literature [14], it classified the faults in systems into either deterministic or 

stochastic type with different occurrence rate. 

1. Deterministic faults: The deterministic faults are new and can be observed 

instantaneously, its occurrence is nonrandom, and the aging faults (tearing or 

wearing) are clock time failure, not necessarily operational. 

2. Undeterministic faults: This kind of fault is also referred to as the stochastic fault. 

It can be further classified as faults under risk or faults under uncertainty. For 

stochastically failing equipment under risk, it is impossible to predict the exact time 

of faults; but the distributions of the time to faults of each component of the system 

are known [14]. Typical fault rate can be constant, such as exponential distribution, 

or increasing such as Weilbull distribution, gamma distribution, etc. For 
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stochastically failing equipment under uncertainty, the exact time of failure and the 

distribution of the time to failure are not known [14]. It is hard to get the stochastic 

failure mode about the system due to the insufficient output that can be observed 

from the system. Thus stochastic fault diagnosis can give only an assessment of the 

likelihood about the faults. Sherif classified them into three situations: [14] 

a) The system is new, so the information and failure data are not known. 

b) Limited information about the system’s failure characteristics is known. 

c) Some subjective information (judgment, belief) about the system failure 

characteristics is known. 

 

2.1.2 Faults classification according to the root cause type 

The faults in assembly systems can also be classified as follows according to 

fault root causes:  

1. Hardware faults [45]: The hardware faults are classified as input sensor faults and 

output actuator faults. Input sensor faults occur when a sensor is defective. Output 

actuator faults happen when an actuator is dysfunctional in some way from acting at 

all, or does not work within a prescribed period of time. They are also known as 

equipment faults [46].  

2. Software faults [45]: They are caused by improper software design or 

implementation. They manifest in the form of a system or component fault. For 

example, an actuator’s mis-timed action or system miss-initialization.  
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3. Product faults [45]: They are in the form of products manufactured not conforming 

to a specific standard. These are also known as quality faults [46] and refer to 

deterioration in product quality that is not normally detectable by the system sensors, 

which are conventionally used for control purposes. They could be caused by low 

quality in materials or components, or by a hardware fault in the manufacturing 

system, such as arrival of a faulty component or a component being dropped. As 

mentioned in Chapter I, product faults are not the main focus of this dissertation. 

4. Task faults [46]: A task fault is defined as a deviation from the expected operation 

of the process due to unpredictability and lack of constraint (for example, failure of 

inserting a screw in a hole assembly). They can be detected if they are expressed at 

the sensor outputs as deviations from the normal operation. These can also be 

referred to as operational errors [47]. 

5. Tolerance faults [47]: These faults are caused due to defective parts, or parts that do 

not meet the specifications. These are errors attributed to the properties of parts.  

The faults and their occurrence rate in a video tape recorder assembly line were 

presented in [48]. The assembly line considered in their study was made up of 

components such as conveyors, robots and part feeders. The faulty data of 89 such 

assembly cells showed that the part feeder system, robot grasp and insertion system and 

fixture location system were most susceptible to faults, followed by unqualified parts.  

Data regarding the distribution of faults in robotic assembly [49] were acquired 

from three robotic assembly cells grouped under set A, set B and set C with 98, 392, and 

368 samples of assembly actions, respectively. It was observed that the faulty cases 
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registered were 31.6% for set A, 30.6% for set B and 13.3% for set C. All these faults 

except one in set A were attributed to failure of insertion or seating (insertion where 

gravity is intended to assist). Presentation faults were caused by the deviation in the part 

configuration as expected by the work cell. For sets B and C, faults were distributed as 

shown in Table 1 Fault distribution for robotic assembly cells. 

 

 

Table 1 Fault distribution for robotic assembly cells 

Fault (A) Fault (B) Percent Fault (C) Percent 

Insertion or  

Seating (an 

gravity 

assisting 

insertion) 

Insertion 51.3%  Insertion  71.4% 

Grasping 17.5%  Dropping  16.3% 

Sensing 16.7%  Grasping  6.1% 

Presentation 8.3%  Others  6.1% 

Flawed parts 5.8%    

 

 

The screw insertion process [50] was considered in detail wherein the causes for 

insertion failure of the screw were identified as a mismatch in the diameter of the hole in 

the base plate with the screw, which is inserted. Another type of insertion failure is 

jamming, which could occur due to several reasons, including manufacturing errors 

where the main body of the screw widens close to the head, a hole diameter reduction at 

the end of the insertion, or the presence of burrs in the hole etc.  

The possible faults in robotic assembly [51] were identified as eccentric gripping 

of the peg due to loss of tolerance of the position of the gripper or fixture or impacts 

damaging the peg or fixture during extraction of the peg and presence of burrs on the 

edge of the base part or dirt on the chamfer of the bore, resulting in a fault. The causes 
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for insertion failure were identified as dimensional errors of the peg or the hole (height 

and diameter), including the angular misalignment of the peg; presence of extraneous 

matter at the contact point resulting in high friction; and improper peg parts having ruts 

and burrs.  

From these observations, we can conclude that inserting and grasping a part and 

keeping hold of it are among the most susceptible to faults. This is followed by sensor 

failures and bad parts. These failures would ideally represent typical situations that need 

to be addressed in the implementation of diagnosis system for automated assembly 

systems. 

 

2.2 Literature review on sensor deployment 

Sensor deployment problems usually involve four phases sequentially: 1) model 

the faults’ cause-effect on sensor data variations; 2) set up the objective functions for 

sensor deployment based on the variation effects; 3) find approaches to optimize sensor 

deployment strategy; and 4) evaluate the optimized strategy. Among them, step 1) and 3) 

are the most important. Thus we also searched literature from aspects of: 1) modeling 

cause-effect relation between system faults and monitoring sensors, and 2) optimizing 

the cause-effect model.  

Ding et al. [13] presented a comprehensive survey of inspection strategy and 

sensor distribution in discrete-part manufacturing processes. In his survey, he noted that 

diagnosis-oriented sensor distribution strategy is a relatively new problem with lots of 
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research opportunities; especially no report has been found on how to systematically 

deploy the heterogeneous sensors.  

Graph theory has been applied on optimal sensor deployment strategies from 

qualitative [7-8, 52-54] or quantitative [9-10] perspectives for sensor deployment’s 

effects on assessing complex system status. Ali et al. used the spanning tree to model 

and optimize the sensor deployment for fault observability and detection reliability [52]. 

They defined the sensor deployment’s process reliability as the smallest reliability 

among all of the process variables. Mass-flow and energy distribution balances in 

chemical plants are the basis for generating the spanning tree. Later this spanning tree 

procedure was extended for optimal design of a redundant sensor network for linear 

processes [53], as well as a nonredundant sensor network for bilinear processes [54]. 

Raghuraj and Bhushan et al. had qualitatively investigated the sensor deployment 

problem with directed graph (DG) [7] or signed directed graph (SDG) [8] for the 

chemical plant. The authors assumed that all faults had to be defined clearly along with 

their tolerances using a priori knowledge; then DG/SDG can be SDG/DG were applied 

to represent the cause-effect relation between faults and sensors and guide sensor 

placement. The only difference between DG and SDG is that signs are placed on the arcs 

of DG to get an SDG. However, the structures are exactly the same. In [7], fault 

observability or resolution was the single objective to be maximized through greedy 

search, so fault nodes would be covered under the constraints of sensor numbers or cost. 

In [8], various unique issue in SDG cause-effect model including presence of multiple 

paths, multiple faults occurrence, control loop were discussed and then optimization 
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issue were extended from DG’s approach. The DG/SDG based sensor deployment shows 

that the inclusion of signs may improve the fault resolution of SDG, but the signs of 

some of the arcs in the SDG might require plant-specific information that might not be 

available at the design stage. These two graph methods were largely qualitative without 

including quantified information from the system. Thus it was hard for them to model 

the fault propagation in complex systems only with the qualitative information on faults 

and sensors.  

To overcome the deficiencies of qualitative method, Bhushan et al. proposed a 

comprehensive design strategy considering the quantitative information including fault 

occurrence and sensor failure probability into an integer programming formulation [9]. 

They tried to minimize the cost of the sensory monitoring system while ensuring that the 

solution provides threshold reliability. Following this paper, he presented a detailed 

application of applying the proposed approach to a large flowsheet, various issues 

involved in the application of the reliability maximization based optimization procedure 

were discussed [10]. They only optimized one objective, either minimum cost or 

maximum reliability at one time, and only mentioned a little bit on the multiple objective 

issue based on the one step optimization approach.  

Zhang et al. also tried to attack this problem using quantified directed graph 

(QDG) [11, 12] and particle swarm optimization. Various fault properties including fault 

severity, criticality, occurrence rate, sensor properties including sensitivity, and sensor-

fault relation including propagation time and gain were included into the graph 

modeling. These quantitative values were fused using empirical equation into single 
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edge values representing sensors’ detectability to faults. Zhang’s method on 

quantitatively defining the sensor detectability did not well address the uncertainties 

involved in fault detection, and the optimization process is not clear on the criterion 

either.  

From the discrete event system (DES) control perspective, researchers have used 

Petri net (PN) [55] or finite state automaton [56, 57] to model the sensor deployment. Ru 

[55] assumed the DES is partially observable, then used Petri Nets to model optimal 

sensor selection in DES, thus achieving a minimum number of sensors while 

maintaining structural observability to uniquely determine the system state based on 

sensor information. He divided this problem into optimal place sensor selection (OPSS) 

and optimal transition sensor selection (OTSS). To avoid NP-hard in OPSS problem, 

they first reduced the problem to linear integer programming, and then proposed two 

heuristic algorithms (top-down, and bottom-up) to approximate its solution with 

polynomial complexity. The OTSS problem is solvable with polynomial complexity. But 

their methods all strive to optimize the single objective: minimizing the total number of 

sensors, and they cannot specify where to locate the selected sensors.  

From quality control or process variation perspective, Ding et al. have proposed 

several sensor deployment approaches based on different optimality [58, 59, 60], Then 

fast exchange routine with a sort-and-cut procedure was applied to place coordinate 

sensors for estimating variation means and variance, but their assumptions are for 

homogeneous sensor types such as coordinate measuring machines (CMMs). Nof et al 

proposed sensor economy principles and selection procedures in manufacturing systems, 
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thus enabling flexible automation and quality control [61]. He noted that it was not 

possible to develop an accurate model on predicting sensor performance in the real 

world, so performance could only be derived in an empirically but systematic manner. 

Based on operational analysis and economical condition, he decided on a general design 

guideline for sensor numbers, types, locations, interaction modes and overall 

performance. Li had proposed a sensor deployment approach in order to detect system 

abnormality in time [62]. She formulated the casual relationship among the system’s 

physical variables using Bayesian Networks (BN) model. The sensor allocation task was 

formulated into a “set covering” problem with the aim of minimizing cost while 

observing detectability requirement. An integrated algorithm combing pre-processing 

and greedy search was applied to optimally decide which physical variable deserved 

sensing. Khan et al proposed a methodology by configuring sensors to provide an 

optimally distinctive signature for detecting faults in discrete part assembly processes 

[63]. Based on assembly structure data derived from CAD files, a multi-level, two-step, 

hierarchical (bottom-up or top-down) optimization procedure was used to obtain a novel, 

distributed sensor configuration. He quantified diagnosability performance in the form of 

a defined index, so the diagnosability index can guide the optimization and establish the 

diagnostics worth of sensor distribution candidates. 

After modeling the cause-effect relation between faults and sensors, we are 

starting to optimize the sensor deployment model. Various optimization algorithms, 

from heuristic search to mathematic programming, have been used for optimizing the 

sensor deployment. Most of the qualitative graph based sensor deployment approaches 
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including spanning tree [52-54], DG [7] or SDG [8] were using heuristic search. In 

spanning tree based sensor deployment, authors used the concept of cutsets and hill 

climbing to identify the sensor set with optimal reliability. SDG and DG approaches 

were using the concepts of key component and greedy search to solve the sensor-fault 

cover problem. Other heuristic methods, including simulated annealing (SA), Tabu 

search (TS), and genetic algorithm (GA), have been applied to this problem. Both TS 

and SA evaluate a neighborhood on performance, and move to the neighbor with better 

performance. However, whereas SA relies on probabilistic events to search for good 

solutions, TS deterministically incorporates search history as well as structural features 

of the model to drive it towards higher quality solutions.  

Kannan had proposed a two phase simulated annealing based localization (SAL) 

algorithm to address the flip ambiguity issue in wireless sensor network localization 

[64]. In the first phase, SA was used to obtain an accurate estimate of location. Then a 

second phase of optimization was performed only on those nodes that are likely to have 

flip ambiguity problem. Based on the neighborhood information of nodes, those nodes 

likely being affected by flip ambiguity were identified and moved to the correct position.  

Kincaid [65] used a simple static Tabu Search method to seek the number and 

location of sensors for active controlling and/or sensing vibrations of truss structure. The 

search showed Tabu Search approach dominates the traditional approaches to finding D-

optimal designs. Compared to other heuristic search methods GA can reduce the elapsed 

time required for solution of a large combinatorial problem because GA methods are 

easy to adapt for use on parallel computing. Swann had used GA and finite element 
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analysis (FEA) technique to develop an optimal sensor placement procedure that is used 

to determine the optimal sensor pattern for detecting seeded delamination locations in a 

composite plate [66]. Sen et al. had developed a sensor network design approach based 

on graph theory and genetic algorithm [67]. The sensor network was designed to 

optimize a single criterion of cost, reliability or estimation accuracy, using a minimum 

number of sensors. However, Sen’s algorithm cannot solve the multi-objective 

optimization problem. The heuristic optimization algorithms cannot guarantee 

convergence to the global optima, but can cover useful local optima after examining part 

of all possible combinations, so they are suitable for a small and simple sensor 

deployment problem, although it is straight forward and easy on implementation.  

Sensor optimization problem have also been studied from mathematic 

programming such as Integer Programming (IP) [55, 68], Nonlinear Programming [69], 

Dynamic Programming (DP) [58] etc.  

Bagajewicz proposed a mixed integer nonlinear programming (MINLP) problem 

to obtain cost optimal sensor networks for linear systems subject to constraints on 

precision, residual precision and error detectability [69]. He used the tree enumeration 

and branch first rule to optimize the nonlinear programming problem thus achieving 

cost-optimal sensor network under the constraint of precision, gross error, availability 

and resilience. 

Projection matrix based sensor deployment such as fault signature matrix [70, 

71] was used to classify fault variables. Using fault signature matrix, Fijany et al. [71] 

generated analytical redundancy relations between faults and sensors, then applied 
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matrix operation such as Gauss-Jordan elimination to optimize sensor deployment. 

Yahya et al. [68] studied the problem of minimum sensor placement cost for directional 

wireless sensor networks. An integer linear programming model was proposed for the 

sensor placement problem in directional sensor networks to minimize the total sensor 

cost by properly choosing the type and direction for each sensor to be installed in the 

sensor field. However, the computation requirement for mathematic programming will 

increase considerably with the increasing of sensor numbers. 

 

 

Table 2 Literature summary in sensor deployment 

Modeling  Classification  Reference  

Qualitative  Spanning tree Ali (93’) 52, Ali (95’) 53, Ali (96’) 54  

Direct graph  Raghuraj (99’) 7, Bhushan (00’) 8  

Signed direct graph  Bhushan (00’) 8  

Petri net Ru (10’) 55 

Finite state automaton Jiang (03’) 56, Park (96’) 57  

Quantitative  Quantitative direct graph  Zhang (05’) 11, Zhang (07’) 12  

Mathematic programming  Bhushan (02’) 9, Bhushan (02’) 10  

Fault signature matrix  Osais (08’) 68, Abed (08’) 70  

Optimization  Classification  Reference  

Heuristic 

search  

Simulated annealing  Kannan (06’) 64  

Tabu search  Kincaid (02’) 65  

Genetic algorithms  Swann (04’) 66, Sen (98’) 67  

Mathematic 

programming  

Integer programming  Bhushan (02’) 9, Bhushan (02’) 10 

Dynamic programming  Liu (04’) 58  

Nonlinear programming  Bagajewicz (97’) 69  

 

 

The references were summarized in above Table 2. From the literature readings, 

we identified two typical issues in sensor deployment remain intact: 1) Heterogeneous 

properties of sensors in the diagnosis process. In a typical fault diagnosis system, it 
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usually deploys sensors which generally have different sensing characteristics including 

uncertainty, accuracy, resolution and statistical property on physical signal data. 

Nevertheless, how to systematically select crucial and optimum sensor deployment for 

heterogeneous sensor system poses a unique problem in the automated assembly system, 

which has never been reported [13]. 2) Multiple-objective optimization. Sensor 

deployment for fault diagnosis is a delicate work which tackles multiple objectives 

including observability, reliability, accuracy and efficiency under the constraints of cost, 

resources and environment etc. Most of the sensor deployment researchers only targeted 

single objective such as either cost or reliability. A comprehensive method that considers 

the multiple-objective decision making involved in the sensor deployment is yet to be 

created. As such, these two issues call for a systematical procedure to design a cost-

effective and highly reliable sensor deployment strategy. This approach should be able to 

incorporate the heterogeneous properties of sensors uncertainties such as sensor failure 

and accuracy into the cause effect model, also consider the multiple objectives including 

cost, reliability, observability, etc. involved in fault detection while subjecting to the 

constraints. 

 

2.3 Literature review on diagnoser for discrete event system 

Many methods, including the mathematical model based approach [72], fault tree 

[73, 74], artificial intelligence such as expert system [75], neural network [76] etc have 

been developed to deal with fault diagnosis. A comparison on these approaches’ 

applications on diagnosis system is summarized in Table 3. 
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We focused on discrete event systems which have inherent discrete state space of 

logic values and event-driven. System models based on DES descriptions may give more 

efficient diagnosis algorithms than models based on continuous time system approaches 

[15]. FSA and PN are the two most commonly used methods on modeling and 

diagnosing the DES. Besides this, I focused more on diagnosing stochastic DES faults. 

How to incorporate “stochastic” and “uncertainty” properties into diagnoser were also 

key words when I was reviewing the literature. Based on these, the literature was 

searched from the aspects of: stochastic fault diagnosis based on 1) FSA or 2) PN. 

 

 

Table 3 Comparisons on different fault diagnosis approaches 
Approaches Pros Cons 

Fault tree Easy to read and understand, can 

be synthesis automatically [18] 

Difficult to include information about 

ordering and timing information of events in 

fault tree. No way to treat common-cause 
failures resulting from fault propagation [18] 

Expert 

system 

Suit for systems that are difficult to 

model, i.e. systems involving 

subtle and complicated interaction 

whose outcomes are hard to predict 

[23] 

A considerable amount of time may elapse 

before enough knowledge is accumulated to 

develop the necessary set of heuristic rules for 

reliable diagnosis, very domain dependent, 

difficult to validate [23] 

Model 

based 

analytical 

redundancy  

Mostly for continuous system, is 

able to detect abrupt faults and 

incipient fault [23] 

Computation load for detailed online 

modeling of process, the sensitivity of 

detection process with respecting errors and 

measurement noise [23] 

Finite state 

automaton 

Easy to set up the component and 

system model, mostly for DES 

Model complexity explosion by explicitly 

listing all possible states and events, lack of 

readily available software packages 

Petri net Mathematical capability and graph 

description of DES 

Lack of readily available software packages 

 

 

2.3.1 Literature on FSA diagnoser design  

In order to identify the existing work related to the FSA diagnoser design, the 

literature review was further classified from two aspects: fault characteristic (stochastic 
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or deterministic) and diagnoser architecture (centralized or decentralized). The 

summarization of FSA diagnoser design is in Table 4. 

 

 

Table 4 Review on FSA based diagnoser design 

Reference Method Fault 

Character 

Diagnoser 

Architecture 

Sampath [16] The process to model the plant and to construct 

the diagnoser using classical DES theory 

Deterministic Centralized and 

Decentralized 

Zad [18] The automaton based diagnosis framework and 

scheme to reduce the diagnoser complexity 

Deterministic Centralized 

Sampath [17] Necessary and sufficient condition for 
diagnosability and I-diagnosability 

Deterministic  Centralized 

Holloway [19, 
20] 

Use discrete-event template to monitor the 
manufacturing system 

Deterministic Decentralized 

Mouchaweh 

[22] 

Decentralized diagnosis using Boolean discrete 

event model  

Deterministic Decentralized 

Lunze [40] state observation and diagnosis discrete event 

systems described by stochastic automata 

Stochastic Centralized 

Thorsley [42] Embed Markov model in DES to diagnose 

system, proposed the theory of A-

diagnosability and AA-diagnosability 

Stochastic Centralized 

Liu [43] Extend Thorsley’s stochastic diagnosability 

theory to decentralized diagnoser, propose the 

concept of co-diagnoser 

Stochastic Decentralized 

Inagaki [77] Use Bayesian network as global diagnoser and 

timed Markov model as local diagnoser, to 

diagnose event-driven controlled systems.  

Stochastic Decentralized 

Anthanasopoul

ou [78] 

Probabilistic algorithm to calculate the 

likehood of normal model and faulty model 

under partial observation 

Stochastic Centralized 

 

 

There are two important papers [16, 18] that we need to highlight in the FSA 

diagnoser design, because other FSA diagnoser designs were extended from the 

framework proposed in these two papers. Sampath et al. proposed a method to model the 

system’s faulty behavior in the plant model. This modeling process includes: 1) 

identification of possible states and events transitions with them; 2) sensor mapping 
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between states and observing sensors; 3) estimation on occurrence of events based on the 

reading changes in the observing sensors; and 4) then use label propagation and events 

observations from 3) to construct the diagnoser [16]. They also provided necessary and 

sufficient conditions for the diagnoser’s diagnosability as well as I-diagnosability [17]. 

Sampath’s method required that the plant model and the diagnoser start from the same 

starting point which may not be easy to synchronize at the initial time for many industry 

applications. To overcome this deficiency, Zad et al. proposed a similar method as 

Sampath’s, but without synchronizing requirement [18]. In Zad’s work, he also 

suggested how to reduce the complexity of diagnosers with model reduction approach. 

By nature these two methods explicitly list the possible states and events, which have 

high computation requirements and do not fit for many practical manufacturing systems 

with distributed control requirements and information characteristics. Thus Lafortune 

also proposed a decentralized method to model the system and corresponding distributed 

properties [16] to lower computation load. 

Holloway et al. used the distributed template model to monitor discrete event 

manufacturing systems [19, 20]. Forward and backward templates were developed as the 

diagnoser to predict future events following the triggering events and to indicate possible 

prior events before the trigger. They also combined templates with statistic process 

control (SPC) for discrete I/O signals in manufacturing systems [21]. Nevertheless, their 

template method does not analyze either fault isolation or the diagnosability of the 

diagnoser, it only alarmed the occurrence of faults. Sayed-Mouchaweh et al. proposed a 

decentralized diagnoser for manufacturing systems based on Boolean discrete event 
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models [22]. Local diagnosers were designed using event sequences, time delays 

between correlated events and state conditions to detect abnormalities about system 

execution. To avoid partial observation of local diagnosis, a central diagnoser to 

coordinate local diagnoser was designed based on rules to isolate fault partition.  

All these aforementioned FSA diagnosis methods are for deterministic models. 

Their faulty cases usually were abrupt, either normal or faulty, instead of probabilistic 

nature. However, in the real process, many systems’ faulty processes are stochastic, 

instead of abrupt. The stochastic faults show undetermined properties and are even 

harder to be detected with partial information. To design a diagnoser that can locate such 

kind of unobservable probabilistic faults will be more realistic and meaningful to real 

applications.  

Lunze is the first researcher studying the stochastic fault diagnosis with 

automaton. He solved the problems of state observation and diagnosis discrete event 

systems described by stochastic automata [40]. They assumed that systems were not 

observable but it was possible to reconstruct the state unambiguously. The observation 

problem was set up as the problem of determining the smallest possible set of states that 

are compatible with the measured input and output sequences. The diagnostic problem 

was solved as an observation problem. They also discussed the conditions for the 

observability and diagnosability of stochastic automata. 

David Thorsley proposed an approach on applying stochastic techniques on the 

partially observed discrete event systems [42]. In his approach, Markov model was 

embedded with the FSA to model and diagnose DES. With Markov model’s 
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computation ability, the possibilities of the states in each discrete step were calculated 

using Bayesian law. Also it relaxed Sampath’s diagnosability condition to A or AA 

diagnosability with probability. The difference between Thorsley and Lunze’s stochastic 

diagnoser lies in that: Lunze clearly pointed out that the diagnostic problem of a 

stochastic automaton cannot be solved by another stochastic automaton. On the contrary, 

Thorsley inherited the diagnoser approach, where the diagnoser possesses a probabilistic 

structure by appending to each transition on a matrix that can be used to update the 

probability distribution on the state estimate. Besides this, Thorsley’s diagnoser does not 

require detailed in-depth modeling of the system to be diagnosed. 

Liu et al extended Thorsley’s stochastic diagnoser to decentralized stochastic 

diagnoser. He investigated the decentralized diagnosis of stochastic discrete event 

systems (SDESs) by using multiple local stochastic diagnosers, each possessing its own 

sensors to deal with different information [43]. They formalized the notions of 

decentralized diagnosis for SDESs by defining the concept of codiagnosability for 

stochastic automata in which any communication among the local stochastic diagnosers 

or to any coordinators is not involved. A stochastic system being codiagnosable means 

that a fault can be detected by at least one local stochastic diagnoser within a finite 

delay. A codiagnoser was constructed from a given stochastic system with a finite 

number of projections, each of which contained a local diagnoser to complete the model 

of the system. Necessary and sufficient conditions of the codiagnosability, as well as 

computing method to check the codiagnosability for SDESs was presented, which 

generalizes the corresponding results of centralized diagnosis for SDESs. 
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Inagaki et al. presented a decentralized fault diagnosis strategy, which used timed 

Markov models (TMM) as local diagnosers and Bayesian networks as global diagnoser, 

for the event-driven controlled systems such as PLC control systems [77]. The 

relationship between two successive events observed in the corresponding subsystem is 

represented by TMM. The probability density function for the successive events in 

TMM was estimated with maximum entropy theory. The Bayesian network represents 

the causal relationship between the faults and observations from subsystem. They build 

the Bayesian network using the control logic through sensor actuator dependency graph 

and dependency tree.  

To overcome the partial observation problem in the finite state machine, 

Anthanasopoulou et al. have proposed the approach of maximum likelihood diagnoser 

under unreliable observations [78]. In this research, they developed a probabilistic 

methodology for calculating the likelihood of an observed, possibly corrupted event 

sequence that was generated by two candidate FSAs (one representing normal model of 

operation and the other for failed model). They formulated the fault diagnosis problem 

as deciding which FSA is most likely to have generated the observed event sequence. 

The observed events may be corrupted by failures causing event insertions and deletions 

or transposing etc. Given the possibly erroneous observed sequence, they proposed an 

efficient recursive algorithm by extending Viterbi algorithm in HMM to obtain the most 

likely underlying FSA. Diagnosability analysis was also implemented for her proposed 

diagnoser based on “miss detection” measurement. However, she missed the “false 

alarm” analysis for her diagnoser, which means her diagnosis may enlarge faulty 
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decision even when the system is fault-free. When doing fault isolation, it needs to 

compare the normal and every faulty mode to identify the exact fault. It requires heavy 

computation load. 

Finite state automaton (FSA) is a language based analysis method, which 

qualitatively analyzes the behavior of the discrete event systems by listing all possible 

transitions and states. When applying automaton on fault diagnosis, the main difficulty is 

the significant size of state space, which leads to problems of over-complexity, memory 

and speed of execution for the diagnosis. Petri net is an alternative to automaton on 

analyzing discrete event systems. Because Petri net focuses on structure modeling of the 

DES systems, applying Petri net on fault diagnosis may overcome the potential 

complexity deficiency. In the following section, we will review the Petri net’s 

application on diagnosing stochastic faults. 

 

2.3.2 Literature on Petri net diagnoser design 

Following the way on reviewing FSA diagnoser, the research on PN diagnoser 

were also classified according to the fault character and diagnoser architecture as 

tabulated in Table 5.  

PNs have been applied on many applications such as discrete event simulation 

and control, manufacturing system planning and scheduling, and manufacturing 

modeling and evaluation [79]. Recently, PNs have also been used for fault diagnosis 

applications including electro-mechanical equipment [80], power system [81], discrete 

event systems [24~39] etc. Maria gave a comprehensive survey of the state of the art of 
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fault diagnosis and identification with the framework of Petri net [24], but most of 

researches in Maria’s survey focused on diagnosing deterministic faults instead of 

stochastic ones.  

 

Table 5 Review on PN based diagnoser design 

Reference Method Fault 

Character 

Diagnoser 

Architecture 

Ushio [25] Extend Sampath’s diagnosability theory to 

unbounded Petri net, Proposed  -diagnoser and -

refined diagnoser  

Deterministic Centralized 

Chung 

[26] 

Extend Ushio’s diagnosability condition on PN, 

constructed the label propagation function and the 

range function in a diagnoser, proposed the associated 

verifier to check PN’s diagnosability 

Deterministic Centralized 

Lefebvre 

[27] 

Decide which set of places must be observed, defined 

minimal diagnosers to detect and isolate the firing of 

fault transitions immediately 

Deterministic Centralized 

Ruiz-

Beltrán 
[28] 

Use interpreted PN to model the system behavior that 

includes partially observable events and states. Based 
on the IPN model derived from an on-line 

methodology, proposed an on-line diagnosis scheme 

utilizing a solution of a programming problem 

Deterministic Centralized 

Genc [37] Distributed diagnosis of PN faults Deterministic Decentralized 

Wen [32] Proposed an approach to test diagnosability by checking 

the structure property of T-invariants of the nets under 
the assumption that a given subset of places are 

observable 

Deterministic Decentralized 

Ru [38] Transformed the partially observed PN into labeled PN, 
calculate the belief  regarding the occurrence of faults 

belonging to each type 

Stochastic Centralized 

Lefebvre 

[39] 

Proposed a fault diagnosis approach based on timed 

PN, but the transition period in the timed PN is 
stochastic, 

Stochastic Centralized 

 

 

Ushio et al. is the first have developed a Petri net model for discrete event system 

with faulty behaviors and introduced the diagnosability into PN diagnoser [25]. They 

assumed some of the places and all transitions were unobservable,  -diagnoser and  -

refined diagnoser were designed to detect failure transitions using coverability tree based 
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on this assumption. Finally they extended Sampath’s diagnosability condition [17] to 

unbounded Petri net.  

Chung et al. [26] extended Ushio’s PN fault diagnosis approach. They further 

assumed only some of the transitions (not all of them) were unobservable, and showed 

how to construct the label propagation function and the range function in PN diagnoser 

with newly available information provided by observable transitions, and presented a 

verifier algorithm as a polynomial check mechanism on PN diagnoser’s diagnosability.  

Dimitri et al. proposed an approach using partial but unbiased measurement of 

the places marking to estimate the firing sequence [27]. They modeled PN diagnoser’s 

diagnosability as the undetermined cycles included in the reachability graph, so they 

could decide which set of places must be observed for the exact estimation of some 

giving firing sequences, then designed minimal diagnosers to detect and isolate the firing 

of fault transitions immediately. They also investigated causality relationships and 

directed paths to characterize the influence and dependence areas of the fault transitions 

to design a delayed diagnosers. 

Ruiz-Beltrán et al. proposed fault detection and localization in DES using 

interpreted Petri net (IPN) [28]. They constructed a system model and a diagnoser by 

comparing normal and faulty markings, thus identifying fault places with fault isolation 

algorithm. An IPN is event-detectable when any pair of transitions can be distinguished 

from each other by the observation of input/output symbols. However, the IPN approach 

only identifies one fault and their PN model enters a place sink that leads to being 

blocked.  
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In real applications, diagnosis rules had been used to set up the firing rules 

between places to transitions or transitions to places in Petri net [29]. The diagnoser 

monitored the running information from the system, calculated the fault probabilities and 

truth degrees for the precondition and output events. Then it combined these truth 

degrees with fuzzy set operations to decide the root cause of the faults. Colored timed 

Petri net (CTPN) had been used on failure modeling and process monitoring for flexible 

manufacturing systems by Kuo et al. [30], they also studied CTPN’s applications on 

statistic process control, fault diagnosis, and failure model effect analysis (FMEA) . 

Miguel et al. had applied Petri net on the fault diagnosis and modeling of a liquids 

packaging process [31]. Wen et al. have used Petri net to analyze and enhance the 

diagnosability of discrete event systems such as semiconductor fabrication facility [32]. 

They formulated the diagnosability problem into a binary integer linear programming 

with feasible solution, and improved the non-diagnosable system to diagnosable by 

adding extra sensors. Prock proposed a Petri net fault detection method for large systems 

using dynamic measurement signals [33]. Yao et al. have proposed a Visual Basic (VB) 

human machine interface (HMI) platform for hybrid PLC and PC control based on Petri 

net theory for manufacturing systems [34, 35]. Hu et al. used hybrid Petri net to model 

and detect faults in a hybrid automated manufacturing systems [36]. Genc and Lafortune 

et al. presented a PN fault diagnosis approach using limited places on the same example 

of HVAC as Sampath’s [37]. In Genc’s work, components were modeled without 

synchronous composition, and a distributed diagnostic algorithm was proposed to 

identify the faults in an independent way. The approach presented a problem of coupling 
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in places that were executed at the same time, while in the process seeking to be reduced 

by means of an algorithm. They finished diagnosis simulation with Matlab and 

Graphviz. However, this technique is too complicated for implementation thus less 

possible to be applied to medium level of complex industrial processes. 

To study the undetermined fault beliefs with PN, Ru et al. studied fault diagnosis 

in discrete event systems modeled by partially observed Petri nets [38]. They 

transformed a partially observed Petri net into an equivalently labeled Petri net, a 

translator was constructed translating the sensor information from place/transition 

sensors into a sequence of labels in the equivalent labeled Petri net, then calculated the 

belief regarding the occurrence of faults belonging to each type as the sequence order of 

observations from place and transition sensors. Then online monitor was built to 

recursively produce these beliefs by tracking the existence of faulty transitions in 

execution paths that match the sequence of labels observed so far. Nevertheless, Ru’s 

belief calculation assumed that each event has the equal occurrence opportunity; he did 

not take the stochastic property into account.  

Lefebvre proposed an approach based on stochastic Petri nets (PNs) to design 

reference and faulty DES models [39]. They used the statistical analysis of the collected 

alarm sequences on the considered system to design and identify of these models. The 

model structure is described as a state graph, and the parameters of the probability 

density functions (pdfs) for transition firing periods are estimated. The reference models, 

described as timed PNs, are then used for fault detection and isolation issues. Finally, 
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stochastic PNs with normal and exponential pdfs are considered to include a 

representation of the faulty behaviors.  

 

2.3.3 Summary on DES diagnoser design 

Although FSA can build complex system models from individual components 

models and then combine them by parrell composition in a systematic manner, this 

process tries to explicitly enumerate all the possible states, and connect them with 

possible transition events with the system through transition function. Thus the 

complexities of FSA diagnoser usually increase exponentially when systems get larger 

and more complex. PN has more structure in their representation of the transition 

function. State information is embedded among a set of places that captures the key 

operations of the system, only relevant conditions are captured by the places, and then 

properly connect these places to transitions. PN’s “place-transition” graphic mechanism 

and mathematical capability may be used to model “IF-THEN” knowledge rules more 

conveniently.  

As identified in Section 1.2, stochastically failing automated assembly systems 

often have incomplete fault messages and data that render diagnose faults ineffective. 

Although these messages and experiences are useful, it is not that complete and precise 

with uncertainties in it. How can we integrate the experience and knowledge about the 

stochastic faults and address the uncertainty issue to improve the effectiveness of the 

diagnosis? Comparing with FSA, Petri net may be a better fit to the knowledge 

integration problem. In order to tackle the uncertainty issue, we are trying to introduce 
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the concept of fuzzy logic into the Petri net construction. Based on that, we are trying to 

solve them through designing a realtime fuzzy Petri net fault diagnoser for PLC based 

automated assembly systems. The detailed proposed fault diagnosis method will be 

presented in the later “real time fuzzy Petri net diagnoser” section. 

The difference between the proposed PN diagnoser and the work in [40] lies in 

that: they assume the DES system is a “black box” and no information about the internal 

structure of the system is required to design the reference model. Then they collected the 

alarm sequences about the DES system, and analyze the alarm sequence using statistics 

techniques. We will use the PN to model the key operation of the DES and design the 

reference model. Once observed output is different from the reference model, fault 

isolation algorithm will be started to locate the root causes. 
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CHAPTER III 

PROPOSED SENSOR DEPLOYMENT CONSIDERING HETEROGENEITY AND 

MULTIPLE-OBJECTIVE OPTIMIZATION 

To tackle the question in Section 1.2 on sensor deployment, we proposed the 

approach as Figure 3. Firstly, failure mode effect analysis (FMEA) on the manufacturing 

system is conducted to decide system fault mode. The fault information will formulate 

the values of fault nodes. FMEA also provides some information on how to initially 

select sensor type to detect certain faults. Secondly, a bipartite fuzzy graph is used to 

model cause-effect relation between fault nodes and sensor nodes in sensor deployment. 

In order to handle the uncertain vagueness and trade-offs in the sensor deployment 

decision, quantitative fuzzy graph [82], which is an extension of crisp graph theory, is 

applied to represent the detection relationship between sensors and faults. In the fuzzy 

bipartite graph, fault nodes include the quantitative information such as occurrence rate, 

severity and detecting rate, which are extracted from FMEA; sensor nodes include 

sensor characteristics including signal noise ratio (SNR), accuracy etc; and the edges 

between sensor nodes and fault nodes represent sensors’ detectabilities to faults. The 

detetctabilities can be modeled with sensor property, fault information and sensor fault 

relation including sensing time and sensing gain. It involves aggregating the 

heterogeneous sensor-fault information into a single edge element value. Here we can 

use analytic hierarchy process (AHP) to achieve this. Note that those nodes and edges 

information quantitatively model heterogeneous physical properties, also include 

uncertainties on faults, sensors and detecting relations. Fuzzy theory is used to normalize 
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heterogeneous information into comparable quantitative values and handle uncertainties. 

Finally, we need to optimize the sensor system’s cost and reliability under the 

constraints of detectability. To solve the sensor deployment optimization problem, 

lexicographical mixed linear integer programming and greedy algorithm are applied 

respectively to optimize assigning of sensors to faults. 

 

 

 

Figure 3 Sensor deployment strategy 
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severity 
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diagnosability measurement

Decide sensor type, number 

and location according to 

optimization results

Satisfying

Initially assign sensors to faults 
according to FMEA

Yes

No

Fuzzy set, 
Graph theory, 
Analytical Hierarchy Process

Failure Mode Effect Analysis 

Operation Research
Mixed Integer Linear Programming
Greedy Algorithm



 39 

3.1 Failure mode effect analysis on manufacturing system 

FMEA helps understand fault modes involved in the manufacturing system being 

diagnosed. It is based on the combination of functional analysis and hardware analysis to 

identify the possible failure modes. These effects or consequences of failure modes may 

provide some guidelines on methods of detecting the identified modes, detection 

performance evaluation, and possible means of prevention [83]. Followed that is to rank 

the unique effect of failure one by one. Once being ranked, the systems, components 

designated as severity in term of failure effect, are provided analysis in a grade fashion. 

An example on FMEA work sheet is shown in Table 6. The quantitative information 

extracted from FMEA will be contributed into the fault node values for later sensor 

deployment modeling and optimization. The detail on extraction of quantitative 

information will be presented in the later section. 

3.2 Fuzzy graph 

A fuzzy bipartite graph  SREGF

~~
,

~~
  is used to model the cause-effect 

relations in sensor deployment problem. The bipartite graph for the sensor deployment is 

illustrated as Figure 4. The fuzzy graph is composed of root nodes R
~

 and sensor nodes S
~

, as well as edges E
~

 .Root nodes R
~

 include the information of fault severity, occurrence 

rate and detection rate from FMEA; the FMEA information, which were aggregated and 

normalized with fuzzy set, are included in the square brackets. They represent system’s 

functional information from diagnosis perspective. Sensor nodes S
~

 include information 

such as SNR, resolution, accuracy, and sensor uncertainties. The sensor node values are  



 

 

4
0
 

 

 

Table 6 An example on failure mode effect analysis worksheet 

Function Failure 

Mode 

Effects Severity 

Rating 

Cause Occurrence 

Rating 

Current 

controls 

Detection 

rating 

Critical 

characteristic 

Risk 

priority 

number 

Recommended 

actions 

Extend the 

arm by 

cylinder 

Cylinder 

can’t be 

retracted 

or 

extended 

Pallet 

cannot 

be 

stopped 

6 Cylinde

r 

leakage 

or rod 

stuck 

2 Regularly 

Check by 

operators 

5 N 60 Check the 

pressure and air 

flow in the 

pipeline  
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decided in a similar way with fault nodes, and included in the parenthesis. The arc E
~

, 

representing fault detection relation between, S
~

 and R
~

, whose values are included in the 

square bracket linking between sensor nodes S
~

 and root node R
~

 represents the sensor’s 

detectability to fault root under the consideration of issues such as fault sensing time, 

sensing gain etc. The smaller the E
~

 value is, the weaker detection ability for S
~

 to detect 

R
~

 is. 

 

R1 R2 R3

S1 S2 S3

[0.3] [0.1] [0.02]

(0.1) (0.01) (0.05)

{0.05}

{0.02}

{0.01}

{0.1}

{0.01}

R: root cause

S: sensor

[ ]: RPN

(): sensor property

{ }: detection charistics

 

Figure 4 A fuzzy bipartite graph for sensor deployment 

 

 

Here path connection with fuzzy nodes and fuzzy edges is determined as: 

considering fuzzy set R
~

, S
~

of nodes and E
~

 of edge, then the path ijp from iR to jS is 

defined as  jkiij SSRp ,,,  , so the value of this path connection, which represents 

the comprehensive detectability of those sensors to that fault is decided as below 

equation: 

 

             jVkViVjjElkEkiEjkiij SSRSSSSSRSSRp ~~~1~~~ ,,,,,,          (3-1) 



 

 

42 

Here we modified the path connection as 

       jjElkEkiEjkiij SSSSSRSSRp ,,,,,, 1~~~    , because the node values 

will be aggregated into edge values using AHP. In this equation,  kiE
SR ,~ means the 

fuzzy possibility of connecting two nodes iR and kS ; “ ” is the conjunction operation in 

fuzzy set theory and this equation will calculate the minimum possibility of connecting

iR and jS . If there are several paths from iR to jS , these possible paths form the set of 

        jiiiijiijiijji RxxRxSRpSRpSRP
r
 ,,,,,,

21
 , 

then the connection strength between iR and jS  is gathered as 

 
 

 
jkiij

SRP
ji SSRpSRl

ji

,,,,
,

*                                 (3-2) 

Here “  ”is the disjunction operation in fuzzy set theory, which means the 

maximum intensity connection among those possible paths is the connection strength 

between fault iR and sensor jS . The path connection strength formed the element values 

in adjacent matrix P which is composed of columns representing fault node, rows 

representing sensor nodes; and element  ijp  representing cause-effect relation on sensor 

j’s detectability to fault i. 

 

3.3 Fault node value calculation  

As stated in the section 3.2, fault nodes include information on fault occurrence 

rate (O), severity rate (S) and detection rate (D). Here risk priority number (RPN) [83] is 
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introduced to comprehend these three kinds of information together. After ranking the 

severity, occurrence and detectability, the RPN value can be easily calculated by 

multiplying these three numbers as DOSRPN  . The fault modes that have the 

highest RPN should be given the highest priority for corrective action.  

The RPN value need to be normalized into comparable values based on fuzzy 

membership function [82]. Let RPN be a classical set of object, called universe, whose 

generic elements are denoted as rpn . A fuzzy subset A on RPN is a set defined by a 

membership function 
A which represents a mapping: 

 1,0: RPNA  

Here the value of  rpnA for the fuzzy set A is called the membership value or the grade 

of membership of RPNrpn . The membership value represents the degree of rpn  

belonging to the fuzzy set A. Figure 5 is a fuzzy membership function to normalize RPN 

value. With fuzzy set, we can map RPN value for different types of faults into 

comparable values between 0 and 1. 

 

 

Figure 5 Fuzzy membership function for fault node 
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3.4 Sensor node value calculation 

Sensor nodes include information such as signal noise ratio (SNR), sensitivity 

(sen), resolution (res), and accuracy (acc). Here sensor index (SI) is introduced to 

comprehend the information together. SI can be calculated by multiplying these four 

factors together as:  accressenSNRSI  1 . Similar to the fuzzy normalization 

step on deciding fault node value, the SI values can be mapped to [0, 1] for comparable 

values. Some illustrations on sensor properties are given below: 

Noise caused by sensor measurement: here we use SNR as the measurement to 

quantify how much a signal has been corrupted by noise when sensing signals. It is 

defined as nature logarithm operation on the ratio of signal power to the noise power 

corrupting the signal. A higher SNR values means a better detectabity of sensor to faults 

with other equal factors. 

Sensitivity: Sensitivity of a sensor is defined as how much the sensor's output 

changes when the measured faulty cause quantity changes. Sensors that measure very 

small changes must have very high sensitivities. The sensor’s fault detectability is 

positive proportional to its sensitivity. 

Accuracy: The accuracy of the sensor is the maximum difference that will exist 

between the actual value (which must be measured by a primary or good secondary 

standard) and the indicated value at the output of the sensor. The accuracy can be 

expressed either as a percentage of full scale. 

Resolution: The resolution of a sensor is the smallest change it can detect in the 

quantity that it is measuring. The resolution is related to the precision with which the 
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measurement is made. 

3.5 Sensor-fault value calculation 

Sensor-fault values include information such as sensing gain (SG), sensing time 

(ST). Here sensor-fault index (SFI) is introduced to comprehend the information 

together. SFI can be calculated as sensing gain dividing by sensing time as: 

STSGSFI / . Similar to the fuzzy normalization step on deciding fault node and 

sensor node values, the SFI values can be mapped to [0, 1] for comparable values. Some 

illustrations on sensor-fault relation are given below: 

Sensing time and Sensing gain are defined based on a sensor’s step response. 

The sensing time is defined as the rise time, while sensing gain is defined as the steady 

state gain [84].The shorter the sensing time and the higher the sensing gain, the better the 

sensor fault detectability.  

3.6 Edge relationship value calculation using AHP 

After calculation values on fault nodes and sensor nodes, deciding the values of 

edge elements in the graph is critical to the success of sensor deployment because the 

edge values represents sensors’ capabilities to observe certain fault signatures under 

constraints of sensor characteristics. When determining the edge values, it usually 

involves multiple attributes on faults, sensors and sensor-fault relations. All these factors 

will affect sensor deployment on fault diagnosis.  

In order to integrate these properties into one edge element value in fuzzy graph, 

analytic hierarchy process (AHP) [85] is used as the mechanism to handle the trade-off 
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between the properties in deployment. The detailed decision hierarchy of sensor 

deployment is shown as Figure 6. 
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Figure 6 Decision hierarchy for sensor deployment 

 

 

 

In Figure 6, the goal is to achieve the edge value between sensor and fault nodes 

for diagnosis purpose under the consideration of attributes including sensor properties, 

fault characteristics, and sensor-fault relations. When applying AHP to coalesce these 

heterogeneous properties, the procedures are as following: 

1) Generate comparison matrix. ija
 
is the pair-wise significance comparison of 

objective element i to objective element j, and its value is decided using Satty’s scale 

table [85]. Assuming there are n pieces of criteria, the pair-wise comparison matrix nCM

is obtained as equation (3), here jiij aa /1 . 
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
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
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
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




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







21

22221

11211

                    (3-3) 

2) Calculate the geometric means of each row ( im ) and relative priorities ( jp ): 

n
n

j
iji am

/1

1








 



as well as 



n

i
ijj mmp

1

, then we are going to have principle 

eigenvector for n criteria  TnpppPV ,,, 21  . 

3) Calculate the consistency index (CI) to verify the consistency of the result. If 

we define PVCMPV n ' , and the maximum or principal eigen value from 'PV as max ,  

we get 
 
n

pp
n

j jj 


1

'

max
 . Then the consistency index (CI) is obtained as:

 
 1

1max






n
CI


, 

and we can calculate the consistency ratio (CR) as 
RI

CI
CR  , RI is the random index can 

be gotten from [85]. If CR is smaller or equal than 0.1, the AHP process is acceptable. 

4) Once the CR is value is acceptable, which means the decision process is 

consistent, we can coalesce the multiple attributes into single value with the following 

equation:    T

nn PPPPattattattE ,,,,,,,
~

32121   , here iatt is the value for the ith 

attribute. Using the AHP iteratively from the lowest decision hierarchy to the highest 

hierarchy, finally we can aggregate the decision attributes involved in the sensor 

deployment into the edge element E
~

. 

Sensor characteristics including sensitivity, SNR, resolution and accuracy; and 

sensors observabilities to faults including sensing gain and sensing time were collected 



 

 

48 

for sensor deployment. They along with fault effect will be processed using AHP 

method as Figure 6. Comparison weight matrix was decided based on AHP priority 

matrix as shown in Table 7. From the table, if we assume equal importance to the three 

factors since they are independent from each other, we can see that these factors will 

have the priority vector (PV) of 33.33% each. With these PV values, the heterogeneous 

sensor deployment decision attributes can be aggregated into single edge element value 

as equation (3-4): 

   T

FSFS PVPVPVFISFISIE ,,,,
~

               (3-4) 

Table 7 Comparison matrix and AHP results 

Criteria Sensor 

Sensor-Fault 

Relation Fault 

Priority 

vector 

Sensor 1 1 1 33.33% 

Sensor-Fault 

Relation 1 1 1 33.33% 

Fault 1 1 1 33.33% 

%0%,0,3max  CRCI  

 

3.7 Sensor deployment optimization model 

After constructing the fuzzy graph as well as calculating the fuzzy relation value 

of the connecting edges and the node values, the final step is to match the fault nodes 

and sensor nodes into groups. This kind of matching should achieve overall minimum 

unobservability and cost as under the predefined performance requirements such as 

detectability.  

The unobservability with faults on the manufacturing system is defined as the 

equation (3-5) [9]: 
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    







 




n

j

xd

jii
jijfU

1

Prmaxmax                (3-5) 

This equation means the maximum probability of fault occurrence at the moment 

of sensor failure. At that time, the fault is unable to be observed due to sensor failure. 

Here if
 
is fault occurrence probability, jPr is sensor failure probability, jx is the 

number for sensor j . D is a binary bipartite matrix, which represents the cause-effect 

information between faults and sensors. The rows of this matrix correspond to faults, and 

the columns correspond to sensor nodes. The (i,j)th entry ( ijd ) of this matrix is 1 if fault 

i affects sensor j and is zero otherwise.  

 





 otherwise

jfaultobservetosensori
d

SRij
0

1
    (3-6) 

To map the relations between sensors and faults, another matrix is generated: 

detectability connection bipartite matrix ( P ). In this matrix, the columns are associated 

with candidate sensor pairs and the rows are corresponding to the faults. ijp is the 

connection strength between sensor j  and fault i . ijp ’s value, which has fused sensor 

nodes’ detectability information including sensing time, sensing gain, sensitivity etc, as 

well as fault nodes’ occurring rate and severity etc, was calculated through AHP with 

Figure 6’s decision hierarchy. 

 




 




otherwise

relationectsensorfaultp
pP

ij

SRij

0

det     (3-7) 

The objective of sensor deployment is to achieve the minimum unobservability 
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and cost under the constraints of as detectability. Mathematically, this can be expressed 

as: 

   

 





























j

i
j

jij

j
jj

n

j

xd

jii

x

MxptoSubject

xCMin

fUMin jij

*

1

:

:

Prmaxmax:

                        (3-8) 

In the objective modeling, jx are the decision variables which mean how many j 

type sensors need to be placed in order to monitor the system operation; unobservability 

and cost are the primary and secondary objective function that needs to be minimized 

under the constraints of detectability on the ith fault (
*

iM ) requirement. 

We notice that the primary objective is nonlinear function, which involves huge 

computation complexity on optimization. Thus we transform this nonlinear 

unobservability equation (3-5) into linear equation with the same objective through 

logarithmic operation, the unobservability for the system can be expressed as equation 

(3-9). 

      































 



n

j
jijji

n

j

d

jii dxffU ij

11

PrloglogmaxPrlogmaxlogmax       (3-9) 

Now we prove the logarithm transformation won’t change the optimality. 
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Proof: 

From    





n

j

xd

jii
jijfxU

1

Pr , we can get      jij xd

jijij

j

i fd
x

U 





PrPrln . 

We know that for all nj ,,2,1  ,    0Prln 



ijij

j

i fd
x

U
for 1Pr0  j while 

   0Pr 
 jij xd

j
, so    






n

j

xd

jii
jijfxU

1

Pr is monotonically decreasing with its negative 

derivative. In another word, the more sensors are added; the lower the unobservability 

for the system it is. 

Because the derivative of  xlog is a positive quantity for positive x, when 

applying logarithm,  xlog  is a monotonically increasing function for x >0. Then we 

have for 01 x and 02 x , 

   2121 loglog xxxx   

The unobservability of a fault i,  





n

j

xd

jii
jijfU

1

Pr is always nonnegative. 

Given a set of selected sensors, the fault i for which iU is maximum will also give the 

maximum value of  iUlog . Hence, minimizing the maximum iU is the same as 

minimizing the maximum  iUlog . Therefore, logarithm transformation  iUlog  is 

equivalent to iU on objective solution. 

After logarithm transformation, we can get the linear expression for equation (3-

8). Mathematically, this can be expressed as (3-10): 
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dCMin
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1

:

:

Prloglogmaxlogmax:

              (3-10) 

 

3.8 Optimization approaches 

As illustrated in section 3.6, the sensor deployment was formulated as multiple 

objectives on observability (primary) and cost (secondary) under the constraints of 

detectability. Given the above defined objective function, now the problem is one of 

choosing the minimum number of sensors key components that would cover all the root 

nodes, also satisfy the detectability requirement. This is the well-known ‘‘minimum set 

covering’’ problem [7]. An exhaustive search algorithm, which covers all fault nodes 

from 1 to n and tests if any combinations of sensor nodes can form a minimal cover set, 

is a possible solution. However, it was proved that the “set covering” problem is NP-

hard; that is, an algorithm to obtain the optimal solution in polynomial-time has not been 

found [62]. Thus the exhaustive searching on all options may not be computationally 

efficient. In order to solve the multiple-objective optimization problem, we developed 

two ways: 1) lexicographical mixed integer linear programming problem (L-MILP), and 

2) greedy algorithm. 

3.8.1 Lexicographical mixed integer linear programming 

In the survey paper [86], authors summarized current multi-objective 

optimization methods as the below Table 8. It is hard to say which method is better than 
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the other because it really depends on the application. But we need look into whether the 

selected approach is necessary and sufficient for Pareto optimality. Other considerations 

include programming complexity (PC), software use complexity (SUC), and 

computation complexity (CC). 

 

Table 8 Summarization optimization methods based on the priori preference 

[86] 

 Scalar 

Method 

Possible 

Pareto 

Opt. 

Necessary 

for Pareto 

Opt. 

Sufficient 

for Pareto 

Opt. 

PC SUC CC 

Weighted 

Global 

Criterion 

√  N/A √ 0 1 1 

Weighted Sum √   √ 0 1 0 

Lexicographic    √ 2 1 2 

Weighted 

Min-Max 

  √ weak 

Pareto opt. 

1 1 2 

Exponential 

Weighted 

√  √ √ 0 1 0 

Weighted 

Product 

√  N/A √ 0 1 1 

Goal 

Programming 

 √   1 1 2 

Bounded Obj. 

Function 

 √   1 1 1 

Physical 

Programming 

  √ √ 3 3 1 

 

For weighted criterion method:   



k

i

P

ii xFU
1

 , it requires a relatively large 

value of P to capture certain Pareto optimal points especially with non-convex Pareto 

optimal sets. As P is approaching infinity, this minimization is no longer sufficient for 

Pareto optimality; but only sufficient for weak Pareto optimality. For other weighted 

methods, a priori selection of weights does not necessarily guarantee the final solution 

will be acceptable; the weight must be a function of original objectives instead of 
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constant in order for a weighted sum to mimic a preference function accurately. 

However, varying the weight weights constantly and continuously may not necessary 

result in an even distribution of Pareto optimal points and an accurate, complete 

representation of the Pareto optimal set. With physical programming, the decision-

makers need to specify a relatively large amount of information, which can be viewed as 

a hindrance or as an opportunity. With relatively complex preferences, one must provide 

more information for physical programming. Then, the more information one provides, 

the more accurately preferences are represented.  

Thus we pick up lexicographical method for our sensor deployment optimization; 

now let us prove that lexicographical method won’t change the optimality on our sensor 

deployment scenario.  

Proof: 

Definition: Pareto optimal which is defined as: a point, Xx * is Pareto optimal 

if and only if there does not exist another point, Xx  such that    *xFxF  , and 

   *xFxF ii   for at least one function [87]. In another  word: when a system is under 

Pareto optimal already, given a “Pareto optimal” allocation of resources among a set of 

individuals, a change to a different allocation that makes at least one individual better off 

will make any other individuals worse off. 

According to lexicographic method’s assumption [87], objective functions are 

first arranged in the order of their importance. After ordering, the most important 

objective will be firstly optimized subject to the original constraints. If the problem has 

the only solution at this moment, this optimized solution is the solution to the whole 



 

 

55 

multiple-objectives optimization problem. Otherwise, the second most important 

objective will be optimized. However, when optimizing the second objective, we need to 

add a new constraint that guarantees the first objective function preserves its optimal 

value in addition to the original constraints. If this problem has the unique value on the 

second round optimization, it is the solution of the original problem. Otherwise, the 

process has to be iterated as above until going over the whole set of objectives. 

Firstly, suppose we had arranged the objective functions in the order from the 

most important 1F  to the least important kF , and then the lexicographic problem can be 

re-written as  

     

sxtoSubject

xFxFxFMin k

:

,,,: 21 
             (3-11) 

Here      xFxFxF k,,, 21  are the unobservability and cost functions in (3-10). We have 

previously proved that the unobservability function and cost function are monotonic on 

sensor numbers. Assume that sx * is a solution to the lexicographical multiple-objective 

optimization problem but not Pareto optimal, then there should exist another sx   such 

that    *xFxF ii  for all ki ,,2,1  , and there exists at least one j which strictly has

   *xFxF jj  . 

As aforementioned lexicographic optimization process, there are two possible 

situations when determining the optimized solution: 1) the unique solution can be found 

during the optimization process, or 2) optimizations have to be performed for every 

objective function   kixFi ,,2,1,  .  
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1) If the unique solution *x  to iF  can be found by lexicographic method before 

examining every objective function. The assumption    *xFxF ii   and the fact that 

objective functions in (3-10) are all monotonic functions imply that    *xFxF ii   is the 

only option, which is a contradiction with at least one i that has    *xFxF ii  . Thus *x is 

Pareto optimal, and there does not exist another point, sx  such that    *xFxF ii   for 

at least one i .  

2) If optimizations have to examine every objective function from  xF1 to  xFk , when

1i , since lexicographic ordering requires that  xF1 reaches minimum at *x , we will 

have    *
11 xFxF  , we also know  xF1 is monotonic, at this moment    *

11 xFxF  is the 

only possible situation. Using the similar reasoning we have    *xFxF ii   for every

ki ,,2 . This contradicts the assumption that at least one objective function is 

strictly inequal. Thus *x is also Pareto optimal. 

So for the sensor deployment problem, the lexicographical optimization to 

optimize the objectives in an ordered sequential way won’t change the optimality of the 

original problem.  

Now we know that we can optimize the multiple objectives problem in sensor 

deployment in an ordered lexicographical MILP manner. There are several ways to solve 

a MILP problem. One is linear programming (LP) relaxation, which uses linear 

programming to solve the integer programming problem [88]. It attempts to use the 

approximate procedure of simply applying the simplex method to the LP relaxation and 

then rounding the noninteger values to integers as the resulting solution. However, an 
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optimal linear solution is not necessarily feasible after the rounding. Even if an optimal 

solution for the LP relaxation is rounded successfully, there is still no guarantee that this 

rounded solution will be the optimal integer solution. Because of these, another common 

approach called “branch and bound” was developed for integer programming. It 

systematically enumerates all candidate solutions, then discards large subsets of fruitless 

candidates, by using upper and lower estimated bounds of the quantity being optimized. 

For the branch and bound method, when listing a finite number of feasible solutions 

ensures that the problem is readily solvable, finite numbers usually increase 

exponentially. The key to the remarkable efficiency of the branch and bound method lies 

in removing some feasible solution from a linear programming problem which will make 

it easier to solve. However, this efficiency condition is not always satisfied especially 

when we try to solve multiple-objective optimization sequentially. Because of these, a 

better approach for dealing with multiple objective IP problems that are too large to be 

solved exactly is to use one of the available heuristic algorithms such as greedy search. 

They tend to be considerably more effective in finding good feasible solutions. 

3.8.2 Greedy algorithm 

To reduce the optimization load, we also tackled this optimization problem with 

greedy algorithm, which iteratively adjusts the cover (R, S) until the subgraph SRG ,  has 

an optimized matching. The detail of the greedy algorithm is shown as below: 

1) Initialize those variables: current solution ( 0CS ), optimal solution ( 0OS ), total 

available cost (TC ), cost used ( 0UC ) and current available cost ( AC ). 
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2) Sort the fault nodes in descending order according to the fault nodes’ unobseravbility 

values; 

3) Since the primary object is to lower the maximum unobseravbility, pick the fault 

node with the highest unobservability, because such a selection will lead to the 

greatest reduction on unobservability. If there exists several fault nodes with the 

same unobservability, choose the one with the highest RPN value, which means this 

fault is the most critical; 

4) Sort the sensor nodes that have connection strength to the selected fault node; 

5) Pick up the sensor node that has the largest connection with the fault node; 

6) If more than one sensor node satisfy the requirement, pick up the one with the lowest 

cost; 

7) Update the variables with jSCSCS  , jCUCUC  ; 

8) Recalculate the detectability for the updated system and maximum unobseravlity as 

equation (3-9) for the sensor remainders; 

9) Check the constraints requirement with the updated detectability; 

10) If it satisfies all the constraints, stop the search. Otherwise, go back to repeat step 2) 

to 10) iteratively. 

11) The condition that will terminate the procedure is based on the detectability criteria: 

if the selected sensor set can satisfy the minimum detectability request. We will stop 

the search on sensor set and the set of sensors in OS is the selected sensor set for the 

diagnosis purpose. 
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3.9 Case studies 

 

In order to illustrate the proposed sensor deployment approach on diagnosing 

manufacturing system, two case studies, one for continuous manufacturing and the other 

for discrete manufacturing system, were developed respectively.  

3.9.1 Application on continuous manufacturing system 

3.9.1.1 Graph model on the continuous manufacturing system 

A five-tank system (the data is available from Zhang [11]) is employed to 

demonstrate the proposed sensor deployment approach on continuous manufacturing 

system. The five tank system is composed of piping, valves, pumps and reservoirs in the 

facility as shown in Figure 7(a). In Zhang’s publication [11], he assumed that all the 

fault nodes have the same RPN values, so their fault nodes are normalized as [1] in the 

fuzzy graph the directed graph for the five-tank system is shown as below Figure 7(b). 

Table 9 and 10 summarized the sensing gain/time, and sensor properties to determine the 

detectability of sensors to faults. After transform the directed graph into the bipartite 

graph, the incidence matrix or the connection matrix between the sensors and the faults 

is shown as Table 11. 
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(a)                                                                                                      (b) 

Figure 7 (a) A five tank system, (b) quantitative directed graph between faults and 

sensors 

 

 

Table 9 Sensing gain and time to determine the fault detectability  

[11] 
Sensor Sign Sens. 

gain 

Sens. 

time 

Sensor Sign Sens. 

gain 

Sens. 

time From To From To 

F-L1**  L1 - 0.65 1/100 F-L2  L2 - 24.4 4/100 

F-L3  L3 - 0.14 1/100 F-L4  L4 - 1.1 4/100 

F-L5  L5 - 5.34 4/100 F-V6  F6 - 19.8 0 

F-V7  F7 - 99 0 F-V8  F8 - 19.8 0 

F-V9  F9 - 44 0 F-V10  F10 - 55 0 

F-V11  F11 - 55 0 F-V12  F12 - 44 0 

F-Qi+  L1 + 0.34 2/100      

L1  F6 + 5 0/100 F6  L1 - 0.03 2/100 

F6 L2 + 0.8 12/100 F7 L3 + 0.01 21/100 

L2  F8 + 1.25 0/100 F8  L2 - 0.95 4/100 

L1  F7 + 25 0/100 F7  L1 - 0.04 1/100 

L3  F9 + 36 0/100 F9  L3 - 0.01 1/100 

F9  L5 + 0.2 81/100 F10  L4 + 0.06 20/100 

L5  F12 + 5.05 0/100 F12  L5 - 0.23 4/100 

L3  F10 + 45 0/100 F10  L3 - 0.01 1/100 

L4  F11 + 16.1 0/100 F11  L4 - 0.07 4/100 

 

 

L2

L1

L1

L3L2 L3

L4 L4L5

Qi+

L5

V6 V7

V8 V9 V10

V11V12

F6 F7

F8 F9 F10

F11F12

[1]
[1]

[1][1]

[1]

[1]

[1]

[1]

[1]

[1]

[1] [1]

[1]

(0.6)

(1)

(1)

(1)

(1)

(1)

(1)
(1)

(1)(1)

(1) (1)

{0.7}

{0.7}

{0.9} {1}

{0.93} {0.75}

{0.75}
{0.78}

{0.99} {1}

{1}{0.99}

{0.9}
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Table 10 Sensor information about the five tank system  

[11] 

Sensor Cost SNR Pr Resolution 

L1 100 6 0.001 0.01 

L2 100 10 0.001 0.01 

L3 100 10 0.001 0.01 

L4 100 10 0.001 0.01 

L5 100 10 0.001 0.01 

F6 100 10 0.001 0.01 

F7 100 10 0.001 0.01 

F8 100 10 0.001 0.01 

F9 100 10 0.001 0.01 

F10 100 10 0.001 0.01 

F11 100 10 0.001 0.01 

F12 100 10 0.001 0.01 

 

 

Table 11 ijd connection matrix for between sensors and faults in five tank system 

[11] 

Sensor 

Fault L1 F2 L3 L4 L5 F6 F7 F8 F9 F10 F11 F12 

F-L1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

F-L2  -1      -1     

F-L3   -1 -1 -1    -1 -1 -1 -1 

F-L4    -1       -1  

F-L5     -1       -1 

F-V6 +1 -1 +1 +1 +1 -1 +1 1 +1 +1 +1 +1 

F-V7 +1 +1 -1 -1 -1 +1 -1 +1 -1 -1 -1 -1 

F-V8  +1      -1     

F-V9   +1 +1 -1    -1 +1 +1 -1 

F-V10   +1 -1 +1    +1 -1 -1 +1 

F-V11    +1       -1  

F-V12     +1       -1 

F-Qi+ +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 
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With the sensor, fault information, the aggregate them into a single using the 

aforementioned AHP approach, the connection matrix representing the detecting ability 

of sensor j to fault i is shown as Table 12. 

 

Table 12 ijp connection matrix for between faults and sensors in five tank system 

 L1 L2 L3 L4 L5 F6 F7 F8 F9 F10 F11 F12 Un Order 

F-L1 0.54 0.67 0.67 0.67   0.68 0.72 0.67 0.67 0.67 0.67   -32 10 

F-L2   0.69           0.69         -8 1 

F-L3     0.67 0.67 0.67       0.68 0.69 0.67 0.67 -23 9 

F-L4       0.67             0.68   -8 2 

F-L5         0.67             0.69 -8 3 

F-V6 0.53 0.67 0.67 0.67   0.73 0.68 0.67 0.67 0.67 0.67   -32 11 

F-V7 0.54 0.67 0.67 0.67   0.70 1.00 0.67 0.67 0.67 0.67   -32 12 

F-V8   0.68           0.73         -8 4 

F-V9     0.67 0.67 0.67       0.81 0.70 0.67 0.67 -23 7 

F-V10     0.67 0.67 0.67       0.70 0.85 0.68 0.67 -23 8 

F-V11                     0.85 0.67 -8 5 

F-V12         0.67             0.81 -8 6 

F-Qi+ 0.53 0.67 0.67 0.67   0.67 0.68 0.67 0.67 0.67 0.67   -32 13 

 

3.9.1.2 Results on continuous manufacturing system and discussions 

Zhang’s SDG model cannot include the quantitative sensor-fault information in 

the model, so we used the fuzzy graph to improve the existing work. In the fuzzy graph 

based optimization, lexicographic and greedy optimizations were used to optimize the 

model in equation (3-10) with the quantitative connection matrix information. The 

outcome performance comparisons between the SDG and fuzzy graph sensor 

deployment follow the flow chart in Figure 8. 

Table 13 summarized the comparisons on performance between SDG and fuzzy 

graph on sensor deployment. In this table, the second row is the optimization outcome 
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based on signed directed graph (SDG), which was applied by [11] to optimize the sensor 

deployment on the five-tank system. The third and fourth rows are the results based on 

fuzzy graph with lexicographical and greedy optimization respectively. We compared 

the SDG and fuzzy graph’s performance on deploying sensor to diagnose faults from the 

aspects of: total number of selected sensors, total cost, minimum detectability among all 

faults, and average detectability among all faults. The definition of minimum 

detectability and average detectability were defined as below equation (3-12) and (3-13) 

respectively. 

 

 

 
Figure 8 Comparisons between SDG and fuzzy graph on sensor deployment 

 

 

The Minimum detectability among all faults is defined as: 

 








ij

sensorselectedji

pD maxmin)min(               (3-12) 

The average detectability among all faults is defined as: 

 








ij

sensorselectedji

paverageDave max)(             (3-13) 

 

SDG based sensor 

deployment
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sensors

Remove unwanted 

sensors columns in 
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fuzzy graph’s 

performance
Fuzzy graph based 

sensor deployment

Optimally select 

sensors

Remove unwanted 

sensors columns in 
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equation (12) and (13)

Calculate min(D) and 

ave(D) according to 

equation (12) and (13)

Greedy

search

Greedy search 

or L-MILP



 

 

64 

From Table 13, we can see that the minimum detectability on the five-tank 

jumped from SDG’s 0 to fuzzy graph’s 0.67, and average detestability also increased 

from SDG’s 0.62 to fuzzy graph’s 0.70. Thus we conclude that with the inclusion of 

quantitative information, fuzzy graph based sensor deployment modeling greatly 

enhanced the diagnosing systems’ detectability to faults than signed directed graph 

approach. 

 

 

Table 13 Results for the five tank system 
Approach Sensors 

selected 

# of 

selected 

sensors 

Total 

cost of 

selected 

sensors 

Minimum 

detectability 

among all 

faults 

Average 

detectability 

among All 

faults 

Signed directed 

graph [11] 

[L2, L4, L5]  3 300 0 0.62 

Fuzzy graph 

with 

lexicographical 

 [F8,F11, F12] 3 300 0.67 0.70 

Fuzzy graph 

with greedy 

 [F8, F11,F12] 3 300 0.67 0.70 

 

 

The SDG method only cares the single attribute that whether there is a 

connection between the fault and sensor, but not considering how the connection it is, 

for example, the strength of the connection. The fuzzy graph included quantitative 

information such as sensor properties, fault modes and sensor-fault relations into the 

connection. These attributes are heterogeneous and not comparable, so we used fuzzy 

membership function to normalize them into values in [0, 1], then aggregate them into 

single edge values with AHP method. In the SDG approach, the aforementioned 
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quantitative sensor-fault relation cannot be included in the modeling. Thus when 

allocating the sensors, it is just the problem of choosing the minimum number of sensors 

key components that would cover all the root nodes.  Thus SDG’s optimization always 

tries to choose the sensor node that has the most edge connections with the faults. After 

including the quantitative information in fuzzy graph, its optimization algorithm will 

pick up the sensor that has the largest edge connection with the fault at each time. Here 

we included the SDG based sensor deployment in the paper appendix. 

 

3.9.2 Application on discrete manufacturing system 

The other case study for discrete manufacturing system was developed on a dual 

robot in Rockwell
®
 Automation System Integration Laboratory at Texas A&M 

University. The dual robot is as shown in below Figure 9 (a) [89]. It is a robot work cell 

including conveyor, two 4-axis robot arms, stoppers, parts feeders, computer vision and 

controller. The robot arm1 is composed of shoulder, elbow, wrist and gripper. The 

sequential operations for the robot arm are: 1) stopper block the pallet and send signal to 

initiate arm; 2) open gripper, lower elbow, pick up part from part feeder; 3) raise elbow, 

extend the shoulder, lower elbow, open gripper; and 4) close gripper, raise elbow, retract 

shoulder. These actions were controlled by Allen Bradley
®
 programmable logic 

controller SLC 5/05 with other modules. Due to space limitation in the paper, we only 

concentrate on deploying sensors to diagnose faults with robot arm1. 
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(a) 

 

   

(b) 

Figure 9 (a) An automated assembly dual robot (b) initial fuzzy graph for dual 

robot  
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3.9.2.1 Graph model on the discrete manufacturing system 

Arm1 includes shoulder, elbow and gripper which are mostly composed of 

pneumatic control devices such as air cylinders, solenoid valves; and Hall sensors. A 

simplified FMEA on arm1 is shown as Table 14. Literature [90] and [91] illustrated that 

the most common failures with solenoid valves were caused by either overpowering and 

eventual overheating of the valves, or wearing out of the valve components; while the 

failures with cylinder were due to leakage and cylinder stuck. Thus the promising sensor 

candidates to detect those faults can be pressure sensors and voltage current checking. 

 

 

 

Table 14 Faults and sensors in dual robot arm 

 Component 

Fault 

Node 

Possible 

Fault 

Occurrence 

Rate 

Severity 

Rate 

Detection 

Rate Sensor Candidates 

Shoulder 

  

  

R1 Cylinder 6 7 2 pressure sensor (S1) 

R2 Hall sensor1 2 1 5 voltage sensor (S2) 

R3 Hall sensor2 2 1 5 voltage sensor (S3) 

R4 Solenoid 6 8 9 voltage sensor (S4) 

Elbow 

  

  

R5 Cylinder 6 7 2 pressure sensor (S5) 

R6 Hall sensor1 2 1 5 voltage sensor (S6) 

R7 Hall sensor2 2 1 5 voltage sensor (S7) 

R8 Solenoid 6 8 9 voltage sensor (S8) 

Gripper 

  

R9 Solenoid 6 8 9 voltage sensor (S9) 

R10 Cylinder 6 7 2 pressure sensor (S10) 
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Table 15 Factors to determine fault detectability 
Sensors to detect 

faults 

Sensitivity 

(full  

scale) 

SNR 

(dB) 

Resolution 

(bit) 

Accuracy 

(full 

scale) 

sensor 

fail rate 

(Pr) 

 

Sens. 

gain 

Sens. 

time 

(ms) 

Cost 

($) 

Fault  

node 

Sensor 

node 

R1 S1 2.5% 20 12 3% 0.001 1 4.6  30 

R2 S2 1%  100 16  1%  0.001 1 3 80 

R3 S3 1%  100 16  1%  0.001 1 3 80 

R4 S4 1%  100 16  1%  0.001 1 3 80 

R5 S5 2.5% 20 12 3% 0.001 1 4.6  30 

R6 S6 1%  100 16  1%  0.001 1 3 80 

R7 S7 1%  100 16  1%  0.001 1 3 80 

R8 S8 1%  100 16  1%  0.001 1 3 80 

R9 S9 2.5% 20 12 3% 0.001 1 4.6  80 

R10 S10 1%  100 16  1%  0.001 1 3 30 

 

Table 15 listed the factors that will determine the fault detectability. After 

normalization of the sensor nodes, fault nodes as well as edges, the bipartite graph for 

the sensor deployment is initially shown as Figure 9(b), and the bipartite connection 

matrix ijp with the graph are also listed with Table 16.  

 

 

Table 16 ijp Connection matrix for initial fuzzy graph 

 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Unobservability RPN Order 

R1 0.55          -6 0.083 1 

R2  0.81 0.81 0.34    0.67 0.67  -17 0.43 9 

R3  0.81 0.81 0.34    0.67 0.67  -17 0.43 10 

R4 0.55   0.34       -9 0.009 4 

R5     0.55      -6 0.083 2 

R6      0.81 0.81 0.67 0.67  -14 0.43 7 

R7      0.81 0.81 0.67 0.67  -14 0.43 8 

R8     0.55   0.67   -9 0.009 5 

R9         0.67 0.55 -9 0.009 6 

R10          0.55 -6 0.083 3 
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3.9.2.2 Results on discrete manufacturing system and discussions 

With this bipartite graph and connection matrix ijp , we started to optimize the 

sensor deployment using lexicographical mixed integer linear programming (L-MILP) 

and greedy algorithm respectively. The L-MILP and greedy optimization results are 

listed in Table 17 and 18 respectively. It illustrated how to choose sensor deployment 

including location, number and type in order to satisfy detectability requirements. In 

Table 17, when required detectability constraint was 0.1, L-MILP predicted that using 5 

sensors with cost of 250 could achieve minimum unobservability of -5. These five 

selected sensors locate at the end of the graph (S1, S3, S5, S7, S10 in Figure 9 (b)). This 

is consistent with the fault identification reasoning: these three sensors (S1, S5, and S10) 

are for monitoring the solenoids, which drive cylinders with the most observable actions 

for the troubleshooting. Thus in order to maintain the minimum detectability, the sensors 

to the solenoid shall be considered first. S3 and S7 are for monitoring control input 

signals (A1XH3 and A1ZH2), so they are also selected for better detectability. Later 

when required detectability constraints increased to 0.8, L-MILP predicted that it needed 

10 sensors with cost of 500 to achieve minimum unobservability of -5. In Table 18, 

when required detectability constraint was 0.1, greedy predicted that 5 sensors with cost 

of 250 could achieve minimum unobservability of -5. Later when required detectability 

constraints increased to 0.8, greedy predicted that it needed 8 sensors with cost of 340 to 

achieve minimum unobservability of -5. 
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Table 17 Optimization results using L-MILP 
Required 

Detectability 

Sensor selected Cost  

utilized 

Achieved 

unobservability 

Total 

Sensor 

number 

Optimization 

Time 

(Seconds) 

0.1 S1, S3, S5, S7, S10 250 -5 5 0.01 

0.2 S1, S3, S5, S7, S10 250 -5 5 0.02 

0.3 S1, S3, S5, S7, S10 250 -5 5 0.02 

0.4 S1, S2, S5, S6, S10 250 -5 5 0.03 

0.5 S1, S2, S5, S6, S10 250 -5 5 0.03 

0.6 S1(2), S2, S5, S7(2), 

S10(2) 

390 -5 5 0.02 

0.7 S1(2), S2(2), S5(2), 

S6(2), S10(2) 

500 -8 10 0.03 

0.8 S1(2), S2(2), S5(2), 

S6(2), S10(2) 

500 -8 10 0.03 

 

 

 

Table 18 Optimization results using greedy algorithm 
Required 

Detectability 

Sensor selected Cost  

utilized 

Achieved 

unobservability 

Total 

Sensor  

number 

Optimization 

Time 

(Seconds) 

0.1 S1, S2, S5, S6, S10 250 -5 5 0.0050 

0.2 S1, S2, S5, S6, S10 250 -5 5 0.0050 

0.3 S1, S2, S5, S6, S10 250 -5 5 0.0058 

0.4 S1, S2, S5, S6, S10 250 -5 5 0.0049 

0.5 S1, S2, S5, S6, S10 250 -5 5 0.0049 

0.6 S1, S2, S5, S6, S10 250 -5 5 0.0049 

0.7 S1(2), S2, S5(2), S6, 

S10(2) 

340 -5 8 0.0050 

0.8 S1(2), S2, S5(2), S6, 

S10(2) 

340 -5 8 0.0049 

 

 

 

Comparisons were conducted from the perspectives of cost and detectability on 

the system. Cost of the sensor system is simply summing all the sensor costs involved in 

the deployment. The unobservability of the system follows the equation (3-12) and (3-

13)’s definition.  
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Table 19 Results comparison for the dual robot system 
Approach Sensors 

selected 

# of 

selected 

sensors 

Total 

cost of 

selected 

sensors 

Minimum 

detectability 

among all 

faults 

Average 

detectability 

among all 

faults 

Signed directed 

graph 

[S1, S5, S9, 

S10]  

4 170 0.55 0.61 

Fuzzy graph 

with 

lexicographical 

 [S1, S3, S5, 

S7, S10] 

5 250 0.55 0.654 

Fuzzy graph 

with greedy 

 [S1, S2, S5, 

S6, S10] 

5 250 0.55 0.654 

 

 

From Table 19, further consideration is that if we pick up any one more sensors 

in addition to the current SDG optimization result, how the optimization comparison will 

be looked like? The newly achieved minimum detectability and average detectability for 

adding one more sensor are summarized in the Table 20. From the table, we can see that 

the SDG approach still cannot have better performance than the proposed approach even 

adding an additional sensor to the current optimized sensor selection, because the 

proposed approach selected the sensor of [S1, S3, S5, S7, S9] and achieved minimum 

detectability of 0.55 and average detectability of 0.654 (Table 19). 

 

Table 20 Summarization of results on adding any another sensor 

Newly 

added 

sensor 

New sensor 

configuration 

Minimum 

detectability 

Average 

detectability 

S2 [S1, S2, S5, S9, S10] 0.55 0.638 

S3 [S1, S3, S5, S9, S10] 0.55 0.638 

S4 [S1, S4, S5, S9, S10] 0.55 0.598 

S5 [S1, S5, S6, S9, S10] 0.55 0.638 

S6 [S1, S5, S7, S9, S10] 0.55 0.638 

S8 [S1, S5, S8, S9, S10] 0.55 0.61 
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Articles have mentioned that including redundant sensors will improve the 

performance of fault detection [92]. However due to the budget or space installation 

constraint, it may not be possible to install every redundant sensor. In literature [92], it 

noted that that in a nuclear plant, adding extra sensor will impact the maintenance, 

sometimes only with an average variation of 0.35% on the optimization results, it can 

still make some difference on the efficiency. 

We also compared the optimization approaches with the reasoning process and 

found that the selection of sensor for each fault node is based on the biggest path 

connection due to the greedy principle. Only one sensor either S2 or S3 is kept in the 

sensor system. Possible reason for this deletion is that: sensor nodes S2 and S3 monitor 

fault nodes R2 and R3, which are the hall sensors A1XH2 and A1XH3’s abnormalities. 

Those two Hall sensors are the input signals to activate the actions of shoulder. A1XH1 

and A1XH2’s on/off states are opposite to each other ( 3121 XHAXHA  ).  Thus the 

faults R3 can be inferred from the signals related on S2. Besides this, R2 and R3 are the 

least crucial (with the unobservability order of 9 and 10, and unobservability value of -

17) in Table 12, so only one S2 kept in the optimized sensor system will still guarantee 

the detectability. The selection of S6 or S7 can follow the similar reason as selecting S2 

and S3. 

We compared the offline sensor selection computation cost in terms of the 

computation time. The greedy search was programmed in Matlab
®
 and MILP in 

LINGO
®
. The computation was performed on a 2.7G dual core computer with memory 

of 6.0G RAM. The computation time is shown as Figure 10. We can see that greedy 
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search is more computation efficient that the lexicographical integer programming. 

Possible reason may be like this: L-MILP was carried out to solve the optimal objectives 

one by one; branch and bound is used as the mechanism to find the integer solution. This 

recursion process hinders the computation efficiency. However, greedy algorithm selects 

the solutions that target the objectives directly. It may be an efficient approach for 

dealing with mixed integer linear problem that is too large to be solved exactly, 

especially when there is some experience knowledge to guide the search.  

 

 

 

Figure 10 Sensor selection computation comparison 

 

 

 

3.10 Conclusion 

Optimal sensor deployment is an important research issue for monitoring and 

detecting faults in that the accurate and efficient collection of fault signal signature is the 

very first step for diagnostics. The objective of this chapter is to develop a fuzzy 

quantitative graph based sensor deployment methodology which can process 
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heterogeneous properties and multiple-objective optimization in fault diagnosis. In the 

proposed methodology, sensor deployment started with studies on failure mode effect 

analysis (FMEA) on the manufacturing system, which specified the failure modes and 

their criticality and probability of occurrence. Quantitative fuzzy graph was used for 

modeling cause effect between faults and sensors. The element values in the fuzzy graph 

were decided with the considerations on fault characteristics, sensor properties, as well 

as sensors’ detectabilities to faults. To handle the trade-off caused by heterogeneous 

properties among sensors, AHP was applied to aggregate those properties into a single 

edge value. With the fuzzy bipartite graph, sensors were optimally assigned to faults 

under the help of lexicographical mixed integer linear programming and greedy 

algorithm respectively. Finally case studies on how to deploy sensors to detect faults on 

continuous and discrete type manufacturing systems were presented to illustrate the 

proposed design. Various issues discussed in the methodology were demonstrated in the 

case studies; results from different modeling and optimization approaches were 

compared and discussed also. The case study validated that the proposed fuzzy graph 

based methodology can greatly enhance the detectability to faults than SDG based 

sensor deployment (from SDG’s 0.62 to fuzzy graph’s 0.70 in the five-tank application 

and from SDG’s 0.61 to fuzzy graph’s 0.654 in the dual-robot application). The 

contribution of our work lies on that the optimized sensor deployment approach can 

include kinds of heterogeneous quantitative information to direct the multiple-objective 

decision in sensor deployment, thus achieving the minimum unobservability and cost 

under the constraints of detectability, resources and uncertainties. The fuzzy graph based 
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sensor deployment is systematic and can be easily integrated into diagnosis architecture 

to detect faults in complex systems such as flexible manufacturing systems (FMS), 

HVAC and semiconductor production facilities. 
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CHAPTER IV 

PROPOSED DIAGNOSER DESIGN BASED ON REALTIME FUZZY PETRI NET 

 

To efficiently detect the stochastic faults in automated assembly system, 

considering integration of industrial experience (useful but with uncertainty) into the 

diagnoser design, we proposed a realtime fuzzy Petri net (RTFPN) diagnoser 

architecture as shown in Figure 11. This architecture includes a realtime PN model 

 0, MQ , and a fuzzy PN diagnoser  0, MQd . The realtime model keeps checking the 

input and output of the PN plant, and compares them with the pre-settings. Once a 

difference is detected, it will start the fuzzy Petri net diagnoser to locate the root cause of 

the fault. The details of this diagnosis architecture will be specified in the following 

sections. 
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Figure 11 Fault diagnosis based on realtime fuzzy Petri net for automated system 
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4.1 Realtime Petri net model 

The procedure of constructing RTPN model to monitor discrete manufacturing 

systems is as following [79]: 

1) Model the control sequence using PN to obtain the model of the sequence controller. 

2) Formulate an input mapping table between the system’s input devices such as limit 

switches, sensors with the places in the PN model. The initial states of the system 

decide the initial marking of RTPN. Identify the timing information for activities to 

formulate the later mapping table. 

3) Assign output channels to the system’s output devices such as solenoids, relays. 

Also, identify timing information for activities to formulate an output mapping table.  

4) Using output mapping table and the actions that are modeled by a transition, assign a 

number to each transition in a PN based controller. The operations and time delays 

given in the sequence to be controlled decide firing time function of RTPN.  

Following the above procedures, Petri net model is defined as

 hYXMWOITPQ ,,,,,,,, 0 , where:  mPPPP ,,, 21  is the finite set of places. 

 nTTTT ,,, 21  is the finite set of transitions, these transitions are classified as 

observable transitions ( oT ) or unobservable transitions ( uoT ), so we have uoo TTT  and 

uoo TT  . The observable transitions can be indicated by sensors on whether a 

transition has been fired or not. In contrast, the unobservable transitions cannot be 

observed directly given the current sensor configuration. The association between 
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sensors and transitions are linked by the labeling function: **: TLA , which will be 

defined later. 

In our PN model, faults (
FT ) were modeled as a subset of unobservable 

transitions and partitioned into m independent types, so we have (1) uoF TT  , (2)

FmFFF TTTT  21 , and (3) FjFi TT   if  mji ,,2,1,  and ji  . This model 

includes both normal and faulty behavior of the system; fault can happen at any state of 

the normal operation. TPI :  is the pre-condition of transition which is the finite set 

of arcs from places to transitions; PTO : is the post-condition of transition which is 

the finite set of arcs from transitions to places; 0M is the finite set of initial token 

markings; and W is the incidence matrix and IOW  ;  kPX ,2,1,0:  and

    jipXpX ji  , , is the input signal vector; Y  is the output signal vector. h is the 

mapping function between input/output devices and places/transitions. It is noted that: 

Input signal vector ( X ) reads the state of input signals from digital input 

interface. X associates attributes with every transition.  ii thX  is the attribute 

associating with transition it . 

Output signal vector (Y ) intends to send output signals through digital output 

interface. Y also associates attributes to every place.  iii tphY ,  is the attribute 

associating with transition it and place ip which represents the number that is to be sent 

to the digital output interface. 
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With the realtime PN model structure, we further build an integrated I/O 

mapping table to describe the relation between the PN model and the input/output 

devices. This table integrates different combinations of input sensor readings and output 

status, so it can help locate which place is achieved and which may lead to the faults 

according to the location of the process. The mapping table is built in this way: let 

 0, MQR be the reachable set from initial marking, so we will refine the model to 

remove the states that cannot be reached, thus we have

   0,: MQRpMPpp iii  . Then the input/output function

   iiii YXPMh ,:   is set up for each possible input/output. h  associates each 

marking in  0, MQR with input/output vector with sensors, the timing information of 

each I/O are also integrated in the table. 

Finally, the state equation for the realtime Petri net can be calculated as:  

   







iiiii

iii

MtphYX

WuMM

,,,

1                    (4-1) 

Where iM is the marking of plant; iu is the firing vector to indicate which transition is 

currently fired; h is the mapping table between the discrete set of possible inputs/outputs

 ii YX ,  each marking  iii Mtp ,, in the reachable set  0, MQR . 

4.2 Diagnoser design 

In automated assembly system, faults maybe caused by design errors, 

manufacturing defects, users or programs that do not follow the protocols, component 
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aging/deterioration etc. Because each faulty event in the manufacturing system has a 

degree of uncertainty, which can be expressed as the IF-THEN rule. These events will 

form a possible set of place/transition modes described by the fuzzy Petri net. We can 

model the faulty events by PN as: 1) a transition is fired, but the tokens are neither added 

nor removed to the respective input or output places of that transitions; or 2) a transition 

is fired, but the tokens are moved to the incorrect output places of the transition. In order 

to detect these two kinds of fault situations, the fuzzy PN diagnoser 

 lOITPQ ddd ,,,,,,  , which has the ability to incorporate uncertainties in event 

detection, is used to determine the fault mode by detecting events signifying a switch in 

the sequence of operation. The fuzzy Petri net consists of two parts: the structure of Petri 

net  OITP dd ,,, and fuzzy logic reasoning l,,  associated with each transition. The 

following sections will present how to model the Petri net structure and fuzzy reasoning. 

4.2.1 Petri net structure 

The dQ observes the RTPN mode Q ’s input/output signals which represent the 

running status of the manufacturing plant in realtime. In this diagnoser, dP is the set of 

places which relates to the fault partitions, some places may contain a token marked with 

a fuzzy truth value between 0 and 1, and some places may not, which are the same as the 

ones in ordinary Petri net. dT is the set of faulty transitions and belongs to the 

unobservable transitions. **: ETLA  is the transition labeling function; E is the event 

set for transition labeling, which is a set of fault labels which are defined with 
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 mffff ,,, 21  and normal status is as N . Then all possible set of labels with 

diagnoser is   fNE   . For every place of diagnoser it has the form  idi EP , and the 

initial place is   NP ,0 . The language generated from the Petri net diagnoser is: 

    stateinitialwithTsEslQL d

** ::                       (4-2) 

Suppose that the system starts from normal status with the initial marking, when 

an observed marking is changed, a new diagnoser state is generated. Let dQq be a 

diagnoser state, which in general consists of pairs of markings and a label concerning 

whether a fault has occurred. In notations, for each diagnoser state dQq ,
  

 02
MR

dQ , 

it takes the general form of:     nn lMlMq ,,,, 11  , of which all of the markings in 

the estimate pairs of marking and label look the same and belong to the same equivalent 

class,  0MRM i  and each label lli  . Then labels are assigned to that failure by fault 

labeling function. Suppose s is a string that starts from state 0x  and ends in an observable 

event, it forms a sequence of firing transitions nn MttMtMs 2110 . Labeling function

LApropagates the label l over s . Thus we have   lslMRLA 0: , LAassigns the 

label l over s starting from P following the state transition of dQ as: 

 
   

   











sTif

sTiN
slPLA

i

i

fi

f

,

,
,,                          (4-3) 
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The fault labeling function helps assign the labels from one diagnoser state to another 

state over observed sequence s .  

4.2.2 Fuzzy logic reasoning with transitions 

Once the Petri net structure and labels are ready, the possible event transitions 

will be decided with fuzzy reasoning on input/output signal features to describe which 

faulty event will be fired. If the reasoning possibility is greater than or equal to the 

threshold, then that transition will be fired. 

As shown in Figure 12, we first assumed that every fault event has a unique 

feature from sensor signals and a threshold characterizing by the DES state transitions. 

Mode identification will firstly be processed by extracting features from I/O sensor 

signal data. The signal feature data are then classified through fuzzy logic to determine 

the faulty mode. Features are extracted by a feature extraction module and placed into 

the diagnostics database. The fuzzy logic reasoning loads the required features from the 

database and then determines the current operating mode through inference engine and 

defuzzification algorithms. 

 

 

 

Figure 12 Fuzzy logic reasoning process 
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In the reasoning process, signal features will be firstly fuzzificated with 

membership functions in a variety of shapes including triangular, trapezoidal, Gaussian, 

Sigmoid, bell functions etc. Expertise information about the symptoms of faults is then 

used to create both the membership functions and rules to detect faults. For each rule, 

there are two kinds of fuzzy rule implications: either (1) Mamdani model, or (2) Takagi-

Sugeno-Kang (TSK) model, be used for rule inference [93]. Examples of rules in 

Mamdani or TSK type are expressed as below: 

Mamdani type: 

Ri: IF elbow is extended for too long period THEN sensor AXH2 is abnormal 

TSK type: 

Ri: IF elbow is extended for too long period THEN sensor AXH2 reading AXH2=3+4*t 

The difference between these two kinds of rule models lies in the consequent 

part: Mamdani model’s consequence is a fuzzy set, which is easier to understand and 

more suitable for capturing imprecise human expertise; While TSK’s functional 

consequent can be used to approximate complex nonlinear model using only a small 

number of rules. Like that, Mamdani model fits our application better, because how to 

effectively render knowledge accumulated from the system operations to facilitate 

diagnosis is the targeting problem we identified in Section 2. Thus we use the Mamdani 

model as our rule implication in the fuzzy Petri net. After the fuzzy implication has been 

performed for each rule for a particular fault, these rules need to be unioned through 

“AND” or “OR” operation upon the resulting membership functions. The typical union 

operations in fuzzy Petri net are shown as Figure 13. 



 

 

84 

m1

m2

m3

m4

m5

m6

m7

m8

m9

m10

m11

m12

m13

 
(a) (b) (c)






















 

Figure 13 Union operations in fuzzy Petri net (a) “AND” operation, (b) “OR” 

operation 
 

The mathematic operations on “AND” and “OR” are as below: 

“AND” operation:  

    
 

 
 

 
 

   
 ijijijij TOPj

n

j
TIPjTOPjTIPj

j
PPPPjP













 





 

1

111    (4-4) 

“OR” operation:  

    
 

 
 

 
ijij TOPjTIPj

j
PPjP


  max1                (4-5) 

After these operations, de-fuzzification is performed on the union output results 

based either on (1) Mean of Maximum (MOM) method, or (2) Center of Area (COA) 

method [92]. 

For MOM, suppose “y is A” is a fuzzy conclusion to be defuzzied, MOM de-

fuzzification can be expressed as: 

 
P

y

AMOM
Py




*

*

             (4-6) 

Where P is the set of output values y with highest possibility degree in A. 
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For COA, suppose  yA serves as the weight for value y, then COA de-

fuzzification is: 

 
 

 

 



y
A

y
A

y

yy

ACOA



                (4-7) 

Between these two de-fuzzification methods, MOM is less complicated and easy to 

implement. However, a major limitation of MOM de-fuzzification is that it does not 

consider the overall shape of the possibility distribution. Two fuzzy conclusions with the 

same peak points, but otherwise different shape, will yield the same de-fuzzification 

result using the MOM method. So here we pick up COA as our de-fuzzification 

approach. The de-fuzzification output result will be compared with the threshold. Once 

the result is greater than the threshold, that faulty event will be fired; otherwise, it will 

not be changed.  

 

4.3 System developments  

4.3.1 Descriptions on the dual robot arm 

The proposed approaches were implemented to diagnose a dual robot assembly 

arm as shown in below Figure 14. It is a robot work cell including a conveyor, two 4-

axis robot arms, four stoppers, two parts feeders, a computer vision and a controller. The 

robot arm is composed of a shoulder, an elbow, a wrist and a gripper. The sequential 

operations for the robot arm are: 1) the stopper blocks the pallet and sends signal to 

initiate the arm; 2) open gripper, lower elbow, pick up part from part feeder; 3) raise 

elbow, extend the shoulder, lower elbow, open gripper; and 4) close gripper, raise elbow, 
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retract shoulder. These actions were controlled by Allen Bradley
®

 programmable logic 

controller SLC 5/05 with other I/O modules. Due to the space constraint, we 

concentrated more on station3 and robot arm1 since they are functioning together. The 

diagnosis on arm2 can follow the similar procedures from arm1. The possible faults and 

their corresponding symptoms are listed in Table 21. As we assumed in the beginning, 

the occurrences of these faults were classified as unobservable transitions, so their 

places/transitions cannot be related to the observable input/output sensor events. 

 

 

Figure 14 An automated assembly dual robot at Texas A&M University 

 

The RTFPN model is shown as Figure 15 (a) and (b). All the actuators used in 

the dual robot arm1 are pneumatic cylinders, which are driven by the solenoids after 

receiving commands from PLC. For those pneumatic devices, possible faults are 

solenoid abnormal and cylinder abnormal. Their corresponding model is as Figure 15 
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(a). This diagnoser fits the application for all the dual robot arm pneumatic devices 

including a stopper, a gripper and X, Z actuators. They will be integrated into the 

diagnoser for the whole system. Figure 15 (b) is the PN model supervising the whole 

system. In these two plots, solid boxes are the observable transitions while the nonsolid 

boxes are unobservable transitions. Places described by the possible sensor sets with 

each state and transition are related with the actions. Since we assumed that faults are 

unobservable places, no sensor mapping is assigned to faults, but their existences can be 

inferred from the sensor signal features. With this in mind, we constructed the I/O 

mapping as Table 22. 

 

 

Table 21 Possible faults and symptoms 
No. Failure Root Cause Symptom 

F1 Not a correct product The gripper cannot pick up the part, but the arm1 will move to the 

carrier position then only move up and down in the z-direction. At this 

moment, the ZH1 and ZH2 are triggered alternatively, Z is also 

triggered periodically. 

F2 XH2 abnormal It lowers the arm and grip the part, then extends the arm, but it will 

open the gripper without lowering the arm at the carrier position. XH2 

can get signal when arm1 is retrieved back, but will not be triggered 

when it is extended, z is triggered only on the part feeder position, but 

won’t be triggered when it arrive on the carrier position. 

F3 XH3 abnormal The arm1 will not be lowered, neither the gripper pick up the part, but 

arm1 will move to the carrier position, then move up and down in the Z 

direction. 

F4 ZH1 abnormal It will lower the arm, but it won’t grip the part, then raise the arm, then 

it extend the arm, then stands above the carrier and does nothing. 

F5 ZH2 abnormal It will not lower the arm, neither grip parts. It only extends the arm. 

The durance of arm is controlled by timer, not A1ZH2. 

 

 



 

 

88 

 
(a) 

 
(b) 

Figure 15 PN model for arm1 

 

4.3.2 Diagnoser design 

With the RTPN model in Figure 15, the diagnoser for the dual robot was built as 

Figure 16. This Figure 16 was built based on the concept of “coverability tree” [5], 

which represents all possible markings. Because we assume that some transitions and 

places are unobservable, an efficient way to update the system estimate is to use the 

observation on the changes in observed markings. In this figure, the first 16 numbers 

mean the possible markings in each place associating with the sequence of operations. 

The last letter associates with the possible normal/faulty states. We can see that F2 can 

be easily identified without any confusion. However, in order to differentiate the faults 

of (F1, F3, F4, F5), diagnoser need to be delicately designed. When we were running 
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and testing the system, we have accumulated plentiful experiences on its normal and 

faulty conditions. If we can integrate these experiences into our diagnoser design, it will 

greatly improve the efficiency and accuracy of diagnostics. Here fuzzy Petri net was 

used in our diagnoser to isolate the faults. 

 

Table 22 Place, transition and input/output mapping table 

Places Description Output Devices Transition Input events 

P1 Stopper3 {C3,PSS3,PS3} T1 Start 

P2 Feeder part 

ready 

{Part, PSS3} T2 Lower elbow1 

P3 Elbow1 

lowered  

{PSS3, Part Ready, 

A1ZH2,A1XH3} 

T3 Close gripper2 

P4 Part1 picked  

(close gripper1) 

{A1ZH1,A1XH3} T4 Raise elbow2 

P5 Elbow1 raised  {T40.TT} T5 Extend arm1 

P6 Arm1 extended  {PSS3, T11} T6 Lower elbow1 

P7 Lower elbow1 {PSS3,A1XH2,A1ZH2} T7 Open gripper1 

P8 Open gripper1 {T55.DN} T8 Raise elbow1 

P9 Raise elbow {T40.DN} T9 Retract arm1 

P10 Retract arm1 {A1XH2}   

Faulty Places Faulty Transitions 

PF1 Part fault {A1ZH2, A1XH2, gripper} F1  

PF2 A1XH2 

abnormal 

{A1ZH2, A1XH2, gripper} F2  

PF3 A1XH3 

abnormal 

{A1ZH2, A1XH2, gripper} F3  

PF4 A1ZH1 

abnormal 

{A1ZH2, A1XH2, gripper} F4  

PF5 A1ZH2 

abnormal 

{A1ZH2, A1XH2, gripper} F5  
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0010 0000 0000 0000N

1100 0000 0100 0000N

0000 1000 0000 0000N

0001 0000 0000 0000N

0000 0100 0000 0000N

0000 0010 0000 0000N

0000 0001 0000 0000N

0000 0000 0110 0000N
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Figure 16 Fault diagnoser design for dual robot 
 

For the control of the robot arm, it involves coordinating actions in the X-axis 

and Z-axis as well as gripping; we selected the readings from the sensor Z and XH2 as 

the input features to our fuzzy reasoning process. Their signal features on normal and 

different faulty states are shown as Figure 17 (a) and (b). 

As shown in the figures, those two signals (A1Z and XH2) have the 

characteristics of event driven. For this type of system, sequence of events and timing 

intervals of each event are the most useful signal features. Thus they are selected as the 

inputs to the fuzzy reasoning. In Figure 17 (a), at the normal states (pink square dot line), 

there are two intervals in each work cycle; and each interval lasts for 1 second. If the 

intervals appear periodically as yellow dots in the figure, possible fault is XH3 

abnormal. When the interval appears only once, possible faults can be either ZH1 

abnormal or XH2 abnormal. If the interval never appears, ZH2 abnormality might 

happen. 
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In Figure 17 (b), at the normal state, there is only one interval in each working 

cycle for signal XH2 and the interval lasts for 2 second to cover the duration of Z. If the 

signal stays at high forever, the possible fault can be XH3 abnormal. If the interval never 

appears, XH2 abnormal might happen. 

 

 

(a) 

 

(b) 

Figure 17 Input signal features 

 

Summary on these, the fuzzy rules were derived as below: 

R1: IF A1Z has two 1 second cycles AND each cycle lasts for 1 second, THEN the 

system is normal 

R2: IF A1Z has periodic cycles, THEN XH3 is abnormal (F3) 
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R3: IF A1Z has one 1 second cycle AND XH2 also has one 1 second cycle, THEN ZH1 

is abnormal (F4) 

R4: IF A1Z never appears, THEN ZH2 is abnormal (F5) 

 

 

(a) 

 

(b) 

 

(c) 

Figure 18 Membership functions for A1Z (a), XH2 (b) and faults (c) 
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The membership functions for A1Z, XH2 and possible faults are illustrated in 

Figure 18 (a), (b), and (c). Their linguistic terms are shown on these figures respectively 

also. The identified rules are plotted in Figure 19. Possible faults were encoded as 

numbers and formed the Z-axis in Figure 19, inputs are the periods in XH2 and Z. Figure 

19 illustrated what the possible fault output is as observed signals in XH2 and A1Z vary. 

 

    

Figure 19 Fuzzy rules for dual robot diagnosis 

 

Finally the fuzzy Petri net to isolate the faults is constructed in Figure 20. With 

the inclusion of the signal features, the faults can be identified without any confusion. 
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Figure 20 Fuzzy diagnoser to isolate faults 
 

4.3.3 System implementation  

In order to illustrate how to apply the proposed approach on diagnosing a real 

manufacturing system, we implemented the proposed PN model and diagnoser using 

Visual Basic
®
. The architecture for the diagnosis platform is shown in Figure 21. This 

architecture consists of: 1) the main Petri net screen to monitor the whole system; 2) four 

distributed Petri net forms to monitor each substation respectively; and 3) an additional 

forcing output form to manually drive the outputs of PLC when diagnosis needs. The 

implemented diagnoser capitalizes the event-driven and discrete I/O characters of the 

discrete manufacturing system to monitor and diagnose the system in realtime. To enable 

the real time property, all the inputs (sensors) and outputs (actuators) of the system are 

physically connected to the I/O modules of the PLC, and then PLC communicates with 

the personal computer through the Visual Basic’s MSComm object (serial RS232 

communication port). The detailed implementation on communication setup, Petri net 

implementation and fault reasoning will be presented in the following sections. 
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Figure 21 Flow chart for the RTFPN diagnoser on dual robot arm 
 

4.3.3.1 Communication setup to enable realtime control 

It is critical to set up the communication between the PC and PLC, so the Petri 

net can monitor or diagnose the plant in real time. This communication set up involves 

two aspects: 1) enable the communication protocol between the PC and PLC, and 2) 

enable PC to read or write the PLC’s I/O registers.  

To enable PC read/write the PLC register in real-time, we need programming to 

set up the communication protocol between lower machine and host computer. In this 

research RS232 serial communication is the protocol, PLC is the lower machine and PC 

is the host machine. The communication set up on host machine is as follows.  

 

Private Sub CommunicationSetup( ) 

' Set up the Communications Port 

    MSComm1.CommPort = 2 'change according to your system configuration 

    ' 19200 baud, no parity, 8 data, and 1 stop bit. 

    MSComm1.Settings = "19200,N,8,1" 
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    ' Tell the control to read entire buffer when Input is used. 

    MSComm1.InputLen = 1 

'Set the characters to return to 1 

MSComm1.RThreshold = 1 

    ' Open the port. 

     MSComm1.PortOpen = True 

   'set up PLC Communication Parameters 

    bDST = 1 'destination address 

    bSRC = 0 'source address: The computer is address zero 

 End Sub 
 

In this application, the function of MOV in PLC programming was used for 

transferring the status of inputs and outputs of PLC into data registers for data 

interchange with the computer. A typical PLC program for this data transfer is shown in 

Figure 22. It moves the data from source to destination for either indicating the 

input/output or forcing the output. In this way the information of PLC and 

manufacturing operation status can be used in the diagnosis platform. 

 

 

Figure 22 An example PLC rung on read/write Register 
 

4.3.3.2 Petri net programming 

Figure 23 illustrates the main Petri net interface at runtime. The VB application 

reads data from the PLC’s data registers. displays the firings on Petri net and tokens in 

the main Petri net screen in real time, and it also shows the “Record of sequence of 
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operations” and timer intervals on each station. Each station in the assembly line is 

represented by a circular place beneath the button for the station. Additionally, there are 

places corresponding to every event in the sequence of operations at each station. When 

the base part coming along the conveyor reaches a station, the token goes into that 

particular place indicating that the operation at that station is fired and active. Once the 

base part leaves the station and all the outputs corresponding to that station have been 

de-energized in accordance with the control logic, the token leaves that place and gets 

ready to the next place. 

The user can also go into great detail about the running status on each substation 

by clicking on either one of the buttons: ‘Base Part Inspection’ or ‘Buffer station’ or 

‘Assembly 1’ or ‘Assembly 2’. It will open a more detailed sub-form on the status of all 

the I/Os at that station. For example, by clicking “Assembly 1”, the detailed view of 

station 3 (assembly arm1) is shown in the Figure 23. It is possible to see the real time 

status of all I/Os at that station and the accumulation of timing and/or counting elements 

through the control logical sequence.  

4.3.3.3 Fault localization and isolation based on fuzzy logic 

The Petri net model keeps checking the input/output device status. If a difference 

is detected between the desired I/O value and the actual value, it means a faulty event 

happens then the fuzzy Petri net will be started to isolate the fault. The signal features to 

identify a failed event are signal values and timing intervals. An event is considered 

faulty if it does not occur at the time when it was supposed to occur (non-occurrence) or 

the occurrence interval is not correct (mis-timed occurrence). The non-occurrence or 
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mis-timed occurrence event is predetermined through simulations and experiments. 

During the operation, the ladder logic in the PLC verifies whether each event occurs as 

timed. In case of a faulty event, the Petri net fires the identified fault place on the Petri 

net interface to indicate a faulty operation.  

 

 

 

Figure 23 PN diagnoser with detailed view on assembly-1 
 

 

 

 

In order to illustrate how the Petri net diagnoser diagnoses faults, let us consider 

the event of “pick part” which corresponds to closing of the gripper. Figure 24 shows the 

part of the ladder logic for detecting the failure of the event: closing the gripper on robot 
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arm1. T4:9 is the triggered timer when the base part reaches station 3, the first assembly 

station detected by the part stopper sensor at that station. Within 2 seconds of this timer, 

the output to close the gripper, “A1_GRIPPER” must be energized for a period of 0.4 

seconds. If this is true, the bit “N9:26/4” will be latched indicating that the event is 

executed successfully. Otherwise, the event is faulty and the fault places in the diagnoser 

to “pick part” will be fired to denote a failed event. The cause of this failure is the loss of 

input from the sensor “A1XH2” or “A1ZH1” which senses that the arm’s position along 

the x-axis and z-axis. To locate the exact fault, fuzzy Petri net will read the PLC bits 

from the I/O register, and feed them to the fuzzy reasoning inference to notify the faulty 

state. This interface corresponding to this failure is depicted in Figure 25 (a), where the 

token marking in the first “lower arm” place is on, which means this place has been 

executed; while the second “lower arm” place never on, which means this place has 

never been executed, this place/transition sequence corresponded to A1ZH1’s failure 

mode. So the fuzzy isolation algorithm concludes it is A1ZH1 abnormal.  From the 

detailed view of station 3 in Figure 25 (b), it is possible to view the real time status of 

the input A1ZH1, which always keeps grey and never turns green. It also means that the 

fault happens with A1ZH1. 

4.3.3.4 Forcing outputs 

In order to confirm the diagnosis result from the previous methodology, we also 

included a forcing outputs module in our diagnosis system. Making temporary changes 

to the process like bypassing certain inputs and forcing outputs on or off is an important 

part of troubleshooting. The form that can be used to force the actuators manually acting 
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is shown in Figure 26. While the right half of the form displays the current I/O status, the 

left half of the form is used for forcing the outputs by clicking the label above the output 

that is desired to be energized. The inputs and the outputs have been placed beside one 

another in order to be able to see how forcing outputs affect the inputs at all. For 

example, forcing the robot arm to extend along the x-axis will activate “A1XH2” to 

sense that the arm is extended. If it does not extend, we can conclude that some faults 

happen with input or output, then troubleshooters can go into the detailed “forcing 

output” form to check which device is in abnormal. 

 

 

 

Figure 24 Abnormal event detection logic 
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(a) 

 

(b) 

Figure 25 PN diagnoser for fault to close gripper 
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Figure 26 Forcing outputs in VB and examining I/Os 

 

 

4.4 Experiments 

A series of experiments were carried out to validate the proposed approach and 

system implementation on the diagnosis accuracy, delay etc. Before the experiment, 

failure mode effect analysis (FMEA) had been conducted to identify the possible faults, 

their severities and effects on the mission of the system. There are five most common 

faults F1~F5 involved in the dual robot arm. The FMEA analysis is shown as Table 

23.The effectiveness of the diagnoser to these faults was evaluated using the metrics 

including recognition accuracy, diagnosability. 
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Table 23 Failure mode effect analysis on the dual robot arm 
Function Failure 

Mode 

Effects Current 

controls 

Severity  

Rate 

Occurrence 

Rate 

Detection 

rate 

Risk 

priority 

number 

Recommended 

actions 

Grip Not 

correct 

part 

(F1) 

Gripper can not 

pick up the part, 

and the arm1 only 

move up and 

down in the z-

direction. 

Regular 

check by 

operator 

6 2 5 80 Check the part 

and reject the 

wrong part 

sense 

that the 

arm is 

extended 

XH2 

abnorm

al (F2) 

Gripper opens  

without lowering 

the arm at the 

carrier position 

Regular 

check by 

operator 

6 2 5 80 Check the I/O 

circuit with 

force I/O 

sense 

that the 

arm is 

retracted 

XH3 

abnorm

al (F3) 

Same effect as 

not correct part 

Regular 

check by 

operator 

6 2 5 80 Check the I/O 

circuit with 

force I/O 

sense 

that the 

elbow is 

raised 

ZH1 

abnorm

al (F4) 

It won’t grip the 

part, then raise 

the arm, then it 

extend the arm, 

then stands above 

the carrier and 

does nothing.   

 

Regular 

check by 

operator 

6 2 5 80 Check the I/O 

circuit with 

force I/O 

sense 

that the 

elbow is 

lowered 

ZH2 

abnorm

al (F5) 

It will not lower 

the arm, neither 

grip parts. It only 

extends the arm. 

The durance of 

arm is controlled 

by timer, not 

A1ZH2. 

Regular 

check by 

operator 

6 2 5 80 Check the I/O 

circuit with 

force I/O 

 

4.4.1 Recognition accuracy 

The recognition accuracy of fault detection is simply defined as equation (4-8): 

the ratio of correct fault detections to the total trials. 10 runs of each fault were 

introduced into the experiment randomly, so total 60 runs of experiment were conducted.  

 

Recognition accuracy= (total number of correct decisions)/(total number of trials)

100%    (4-8) 

 

The results of recognition accuracy are shown as below Table 24. In this table, 

“Y” means correct detection of fault, and “N” means misdetection of fault. It shows that 

“F1” is the hardest to detect while “F3” and “F5” are the second. Possible explanation 
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for this can be traced as: F1 is the part fault, which means the fault cannot trigger the 

Hall sensor to operate the right actions. This fault can be interrupted by many factors 

such as the position between the part and the sensor, the part itself and the Hall sensor 

abnormality etc. Thus it complicates the fault isolation on F1. It is hard to detect F3 

because F3 has almost the same symptom as F1, so the sequences of firing transitions 

and places for F1 and F3 are similar to each other. Thus it created some mis-detections. 

The same situation fits for F5. 

 

Table 24 Correctness measurement 
 Runs 1 2 3 4 5 6 7 8 9 10 Recognition 

accuracy 

F1 Part fault 10 Y Y Y Y N Y N Y Y Y 80% 

F2 A1XH2 

abnormal 

10 Y Y Y Y Y Y Y Y Y Y 100% 

F3 A1XH3 

abnormal 

10 Y N Y Y Y Y Y Y Y Y 90% 

F4 A1ZH1 

abnormal 

10 Y Y Y Y Y Y Y Y Y Y 100% 

F5 A1ZH2 

abnormal 

10 Y Y Y N Y Y Y Y Y Y 90% 

normal 10 Y Y Y Y Y Y Y Y Y Y 100% 

Total 60 93% 

 

4.4.2 Diagnosability evaluation 

Diagnosability checking is for the purposes of: 1) on-line detection and isolation 

of faults and 2) off-line verification of system whether can be diagnosed or not [17].  

The diagnoser should be able to detect fault after a finite step of delay from its 

occurrence. Suppose  is the sequence of observable transitions. Therefore, a PN that 

represents the system model is diagnosable if in a finite number of observable transitions 
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it reaches a fault marked as  fPM . Only the  
if

PM or with other fault marked as

 
kfPM can identify a fault of higher order or a critical fault.  

Following the diagnosability definition: the occurrence of faulty event iF should 

be detected in at most in transitions of the system after the occurrence of an indicator 

event, a delay diagnosis matrix (DDM) for diagnoser on each fault was built to define 

diagnosability quantatively [22]. This matrix has a number of columns equal to the 

number of the diagnosis desired states, while the number of rows is equal to the number 

of fault partitions or labels. Each matrix element ijDDM indicates if a fault belonging to 

the fault partition of line i can be diagnosed, then that element 1ijDDM , after the 

occurrence of one observable transition or the violation of an expected starting from the 

place j or not, 0ijDDM . Then the diagnosis delay can be calculated as the maximum 

number of successive zeros in each line plus one. In this way, the delay diagnosis matrix 

was built to evaluate the diagnosability. The number of elements was observed from the 

experiment running. In Table 25, we can see that in order to detect F3 it takes eight 

steps, which is the longest diagnosis delay. So we concluded that the diagnosis delay for 

this diagnoser on those identified faults was equal to eight occurrences of transitions.  
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Table 25 Diagnosis delay matrix 
 Feeder 

peg part 

Lower 

arm 

Pick up 

part 

Raise 

elbow 

Extend 

arm 

Lower 

elbow  

Release 

peg 

Raise 

elbow 

Release 

stopper  

Retra

arm 

F1 0 1 0 0 0 1 0 0 0 0 

F2 0 0 0 0 0 1 0 0 1 0 

F3 0 1 0 0 0 0 0 0 0 1 

F4 0 0 1 0 0 0 0 0 1 0 

F5 0 1 0 0 1 0 0 0 0 0 

N 0 0 0 0 0 0 0 0 0 0 

 

4.5 Conclusion 

 

We presented a realtime fuzzy Petri net (RTFPN) based approach to detect 

progressive faults in discrete manufacturing system. This fault diagnosis approach 

includes: 1) a real time Petri net (RTPN) model aiming at the nonsynchronizing problem 

in the PN diagnoser, and 2) a fuzzy Petri net (FPN) diganoser with the ability of 

integrating knowledge and handling uncertainties. The RTPN model replicates the 

sequence of operations of the plants, set up the mapping between the I/O devices and PN 

places/transitions thus monitor the manufacturing plant in real-time; while the FPN uses 

the signal features as inputs to decide the occurrence of possible outputs through fuzzy 

reasoning inference, so useful but incomplete knowledge can be integrated into 

diagnosis process to locate and isolate fault root causes upon occurring. To validate the 

proposed approach, a diagnosis prototyping system to a dual robot arm was developed 

using Visual Basic. Performance evaluations including correctness, diagnosability and 

time delay on the diagnoser were analyzed through experiments. It illustrated that the 

prototyping diagnoser can have a high accuracy rate of 93% and maximum diagnosis 

delay of eight steps. The proposed system remedies the nonsynchronizing issue and can 

handle uncertainty thus achieving high correctness. Experiment process showed that this 
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system can perform multiple fault diagnosis on system with fast fault propagation and 

complex physical phenomena. Also, it allows various dynamic windows of human-

machine interface to be created providing visual data and realtime place-transition 

diagrams for operators, engineers and experts. The proposed approach is systematic and 

can be easily extended to other complex systems as flexible manufacturing system 

(FMS), HVAC, and semiconductor manufacturing facilities. 
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CHAPTER V 

BENCHMARK DIAGNOSER BASED ON FINITE STATE AUTOMATON AND 

SEQUENTIAL FUNCTION CHART 

 

To efficiently detect the stochastic faults and compare the performance between 

PN and FSA diagnosers, I implemented a diagnoser based on FSA with sequential 

function chart. The finite state automaton models keep checking the inputs/outputs of the 

DES plant, and calculating the probabilities of possible normal/abnormal states. 

Sequential function charts behave as a decision coordinator to locate the exact root cause 

of the fault. The details of this FSA diagnoser will be specified in the following sections. 

5.1 Plant model 

The plant model follows the definition and concept in [16]. The manufacturing 

system G  is modeled as an automaton:  0,,, xfEXG  , and  GLL  is sG'

corresponding prefixed closed language. In this model, X is the finite set of states; E is 

the finite set of events associated with transitions inG . There are two ways to classify the 

total event set according to whether they are abnormal/functional, or 

observable/unobservable. Events can be either faulty ( fE )/normal ( nE ) events, or 

observable ( oE )/unobservable ( uoE ) events. Typical observable events are the 

commands issued by the controller, the sensor reading changes after the execution of 

commands, etc. The unobservable events include the faulty events and events that cannot 

be recorded by the sensors etc. It is obvious that uoonf EEEEE  : . f is the state 
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transition function, XXEf : and       1,1  mEmXfmX ; 0x is the initial 

state. Furthermore, plant G is decomposed into subsystems kGGG ,,, 21  ; each 

subsystem is modeled as its own automaton  iiiii xfEXG 0,,, , so we have 

kGGGG |||||| 21  , kXXXX  21 , kEEEE  21 , and

 kxxxx 002010 ,,,  .  

Then projection is applied on the automaton of each subcomponent. Projection is 

an operation such that let oEEP : : 

                             (5-1) 

In other words: given that P  is the standard projection from
*E to

*

oE , we will 

have that . The projection operation aims at screening the 

disturbing sequential events such as unobservable events to retain the useful information 

from the automaton. 

 

5.2 Sequential function chart based control 

SFC is a graphical programming language used for processes that can be split 

into steps in PLC applications [94]. Main components of SFC are: 1) steps with 

associated actions, 2) transitions with associated logic conditions, and 3) directed links 

between steps and transitions. The steps in SFC can be either activated or deactivated. 

Steps are activated when all steps above it are active and the connecting transition is 
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superable (i.e. its associated condition is true). When a transition is passed, all steps 

above are deactivated at once and after all steps below are activated immediately. In our 

proposed approach, the PLC control logic is generated into a ladder diagram from SFC; 

SFC is also used as the basis to composite the action of each component thus modeling 

the plant and designing the diagnoser. 

 

 

Figure 27 A sequential function chart example 

 

5.3 FSA diagnoser design 

When the system is running, the diagnoser keeps monitoring the observable 

events generated by the plant, and makes conclusion on normal/abnormal status of the 

system. To construct the stochastic diagnoser, we first classify the set of faulty events as

mFFFf EEEE 
21

 and uf EE  , then the possible fault labels are defined as 

   mFFFNl ,,, 21  . We further define the label propagation function under event 

string s lElXLP f

oo : as 
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 
     

   











sFlF

siNlN
slxLP

i

i

fii

f

,,       (5-2) 

Combining observable state oX and LP, we newly generate a set of labeled states

dQ , which have the form of  ii lx , . Then we define the automaton for the diagnoser as a 

five tuples:  

 hqfEQG dodd ,,,, 0
. 

 dQ is a set of labeled states generated from the plant. The set of logical elements, dQ

is the subset of labeled states which are reachable and observable from oq under the 

transition function df . An element dd Qq   has the form of:     nnd lxlxq ,,,, 11 
. 

The set of all  ii lx , s in dq  have the relationship of dQq , oi Xx  , lli  . The number 

of such components  ii lx , in an element dq will be denoted by dq . 

 oE is a set of observable events. 

 df  is the transition function of the diagnoser. It includes the state transition and label 

transition, and can be defined as        
  

 
qlx xGLs

d

f

slxLPsxfqf
 


, ,

,,,,, . The function 

LP shows that a label iF is added whenever the true behavior of the system contains an 

event
ifFE  . Once this label is appended, it cannot be removed regardless of whether 

an event in 
if

 occurs or not in the system behavior following the label. 

 oq is the initial labeled state in the diagnoser, which is  Nxqo ,0
. 
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This  0,,, qfQ dod  is used to provide estimates of the state and information on the 

possible faulty events. This is the “discrete-event” part of the stochastic diagnoser, 

which is used to determine the logical element of the diagnoser state.  

 h is the sensor mapping between the states and the readings on the sensors. 

Suppose there are m sets of sensors to monitor the manufacturing system. Sensor 

mapping is denoted as         xhxhxhxh m,,, 21  . 

Here let us use a simple example to illustrate the proposed diagnoser design 

approach. Figure 28 (a) presented an automaton. It has the set of states is  10,,2,1 X

, and the initial state is 10 x . The set of events is  fgbaE ,,, , here  gbaEo ,,  and

 fEuo  . f also belongs to fE . A transition arc is drawn between two states if the 

probability of that transition occurring is greater than zero. With the labeled states, we 

build the diagnoser as Figure 28 (b). 

5.4 Fault isolation and detection 

The fault isolation reasoning is as follows: for the SFC based control the previous 

and current machine states and state changes (events) in time sequence are inputs to the 

fault decision. The current fault state  tF is determined by the combination of previous 

step, current step and current input commands. Then we have        tOtItOtF 1 . 

Here   0tF means that fault happening with current step.  tO  is also dependent on 

 1tO as well as  tI . Either   01 tO or   0tI won’t make desired  tO happen. 

Assume  tO and  1tO are the combined observed output states of all the steps for the 
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tth and (t-1)th steps respectively. Since the system was decomposed into subsystem

kGGGG |||||| 21  , then we are going to have        tOtOtOtO k21  as well as 

       1111 21  tOtOtOtO k . In this equation,  tOi means whether the output 

steps with plant iG are satisfying or not; means the current step satisfies and the 

next step can be started, while means the current step does not satisfy and desired 

sequential actions cannot be carried out. Let  tI be the combined event of input 

commands in the tth step, then        tItItItI k21 . Here 1I means the commands 

are received, while 0I  means the commands are not received.  
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Figure 28 Finite state automaton plant (a) and its diagnoser(b) 
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Once abnormality happens on one step, SFC will alarm that step based on

 1tO ,  tI  and  tO information. Then further fault checking will trace into the local 

sensors to identify the exact fault. In such a way, faults are isolated and detected. 

 

5.5 Case study 

5.5.1 System description 

The proposed FSA diagnoser design was implemented to diagnose a dual robot 

system as shown below in Figure 29 [95]. It is a robot work cell including a conveyor, 

two 4-axis robot arms, four stoppers, two parts feeders, a computer vision and a 

controller. It mimics the pick and place operation in the assembly process. Here we 

focus on diagnosing arm1, and the diagnosis on arm2 can follow the similar procedure as 

on arm1. 

 

 

Figure 29 An automated assembly dual robot at Texas A&M University 
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The robot1 arm is composed of shoulder, elbow, wrist and gripper. The 

sequential operations for the robot arm are: 1) stopper blocks the pallet and sends signal 

to initiate arm; 2) open gripper, lower elbow, pick up part from part feeder; 3) raise 

elbow, extend the shoulder, lower elbow, open gripper; and 4) close gripper, raise elbow, 

retract shoulder. The control on the arm1 based on sequential function chart (SFC) is 

show as below in Figure 30. The enable condition and desired outcome in each state is 

summarized in Table 26. 

 

 
Figure 30 Sequential function chart for dual robot assembly (a) and its 

components-stopper (b), shoulder (c), gripper (d) and arm (e) 
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Table 26 Enablement conditions for states in the dual robot arm assembly 

 States Enabled 

outcomes 

Preconditions 

1 Fixture arrive PSS3 (I:5/10)  N/A 

2 Part feed Feeder start 

(O:1/1)  

PSS3 (I:5/10)  

3 Lower arm A1Z (O:2/10) , 

T4:40/TT  

PSS3(I:5/10) , part(I:4/3) , 

A1XH3(I:5/11) , A1ZH2 (I:5/9)  

4 Grip part Gripper(O:2/13) , 

T4:55/TT  

A1ZH1(I:5/13) , A1XH3(I:5/11)

  

5 Raise arm A1Z(O:2/10)  T4:40/TT  

6 Extend arm A1X(O:2/9)  T4:40/TT , A1XH3(I:5/11)  

7 Lower arm  A1Z(O:2/10) , 

T4:40/TT  

A1XH2(I:5/7) , 

A1ZH2 (I:5/9)  

8 Drop part Gripper(O:2/13)  T4:55/TT  

9 Raise arm A1Z(O:2/10)  T4:40/TT  

10 Release fixture PS3(O:1/13) , 

T4:25/TT  

T4:55/DN  

11 Retract arm A1X(O:2/9) , 

T4:11/TT  

PSS3(I:5/10)  

 

As the analysis from the Chapter III, we used five sensors to monitor the 

assembly system. These five sensors are [S1, S3, S5, S7, S10]. They measured the 

signals of: pneumatic pressure on A1X solenoid valve, voltage reading on A1XH3, 

pneumatic pressure on A1Z solenoid valve, voltage reading on A1ZH2, and pneumatic 

pressure on gripper solenoid valve. The signal features on these five sensors at different 

normal/faulty situations are plotted as below Figures 31 (a) ~ (e). We need to note that 

the pressure values were already calibrated into voltage readings. Because they are 

discrete signals at either ON/OFF or low/high voltage status, here we use “0” on sensor 

readings representing OFF and “1” representing ON. The mapping h between the states 

and sensor readings is as below Table 27. 
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(a) 

 

 
(b) 

 
(c) 

 

Figure 31 Signal features for different situations: (a) Normal operation, (b) F1 part 

error, (c) F2 XH2 abnormal, (d) F3 lose wiring and (e) F4 tolerance fault 
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(d) 

 
(e) 

Figure 31 Continued. 

 

Table 27 Sensor mapping between states and sensors 

State Physical meaning Readings on S1, S3, S5, S7, S10 

1 Fixture arrived 11010 

2 Feed part 11010 

3 Lower arm 11100 

4 Grip part 11101 

5 Raise arm 11011 

6 Extend arm 00011 

7 Lower arm 00101 

8 Drop part 00100 

9 Raise arm 00010 

10 Release fixture 00010 

11 Retract arm 11010 
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Possible faults with the arm1 and their symptoms are tabulated in the Table 28. 

Table 28 Possible faults and symptoms with the arm 
Faults Root causes Symptoms 

Failure to pick up part (F1) Bad part that cannot be detected by the sensor prior to 

assembly combined with ladder logic written without 

accounting for failed inputs. 

Robot extends along the X-axis 

without initially lowering the elbow 

to grasp the peg. Once extended, 

the elbow raises and lowers 

repeatedly. The base part is never 

released. 

Failure to lower arm and pick 

up parts (F2) 

Loss of signal from sensor (A2XH2) that detect the 

arm is extended in the X direction, caused due to 

misplacement of the sensor. 

Robot does not lower arm and 

grasps peg, it extends (along X). but 

raise and lower arm alternatively in 

the Z-axis. The fixture will not be 

released. 

Failure to close gripper (F3) Communication failure between the PLC output port 

and the solenoid valve controlling the gripper caused 

due to a disconnected wire. 

Gripper fingers are jammed open 

during the entire assembly sequence 

while the rest of the operations 

occur normally. Consequently, the 

peg is never grasped. The final 

product is output without a peg. 

Insertion failure (F4) Loss of tolerance between the grasping location of the 

gripper and the location of the parts in the part feeder. 

The parts are round and are made of rubber. They 

push each other on the feeder track. Given minor 

clearance between the parts and the walls of the track, 

they move sideways resulting in inaccurate placement 

of the parts prior to grasping by the robotic gripper. 

Insertion failure occurs in the form 

of a non- insertion of the peg into 

the hole similar to jamming or 

scratching of the edge of the hole in 

the base part by the peg before 

insertion. In the first couple of runs, 

the pegs under-travel the hole and 

in the last couple of runs the pegs 

over-travel the hole. 

 

When we are conducting the experiment, we found that the occurrences of events 

under different faults are as below: 

F1: feed part-F1-extend arm-lower arm-raise arm-lower arm-….; 

F2: feed part-lower arm-pick part-raise arm-extend arm-F2-drop part-release fixture-

retract arm; 

F3: feed part-lower arm-pick part-raise arm-extend arm-lower arm-drop part-raise arm-

release fixture-retract arm; 

F4: feed part-lower arm-pick part-raise arm-extend arm-lower arm-drop part-raise arm-

release part-retract arm. 
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Combining the normal occurrence and faulty occurrence of the events, we have 

the automaton for the dual robot arm as below Figure 32. 

 
1

2

3

4

5

6

7

8

9

10

11

Fixture 
arrive

(Feed part)

(Lower arm)

(Grip part)

(raise arm)

(Extend arm)

(Lower arm, 1)

(Drop part)

(Raise arm)

(Release fixture)

(Retract arm)

12

13

14

15

(F1)
(extend)

(lower arm)

(raise arm)
(lower arm)

16

17

18

19

F2 (drop part)

(release fixture)

(retract arm)

21

22

23

24

25

26

27

20

(F3)

(F4)

(raise arm)

(Extend arm)

(Lower arm)

(Drop part)

(Raise arm)

(Release fixture)

(Retract arm)

 

Figure 32 Plant automaton for the dual robot 

 

On this automaton, we first took the projection operator P as follows. Given a 

timed sequence  and a set of events EE ' ,  ', EP  was the timed sequence obtained 

by erasing from  all events in
'E and summing up the delays between successive events 

in the resulting sequence. This projection is very important in analyzing the 

manufacturing automaton in that manufacturing process involves multiple parallel 

actions which may disturb each other and thus confuse the analysis. Such an erasing 
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projection can screen the disturbing sequential events from the analysis, thus making the 

automaton analysis only focus on the most related events. 

Applying the build up process of diagnoser including projection, form labeled 

state, and sensor mapping, we get the diagnoser as below Figure 33. We will implement 

this diagnoser in a VB human machine interface to indicate the occurrence of faults. 
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Figure 33 Stochastic diagnoser for the dual robot 

 

5.5.2 System implementation  

The above diagnoser structure was implemented into a human machine interface 

(HMI) as shown in Figure 34. The interface capitalizes the discrete event nature of the 
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automated PLC system. All the inputs and outputs of the dual robot arm system are 

physically connected to the I/O modules of the PLC and the PLC’s communication with 

the VB interface is through the RS-232 communication port. The serial communications 

protocol is used to pass commands, information and sensor data reading between the 

PLC and a personal computer. 

“Unprotected read operation” between PLC and PC is applied for PC to read the 

information on PLC I/O porters. During the unprotected read operation, PLC’s MOV 

commands are used to continually transfer the data contained in the input registers I:5 

and I:4 to the registers N9:2 and N9:3 respectively and also the data contained in the 

output registers O:2 and O:3 to the registers N9:4 and N9:5. This data is used to 

represent the status of I/Os on the interface. Each register mentioned above is a group of 

16 bits or one word. Along with these, several other data registers are used during the 

‘Read’ operation to transfer the accumulated values of all the timers in the process. 

When an input or output is high, the corresponding bit in the data registers is set, since 

the contents of the I/O registers are transferred to the data registers by the program. This 

activates appropriate shape elements (rectangular indicators) under appropriate labels on 

the interface. For example, if the MSComm detected the bits on “S1, S3, S5, S7, S10” is 

“11100”, we can know from the sensor mapping that the event of “lower arm” had 

happened, then its rectangular indicator under “lower arm” will turn green to indicate the 

occurrence of “lower arm”. 
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5.5.3 Normal working status 

As shown in Figure 34, when fixture is placing on the conveyor and “Autoread” 

is checked, the VB HMI starts to read data from the PLC data registers. Along the 

assembly line, we have four stations: inspection station, buffer station, assembly1 and 

assembly2. These four stations are respectively represented by a large rectangular 

indicator beneath the button for the station. Additionally, there are smaller indicators 

corresponding to every state in the sequence of operations at each station. When the base 

part moving along the conveyor reaches a station, the large indicator at that particular 

station turns green, indicating that the process at that station is active. Once the base part 

leaves the station and all the normal output states corresponding to that station have been 

successfully carried out in accordance with the control logic, the large indicator turns 

green. In Figure 34, it illustrates that all the desired operation events/states in sequential 

function chart for assembly1 and assembly2 were successfully implemented, so all the 

smaller indicators under the events were turned green. 

5.5.4 Abnormality diagnosis 

If any of these smaller indicators at the assembly stations turns red, it means that 

the operation is deviated from the normal status. In conjunction with this, the large 

indicator for the station on the assembly line containing the failed event turns grey. Then 

the application will start the fault isolation program. In order to understand how the stage 

diagram aids diagnosis, let us consider the scenario in which the robot arm fails to lower 

when extended to insert the peg into the base part. The cause of this fault is the loss of 

input from the sensor “A1XH2” which senses that the arm is extended along the x-axis. 
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When an A1XH2 abnormality happens, the event sequence for this abnormality is: 

Fixture arrive-Feed part-Lower arm-Pick part-Raise arm-Extend arm-F2-Drop part-

Release fixture-Retract arm. From this observed sequence of operations under A1XH2 

abnormality. 

 

 

Figure 34 Normal operation on assembly arm1 and 2 

 

 

We know it skipped step 7). The reason for step 7) not being executed is fault of 

(A1XH2, or A1ZH2). It will not be A1ZH2’s abnormality; otherwise step 3) will not be 

executed. We even don’t need sensor mapping, and we can conclude that it is “A1XH2 

fault”. The interface corresponding to this failure is illustrated on the stage diagram as 

shown in Figure 35. The fault indicator “F2 (XH2)” has been turned red. The indicator 

below the tag “lower arm” has turned red indicating an abnormal event. Also, the 
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indicators for the station ‘Assembly1’, and ‘release peg’ as well as ‘raise arm’ have 

turned grey indicating an incomplete assembly process on assembly arm1, ‘release peg’ 

and ‘raise arm’ have not been executed. This helps the diagnoser to isolate the problem 

to a sensor malfunction which is later confirmed from the time based record of events. 

 

 

Figure 35 Operation on XH2 fault 

 

5.6 Experiment results and discussions 

Series of experiments on detecting were carried out to validate the proposed 

approach and system implementation on detecting four kinds of typical faults involved 

in the dual robot arm. The effectiveness of the diagnoser to these faults was evaluated 

using the metrics including recognition accuracy, detect delay. 
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5.6.1 Accuracy evaluation 

The recognition accuracy of fault detection is simply defined as Equation (5-3): 

the ratio of correct fault detections to the total trials. Ten runs of each kind of fault were 

introduced into the experiment randomly, so the total 40 runs of experiment were 

conducted. 

 

Recognition accuracy=(total number of correct decisions) 

/(total number of trials)  100%     (5-3) 

 

Table 29 Correctness measurement 

Runs N F N N F F F N F F Accuracy 

F1 F3 F1 N N F1 F1 F1 N F1 F1 90% 

F2 F3F2 F2 N N F2 F2 F2 N F2 F2 90% 

F3 N F3 N N F3 F3 F3 N F3 F3 100% 

F4 N N N N N N N N N N 40% 

Total 40 80% 

 

In Table 29, it summarizes the diagnosis results for faults. For example, if the ‘N’ 

columns mean introducing no fault into the system, at this moment, the correct diagnosis 

outcome is ‘N’ (normal) only, all the other diagnosis results are wrong. If ‘F’ columns 

meet with the F1 row, it means F1 fault were introduced into the experiment at this 

moment. The correct diagnosis outcome should be ‘F1’ only. All the other diagnosis 

results are wrong. The other contents in this table follow the similar explanation. 

In the correctness measurement table, we can see that the diagnoser has high 

accuracy rate over faults F1 (part error), F2 (XH2 abnormal) and F3 (lose wiring) while 

a poor performance on F4 (tolerance fault). Except the F4, the average accuracy of 
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diagnosing F1~F3 is 93%. This reason is because that F1, F2 and F3 are faults related to 

equipment error, which is the typical application of DES fault diagnosis. These faults 

occurrences can be inferred with DES diagnoser design and sensor mapping. While F4 is 

more related to product quality defect, when F4 occurs, it has the same outcome event 

sequence as well as sensor mappings with the normal operation. Thus the diagnoser 

cannot isolate F4 with normal operation. For the product tolerance error, it is usually 

handled by statistical quality control and there is no report on applying DES approach to 

model and detect quality defects yet. 

5.6.2 Detect delay evaluation 

The occurrence of a faulty event iF should be detected in finite time after its 

occurrence. If the diagnoser cannot detect a fault, the detect delay on that fault is infinite. 

A delay table on diagnosing each fault was built to define detection delay quantitatively. 

In the experiment evaluation, we included the software of Camtasia
®
 (black block shown 

in Figure 35) to record the indication of events in the VB HMI, as well as the time span 

between the fault’s occurrence and its identification. Table 30 below records the detect 

delay for the four kinds of faults. This table has a number of columns equal to whether 

normal or faulty status is included in the experiment, while the number of rows is equal 

to which kind of fault is included. We can see that the maximum detect delay for the F1, 

F2, F3 fault is 9 seconds. While the diagnoser cannot detect the tolerance fault, so the 

detect delay is infinite for fault F4. 
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Table 30 Detect delay 

Runs N F N N F F F N F F 

F1 N/A 9s N/A N/A 7s 8s 9s N/A 9s 8s 

F2 N/A 6s N/A N/A 7s 6s 6s N/A 5s 6s 

F3 N/A 7s N/A N/A 9s 7s 7s N/A 8s 7s 

F4 N/A   N/A N/A       N/A     

 

 

5.6.3 Complexity of the DES model 

Following [43], we considered the complexity of the DES diagnoser design. 

Suppose a DES system  0,,, qQG   and his diagnoser is  0,, qQG odd  . For 

each component of the system, the local diagnosers are  011
,,

11
qQG odd  … 

 modmd qQG
mm 0,,   codiagnoser  T

TTTT qQG 0,,,  . And we have that in the 

most complex situation for the system:  
mddd QQQQ ,,max

1max  , 

 
mooo  ,,max

1max  . The illustration of the complexity is shown as Table 31.  

 

 

Table 31 Complexity of DES model and diagnoser 

System  Notation Number of 

states 

Number of 

events 

Possible number of 

transitions 
'G  DES model Q    Q  

'
DG  DES 

Diagnoser 

dQ2
2  o  

o

Qd 
2

2  

1

dG  Local DES 

diagnoser 1 

12
2 dQ

 1,o  1,

2 12 o

Qd   

     
m

dG  Local DES 

diagnoser m 

dmQ2
2  mo,  mo

Qdm

,

2
2   

TG  DES 

codiagnoser 

  max12
2

Qm
   1

max,




m

o  
    1

max,

12 max2



m

o

Qm
 

Complexity of DES 

approach 

    1

max,

12 max2



m

o

Qm
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5.7 Conclusion 

In this chapter, we designed and implemented a diagnoser based on finite state 

automaton and sequential function chart for diagnosing discrete manufacturing systems. 

Firstly, the system was decomposed into subsystems based on component properties and 

functionalities. Finite state automaton was used to model the event-state relationship on 

each subsystem; projection was operated on the automaton to extract the desired 

information from each subsystem; and the event-state based model was used to infer the 

occurrence of the faults and locate the possible cause. Finally, a global coordinator based 

on sequential function chart (SFC) was proposed to fuse the decisions from each local 

diagnoser to gain a comprehensive view on the whole system. To test the proposed 

decentralized diagnoser design, a detailed experiment was studied on detecting typical 

faults on a PLC controlled dual robot system. It illustrated that the proposed diagnoser 

can detect and isolate most of the DES faults with a high fault detection rate of 93% and 

maximum fault detection delay of 9 seconds, although it cannot handle the product 

tolerance fault. The contribution of this work lies on the proposed plant and diagnoser 

model, which can model observations from complex discrete manufacturing systems, 

thus detecting stochastically unobservable faults.  
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CHAPTER VI 

COMPREHENSIVE EXPERIMENT EVALUATION ON PROPOSED 

METHODOLOGIES  

6.1 Experiment objective and description 

In order to determine how sensor deployment and diagnoser facilitate fault 

diagnosis in discrete manufacturing systems and to understand the impact of the factors 

on troubleshooting performance, the objectives were established in the following 

aspects: 

1) To develop a model for evaluating diagnosis performance under alternative 

combinations of sensor deployments, diagnosers and faults.  

2) To study the effect of the sensor deployment strategy on performance with a 

diagnosis architecture.  

3) To study the effect of the diagnoser on performance with a diagnosis 

architecture. 

4) To study the effect of the nature of faults diagnosed on the troubleshooting 

performance with different diagnostic configurations.  

The proposed experiment was carried out on the dual robot system in Rockwell
®

 

Automation System Integration Laboratory at Texas A&M University. The dual robot is 

shown in below Figure 36 [95]. It is a robot work cell including a conveyor, two 4-axis 

robot arms, four stoppers, two parts feeders, a computer vision and a controller. The 

actions of those components are controlled by programmable logic controller (PLC). We 

concentrate more on one stopper (stopper3) and one robot arm (arm1) as they are 
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functioning together, and the diagnosis on stopper4 and arm2 can follow the procedures 

from arm1.  

 

 

Figure 36 An automated assembly dual robot at Texas A&M University 

 

 

6.2 Design of experiment 

6.2.1 Design table 

Factorial design is an experimental methodology which permits researchers to 

study behavior under conditions in which independent variables vary simultaneously, so 

the researchers can investigate the joint effect of two or more factors on a dependent 

variable [96]. The factorial design also facilitates the study of interactions, illuminating 

the effects of different conditions of the experiment on the identifiable subgroups of 

subjects participating in the experiment. Specifically, the full factorial design is an 

experimental design which consists of two or more factors, each with discrete possible 

values or "levels", and whose experimental units take on all possible combinations of 

these levels across all such factors.  
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For this research, there are three variables: Sensor deployment strategy (X1), 

Diagnoser (X2), and Fault (X3). Detect delay, probability of detection (POD), 

probability of false alarm (POFA), and accuracy are the response variables. The levels of 

factors used in the experimental design are listed in Table 32. There are two sensor 

deployment strategies (2), two diagnosers (2) and four faults (4), so total combinations 

of experiments are going to be 16422  . In one combination, I repeated the 

experiment 10 times. Faults were randomly introduced in experiment as shown in Table 

29. 

 

 

Table 32 Experiment design table 
RUN Sensor 

deployment 

strategy 

Diagnoser Fault Detect 

delay 

(Seconds) 

POD  POFA Accuracy 

1 1 1 1 8.33 1.00 0.25 0.90 

2 1 1 2 6 1.00 0.25 0.90 

3 1 1 3 7.5 1.00 0.00 1.00 

4 1 1 4 11 0.00 0.00 0.40 

5 1 2 1 8 1.00 0.00 1.00 

6 1 2 2 3.67 0.92 0.25 0.85 

7 1 2 3 6.4 0.83 0.00 0.90 

8 1 2 4 11 0.00 0.00 0.40 

9 2 1 1 11.00 0.00 1.00 0.00 

10 2 1 2 5.33 0.75 1.00 0.45 

11 2 1 3 6.5 0.75 0.25 0.75 

12 2 1 4 11 0.00 0.00 0.40 

13 2 2 1 8.67 0.83 0.50 0.70 

14 2 2 2 3 0.75 0.50 0.65 

15 2 2 3 6 0.50 0.25 0.60 

16 2 2 4 11 0.00 0.00 0.40 
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The descriptions for the input and output are as following: 

Input Variables 

X1: sensor deployment strategy. There are two sensor deployment strategies 

applicable to discrete event systems: (1) optimized sensor deployment results based on 

fuzzy quantitative directed graph (FQDG, proposed approach) [97]; and (2) optimized 

sensor deployment results based on sign directed graph (SDG, benchmark approach). 

They formed the alternatives in X1. Through the SDG methodology, the chosen sensors 

are (S1, S5, S9, S10), which represent [pressure on A1X valve, pressure on A1Z valve, 

voltage reading on gripper controller, pressure on gripper valve]. Using the proposed 

quantitative fuzzy directed graph (FQDG) methodology, the chosen sensors are (S1, S3, 

S5, S7, S10), which represent [pressure on A1X valve, voltage reading on A1XH3, 

pressure on A1Z valve, voltage]. The detailed selection process of these two sensor 

deployment strategies is specified in Appendix II. 

X2: Diagnoser. FSA and PN are the two most popular approaches for analyzing 

discrete event systems. Two kinds of fault diagnosers: 1) diagnoser based on finite state 

automaton and sequential function chart (FSA+SFC, benchmark), and 2) realtime fuzzy 

Petri net diagnoser (RTFPN, proposed) were respectively developed to detect faults in 

discrete manufacturing systems. The construction process can be referred as Chapter IV 

and V, Appendix II also states how to build up the diagnoser. 

X3: Faults. From the observations in Section 2.1, in the robot assembly process 

there are five typical faults involved: 1) hardware fault, 2) software fault,3) product 

fault,4) task fault, and 5) tolerance fault. Inserting and grasping a part and keeping hold 
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of it are among the difficult robotic operations and are most susceptible to faults. This is 

followed by sensing failure and bad parts. These failures would ideally represent typical 

situations that need to be addressed in the implementation of diagnosis for automated 

assembly systems. Thus we replicate the faults as Table 33 to represent the typical faults. 

 

 

Table 33 Fault candidates for experiment design 

Faults Root causes Symptoms 

Failure to pick up 

part (F1), represent 

software fault and 

task fault 

Bad part that cannot be 

detected by the sensor prior 
to assembly combined with 

ladder logic written without 

accounting for failed inputs. 

Robot extends along the X-axis 

without initially lowering the 
elbow to grasp the peg. Once being 

extended, the elbow raises and 

lowers repeatedly. The base part is 

never released. 

Failure to lower arm 

and pick up parts 

(F2), represent 

hardware fault 

Loss of signal from sensor 

(A1XH2) that detects the arm 

is extended in the X 

direction, caused by the 

misplacement of sensor. 

Robot does not lower arm and 

drop part at the lower position; it 

extends (along X). but drops the 

part at the higher position. The 

fixture will be released finally. 

Failure to close 

gripper (F3), 

represent product 

fault 

Communication failure 

between the PLC output port 

and the solenoid valve 

controlling the gripper caused 

due to a disconnected wire. 

Gripper finger is jammed open 

during the entire assembly 

sequence while the rest of the 

operations occur normally. 

Consequently, the peg is never 

grasped. The final product is 

output without a peg. 

Insertion failure 

(F4), represent 

tolerance fault 

Loss of tolerance between the 

grasping location and the part 

insertion location in the 

fixture. The parts are made of 

rubber. They push each other 
on the feeder track. 

Inaccurate placement of the 

parts prior to grasping by the 

robotic gripper makes scrape 

when insertion. 

Insertion failure occurs in the form 

of a non- insertion of the peg into 

the hole similar to jamming or 

scratching of the edge of the hole 

in the base part by the peg before 
insertion. In the first couple of 

runs, the pegs under-travel the hole 

and in the last couple of runs the 

pegs over-travel the hole. 

 

 

 

Output variables 

The output variables refer to the measures of fault diagnosis performance. In 

[98], the authors listed the major performance metrics for diagnostic system include, 
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among others: 1) False positive alarm, 2) False negative miss-detection, 3) Accuracy, 

and 4) Time delay. 

These performance metrics can be calculated using the decision matrix in Table 

34. It is based on the hypothesis-testing methodology and represents the possible fault-

detection combinations that may occur. 

 

Table 34 Decision matrix for fault-detection evaluation 

[98] 

Outcome Fault (F1) No Fault (F0) Total 

Positive (D1) 

(detected) 

a 

number of detected faults 

b  

number of false alarms 

a+b 

total number of 

alarms 

Negative (D0) 
( not detected) 

c 
number of missed faults 

d 
number of correct rejection 

c+d 
total number of non-

alarms 

 a+c 

total number of faults 

b+d 

total number of fault-free cases 

a+b+c+d 

total number of cases 

 

 

From Table 34, the decision matrix can be computed readily. The probability of 

detection (POD) given a fault assesses the detected faults over all potential fault cases:  

POD=P(D1/F1)=
ca

a

            (6-1)
 

The probability of a false alarm (POFA) considers the proportion of all fault-free 

cases that trigger a fault detection alarm: 

POFA=P(D1/F0)=
db

b

             (6-2)
 

The accuracy metric is used to measure the effectiveness of the diagnostic system 

in correctly distinguishing between fault-presence and the fault-free condition. 
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Accuracy= P(D1/F1 & D0/F0)=
dcba

da





                  (6-3) 

Time delay is the time span between initiation and the detection of a fault event. 

6.2.2 Hypothesis and statistic testing 

Statistical analysis of the data involving all the sensor deployment strategies, 

diagnosers, and faults was performed using the general analysis of variance (ANOVA) 

in order to test if the different levels of any of the factors are statistically different in 

terms of the various performance metrics. The datasets collected were assumed to be 

replicates which allowed the ANOVA analysis to be performed considering the factors-

sensor deployments, diagnosers and faults. Three two-way interactions (diagnoser-fault, 

sensor-fault, sensor-fault) and one three-way interaction (sensor-diagnoser-fault) were 

conducted. The hypotheses for the ANOVA analysis can be formulated as: 

Null hypothesis (H0): There is no significant effect of different levels of a factor 

on the true average performance. 

Alternate hypothesis (H1): At least one level of the factor has significant effect 

on the true average performance. 

The following experimental hypotheses for the main effects are formulated: 

1. H0: There is no difference in the diagnosis performance with the SDG and FQDG 

based sensor deployment strategies.  

     H1: FQDG based sensor deployment induces better diagnosis performance than SDG 

based sensor deployment. 

2. H0: There is no difference in the diagnosis performance for all the four faults. 
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     H1: Fault-1, 2 and 3 induce better diagnosis performance than fault-4. 

3. H0: There is no difference in the diagnosis performance with FSASFC and RTFPN 

diagnosers. 

     H1: The RTFPN diagnoser’s diagnosis performance is better than FSASFC’s. 

To compare the performance of sensor deployments and diagnosers in improving 

the diagnosis performance, the experiment results were examined using two stages of 

statistical testing: analysis of variance (ANOVA), and Least Significant Difference 

(LSD) comparison.  

First, ANOVA was tested to determine whether there is any significant 

difference between the alternatives. Significant difference means input variables affect 

the performance; then paired comparisons between alternatives were conducted. 

However, if there was no statistically detectable difference, the statistical testing process 

stopped. 

Following, ANOVA was paired comparisons which consider a set of statistical 

inferences simultaneously. Errors in inference, including confidence intervals that fail to 

include their corresponding population parameters, or hypothesis tests that incorrectly 

reject the null hypothesis, are more likely to occur when one considers the family as a 

whole. As a statistical testing method, LSD is an effective test for detecting differences 

in means [96]: therefore, it is chosen as a candidate to compare the measured 

performance mean values of the search methodologies.  

Suppose that the data to be analyzed is composed of A groups; a given group is 

denoted a. The number of observations of the a th group is denoted aS . If all groups 
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have the same size it is denoted S . The total number of observations is denoted N . The 

mean of Group a  is denoted aM . From the ANOVA, the mean square of error (i.e., 

within group) is denoted  ASMS  and the mean square of effect (i.e., between group) is 

denoted
AMS . 

The value of the t statistics evaluating the difference between groups a and 'a is 

equal to 

  












 

'

'

11

aa

AS

aa

SS
MS

MM
t         (6-4)  [96] 

The ratio t is declared significant at a given  level if the value of t is larger than the 

critical value for the  level obtained from the t distribution and denoted ANt , . 

Rewriting this ratio shows that a difference between the means of Group a and 'a will be 

significant if 

  









 

'

,'

11

aa

ASANaa
SS

MStLSDMM 

      (6-5)  [96] 

6.3 Analysis results 

6.3.1 Stage I-ANOVA results 

The raw data collected from the experiments were listed in Appendix III and 

summarized in Table 32. The general linear models on all factors’ effects on the 

diagnosis performance are shown below as Table 35. This table illustrates that sensor 

deployment strategy and fault are important factors that will influence the diagnosis 
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results, while diagnosers did not show significant impact on the diagnosis performance. 

Possible reasons for the diagnoser’s insignificant difference may be traced to the well-

tuned and delicately designed diagnosers . Another conclusion that we can draw from 

this table is cross-effects (Sensor*Diagnoser, Diagnoser*Fault and Sensor*Fault) are not 

important factors influencing the diagnosis performance, so we will not perform two-

way ANOVA, but only the one-way ANOVA in the later analysis. 

 

Table 35 General linear model 
Source of variation 

(Factors)  

Detect delay POD POFA Accuracy 

Sensor F=0.07  

P=0.809 
F=6.58  

P=0.083 

F=33  

P=0.01 

F=12.3  

P=0.039 

Diagnoser F=15.42  

P=0.029 
F=0.16  

P=0.719 
F=6.82 

P=0.08 

F=1.49 

P=0.31 

Fault F=99.26  

P=0.002 
F=13.9   

P=0.029 
F=16.27 

P=0.023 

F=4.2 

P=0.135 

Sensor * Diagnoser F=0.38  

P=0.581 
F=0.97  

P=0.396 
F=2.45  

P=0.215 

F=1.14  

P=0.364 

Diagnoser* Fault F=2.96  

P=0.198 
F=1.58  

P=0.357 
F=2.45 

P=0.24 

F=1.63  

P=0.349 

Sensor * Fault F=0.83  

P=0.15 
F=1.31  

P=0.414 
F=5.36 

P=0.101 

F=2.3 

P=0.256 

Error df 3 3 3 3 

Total df 15 15 15 15 

 

 

We need to note the results on the detect delay in Table 32 and Appendix III. Our 

experiments show that it took 11 seconds for the arm1 to finish the whole assembly 

process. Theoretically, detect delay is supposed to be infinite if the faults cannot be 

isolated. When fault occurs, if the fixture is not blocked in the assembly process (for 

example, when fault 3 or 4 occurs), the detect delay should be smaller than 11 seconds. 

Otherwise, the fault cannot be detected. In other words, if we cannot detect the faults in 

11 seconds after its occurrence, then we cannot isolate them from other faults, so we take 
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11 seconds as the detect delay for  the faults that cannot be detected by our proposed 

sensor deployment and diagnoser design.  

 

 
(a) 

 

(b) 

Figure 37 Residual plots for detect delay (a), accuracy (b), positive detection (c) and 

false alarm (d) 
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(c) 

 
(d) 

Figure 37 Continued. 

 

To check the normality assumptions, we draw residual plots (Figure 37) for the 

detect delay, accuracy, POD, and POFA. Normality assumptions usually are checked 

with normal probability plots or histogram plots. The histogram can be made to check 

the normality. However, with small samples, considerable fluctuation often occurs, so 

the appearance of a moderate departure from normality does not necessarily imply a 
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serious violation of the assumption. Gross deviations from normality are potentially 

serious and require further analysis [96]. Another useful procedure is to construct a 

normal probability plot of residuals. If the underlying error distribution is normal, this 

plot will resemble a straight line. In Figure 37, the residuals distributed closely along a 

straight line in the normal probability plots, with no abnormalities observed in the plot. 

Thus, the experiments fit a normal distribution. This implies that the experiments are 

valid with ANOVA to analyze the results. To identify the hypothesis we raised before, 

we will do the paired comparisons. 

 

1) One-way ANOVA on Accuracy 

One-way ANOVA: Accuracy versus Diagnoser  

Source     DF      SS      MS     F      P 

diagnoser   1  0.0400  0.0400  0.51  0.487 

Error      14  1.0975  0.0784 

Total      15  1.1375 

 

S = 0.2800   R-Sq = 3.52%   R-Sq(adj) = 0.00% 

 

 

                          Individual 95% CIs For Mean Based on 

                          Pooled StDev 

Level  N    Mean   StDev  -----+---------+---------+---------+---- 

1      8  0.5875  0.3281  (-------------*-------------) 

2      8  0.6875  0.2216         (-------------*-------------) 

                          -----+---------+---------+---------+---- 

                             0.45      0.60      0.75      0.90 

 

Pooled StDev = 0.2800 

 

 
One-way ANOVA: Accuracy versus Sensor  

Source  DF      SS      MS     F      P 

Sensor   1  0.3306  0.3306  5.74  0.031 

Error   14  0.8069  0.0576 

Total   15  1.1375 

 

S = 0.2401   R-Sq = 29.07%   R-Sq(adj) = 24.00% 

 

 

                          Individual 95% CIs For Mean Based on 

                          Pooled StDev 
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Level  N    Mean   StDev  ----+---------+---------+---------+----- 

1      8  0.7813  0.2390                (--------*--------) 

2      8  0.4937  0.2412  (--------*--------) 

                          ----+---------+---------+---------+----- 

                            0.40      0.60      0.80      1.00 

 

Pooled StDev = 0.2401 

 

 

One-way ANOVA: Accuracy versus Fault  

Source  DF      SS      MS     F      P 

fault    3  0.3387  0.1129  1.70  0.221 

Error   12  0.7987  0.0666 

Total   15  1.1375 

 

S = 0.2580   R-Sq = 29.78%   R-Sq(adj) = 12.23% 

 

 

                          Individual 95% CIs For Mean Based on 

                          Pooled StDev 

Level  N    Mean   StDev  -----+---------+---------+---------+---- 

1      4  0.6500  0.4509            (----------*----------) 

2      4  0.7125  0.2056              (-----------*----------) 

3      4  0.7875  0.1436                 (-----------*----------) 

4      4  0.4000  0.0000  (----------*----------) 

                          -----+---------+---------+---------+---- 

                             0.25      0.50      0.75      1.00 

 

Pooled StDev = 0.2580 

 

 

From the ANOVA, significant differences were observed for sensors’ detection 

accuracy at the significance level of 0.05 among different alternatives. However, there is 

no significant difference on different diagnosers’ and faults’ effects on the diagnosis 

accuracy. Further comparison will be conducted on accuracy for the sensors.  

 

2) One-way ANOVA on POD 

One-way ANOVA: POD versus Sensor  

Source  DF     SS     MS     F      P 

Sensor   1  0.293  0.293  1.69  0.214 

Error   14  2.429  0.173 

Total   15  2.722 

 

S = 0.4165   R-Sq = 10.78%   R-Sq(adj) = 4.41% 

 

 

                          Individual 95% CIs For Mean Based on 

                          Pooled StDev 

Level  N    Mean   StDev  -----+---------+---------+---------+---- 

1      8  0.7188  0.4475             (------------*-----------) 
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2      8  0.4479  0.3830  (------------*------------) 

                          -----+---------+---------+---------+---- 

                             0.25      0.50      0.75      1.00 

 

Pooled StDev = 0.4165 

 

 

One-way ANOVA: POD versus Diagnoser  

Source     DF     SS     MS     F      P 

diagnoser   1  0.007  0.007  0.04  0.853 

Error      14  2.715  0.194 

Total      15  2.722 

 

S = 0.4404   R-Sq = 0.26%   R-Sq(adj) = 0.00% 

 

 

                          Individual 95% CIs For Mean Based on 

                          Pooled StDev 

Level  N    Mean   StDev  ---------+---------+---------+---------+ 

1      8  0.5625  0.4772  (----------------*----------------) 

2      8  0.6042  0.4003     (---------------*----------------) 

                          ---------+---------+---------+---------+ 

                                 0.40      0.60      0.80      1.00 

 

Pooled StDev = 0.4404 

 

 

One-way ANOVA: POD versus Fault  

Source  DF      SS      MS     F      P 

fault    3  1.8576  0.6192  8.59  0.003 

Error   12  0.8646  0.0720 

Total   15  2.7222 

 

S = 0.2684   R-Sq = 68.24%   R-Sq(adj) = 60.30% 

 

 

                          Individual 95% CIs For Mean Based on 

                          Pooled StDev 

Level  N    Mean   StDev  -------+---------+---------+---------+-- 

1      4  0.7083  0.4787                   (-------*------) 

2      4  0.8542  0.1250                       (------*-------) 

3      4  0.7708  0.2083                     (------*-------) 

4      4  0.0000  0.0000  (------*------) 

                          -------+---------+---------+---------+-- 

                               0.00      0.40      0.80      1.20 

 

Pooled StDev = 0.2684 

 

 

From the ANOVA, we find that at the significance level of 0.05 there is no 

significant difference on different sensor deployment strategies’ effects and diagnosers’ 
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effects on the POD. However significant differences were observed among faults. 

Further LSD comparison will be conducted on POD for the faults.  

 
3) One-way ANOVA on POFA 
One-way ANOVA: POFA versus Sensor  

Source  DF      SS      MS     F      P 

Sensor   1  0.4727  0.4727  5.46  0.035 

Error   14  1.2109  0.0865 

Total   15  1.6836 

 

S = 0.2941   R-Sq = 28.07%   R-Sq(adj) = 22.94% 

 

 

                          Individual 95% CIs For Mean Based on 

                          Pooled StDev 

Level  N    Mean   StDev  ------+---------+---------+---------+--- 

1      8  0.0938  0.1294  (----------*----------) 

2      8  0.4375  0.3953                   (----------*----------) 

                          ------+---------+---------+---------+--- 

                              0.00      0.20      0.40      0.60 

 

Pooled StDev = 0.2941 

 

 

One-way ANOVA: POFA versus diagnoser  

Source     DF     SS     MS     F      P 

diagnoser   1  0.098  0.098  0.86  0.369 

Error      14  1.586  0.113 

Total      15  1.684 

 

S = 0.3366   R-Sq = 5.80%   R-Sq(adj) = 0.00% 

 

 

                          Individual 95% CIs For Mean Based on 

                          Pooled StDev 

Level  N    Mean   StDev  ---+---------+---------+---------+------ 

1      8  0.3438  0.4213         (------------*------------) 

2      8  0.1875  0.2216  (-----------*------------) 

                          ---+---------+---------+---------+------ 

                           0.00      0.20      0.40      0.60 

 

Pooled StDev = 0.3366 

 

 

One-way ANOVA: POFA versus fault  

Source  DF      SS      MS     F      P 

fault    3  0.6992  0.2331  2.84  0.083 

Error   12  0.9844  0.0820 

Total   15  1.6836 

 

S = 0.2864   R-Sq = 41.53%   R-Sq(adj) = 26.91% 
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                          Individual 95% CIs For Mean Based on Pooled StDev 

Level  N    Mean   StDev     +---------+---------+---------+--------- 

1      4  0.4375  0.4270                   (----------*---------) 

2      4  0.5000  0.3536                     (----------*---------) 

3      4  0.1250  0.1443         (---------*----------) 

4      4  0.0000  0.0000     (---------*---------) 

                             +---------+---------+---------+--------- 

                          -0.30      0.00      0.30      0.60 

 

Pooled StDev = 0.2864 

 

From the ANOVA, we find significant differences on different sensor 

deployment strategies’ effects ( 05.0 ) and faults’ effects ( 1.0 ) on the diagnosis 

POFA. However no significant difference was observed among diagnosers. Further LSD 

comparison will be conducted on the POFA for the sensors and faults.  

 

4) One-way ANOVA on Delay 

One-way ANOVA: delay versus Sensor  

 
Source  DF      SS    MS     F      P 

Sensor   1    0.02  0.02  0.00  0.958 

Error   14  108.66  7.76 

Total   15  108.69 

 

S = 2.786   R-Sq = 0.02%   R-Sq(adj) = 0.00% 

 

                        Individual 95% CIs For Mean Based on 

                        Pooled StDev 

Level  N   Mean  StDev  ---+---------+---------+---------+------ 

1      8  7.737  2.482  (----------------*-----------------) 

2      8  7.813  3.060  (-----------------*-----------------) 

                        ---+---------+---------+---------+------ 

                         6.0       7.2       8.4       9.6 

 

Pooled StDev = 2.786 

 

 

One-way ANOVA: Delay versus Diagnoser  

 
Source     DF      SS    MS     F      P 

diagnoser   1    4.97  4.97  0.67  0.426 

Error      14  103.71  7.41 

Total      15  108.69 

 

S = 2.722   R-Sq = 4.58%   R-Sq(adj) = 0.00% 

 

 

                        Individual 95% CIs For Mean Based on 

                        Pooled StDev 

Level  N   Mean  StDev  ------+---------+---------+---------+--- 
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1      8  8.332  2.386          (-------------*------------) 

2      8  7.218  3.020  (-------------*-------------) 

                        ------+---------+---------+---------+--- 

                            6.0       7.5       9.0      10.5 

 

Pooled StDev = 2.722 

 

 

One-way ANOVA: Delay versus Fault  

 
Source  DF      SS     MS      F      P 

fault    3   96.03  32.01  30.35  0.000 

Error   12   12.66   1.05 

Total   15  108.69 

 

S = 1.027   R-Sq = 88.36%   R-Sq(adj) = 85.44% 

 

 

                         Individual 95% CIs For Mean Based on 

                         Pooled StDev 

Level  N    Mean  StDev  ------+---------+---------+---------+--- 

1      4   9.000  1.361                    (---*---) 

2      4   4.500  1.400  (---*---) 

3      4   6.600  0.638          (---*----) 

4      4  11.000  0.000                            (---*---) 

                         ------+---------+---------+---------+--- 

                             5.0       7.5      10.0      12.5 

 

Pooled StDev = 1.027 

 

 

From the ANOVA, we find no significant difference on different sensor 

deployment strategies’ effects on detect delay at the significance level of 0.05. Neither 

significant difference on the diagnosers’ effects was found. However, significant 

difference was observed among different faults ( 05.0 ). Further LSD comparison 

will be conducted on the detect delay for the faults. 

6.3.2 Stage II-LSD comparison results 

1) Least Significant Difference Analysis on accuracy for Sensor ( 05.0 ) 
 

Table 36 LSD of pairwise comparisons in accuracy with sensors 
Experimental Group 

 FQDG SDG 
FQDG 0.00 0.3 

SDG  0.00 
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The LSD for accuracy is calculated as below 
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From Table 36 and LSD for accuracy with sensors, we conclude that FQDG is 

better than SDG on accuracy at the significance level of 0.05. 

 

2) Least Significant Difference Analysis on POFA for Sensor ( 05.0 ) 
 

Table 37 LSD of pairwise comparisons in POFA with sensors 
Experimental Group 

 FQDG SDG 
FQDG 0.00 -0.34 

SDG  0.00 

 

The LSD for POFA is calculated as below 
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From Table 37 and LSD for POFA with sensors, we conclude that FQDG is 

better than SDG on accuracy at the significance level of 0.05. 

 

3) Least Significant Difference Analysis on delay for faults ( 05.0 ) 
 

Table 38 LSD of pairwise comparisons in detect delay with faults 
 Experimental Group 

Fault1 Fault2 Fault3 Fault4 

Fault 1 0.00 4.5 2.4 -2 

Fault 2  0.00 -2.1 -6.5 

Fault 3   0.00 -4.4 

Fault 4    0.00 
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The LSD for delay is calculated as below 
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From Table 38 and LSD for detect delay with faults, we concluded that it takes 

the least amount of time to detect fault 2, then follows are fault 3 and fault 1 

sequentially. Fault 4 takes the longest time to be detected. 

 

4) Least Significant Difference Analysis on POFA for Faults ( 1.0 ) 
 

Table 39 LSD of pairwise comparisons in POFA with faults 
 Experimental Group 

Fault1 Fault2 Fault3 Fault4 

Fault 1 0.00 -0.0625 0.3125 0.4375 

Fault 2  0.00 0.375 0.5 

Fault 3   0.00 0.125 

Fault 4    0.00 

 

The LSD for POFA is calculated as below 

275.0
4

1

4

1
082.0356.1

11

'

, 


















 

aa

EaNPOFA
SS

MStLSD   

From Table 39 and LSD for POFA with faults, we concluded that fault 1 and 2 

have better POFA performance than fault 3 and 4. 

 

6.3.3 Main effects and interaction analysis 

On the main effect plots on accuracy, the sensor strategy 1 (FQDG method based 

sensor deployment) and diagnoser 2 (RTFPN diagnoser) show better performance than 
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the other alternatives. On interactive plots, the combination of strategy 1 and diagnoser 2 

also show the same trends that the combination of FQDG and RTFPN diagnoser has the 

best accuracy performance. 

 

 
(a) 

 
(b) 

Figure 38 Main effects plots (a) and interaction plots (b) for accuracy 

 

 

On the main effect plots on accuracy (Figure 38), the sensor strategy 1 (FQDG 

method based sensor deployment) and diagnoser 2 (RTFPN diagnoser) show better 

performance than the other alternatives. On interactive plots, the combination of strategy 
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1 and diagnoser 2 also show the same trends that the combination of FQDG and RTFPN 

diagnoser has the best accuracy performance. 

 

 
(a) 

 
(b) 

Figure 39 Main effects plots (a) and interaction plots (b) for POD 

 

 

On the main effect plots on POD (Figure 39), the sensor strategy 1 (FQDG 

method based sensor deployment) and diagnoser 2 (RTFPN diagnoser) show better than 

the other alternatives. On interactive plots, the combination of strategy 1 and diagnoser 2 

21

0.8

0.6

0.4

0.2

0.0

21

4321

0.8

0.6

0.4

0.2

0.0

Sensor

M
e

a
n

diagnoser

fault

Main Effects Plot for POD
Data Means

21 4321

1.0

0.5

0.0

1.0

0.5

0.0

Sensor

diagnoser

fault

1

2

Sensor

1

2

diagnoser

Interaction Plot for POD
Data Means



 

 

152 

also show the same trends that the combination of FQDG and RTFPN diagnoser has the 

best POFA performance. 

 

 
(a) 

 
(b) 

Figure 40 Main effects plots (a) and interaction plots (b) for POFA 

 

 

On the main effect plots on POFA (Figure 40), the sensor strategy 1 (FQDG 

method based sensor selection) and diagnoser 2 (RTFPN diagnoser) show better than the 

other alternatives. On interactive plots, the combination of strategy 1 and diagnoser 2 

also show the same trends that the combination of FQDG and RTFPN has the best 

POFA performance. 
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(a) 

 

(b) 

Figure 41 Main effects plots (a) and interaction plots (b) for detect delay 
 

 

On the main effect plots on accuracy (Figure 41), the sensor strategy 1 (FQDG 

method based sensor deployment) and diagnoser 2 (RTFPN diagnoser) show better than 

the other alternatives. On interactive plots, the combination of strategy 1 and diagnoser 2 

also show the same trends that the combination of FQDG and RTFPN has the best 

detectdelay performance. 
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6.4 Conclusion 

This chapter presented a comprehensive evaluation of proposed approaches 

including sensor deployment strategies, and diagnosers on detecting representative faults 

in a PLC based automated assembly system. The diagnosis performance evaluation 

metrics are accuracy, false alarm (POFA), positive detection rate (POD) and detect 

delay, which are the responsive variables in the experiment. The experiment 

combinations were conducted using design of experiment techniques. Two-stage 

statistical analysis, including analysis of variance (ANOVA) and least significant 

difference (LSD), was conducted on the collected responsive variable data. Linear, main, 

and interaction effects of the diagnosis system variables on diagnosis performance were 

also determined. It was observed that that when considering the quantitative information 

from sensors and faults into sensor deployment, fuzzy quantitative directed graph 

(FQDG) provides better diagnosis performance on accuracy and false alarm than without 

quantitative information such as SDG. On the diagnoser design, it also shows that the 

proposed real time fuzzy Petri net diagnoser (RTFPN) has better performance than the 

diagnoser design based on finite state automaton and sequential function chart. 
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CHAPTER VII 

CONCLUSIONS AND FUTURE DIRECTIONS 

In this chapter, we highlight the key contributions of this dissertation and identify 

potential research directions. 

 

7.1 Significant contributions 

The significant contributions of this research are two folds. 

On sensor deployment: 

1) A systematic strategy to direct the sensor deployment. It started from failure mode 

effect analysis (FMEA) to obtain the fault information on the system and initially 

choose sensors. Then quantitative fuzzy graph was used to model sensor deployment. 

The nodes of the graph were constituted of fault nodes and sensor nodes. The fault 

nodes contained fault information from FMEA, while sensor nodes contained sensor 

properties such as reliability, sensitivity, and sensor failure rate. The edges between 

sensor nodes and fault nodes represented the sensors’ fault detectability to certain 

faults. Finally, lexicographical integer linear programming or greedy algorithms 

were respectively conducted to optimally assign the sensor nodes to fault nodes, thus 

optimizing the sensor deployment. The proposed strategy covers all the aspects in 

sensor deployment for fault diagnosis and can share some light with other 

applications such as optimal control. 

2) A novel sensor deployment approach considering heterogeneous sensor 

characteristics. Previous sensor deployment approaches only considered whether 
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there is a connection between the fault node and the sensor node, without 

considering how the connection forms such as the strength of connections between 

them. It is a single attribute decision problem. Our proposed sensor deployment 

approach based on FQDG includes multiple attributes into the sensor deployment. 

Fault information, sensor characteristics and fault-sensor relationship are included 

into the cause-effect modeling between faults and sensors. In this approach, the 

fuzzy graph was used to model the cause-effect relationship between sensors and 

faults. The heterogeneous information in the sensor deployment was normalized 

using fuzzy membership function. Through fuzzy normalization, different 

sensor/fault characteristics were successfully transformed into the comparable values 

for later decision. In order to handle the trade-off on multiple attributes, the 

analytical hierarchy process (AHP) was applied to aggregate multiple sensor 

attributes into single edge values. In this way, the relation between sensor and fault 

was quantitatively decided to help deploying sensors. 

3) Practical ways to optimize the sensor-fault graph targeting multiple objectives. With 

the fuzzy quantitative graph, we first transformed the nonlinear programming 

problem into linear optimization, and then we proved that this kind of transformation 

will not change the optimality of the original problem. To solve the multiple-

objective optimization in deployment, two approaches based on lexicographical 

integer linear programming and greedy algorithms were respectively applied to 

optimally assign sensors to faults. The effects of these approaches on the 

optimization results were also discussed for choosing the proper optimization 
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approach. A case study on a five tank system showed that compared to the signed 

directed graph, the proposed fuzzy graph based methodology can greatly enhance the 

detectability to faults (from SDG’s 0.62 to fuzzy graph’s 0.70). The sensor number 

was reduced from unoptimized 13 to optimized 3, which greatly reduced the cost. 

The other case study on a dual robot arm showed how the sensor selection proceeds 

when undetectability requirements vary. The system’s detectability improved from 

signed directed graph approach’s 0.61 to fuzzy quantitative graph’s 0.65. It 

illustrated that the optimization approach can assign sensors to faults in a reliable and 

cost effective way. It also illustrated that the proposed methodology is applicable to 

both the continuous time and discrete event type systems. 

 

On real time fuzzy Petri net diagnoser design: 

1) A systematic design approach on modeling and diagnosing manufacturing systems 

with the Petri net. A realtime PN model, aiming at the nonsynchronization problem, 

was set up to monitor the manufacturing system. The mapping between I/O devices 

with the PN places avoided the aimlessness of monitoring tasks. In order to integrate 

the knowledge and handle uncertainties for diagnosis, a fuzzy Petri net diagnoser 

was proposed to locate the faults. 

2) Solid implementation work of the proposed approach on diagnosing a dual robot arm. 

The proposed diagnoser was implemented into a PN human machine interface using 

Visual Basic. The troubleshooter can monitor the running status of the whole system 

or check the very detailed running status of each station conveniently. It illustrated 

that the implementation of the system is relatively easy. It avoided the complexity 



 

 

158 

problem in the FSA diagnoser, and it is easy for implementation with distributed 

forms. 

3) A novel evaluation experiment on the accuracy and diagnosability on the PN 

diagnoser. Sixty runs of experiments on fault detection were randomly carried out on 

the accuracy of the diagnosis approach; it proved that the proposed system has a high 

accuracy rate of 93%. Then the detect delay matrix was applied to evaluate to the 

diagnosability of the diagnoser. It proved that the diagnoser can detect faults within 

the maximum delay of eight steps. The proposed methodology can remedy the 

nonsynchronizing between the plant and the diagnoser, and it can handle 

uncertainties in knowledge integration. 

 

7.2 Future work 

 

Potential extensions for this dissertation research can be explored in the 

following areas: 

1) Automate the system configuration process in the diagnostic/prognostic architecture, 

including feature selection, system initial configuration and reconfiguration. To 

enhance the flexibility and agility of manufacturing industries, reconfigurable 

manufacturing systems (RMS) are promising solutions that can quickly adjust the 

production capacity and functionality within a part family in response to swift 

market changes or intrinsic system changes. How to reconfigure the diagnosis 

system as the manufacturing system’s configuration changes will be an interesting 

research topic. As identified in Chapter I, how to select and fuse signal features also 
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affects diagnosis performance significantly. Some researchers have explored the 

feature selection approach through the Taguchi method [2]: the features were 

selected manually through many experimental observations. Potential work can be 

carried out in the area of automated feature selection algorithms.  

2) Although much research progression has been accomplished in the areas of fault 

diagnosis and supervisory control of complex discrete event systems, these two 

problems were tackled separately, and there is no integrated architecture in which 

control and diagnosis can be addressed simultaneously. When integrating different 

techniques together, their underlying modeling frameworks and assumptions pose 

problems to integration. It is important to have a delicately designed architecture, so 

that such tasks can be accomplished while at the same time existing techniques can 

be exploited to the greatest possible extent. The work in this dissertation has 

individually addressed some of these tasks in the diagnosis area. It has the potential 

to be integrated and used as the basis for a unified architecture. 

3) The proposed diagnoser can be extended to handle multiple simultaneous faults. 

Multiple faults may mask or compensate each other’s effects thus hindering the fault 

isolation. Additionally, it is challenging in that the number of candidates grows 

exponentially with the number of faults. Our proposed diagnoser is based on the 

single fault assumption; it can lead to incorrect or failed diagnoses when multiple 

faults happen. We did not see much research involving multiple faults diagnosis in 

discrete event systems. How to isolate multiple faults can be a future direction for 

our research.  
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4) Study the optimal configuration of sensor system under the life cycle operation cost 

for the automated manufacturing system. Sometimes increasing more sensors in the 

diagnosis system may not be cost efficient when the automated system is subjected 

to the maintenance scheduling, although it can enhance detectability. How to include 

the sensor cost into the life cycle operation of automated system thus optimizing its 

maintenance schedule will be an interesting topic in the future. 
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APPENDIX I 

 I/O MAPPING IN THE EXPERIMENT 

 

TableA1. Input/output mapping on the PLC I/O module 
BReaddata 

 

N9:2 

2^0 I:5/0    not used BReaddata2 

 

N9:2 

2^0 I:5/8       PSS4 

2^1 I:5/1    not used 2^1 I:5/9       A1ZH2 

2^2 I:5/2    not used 2^2 I:5/10     PSS3 

2^3 I:5/3    not used 2^3 I:5/11     A1XH3 

2^4 I:5/4    not used 2^4 I:5/12     PSS2 

2^5 I:5/5    not used 2^5 I:5/13     A1ZH1 

2^6 I:5/6    not used 2^6 I:5/14     PSS1 

2^7 I:5/7    A1XH2 2^7 I:5/15     not used 

 

BReaddata3 

 

N9:3 

2^0 I:4/0 not used BReaddata4 

 

N9:3 

2^0 I:4/8      not used 

2^1 I:4/1 not used 2^1 I:4/9      Pressure1 

2^2 I:4/2 not used 2^2 I:4/10    A2XH2 

2^3 I:4/3    part ready 2^3 I:4/11    load cell 

2^4 I:4/4  feeder2 reverse 

stop 

2^4 I:4/12    A2ZH2 

2^5 I:4/5  vision input 2^5 I:4/13 feeder1 forward 

stop 

2^6 I:4/6  A2XH3 2^6 I:4/14    A2ZH1 

2^7 I:4/7  pressure 3 2^7 I:4/15 feeder1 reverse 

stop 

 

BReaddata5 

 

N9:5 

2^0 O:1/0    speedH_L BReaddata6 

 

N9:5 

2^0 O:1/8      feeder2_reverse 

2^1 O:1/1    feeder1_start 2^1 O:1/9      feeder1_start 

2^2 O:1/2    feeder1_reverse 2^2 O:1/10    feeder1_reverse 

2^3 O:1/3    not used 2^3 O:1/11    not used 

2^4 O:1/4    vision output 2^4 O:1/12    PS4 

2^5 O:1/5    not used 2^5 O:1/13    PS3 

2^6 O:1/6    feeder2_start 2^6 O:1/14    PS2 

2^7 O:1/7    not used 2^7 O:1/15    PS1 

 

BReaddata7 

 

N9:4 

2^0 O:2/0      conveyor BReaddata8 

 

N9:4 

2^0 O:2/8        A2Z 

2^1 O:2/1      not used 2^1 O:2/9        A1X 

2^2 O:2/2      not used 2^2 O:2/10      A1Z 

2^3 O:2/3      not used 2^3 O:2/11      not used 

2^4 O:2/4      not used 2^4 O:2/12      not used 

2^5 O:2/5      not used 2^5 O:2/13      A1 gripper 

2^6 O:2/6      not used  2^6 O:2/14      A2 gripper 

2^7 O:2/7      A2X 2^7 O:2/15      not used    
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TableA2. Timer and counter mapping on the PLC program 
BReaddata9+ BReaddata10: T4:5 (N9:6)  BReaddata11+ BReaddata12: T4:10 (N9:7) 

BReaddata13+ BReaddata14: T4:15 (N9:8) BReaddata15+ BReaddata16: T4:20 (N9:9) 

BReaddata17+ BReaddata18: T4:25 (N9:10) BReaddata19+ BReaddata20: T4:40 (N9:11) 

BReaddata21+ BReaddata22: T4:45 (N9:12) BReaddata23+ BReaddata24: T4:50 (N9:13) 

BReaddata25+ BReaddata26: T4:55 (N9:14) BReaddata27+ BReaddata28: T4:6 (N9:15) 

BReaddata29+ BReaddata30: T4:7 (N9:16) BReaddata31+ BReaddata32: T4:1 (N9:17) 

BReaddata33+ BReaddata34: T4:2 (N9:18) BReaddata35+ BReaddata36: T4:3 (N9:19) 

BReaddata37+ BReaddata38: T4:4 (N9:20) BReaddata39+ BReaddata40: T4:11 (N9:21) 

BReaddata41+ BReaddata42: T4:14 (N9:22)  

BReaddata43+ BReaddata44: C5:0 (N9:23) BReaddata45+ BReaddata46: C5:1 (N9:24)  
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APPENDIX II  

NUMERIC EXAMPLE ON THE SENSOR DEPLOYMENT AND DIAGNOSER 

 

A2.1 Sensor deployment 

There are two sensor deployments: 1) benchmark method: signed directed graph 

(SDG), and 2) proposed method: quantitative fuzzy directed graph (FDG). 

 

How to select sensors based on SDG? 

 

 
FigureA1. SDG model for sensor deployment on dual robot 

 

TableA3. SDG model for sensor deployment on dual robot 

 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

R1 1          

R2  1 1 1    1 1  

R3  1 1 1    1 1  

R4 1   1       

R5     1      

R6      1 1 1 1  

R7      1 1 1 1  

R8     1   1   

R9         1 1 

R10          1 
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The formulation of the SDG based cause-effect relationship between faults and 

sensors is based on the failure mode effect analysis: whether the fault will affect the 

sensor measurement. The optimization of this SDG based sensor deployment model is 

according to the greedy algorithm proposed in [21]. The flow chart for the greedy 

algorithm is as FigureA2. 

 

 

 
 

FigureA2. Greedy algorithm for SDG based sensor deployment model [21] 

 

 

When applying the algorithm in FigureA2 to optimize the graph in FigureA1, we 

have the optimization process as below. 

Step1): select S8 or S9, because they have the highest unmarked arcs. Now we select S9, 

mark and store it by C. 
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Step2): generate all the root nodes covered by C; those root nodes are [R2, R3, R6, R7, 

R9], release the connection between [R2, R3, R6, R7] with their original sensor node arc 

connections.  

Step 3): identify the uncovered root nodes that are not are [R1, R4, R5, R8, R10].  

Repeat step 1), identify the sensor nodes among [S1, S4, S5, S8, S10] with the highest 

unmarked arcs. It was identified as either S1 or S5. 

Step 4): select S1, then the root nodes covered by S1 are [R1, R4]. Release the 

connection between R4 and S4. Store S1 in C. 

Step 5): select S5, then the root nodes covered by S5 are [R5, R8]. Release the 

connection between R8 and S8. Store S5 in C. 

Step 6): uncovered root nodes are R10, select S10 and store it in C. 

Finally, the selected sensors based on SDG are [S1, S5, S9, S10]  

 

How to select sensors based on FDG? 

Step1): Form the fuzzy graph based sensor deployment model 

As mentioned in Chapter III, the FDG based sensor deployment starts from 

failure mode effect analysis (FMEA), we first collected the fault information about the 

system and used them to form the fault nodes in the FDG. These fault information is 

Table A4. 
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Table A4. Fault nodes in FDG based sensor deployment 

 Component 

Fault 

Node 

Possible 

Fault 

Occurrence 

Rate 

Severity 

Rate 

Detection 

Rate 

RPN normalized 

RPN 

Shoulder 

R1 Cylinder 6 7 2 84 0.083 

R2 

Hall 

sensor1 

6 8 9 

432 0.431 

R3 

Hall 

sensor2 

6 8 9 

432 0.431 

R4 Solenoid 2 1 5 10 0.009 

Elbow 

R5 Cylinder 6 7 2 84 0.083 

R6 

Hall 

sensor1 

6 8 9 

432 0.431 

R7 

Hall 

sensor2 

6 8 9 

432 0.431 

R8 Solenoid 2 1 5 10 0.009 

Gripper 

R9 Solenoid 2 1 5 10 0.009 

R10 Cylinder 6 7 2 84 0.083 

 

FMEA also provided some information on how to treat the faults, so we know 

what kind of sensor that needs to be selected. The sensor nodes information is in Table 

A5. 

Table A5. Sensor nodes in FDG based sensor deployment 
Sensors to 

detect faults 

Sensitivity 

(full  

scale) 

SNR 

(dB) 

Resolution 

(bit) 

Accuracy 

(full scale) 

1-acc sensor 

fail 

rate 

(Pr) 

Cost 

($) 

SI 
15.84 

Norm

alized 

SI 

Fault  

node 

Sensor 

node 

R1 S1 1% 100 15 3% 97% 0.001 30 
14.55 0.91 

R2 S2 1% 100 16 1% 99% 0.001 80 
15.84 1 

R3 S3 1% 100 16 1% 99% 0.001 80 
15.84 1 

R4 S4 1% 100 16 1% 99% 0.001 80 
15.84 1 

R5 S5 1% 100 15 3% 97% 0.001 30 
14.55 0.91 

R6 S6 1% 100 16 1% 99% 0.001 80 
15.84 1 

R7 S7 1% 100 16 1% 99% 0.001 80 
15.84 1 

R8 S8 1% 100 16 1% 99% 0.001 80 
15.84 1 

R9 S9 1% 100 16 1% 99% 0.001 80 
15.84 1 

R10 S10 1% 100 15 3% 97% 0.001 30 
14.55 0.91 
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The sensor fault relation is based on the sensing gain and sensing time of the 

sensor’s to the fault. The  raw data for sensors’ sensing gain and time is in Table A6. 

 

Table A6. Sensor nodes in FDG based sensor deployment 

 

Sens. 

gain 

Sens. 

time (ms) 
g/t 

S1 1 4.6 0.217391 

S2 1 3 0.333333 

S3 1 3 0.333333 

S4 1 3 0.333333 

S5 1 4.6 0.217391 

S6 1 3 0.333333 

S7 1 3 0.333333 

S8 1 3 0.333333 

S9 1 3 0.333333 

S10 1 4.6 0.217391 

 

 

In order to aggregate sensor nodes, fault nodes and senor-fault relation into single 

edge value, I used the analytic hierarchy process (AHP). The decision hierarchy is as 

FigureA3. The edge value is aggregated as    T
FSFS PVPVPVFISFISIE ,,,,

~


. 
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FigureA3. Decision hierarchy in the sensor deployment 

 

 

We assume equal importance among these three attributes: 

   333.0333.0333.0,, FSFS PVPVPV .Combining the information, we have the 

edge values in TableA4, and the fuzzy graph model is presented in Figure A7. 

 

Table A7. Connection edge values in FDG based sensor deployment 

 0.918 1 1 1 0.918 1 1 1 1 0.918 

 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

0.083 R1 0.55          

0.44 R2  0.81 0.81 0.34    0.67 0.67  

0.44 R3  0.81 0.81 0.34    0.67 0.67  

0.009 R4 0.55   0.34       

0.083 R5     0.55      

0.44 R6      0.81 0.81 0.67 0.67  

0.44 R7      0.80 0.81 0.67 0.67  

0.009 R8     0.55   0.67   

0.009 R9         0.67   0.55 

0.083 R10          0.55 
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FigureA4. FDG model for sensor deployment on dual robot 

 

 

Step2): Optimize the above fuzzy graph based sensor deployment model 

1) From the conjunction matrix in Table A7, if we use the greedy algorithm 

proposed in Chapter III to optimize this graph, we have the iterative process as 

Table A8. 

 

Table A8. Iterative process on greedy optimization in FDG based sensor 

deployment 

 

R1

R2

R
4

R5

R6

R
8

S1

S2

S
4

S5

S6

S8[0.009]

[0.43]

[0.08]

{0.55}

{0.81}

{0.34}

{0.55}

{0.67}

(1)

(0.92)

(1)

(1)

(0.92)

(1)

R3

S3

[0.43]

{0.81}

(1)

R7

S7

(1)

[0.009]

[0.08]

[0.43]
[0.43]

{0.81} {0.81}

R
9

R
10S9

S1
0

{0.67}

{0.55}
(1)

(0.92)

[0.08]

[0.009]

    

Iterative1:    pick R1, match S1 and remove S4 

Iterative2:    pick R5, match S5 and remove S8 

Iterative3:   pick R10, match S10, remove S9 

Iterative4:   pick R4, remove S4 since it was covered by S1 

Iterative5:   pick R8, Remove S8, since it was covered by S5 

Iterative6:   pick R9, remove S9,since it was covered by S10 

Iterative7:   pick R6, match S6, remove S7 

Iterative8   pick R6, remove S7,since it was covered by S6 

Iterative9:   pick R2, match S2, remove S3 

Iterative10:   pick R3, remove S3,since it was covered by S2 
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So the selected sensors are: S1, S5, S10,S2, S6 

2) Use mixed integer linear programming to optimize this graph, we have: when 

detectability requirement is 0.1, the selected sensors are: S1, S3, S5, S7, S10. 

When detectability requirement is 0.8, the selected sensors are: S1, S2, S5, S6, 

S10. This is the same with the results from greedy algorithm. 

 

 
FigureA5. LINGO model for FDG based sensor deployment on dual robot 

 

Summarizations on the sensor deployment 

There are two sensor deployments: 1) bench mark: SDG deployment: the 

selected sensors are [S1, S5, S9, S10], which represents [pressure on A1X solenoid, 

pressure on A1Z solenoid, voltage reading on A1Z controller, pressure on gripper 

solenoid]; 2) proposed sensor deployment: the selected sensors are [S1, S3, S5, S7, S10], 

which represent [pressure on A1X solenoid, voltage reading on A1XH3, pressure on 

A1Z solenoid, voltage reading on A1ZH2, pressure on gripper solenoid]. 
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A2.2 Diagnoser design 

There are two diagnoser approaches: 1) bench mark: FSA based diagnoser 

design; 2) proposed diagnoser design: realtime fuzzy Petri net diagnoser.  

1) SDG senor deployment+FSA diagnoser 

Step1: set up the plant model and under this configuration is as shown in FigureA6.  

 

 

Figure A6. Actuators and sensors of the pick and place station 

 

Plant model 

The plant’s control model based on sequential function chart is as FigureA7. The 

enable condition and desired outcome at each step is summarized in Table A9. 
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Table A9. Enablement conditions for states on the dual robot arm 

 Event Enabled outcome Precondition 

1 Fixture arrive N/A N/A 

2 Part feed Feeder start (O:1/1)  PSS3 (I:5/10)  

3 Lower arm A1Z (O:2/10)

,T4:40/TT  

PSS3(I:5/10) , part (I:4/3) , 

A1XH3(I:5/11) , A1ZH2 (I:5/9)  

4 Grip part Gripper(O:2/13) , 

T4:55/TT  

A1ZH1(I:5/13) , A1XH3(I:5/11)  

5 Raise arm A1Z(O:2/10)  T4:40/TT  (last 2s using timer) 

6 Extend arm A1X(O:2/9)  T4:40/TT , A1XH3(I:5/11)  

7 Lower arm  A1Z(O:2/10)

,T4:40/TT  

A1XH2(I:5/7) , A1ZH2 (I:5/9)  

8 Drop part Gripper(O:2/13)  T4:55/TT (last 4s using timer) 

9 Raise arm A1Z(O:2/10)  T4:40/TT (last 2s using timer) 

10 Release 

fixture 
PS3(O:1/13) , 

T4:25/TT  

A1ZH1(I:5/13) , A1XH3(I:5/11)

, T4:55/DN  

11 Retract arm A1X(O:2/9)

,T4:11/TT  

PSS3(I:5/10)  
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Figure A7 Sequential function chart for dual robot assembly (a) and its 

components-stopper (b), shoulder (c), gripper (d) and arm (e) 
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The FSA plant model for the dual robot arm is as Figure A8.  

 

 

 
Figure A8. FSA plant model for the dual robot arm 
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Step 2: Sensor mapping 

 

Table A10. Sensor mapping for the FSA plant under SDG sensor configuration 

State Physical meaning S1, S5, S9, S10 

1 Fixture arrived 1,0,0,0 

2 Feed part 1,0,0,0 

3 Lower arm 1,1,0,0 

4 Grip part 1,1,1,1 

5 Raise arm 1,0,1,1 

6 Extend arm 0,0,1,1 

7 Lower arm 0,1,1,1 

8 Drop part 0,1,0,0 

9 Raise arm 0,0,0,0 

10 Release fixture 0,0,0,0 

11 Retract arm 1,0,0,0 

12 F1 occurrence  

13 Extend arm 0,0,0,0 

14 Lower arm 0,1,0,0 

15 Raise arm 0,0,0,0 

16 F2 occurrence  

17 Drop part 0,1,0,0 

18 Release fixture 0,0,0,0 

19 Retract arm 1,0,0,0 

20 F3 occurrence  

21 Raise arm 1,0,1,0 

22 Extend arm 0,0,1,0 

23 Lower arm 0,1,1,0 

24 Drop part 0,1,0,0 

25 Raise arm 0,0,0,0 

26 Release fixture 0,0,0,0 

27 Retract arm 1,0,0,0 

 

Combining the sensor mapping with projection, we get the diagnoser as Figure 

A9 for the dual robot arm. 
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Figure A9. FSA diagnoser model for the dual robot arm with SDG sensor 

deployment 
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2) FDG senor deployment+FSA diagnoser 

Step 1: The plant and under this configuration is as shown in Figure A10. 

 
Figure A10. Sequential function chart for dual robot assembly (a) and its 

components-stopper (b), shoulder (c), gripper (d) and arm (e) 
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Step 2: Sensor mapping 

 

Table A11. Sensor mapping for the FSA plant under FQDG sensor configuration 

State Physical meaning S1, S3, S5, S7, S10 

1 Fixture arrived 1,1,0,1,0 

2 Feed part 1,1,0,1,0 

3 Lower arm 1,1,1,0,0 

4 Grip part 1,1,1,0,1 

5 Raise arm 1,1,0,1,1 

6 Extend arm 0,0,0,1,1 

7 Lower arm 0,0,1,0,1 

8 Drop part 0,0,1,0,0 

9 Raise arm 0,0,0,1,0 

10 Release fixture 0,0,0,1,0 

11 Retract arm 1,1,0,1,0 

12 F1 occurrence  

13 Extend arm 0,0,0,1,0 

14 Lower arm 0,0,0,0,0 

15 Raise arm 0,0,0,1,0 

16 F2 occurrence  

17 Drop part 0,0,0,1,0 

18 Release fixture 0,0,0,1,0 

19 Retract arm 1,1,0,1,0 

20 F3 occurrence  

21 Raise arm 1,1,0,1,0 

22 Extend arm 0,0,0,1,0 

23 Lower arm 0,0,1,0,0 

24 Drop part 0,0,1,0,0 

25 Raise arm 0,0,0,1,0 

26 Release fixture 0,0,0,1,0 

27 Retract arm 1,1,0,1,0 
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Build these events into the plant and use the projection; we can get the diagnoser 

as Figue A11. 

 
Figure A11. FSA diagnoser model for the dual robot arm with FQDG sensor 

deployment 

 

The idea of Petri net diagnoser is different from FSA. It uses the signal feature to 

isolate faults, while the FSA are using the events observations. 
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When part failure occurs, the observed the sequence of events on this:  

a) Part fault 

The observed event sequence is: feed part-extend arm-lower arm-raise arm-lower 

arm-raise arm …. 

The reason for the arm cannot be lowered can because of failure of (part, or 

A1XH3, or A1ZH2), the arm was extended is because of failure of (T4:40/TT or 

A1XH3), arm can be lowered means (A1XH2 and A1ZH2) are normal. Arm cannot be 

retracted is because of (A1ZH1, A1XH3) problem. It will not be the problem of A1ZH1, 

because even A1ZH1 has problem, it still can achieve the work of lower arm in the first 

time. Now from the observed sequence, we cannot isolate the fault with (part, or 

A1XH3), with help of sensor mapping, we are trying to isolate them. 

With SDG based sensor deployment, we cannot tell whether it is part fault or 

A1XH3 fault, because there is no information about them.  However, with FDG based 

sensor deployment, we can isolate part fault and A1XH3 fault because if it is A1XH3 

fault, S3 will always be 0. If S3 initially is not 0 but 1, and the observed event sequence 

is still like: feed part-extend arm-lower arm-raise arm-lower arm-raise arm .., we 

conclude that “part fault” occurred. 

b) A1XH2 fault 

The observed event sequence is: feed part-lower arm-pick part-raise arm-extend 

arm-drop part-release fixture-retract arm; we know it skipped step 7). The reason for 

step 7) not being executed is fault of (A1XH2, or A1ZH2). It will not be A1ZH2’s 
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abnormality; otherwise step 3) will not be executed. We don’t need sensor mapping, and 

we can conclude that it is “A1XH2 fault”. 

c) Lose wire between gripper solenoid and controller 

The observed event sequence is: feed part-lower arm-pick part-raise arm-extend 

arm-lower arm-drop part-raise arm-release fixture-retract arm; it skips steps 4), 7) and 

8). If step 4) is skipped, it may be because of (A1ZH1, or A1XH3) faults, but it won’t be 

A1XH3 fault, otherwise step 3) won’t happen. Step 7) was skipped may be because of 

(A1XH2, or A1ZH2) faults. However, it won’t be A1ZH2 fault, otherwise step 3) won’t 

happen. Step 8) was skipped may be because of (A1ZH1, or A1XH3) fault, but we 

already remove the possibility of A1XH3. Now let us decide whether it is (A1ZH1 or 

A1XH2)’s problem? It will not be A1XH2’s problem. Because event A1XH2 is faulty, it 

will still grip the part. Now we cannot decide whether is because A1ZH1 or some other 

faults by observed event sequence. Now we use the sensor mapping.  

By SDG, we observed at step 7), S9 has a reading change, while S10 no change. 

So we conclude that it is not the fault of A1ZH1, instead it is the wiring between 

controller and solenoid. 

By FDG, we observed that at step 10) fixture is released, so we conclude that it is 

not the fault of A1ZH1, instead it is the wiring between controller and solenoid. 

d) Tolerance fault  

The proposed sensor deployment and fault diagnoser design cannot identify this 

kind of fault with normal operation. 
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3) SDG senor deployment+PN diagnoser 

 

Step 1: Plant model 

 

 

 

 

 

 

 

 

 

 
Figure A12. PN plant model for the dual robot arm 
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Step 2: Sensor mapping with SDG sensor deployment 

 

Table A12. Sensor mapping in PN diagnoser with SDG sensor deployment 

Places Description Output Devices Transition Input events 

P1 Stopper3 {C3,PSS3,PS3} T1 Start 

P2 Feeder part ready {Part, PSS3} T2 Lower 

elbow1 

P3 Elbow1 lowered  {PSS3, Part Ready, 

A1ZH2,A1XH3} 

T3 Close 

gripper2 

P4 Part1 picked  

(close gripper1) 

{A1ZH1,A1XH3} T4 Raise elbow2 

P5 Elbow1 raised  {T40.TT} T5 Extend arm1 

P6 Arm1 extended  {PSS3, T11} T6 Lower 

elbow1 

P7 Lower elbow1 {PSS3,A1XH2,A1ZH

2} 

T7 Open 

gripper1 

P8 Open gripper1 {T55.DN} T8 Raise elbow1 

P9 Raise elbow {T40.DN} T9 Retract arm1 

P10 Retract arm1 {A1XH2}   

Faulty Places Faulty Transitions 

PF1 Part fault { A1ZH2, A1XH2, 

gripper} 

F1  

PF2 A1XH2 abnormal { A1ZH2, A1XH2, 

gripper} 

F2  

PF3 A1XH3 abnormal { A1ZH2, A1XH2, 

gripper} 

F3  

PF4 A1ZH1 abnormal { A1ZH2, A1XH2, 

gripper} 

F4  

PF5 A1ZH2 abnormal { A1ZH2, A1XH2, 

gripper} 

F5  
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Step 3: Diagnoser 

 
Figure A13. Coverability tree model for the dual robot arm 

 

Step 4: Fuzzy fault isolation rules 

 
Figure A14. Signal features for normal operation on SDG based sensor deployment 
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Figure A15. Signal features for F1-part error on SDG based sensor deployment 

 

 
Figure A16. Signal features for F2-XH2 error on SDG based sensor deployment 

 

 
Figure A17. Signal features for F3-lose wiring on SDG based sensor deployment 
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Figure A18. Signal features for F4-tolerance error on SDG based sensor 

deployment 

 

For the SDG based sensor deployment, the fault isolation rules are as below: 

Normal: At the normal operation the A1Z should two periodic cycles of “ON” 

and each lasts for 2 seconds; AND Gripper pressure should have one periodic cycle of 

“ON” 

R1: IF A1Z has periodic cycles on low-high signal AND XH3 is always off, 

THEN the system is in part fault. 

R2: IF A1Z has only one cycle on low-high signal change, THEN the system is in 

XH2 fault. 

R3: IF Gripper has turned “ON” AND Gripper pressure keeps always zero, 

THEN the system is lose wiring fault. 

R4: the proposed sensor diagnoser and sensor deployment cannot isolate the 

tolerance fault. 
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4) FQDG senor deployment+PN diagnoser 

Step 1: Plant model 

 

 

 

 

 

 
Figure A19. PN plant model for the dual robot arm 
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Step 2: Sensor mapping 

 

 

Table A13. Sensor mapping in PN diagnoser with FQDG sensor deployment 

Place Description Output Devices Transition Input 

events 

P1 Stopper3 {C3,PSS3,PS3} T1 Start 

P2 Feeder part ready {Part, PSS3} T2 Lower 

elbow1 

P3 Elbow1 lowered  {PSS3, Part Ready, 

A1ZH2,A1XH3} 

T3 Close 

gripper2 

P4 Part1 picked  

(close gripper1) 

{A1ZH1,A1XH3} T4 Raise 

elbow2 

P5 Elbow1 raised  {T40.TT} T5 Extend 
arm1 

P6 Arm1 extended  {PSS3, T11} T6 Lower 

elbow1 

P7 Lower elbow1 {PSS3,A1XH2,A1ZH2} T7 Open 
gripper1 

P8 Open gripper1 {T55.DN} T8 Raise 

elbow1 

P9 Raise elbow {T40.DN} T9 Retract 
arm1 

P10 Retract arm1 {A1XH2}   

Faulty Place Faulty Transition 

PF1 Part fault { A1ZH2, A1XH2, 

gripper} 

F1  

PF2 A1XH2 abnormal { A1ZH2, A1XH2, 
gripper} 

F2  

PF3 A1XH3 abnormal { A1ZH2, A1XH2, 

gripper} 

F3  

PF4 A1ZH1 abnormal { A1ZH2, A1XH2, 
gripper} 

F4  

PF5 A1ZH2 abnormal { A1ZH2, A1XH2, 

gripper} 

F5  
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Step 3: Diagnoser 
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F2

 
Figure A20. Coverability tree model for the dual robot arm 

 

 

Step 4: Fuzzy fault isolation rules 

 

For the FDG based sensor deployment, the fault isolation rules are as below: 

Normal: At the normal operation the A1ZH1 should have two periodic cycles of 

“ON” and each lasts for 2 seconds; AND Gripper pressure should have one periodic 

cycle of “ON”. 

R1: IF A1ZH1 has periodic cycles on low-high signal AND XH3 is always off, 

THEN the system is in part fault. 

R2: IF A1ZH1 has only one cycle on low-high signal change, THEN the system is 

in XH2 fault. 

R3: IF A1ZH1 has the on two periodic cycles of “ON” AND Gripper pressure 

keeps always zero, THEN the system is lose wiring fault. 
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R4: the proposed sensor diagnoser and sensor deployment cannot isolate the 

tolerance fault. 

 

 
Figure A21. Signal features for normal operation on FDG based sensor deployment 
 

 
Figure A22. Signal features or F1-part error on FDG based sensor deployment 
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Figure A23. Signal features or F2-XH2 error on FDG based sensor deployment 

 
 

Figure A24. Signal features or F3-lose wiring error on FDG based sensor 

deployment 
 

 
Figure A25. Signal features or F4-tolerance error on FDG based sensor deployment 
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APPENDIX III 

 SIGNED DIRECTED GRAPH BASED SENSOR DEPLOYMENT 

 

Signed Directed Graph (SDG) [7, 8] is a graphical representation of the cause 

effect relation system that utilizes nodes and branches. When applying it to sensor 

deployment problem, the nodes correspond to the sensor that monitor process state 

variables and fault that represent malfunctions, and the branches represent the causal 

relationships between the fault nodes and sensor nodes. The branches are marked with 

signs according to the relationship between the sensor variables and fault nodes. This 

representation helps in defining a pattern of observed symptoms that the particular fault 

will influence on the process variables. We need to mention that not all the variables of a 

manufacturing process can be measured due to technical or economical infeasibilities. 

Thus the pattern defined is always partially observed as the ‘‘partial pattern’’. This 

partial pattern from these sensors helps in detecting symptoms of every fault thus 

obtaining the cause effect model on fault propagation. The arcs in the SDG represent a 

‘‘can cause’’ (be careful, not “will cause”) relationship, that is, an arc from node A to 

node B only implies that A can cause B, instead of A will cause B. The faults’ positive 

(high) or negative (low) influences on the states of the variables respectively are 

assigned ‘+’ or ‘-‘signs to the branches, and normal influences are marked with 0. A 

nonzero node sign signifies the presence of a failure in the process, and a set of nonzero 

signs in the SDG represents a pattern of fault symptoms. The SDG graph on sensor 

deployment can be generated from process graph or failure mode effect analysis. 
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When the SDG is ready, the problem of sensor allocation becomes to identify the 

fault root nodes and place the minimum number of sensors on the measurable valid 

nodes in the cause effect graph. Here, we need ensure that every fault defined for the 

process has to be observed by at least one sensor. This would ensure that no fault goes 

unobserved when a given set of sensors is located on the SDG. This is referred to as the 

‘‘observability condition’’. Such an optimization procedure is shown as below: 

  

 

 
Figure A26. Flow chart for sensor selection using greedy search in SDG based 

sensor deployment [7]
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APPENDIX IV 

 EXPERIMENT DATA ON THE COMPREHENSIVE EVALUATION



 

 

 

2
0
8

 

 

 

In the “sensor deployment strategy” column: 1 means FDG based sensor deployment, 2 means SDG based sensor deployment. In the diagnoser column: 
1 means “FSA+SFC” diagnoser, 2 means “RTFPN” diagnoser. 

 

RUN Sensor 

deployment 

strategy 

Diagnoser Fault 
0 1  0 0 1 1 1 0 1 1 

dc dl dc dl dc dl dc dl dc dl dc dl dc dl dc 

d

l dc dl dc dl 

1 1 1 1 
F3  F1 9 N  N  F1 7 F1 8 F1 9 N  F1 9 F1 8 

2 1 1 2 F3, 

F2  F2 8 N  N  F2 7 F2 6 F2 6 N  F2 5 F2 6 

3 1 1 3 N  F3 7 N  N  F3 9 F3 7 F3 7 N  F3 8 F3 7 

4 1 1 4 

N  N 11 N  N  N 11 N 

1

1 N 11 N  N 11 N 11 

5 1 2 1 N  F1 7 N  N  F1 8 F1 9 F1 8 N  F1 8 F1 7 

6 1 2 2 

F3  

F2, 

F3 8 N  N  F2 5 F2 4 F2 4 N  F2 3 F2 4 

7 1 2 3 N  F3 7 N  N  F3 7 F3 6 N  N  F3 6 F3 6 

8 1 2 4 

N  N 11 N  N  N 11 N 

1

1 N 11 N  N 11 N 11 

9 2 1 1 

F3  N 11 F3  F2  N 11 N 

1

1 F2 11 F3  N 11 F2 11 

10 2 1 2 

F2  

F2, 

F3 3 F3  F3  F2 6 

F2, 

F3 6 F2 6 F3  F2  

F2, 

F3 7 

11 2 1 3 

N  F3 6 N  

F2, 

F3  

F2, 

F3 7 F3  7 N  N  N  F2 3 

12 2 1 4 

N  N 11 N  N  N 11 N 

1

1 N 11 N  N 11 N 11 

13 2 2 1 

N  

F1, 

F2 9 F3  N  F1 9 F1 7 

F1, 

F2 9 

F2, 

F3  F1 9 F1 8 

14 2 2 2 F2, 

F3  

F2, 

F3 2 N  N  F2 4 

F2, 

F3 3 F2 3 

F2,

F3  N  F2 3 

15 2 2 3 

N  N  F2  N  

F2,F

3 7 F3 7 N  N  F3 6 

F2, 

F3 6 

16 2 2 4 

N  N 11 N  N  N 11 N 

1

1 N 11 N  N 11 N 11 
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