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Intelligent and adaptive control systems are naturally suitable to deal with dynamic un-

certain systems with non-smooth nonlinearities; they constitute an important advantage

over conventional control approaches. This control technology can be used to design powerful
and robust controllers for complex vibration engineering problems such as vibration control

of civil structures. Fuzzy logic based controllers are simple and robust systems that are

rapidly becoming a viable alternative for classical controllers. Furthermore, new control

devices such as magnetorheological (MR) dampers have been widely studied for structural
control applications. In this paper, we design a semi-active fuzzy controller for MR dampers

using an adaptive neuro-fuzzy inference system (ANFIS). The objective is to verify the

e®ectiveness of a neuro-fuzzy controller in reducing the response of a building structure
equipped with a MR damper operating in passive and semi-active control modes. The un-

controlled and controlled responses are compared to assess the performance of the fuzzy logic

based controller.
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1. Introduction

Soft computing techniques have been shown to be e®ective in dealing with complex

and nonlinear behavior of structural control systems. Fuzzy logic controllers can

closely imitate human reasoning and control procedures enabling the use of previous

experience and experimental results in designing simple and model-free control

systems. The main problem relies on the optimization of the fuzzy parameters, in

particular the de¯nition of a truthful inference system. In this regard, neuro-adaptive

learning techniques such as ANFIS constitute simple methodologies to optimize

fuzzy systems. This allows learning information about a dataset in order to compute

the membership function parameters that best allow the associated fuzzy inference

system to track a given input/output data. ANFIS is a hybrid learning algorithm

that combines the backpropagation gradient descent and least squares methods to

create a fuzzy inference system whose membership functions are iteratively adjusted

according to a given set of input and output data. The reasoning scheme of ANFIS

architecture and its inherent variables are shown in Fig. 1, see Refs. 1 and 2. The

inherent advantages of these neuro-fuzzy systems make them particularly suitable to

develop control systems for structural engineering problems, which typically have

uncertain parameters and nonlinear behavior. Besides, fuzzy based controllers allow

a model-free estimation of the system and the fuzzy controller can be developed by

encoding the knowledge of the system without the need to state how the outputs

depend mathematically upon the inputs.

Fig. 1. The scheme of adaptive neuro-fuzzy inference system or ANFIS (see Refs. 1 and 2).
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This paper describes the development of a fuzzy logic-based controller designed to

reduce seismic-induced vibrations in a three degrees-of-freedom (3-DOFs) structural

system representing a three-storey shear building structure by using a MR damper.

These semi-active devices represent a promising technology with great potential for

structural control applications. However, they present a highly nonlinear hysteretic

behavior that needs to be considered in designing the control system. The design

process of fuzzy controllers requires the characterization of several parameters

(inputs, output, membership functions and the corresponding universe of discourse)

and the de¯nition of inference rules that relates the inputs to obtain the desired

output. This last operation can be carried out using only previous human knowledge

about the system behavior or optimization techniques. However, inference rules of

complex and/or nonlinear systems cannot be conveniently modeled by simple human

knowledge demanding the use of optimization tools to obtain the relationship be-

tween the inputs and output for a given problem.1,2 This problem is addressed in this

study in which ANFIS is used to optimize a set of fuzzy rules to design a fuzzy based

controller to mitigate the vibration of a structural system.3,4 The optimization

procedure with ANFIS is discussed in the development of the controller. The semi-

active control system is derived from the data obtained with an optimal controller,

which is used as a reference to train a fuzzy based controller via ANFIS. The un-

controlled response is compared with passive and semi-active controlled responses in

order to assess the performance of the proposed fuzzy controller. This paper is based

upon Braz-C�esar and Barros,5 but this previous paper has been enhanced including

additional information about ANFIS model, a more detailed characterization of the

response obtained with the passive control modes, the inclusion of new performance

criteria to better evaluate the e®ectivness of the proposed fuzzy controller, and also

references have been extended and updated.

2. Numerical Model

An e®ective semi-active control system involves an appropriate control algorithm

that can take advantage of the dissipative properties of the control device, i.e. the

MR damper.6,7 There are several approaches available in the literature to control

semi-active devices including soft computing techniques such as neuro-fuzzy con-

trollers. Thus, a numerical analysis was carried out to evaluate the performance of a

semi-active neuro-fuzzy controller in reducing the response of a simple structural

system. The numerical model represents a three degrees-of-freedom system under

seismic excitation as shown in Fig. 2. A control force generated by an actuator (such

as a MR damper) located between the base and the ¯rst mass, can be applied in order

to reduce the system response. The damping force can be adjusted using a control

system that based upon the system response computes the required damping force

that should be applied to the system changes the system response in order to improve

and control the structural performance.

Optimization of a FLC for MR Dampers Using an Adaptive Neuro-Fuzzy Procedure

1740007-3

In
t. 

J.
 S

tr
. S

ta
b.

 D
yn

. 2
01

7.
17

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
N

ST
IT

U
T

O
 P

O
L

IT
E

C
N

IC
O

 D
E

 B
R

A
G

A
N

C
A

 o
n 

01
/3

1/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.



The parameters of the 3-DOFs system are as follows: m1= m2= m3 ¼ 100 kg;

c1 ¼ 125N�s/m, c2= c3 ¼ 50N�s/m; k1= k2= k3 ¼ 6�105 N/m. According to the re-

presentation depicted in Fig. 2, the structural system can be described by means of

the following matrices:

M ¼
m1 0 0

0 m2 0

0 0 m3

2
4

3
5; ð2:1Þ

C ¼
c1 þ c2 �c2 0
�c2 c2 þ c3 �c3
0 �c3 c3

2
4

3
5; ð2:2Þ

K ¼
k1 þ k2 �k2 0

�k2 k2 þ k3 �k3
0 �k3 k3

2
4

3
5; ð2:3Þ

whereM is the mass matrix,C is the damping matrix andK is the sti®ness matrix of

the system. The natural frequencies and the corresponding mode shapes (inside

brackets) are: freq1 ¼ 5:48Hz (�0.328, �0.591, �0.737), freq2 ¼ 15:37Hz (�0.737,

0.328, 0.591) and freq3 ¼ 22:21Hz (�0.591, 0.737, �0.328). The equations of motion

of the controlled structure can be de¯ned by a state space formulation given by

z
: ðtÞ ¼ AzðtÞ þBfðtÞ þE€xgðtÞ; ð2:4Þ

where z(t)¼ ½xðtÞ;x: ðtÞ� is the state vector, A is the system matrix de¯ned by

A ¼ 0 I

�M�1K �M�1C

� �
: ð2:5Þ

B is an additional matrix accounting for the position of the control forces in the

structure, f(t) is the control force, E is the disturbance vector and €xgðtÞ represents
the seismic excitation loading. In this case there is only one control force applied to

the ¯rst mass and then

B ¼ 0 M
�1
¡

� �T ; ð2:6Þ

Fig. 2. Structural system controlled with a MR damper at the ¯rst °oor.
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where ¡ ¼ ½1; 0; 0� is the location vector. The earthquake excitation in°uence vector

is de¯ned by

E ¼ 0 �¤½ �T ð2:7Þ
in which ¤ ¼ ½1; 1; 1� represents the location of the external loading. The system

response can be determined using the state space output vector de¯ned as

ŷðtÞ ¼ ĈzðtÞ þ D̂fðtÞ þ F̂€xgðtÞ: ð2:8Þ
If the system displacements, velocities and accelerations are required, then

Ĉ ¼
I 0

0 I

�M�1K �M�1C

2
4

3
5; ð2:9Þ

D̂ ¼ 0 ��½ �T ; ð2:10Þ
F̂ ¼ 0 �¸½ �T ; ð2:11Þ

where Ĉ is the output matrix, D̂ is the feedthrough vector related with the control

force and F̂ is the disturbance signal location vector. In this case, � ¼ ½1; 0; 0� and
¸ ¼ ½1; 1; 1� represent the location of the control force and of the earthquake accel-

eration excitations at each °oor level, respectively.

The N-S component of the El-Centro ground motion (1940, peak acceleration of

3:42m/s2) will be used as the excitation signal. The system represents a small-scale

building structure and the earthquake signal was also scaled to characterize the

magnitude of displacements that would be observed in experiments tests. In this

case, the time was scaled to 20% of the full-scale earthquake time history as displayed

in Fig. 3.

The response of the structure can be controlled using a MR damper located

between the ground and the ¯rst °oor. A small-scale MR damper based on the

RD-1005-03 prototype (Lord Corp., USA) is used in this study. The device has a

Fig. 3. Time-scaled El-Centro NS earthquake excitation (0.2t).

Optimization of a FLC for MR Dampers Using an Adaptive Neuro-Fuzzy Procedure

1740007-5

In
t. 

J.
 S

tr
. S

ta
b.

 D
yn

. 2
01

7.
17

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
N

ST
IT

U
T

O
 P

O
L

IT
E

C
N

IC
O

 D
E

 B
R

A
G

A
N

C
A

 o
n 

01
/3

1/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.



conventional cylindrical con¯guration with 41.4mm in diameter, 208mm long in its

extended position allowing a stroke of �25mm. The device can operate within a

current range from 0.0 A up to 2.0 A with a usual value of 1.0 A for continuous

operation. This MR damper can generate a peak force of 2224 N (1.0 A) using a small

battery with less than 10W. The device will be numerically modelled using the so-

called modi¯ed Bouc–Wen model,8,9 which is a usual phenomenological model to

simulate the hysteretic behavior of this type of semi-active actuators. The me-

chanical con¯guration of the modi¯ed Bouc–Wen model is shown in Fig. 4.

Thus, the predicted damper force FMR can be obtained from the schematic

representation of the modi¯ed Bouc–Wen model (see Ref. 8) depicted in Fig. 4 by

FMR ¼ c 01 _y þ k 0
1ðx� x0Þ; ð2:12Þ

in which

_y ¼ 1

ðc 00 þ c 01Þ
½�sþ c 00 _x þ k 0

0ðx� yÞ� ð2:13Þ

is dependent on the evolutionary variable

_s ¼ ��jxjsjxjðn�1Þ � � _xsn þ � _x: ð2:14Þ
Generally, �, c 00 and c 01 are current dependent parameters described by

�ðiÞ ¼ �a þ �bi; ð2:15Þ
c 00ðiÞ ¼ c 00a þ c 00bi; ð2:16Þ
c 01ðiÞ ¼ c 01a þ c 01bi; ð2:17Þ

where i is the operating current. The parameters of the modi¯ed Bouc–Wen model

are given in Table 1.9 The dynamics involved in the MR °uid reaching equilibrium

state is represented through ¯rst order ¯lter given by

u
: ¼ �ðu� iÞ ð2:18Þ

in which the applied current u is described with a time delay relative to the desired

current i and � is the ¯lter constant (in this case, � ¼ 130 s�1).

Fig. 4. Phenomenological model of the MR damper (modi¯ed Bouc–Wen model).
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Using the state space formulation, the uncontrolled response of the 3-DOFs

system under the earthquake ground motion is displayed in Fig. 5. It should be noted

that the response was obtained with a high excitation level of the El Centro earth-

quake achieved by scaling up the amplitude of the earthquake signal in 150%.

Table 1. Modi¯ed Bouc–Wen model parameters (RD-1005-3 MR damper) (see Ref. 9).

Parameters � [−] � [mm�1] � [mm�1] k 0
0 [N/mm] f0 [N] n

Constant 10.013 3.044 0.103 1.121 40 2

�ðiÞ ¼ �826:67i3 þ 905:14i2 þ 412:52iþ 38:24 [N]
Current dependent c 00ðiÞ ¼ �11:73i3 þ 10:51i2 þ 11:02iþ 0:59 [N�s/mm]

c 01ðiÞ ¼ �54:40i3 þ 57:032 þ 64:57iþ 4:73 [N�s/mm]

Fig. 5. Uncontrolled responses of the 3-DOFs system.
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3. Optimization of a Fuzzy Based Controller Using ANFIS

The fuzzy logic based controller was designed using ANFIS to ¯nd the nonlinear map

that best ¯ts the expected response of the control system. The development of a

neuro-fuzzy based controller typically involves four main steps:

(i) De¯nition of input variables and the corresponding fuzzy inference system (FIS)

membership functions (the FIS output is the desired control signal);

(ii) Selection of data sets to generate training and checking data;

(iii) Use of ANFIS optimization algorithm for training the FIS membership function

parameters to model the set of input/output data by mapping the relationship

between inputs and outputs in order to generate a fuzzy model of the systems;

(iv) Validation of the resulting fuzzy model.

ANFIS training procedure is summarized in the °owchart shown in Fig. 6.

The process begins by obtaining a training data set and checking data sets. The

training data is used to ¯nd the premise parameters for the membership functions

(MFs are dependent on the system designer). A threshold value for the error between

the actual and desired output is determined. The consequent parameters are found

using the least-squares method. If this error is larger than the threshold value, then

the premise parameters are updated using the gradient decent method. The process

ends when the error becomes less than the threshold value. Checking data set can

then be used to compare the model with the actual system.

The data sets for training and validation can be obtained from numerical and

experimental data. Usually, numerical training data provide better results in opti-

mizing the fuzzy inference system since experimental results can have sparse or

incomplete making the optimization procedure more di±cult. In this case, the

Fig. 6. Flowchart of ANFIS training.
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neuro-fuzzy controller was developed based on the numerical results of a linear

quadratic Gaussian (LQG) controller whose response is used to de¯ne the training

data set for the neuro-fuzzy optimization procedure with ANFIS. Floors accelera-

tions and the displacement across the MR damper are the responses of the controlled

system used by the LQG controller to determine the desired control force. The

control signal is determined from the predicted control force using an inverse

Bingham model of the MR damper. The system responses and the desired control

signal were recorded and then used to train the neuro-fuzzy controller. Thus, the

data sets for training and validation were obtained from a LQG controlled system to

a set of amplitude-scaled versions of the El Centro NS earthquake excitation (i.e. 100

gal, 200 gal, 335 gal and 500 gal seismic accelerations). The LQG controller combines

a linear quadratic regulator (LQR) algorithm with a Kalman ¯lter estimator.

Identically distributed Gaussian white noise is used to simulate acceleration noise

measurements. Regarding the LQR controller, the state gain matrix G is tuned

through the weighting matrices Q and R. In the present example di®erent con¯g-

urations of these parameters were evaluated by measuring the e®ect of each com-

bination in the system response. The following weighting parameters provided the

best performance in reducing in the structural response

Q ¼ K 0

0 0

� �
; ð3:1Þ

R ¼ r ¼ 5e�7: ð3:2Þ
The observer gain L must be adjusted to achieve the required performance. A

high gain allows the ¯lter to follow the observations more closely while a low gain

follows the predictions more closely. This is accomplished by setting

Q! ¼ q!Ie; ð3:3Þ
Rv ¼ rvIm; ð3:4Þ

where q! and rv are weighing factors, and Ie and Im are identity matrices related with

the number of excitation inputs and measurement signals, respectively. A common

approach is to set one of the tuning parameters and adjust the other parameter until

the result is satisfying. In this case Ie ¼ 1ð€xgÞ and Im ¼ I4X4ðx; €x1; €x2; €x3Þ.
The recorded velocity and the control signal from the LQG controller were used to

de¯ne the training data for the fuzzy controller. The ¯rst and third °oor velocities are

the FIS inputs while the current represents the fuzzy output. The choice of the ¯rst

°oor velocity as input variable occurs since the MR damper was placed there on a

non-collocated con¯guration. It is known that in general, viscous type damping is

dependent on relative velocity. The third °oor velocity was chosen as input variable

because of being the one that, according to the vibration mode shapes, will have the

highest in°uence on the system response. Such two input variables were chosen to

represent the dependence of the input current, because of the easiness of human

visualization and interpretation of the controlled output signal through the use of

Optimization of a FLC for MR Dampers Using an Adaptive Neuro-Fuzzy Procedure
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three-dimensional surfaces. This obviously simpli¯es the proposed fuzzy controller

approach.

An initial, increasing and decreasing step sizes of 0.12, 1.20 and 0.8, respectively

during 200 epochs are the optimization parameters. The optimal number of mem-

bership functions (MFs) was de¯ned through a trial-and-error process. In this case,

six bell-shaped MFs were used to model each input variable (¯rst and third °oor

velocities). The resultant fuzzy surface is shown in Fig. 7.

When the ¯rst and third °oor velocities are large and have the same signs, the

required control signal is also large. When both velocities are large but have opposite

signs, the fuzzy controller delivers the lowest control signal. Besides, the minimum

damping force requirement is located around the central zone comprising small °oor

velocities.

4. Numerical Results

The MR damper can operate in two modes: as a passive energy dissipation device, i.e.

without a control system (the properties of the actuator are constant during the

simulation) and as a semi-active actuator whose control action is being commanded

by a neuro-fuzzy based controller. A set of numerical simulations was carried out to

obtain the response of the three DOF structure using the MR damper in a passive

OFF mode (zero voltage/current input), passive ON mode (maximum value of the

operating current) and semi-active control mode. The results of the a neuro-fuzzy

semi-active control system are compared with the uncontrolled, passive OFF and

passive ON responses to evaluate the e±ciency of the semi-active control scheme in

reducing the structural response. A Simulink model of the semi-active control system

is shown in Fig. 8.

A new numerical simulation was carried out to obtain the responses of the

structure for the passive OFF and passive ON modes with the MR damper

Fig. 7. Fuzzy surface of the neuro-fuzzy controller.
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represented by the modi¯ed Bouc–Wen model. The system response for the

passive OFF case along with the uncontrolled response of the 3rd °oor is shown

in Fig. 9.

The corresponding force-velocity and force-displacement responses, i.e. damping

force plots for the passive OFF con¯guration (passive energy dissipation with i ¼
0:00 A) are shown in Fig. 10. Likewise, the system response achieved with the passive

ON con¯guration (passive energy dissipation with i ¼ 0:50 A) along with the un-

controlled response is shown in Fig. 11. The corresponding force-velocity and force-

displacement responses for this control mode is shown in Fig. 12.

The results show a considerable vibration reduction using the MR damper as a

passive energy dissipation device in a passive ON con¯guration. The increase of the

operating current in the MR damper has a signi¯cant e®ect in the damping force and

the energy dissipation capacity of the device. Figure 13 displays the structural re-

sponse of each °oor obtained with the proposed fuzzy based control system along

with the uncontrolled response of the third °oor during the numerical simulation. As

can be seen, the proposed semi-active control system achieves a good performance in

reducing the structural responses using only °oor velocities as the reference (input)

signals to compute the control action. In fact, the main advantage of this fuzzy logic

based control system is that only the ¯rst and third °oor velocities of the structure

are required to determine the desired control signal. This means that the damping

Fig. 8. Simulink model of the semi-active control system.
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Fig. 9. Structural response with a passive OFF control mode.

Fig. 10. MR damper force in a passive OFF control con¯guration.
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Fig. 11. Structural response with a passive ON control mode.

Fig. 12. MR damper force in a passive ON control con¯guration.

Optimization of a FLC for MR Dampers Using an Adaptive Neuro-Fuzzy Procedure

1740007-13

In
t. 

J.
 S

tr
. S

ta
b.

 D
yn

. 2
01

7.
17

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 I
N

ST
IT

U
T

O
 P

O
L

IT
E

C
N

IC
O

 D
E

 B
R

A
G

A
N

C
A

 o
n 

01
/3

1/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.



force generated during the control process does not need to be monitored, as happens

in other controllers such as the clipped-optimal algorithm.

The damper force and the control signal of the semi-active control system are

shown in Fig. 14. As can be seen, the proposed fuzzy controller provides intermediate

levels of control current instead of the bi-state control signal used in many semi-

active controllers allowing intermediate damping states over the full range of oper-

ation of the device. Generally, the results show that the proposed fuzzy logic con-

troller is capable to determine with su±cient reliability the required control action to

reduce the response of the 3-DOFs system.

The hysteretic behavior of the MR damper during the numerical simulation is also

characterized in Fig. 15. As can be seen the proposed fuzzy based controller explores

the operating range of the actuator and globally, the hysteretic loops are in line with

Fig. 13. Structural response with the fuzzy logic controller.
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those found with the other controllers although in this case presenting a more

irregular shape.

The main drawback of designing fuzzy controllers is related with the de¯nition of

the membership function parameters and the inference rules that relate the inputs

with the desired control output. Structural systems usually include several sources of

nonlinearities and/or uncertainties that hinder the development of simple control

rules based on human knowledge about the system behavior. In these cases, soft

computing techniques such as ANFIS or genetic algorithms (GAs) are most

Fig. 14. Damper force and corresponding operating current (semi-active control).

Fig. 15. MR damper force in a semi-active control mode (see specs in Sec. 2).
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appropriate to ¯nd the best set of fuzzy rules or adjustment of a set of fuzzy

parameters in accordance with a given training data for a desired control action.

5. Performance Evaluation

The evaluation criteria are based on a comparison of the peak responses of each

controlled system to those of the uncontrolled system and passive modes. The results

Table 2. Peak responses — El-Centro NS earthquake (0.2t).

Control strategy x(cm) _x(cm/s) €x (cm/s2) Drift (cm) f (N)

0.695 27.09 1305 0.695

Uncontrolled 1.251 45.78 1736 0.581 —

1.587 54.02 2272 0.371

0.518 (0.75) 20.02 (0.74) 999 (0.77) 0.518 (0.75)

Passive OFF 0.907 (0.73) 34.51 (0.75) 1358 (0.78) 0.443 (0.76) 166.4

1.191 (0.75) 42.79 (0.79) 1791 (0.97) 0.292 (0.79)

0.171 (0.25) 7.77 (0.29) 613 (0.47) 0.171 (0.24)

Passive ON 0.423 (0.34) 19.36 (0.42) 1066 (0.61) 0.253 (0.44) 1048.9

0.560 (0.35) 25.58 (0.47) 1366 (0.60) 0.208 (0.56)

0.164 (0.24) 7.07 (0.26) 739 (0.57) 0.164 (0.24)

ANFIS-FLC 0.410 (0.33) 17.59 (0.38) 963 (0.55) 0.247 (0.43) 909.8

0.529 (0.33) 23.64 (0.44) 1285 (0.57) 0.194 (0.52)

Table 3. Evaluation criteria for the controlled system.

Evaluation criteria Description

J1 ¼ max
t;i

xicðtÞ
xmax;uðtÞ
� �

Maximum peak °oor displacement ratio whereby the °oor

displacements over time are normalized by the maximum peak
uncontrolled displacement.

J2 ¼ max
t;i

_xicðtÞ
_xmax;uðtÞ
� �

Maximum peak °oor velocity ratio whereby the °oor velocities over

time are normalized by the maximum peak uncontrolled velocity.

J3 ¼ max
t;i

€xicðtÞ
€xmax;uðtÞ
� �

Maximum peak °oor acceleration ratio whereby the °oor accelerations
over time are normalized by the maximum peak uncontrolled

acceleration.

J4 ¼ max
t;i

jjxicðtÞjj
jjxmax;uðtÞjj
� �

Maximum RMS °oor displacement ratio given in terms of the
maximum RMS absolute displacement over time with respect to

the uncontrolled case.

J5 ¼ max
t;i

jj _xicðtÞjj
jj _xmax;uðtÞjj
� �

Maximum RMS °oor velocity ratio given in terms of the maximum
RMS absolute velocity over time with respect to the uncontrolled

case.

J6 ¼ max
t;i

jj€xicðtÞjj
jj€xmax;uðtÞjj
� �

Maximum RMS °oor acceleration ratio given in terms of the maximum
RMS absolute acceleration over time with respect to the

uncontrolled case.

J7 ¼ max
t;j

P
j
PjðtÞ

xmax;uW

� �
Maximum control power normalized by ( _xmaxW ), i.e., the weight of the

structure times the maximum uncontrolled velocity. W is the total
weight of the structure.

J8 ¼ max
t;j

P
j

R tf

0

1
tf
PjðtÞ

xmax;uW

 !
Total power required to control the response of the structure

normalized by the weight of the structure times the maximum

uncontrolled velocity.
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of this analysis are summarized in Table 2. The results show the e®ectiveness of the

proposed fuzzy based controller in reducing the response of the structure. In this case

the fuzzy controller outperforms the passive control modes in almost all peak

responses (with exception of the ¯rst °oor acceleration, although with a signi¯cant

reduction compared with the uncontrolled case). The results also show that using the

MR damper in a semi-active control mode results in lower peak drifts compared with

the passive ON con¯guration namely in the two upper °oors.

A new set of evaluation criteria was used to evaluate the e®ectiveness of each

control mode.10,11 These evaluation criteria are given in Table 3, including normal-

ized and RMS responses and also control requirements.12 The ¯rst three criteria (J1,

J2, J3) are based on the peak responses and the next four (J4, J5, J6) are related with

RMS (normed) structural responses. In these equations, j � j denotes the absolute

value and jj � jj is the L2 norm given by

jj � jj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

tf

Z tf

0

½��2dt
s

; ð5:1Þ

where tf ¼ tmax represent the total excitation duration. The last three performance

indices (J7, J8) are intended to evaluate the e®ectiveness of the MR actuator. The

results achieved with each control mode are presented in Table 4.

From the results presented in Tables 3 and 4, it can be concluded that the semi-

active fuzzy controller in a comprehensive way outperforms the passive control

con¯gurations (note that lower values indicate a better performance). Note that the

performance indices J1 to J6 are related with the structural responses, and re°ect the

higher e±ciency of the proposed semi-active control system over the passive control

modes. In fact, the performance indices are consistent with the results reported in the

peak responses analysis.

6. Conclusion

This paper addressed the optimization of a fuzzy based controller using an ANFIS.

This modeling approach was used to develop a neuro-fuzzy model for a MR damper

based on arti¯cial training data. A numerical simulation was used to obtain and

analyze the e®ectiveness of the proposed semi-active controller in reducing the re-

sponse of a simple structural system. It was veri¯ed that the semi-active controller

Table 4. Evaluation criteria for each control con¯guration.

Control mode J1 J2 J3 J4 J5 J6 J7 J8

Passive OFF 0.750 0.371 0.789 0.487 0.495 0.507 0.021 0.0014

112% 158% 31% 192% 140% 77% �59% 0%

Passive ON 0.353 0.144 0.602 0.167 0.206 0.287 0.051 0.0014

ANFIS – FLC 0.334 0.131 0.566 0.164 0.192 0.261 0.035 0.0014

�5% �9% �6% �2% �7% �9% �31% �0%
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allowed a more e±cient management of the actuator displaying a better performance

in reducing the structural response than the passive control modes. Hence, it can be

concluded that the proposed semi-active fuzzy based control system outperforms a

fully passive system allowing a considerable reduction of lateral motion of the masses

using only a MR damper in a non-collocated control con¯guration. Further research

must be carried out to improve the fuzzy optimization procedure using ANFIS and

also to validate the application of neuro-fuzzy controllers to a wide range of struc-

tural con¯gurations.
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