181,272 research outputs found

    An Intelligent Traction Control for Motorcycles

    Get PDF
    The appearance of anti-lock braking systems (ABS) and traction control systems (TCS) have been some of the most major developments in vehicle safety. These systems have been evolving since their origin, always keeping the same objective, by using increasingly sophisticated algorithms and complex brake and torque control architectures. The aim of this work is to develop and implement a new control model of a traction control system to be installed on a motorcycle, regulating the slip in traction and improving dynamic performance of two-wheeled vehicles. This paper presents a novel traction control algorithm based on the use of Artificial Neural Networks (ANN) and Fuzzy Logic. An ANN is used to estimate the optimal slip of the surface the vehicle is moving on. A fuzzy logic control block, which makes use of the optimal slip provided by the ANN, is developed to control the throttle position. Two control blocks have been tuned. The first control block has been tuned according to the experience of an expert operator. The second one has been optimized using Evolutionary Computation (EC). Simulation shows that the use of EC can improve the fuzzy logic based control algorithm, obtaining better results than those produced with the control tuned only by experience.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Optimization of a fuzzy logic controller for MR dampers using an adaptive neuro-fuzzy procedure

    Get PDF
    Intelligent and adaptive control systems are naturally suitable to deal with dynamic uncertain systems with non-smooth nonlinearities; they constitute an important advantage over conventional control approaches. This control technology can be used to design powerful and robust controllers for complex vibration engineering problems such as vibration control of civil structures. Fuzzy logic based controllers are simple and robust systems that are rapidly becoming a viable alternative for classical controllers. Furthermore, new control devices such as magnetorheological (MR) dampers have been widely studied for structural control applications. In this paper, we design a semi-active fuzzy controller for MR dampers using an adaptive neuro-fuzzy inference system (ANFIS). The objective is to verify the effectiveness of a neuro-fuzzy controller in reducing the response of a building structure equipped with a MR damper operating in passive and semi-active control modes. The uncontrolled and controlled responses are compared to assess the performance of the fuzzy logic based controller.info:eu-repo/semantics/publishedVersio

    Modelling of a Flexible Manoeuvring System Using ANFIS Techniques

    Get PDF
    The increased utilization of flexible structure systems, such as flexible manipulators and flexible aircraft in various applications, has been motivated by the requirements of industrial automation in recent years. Robust optimal control of flexible structures with active feedback techniques requires accurate models of the base structure, and knowledge of uncertainties of these models. Such information may not be easy to acquire for certain systems. An adaptive Neuro-Fuzzy inference Systems (ANFIS) use the learning ability of neural networks to adjust the membership function parameters in a fuzzy inference system. Hence, modelling using ANFIS is preferred in such applications. This paper discusses modelling of a nonlinear flexible system namely a twin rotor multi-input multi-output system using ANFIS techniques. Pitch and yaw motions are modelled and tested by model validation techniques. The obtained results indicate that ANFIS modelling is powerful to facilitate modelling of complex systems associated with nonlinearity and uncertainty

    Fuzzy and neural control

    Get PDF
    Fuzzy logic and neural networks provide new methods for designing control systems. Fuzzy logic controllers do not require a complete analytical model of a dynamic system and can provide knowledge-based heuristic controllers for ill-defined and complex systems. Neural networks can be used for learning control. In this chapter, we discuss hybrid methods using fuzzy logic and neural networks which can start with an approximate control knowledge base and refine it through reinforcement learning

    Application of a data-driven fuzzy control design to a wind turbine benchmark model

    Get PDF
    In general, the modelling of wind turbines is a challenging task, since they are complex dynamic systems, whose aerodynamics are nonlinear and unsteady. Accurate models should contain many degrees of freedom, and their control algorithm design must account for these complexities. However, these algorithms must capture the most important turbine dynamics without being too complex and unwieldy, mainly when they have to be implemented in real-time applications. The first contribution of this work consists of providing an application example of the design and testing through simulations, of a data-driven fuzzy wind turbine control. In particular, the strategy is based on fuzzy modelling and identification approaches to model-based control design. Fuzzy modelling and identification can represent an alternative for developing experimental models of complex systems, directly derived directly from measured input-output data without detailed system assumptions. Regarding the controller design, this paper suggests again a fuzzy control approach for the adjustment of both the wind turbine blade pitch angle and the generator torque. The effectiveness of the proposed strategies is assessed on the data sequences acquired from the considered wind turbine benchmark. Several experiments provide the evidence of the advantages of the proposed regulator with respect to different control methods

    Adaptive neuro-fuzzy model with fuzzy clustering for nonlinear prediction and control

    Get PDF
    Nonlinear systems have more complex manner and profoundness than linear systems.Thus, their analyses are much more difficult.This paper presents the use of neuro-fuzzy networks as means of implementing algorithms suitable for nonlinear black-box prediction and control.In engineering applications, two attractive tools have emerged recently.These two attractive tools are: the artificial neural networks and the fuzzy logic system. One area of particular importance is the design of networks capable of modeling and predicting the behavior of systems that involve complex, multi-variable processes.To illustrate the applicability of the neuro-fuzzy networks, a case study involving air-fuel ratio is presented here.Air- fuel ratio represents complex, nonlinear and stochastic behavior.To monitor the engine conditions, an adaptive neuro-fuzzy inference system (ANFIS) is used to capture the nonlinear connections between the air- fuel ratio and control parameters such manifold air pressure, throttle position, manifold air temperature, engine temperature, engine speed, and injection opening time.This paper describes a fuzzy clustering method to initialize the ANFIS

    Second Order Integral Fuzzy Logic Control Based Rocket Tracking Control

    Get PDF
    Fuzzy logic is a logic that has a degree of membership in the vulnerable 0 to 1. Fuzzy logic is used to translate a quantity that is expressed using language. Fuzzy logic is used as a control system because this control process is relatively easy and flexible to design without involving complex mathematical models of the system to be controlled. The purpose of this paper is to present a fuzzy control system implemented in a rocket tracking control system. The fuzzy control system is used to keep the rocket on track and traveling at a certain speed. The signal from the fuzzy logic control system is used to control the rocket thrust. The fuzzy Logic System was chosen as the controller because it is able to work well on non-linear systems and offers convenience in program design. Fuzzy logic systems have a weakness when working on systems that require very fast control such as rockets. With this problem, fuzzy logic is modified by adding second-order integral control to the modified fuzzy logic. The proposed algorithm shows that the missile can slide according to the ramp path at 12 m altitude of 12.78 at 12 seconds with a steady-state error of 0.78 under FLC control, at 10 m altitude of 10.68 at 10 seconds with a steady-state error of 0.68 with control integral FCL, at a height of 4 m is 4.689 at 4 seconds with a steady-state error of 0.689 with a second-order integral control of FCL. The missile can also slide according to the parabolic path with the second-order integral control of FCL at an altitude of 15.47 in the 4th minute with a steady-state error of 0
    • …
    corecore