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1. Introduction 
    

Since the first fuzzy controller was presented by Mamdani in 1974, different studies devoted 
to the theory of fuzzy control have shown that the area of development of fuzzy control 
algorithms has been the most active area of research in the field of fuzzy logic in the last 
years. From 80´s, fuzzy logic has performed a vital function in the advance of practical and 
simple solutions for a great diversity of applications in engineering and science. Due to its 
great importance in navigation systems, flight control, satellite control, speed control of 
missiles and so on, the area of fuzzy logic has become an important integral part of 
industrial and manufacturing processes.  
Some fuzzy control applications to industrial processes have produced results superior to its 
equivalent obtained by classical control systems. The domain of these applications has 
experienced serious limitations when expanding it to more complex systems, because a 
complete theory does not yet exist for determining the performance of the systems when 
there is a change in its parameters or variables.  
When some of these applications are designed for more complex systems, the number of 
fuzzy rules controlling the process is exponentially increased with the number of variables 
related to the system. For example, if there are n variables and m possible linguistic labels 
for each variable, mn fuzzy rules would be needed to construct a complete fuzzy controller. 
As the number of variables n increases, the rule base quickly overloads the memory of any 
computing device, causing difficulties in the implementation and application of the fuzzy 
controller. 
Sensory fusion and hierarchical methods are studied in an attempt to reduce the size of the 
inference engine for large-scale systems. The combination of these methods reduces more 
considerably the number of rules than these methods separately. However, the adequate 
fusion-hierarchical parameters should be estimated. In traditional techniques much reliance 
has to be put on the experience of the system designer in order to find a good set of 
parameters (Jamshidi, 1997). 
Genetic algorithms (GA) are an appropriate technique to find parameters in a large search 
space. They have shown efficient and reliable results in solving optimization problems. For 
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these reasons, in this work we present a method that has proved to estimate parameters for 
the rule base reduction method using GAs. 
The chapter is organized as follows. Section 2 summarizes the principles of rule base 
reduction methods. In Section 3, the sensory-fusion method, the hierarchical method and the 
combination of these methods are described. Section 4 proposes the GA which allows us to 
automatically find the parameters in order to improve the complex fuzzy control system 
performance. Inverted pendulum and beam-and-ball complex control systems are described 
and results are presented in Section 5. Finally, Section 6 concludes this chapter. 

 
2. Complex Fuzzy Control Systems 
    

A system may be called large-scale or complex, if its order is too high and its model is 
nonlinear, interconnected with uncertain information flow such that classical techniques of 
control theory cannot easily handle the system (Jamshidi, 1997). As the complexity of a 
system increases, it becomes more difficult and eventually impossible to make a precise 
statement about its behavior. Fuzzy logic is used in system control and analysis design, 
because it shortens the time for engineering development and sometimes, in the case of 
highly complex systems, is the only way to solve the problem. 
Principle components of a fuzzy controller are: a process of coding numerical values to 
fuzzy linguistic labels (fuzzification), inference engine where the fuzzy rules (expert 
operator’s experience) are implemented and decoding as the output fuzzy decision variables 
(defuzzification). Fuzzy control can be implemented by putting the above three stages on a   
computer device (chip, personal computer, etc.). 
From a control theoretical point of view, fuzzy logic has been intermixed with all the 
important aspects of systems theory – modeling, identification, analysis, stability, synthesis, 
filtering, and estimation. One of the first complex system in which fuzzy control has been 
successfully applied is cement kilns, which began in Denmark. Today, most of the world’s 
cement kilns are using a fuzzy expert system. However, the application of fuzzy control to 
large-scale complex systems is not, by no means, trouble-free. For such systems the number 
of the fuzzy IF-THEN rules as the number of sensory variables increases very quickly to an 
unmanageable level.  
When a fuzzy controller is designed for a complex system, often several measurable output 
and actuating input variables are involved. In addition, each variable is represented by a 
finite number m of linguistic labels which would indicate that the total number of rules is 
equal to mn, where n is the number of system variables. As an example, consider n = 4 and 
m = 5 than the total number of fuzzy rules will be k = mn = 54 = 625. If there were five 
variables, then we would have k = 3125. From the above simple example, it is clear that the 
application of fuzzy control to any system of significant size would result in a 
dimensionality explosion. 

 
3. Rule Base Reduction Methods 
    

One of the most important applications of fuzzy set theory has been in the area of fuzzy rule 
based system. Rule base reduction is an important issue in fuzzy system design, especially 
for real time Fuzzy Logic Controller (FLC) design. Rule base size can be easily controlled in 
most fuzzy modeling and identification techniques.  
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The size of the rule base of complex fuzzy control systems grows exponentially with the 
number of input variables. Due to that fact, the reduction of the rule base is a very important 
issue for the design of this kind of controllers. Several rule base reduction methods have 
been developed to reduce the rule base size. For instance, fuzzy clustering is considered to 
be one of the important techniques for automatic generation of fuzzy rules from numerical 
examples. This algorithm maps data points into a given number of clusters (Klawonn, 2003). 
The number of cluster centers is the number of rules in the fuzzy system. The rule base size 
can be easily controlled through the control of the number of cluster centers. However, for 
control applications, often there is not enough data for a designer to extract a complete rule 
base for the controller. A designer has to build a generic rule base. A generic rule base 
includes all possible combinations of fuzzy input values. The size of the rule base grows 
exponentially as the number of controller input variables grows. As the complexity of a 
system increases, it becomes more difficult and eventually impossible to make a precise 
statement about its behavior. 
A simple and probably most effective way to reduce the rule base size is to use Sliding 
Mode Control. The motivation of combining Sliding Mode Control and Fuzzy Logic Control 
is to reduce the chattering in Sliding Mode Control and enhance robustness in Fuzzy Logic 
Control. The combination also results in rule base size reduction. However, this approach 
has its disadvantages as the parameters for the switch function have to be selected by an 
expert or designed through classical control theory (Hung, 1993).  
Anwer (Anwer, 2005) proposed a technique for generation and minimization of the number 
of such rules in case of limited data sets. Initial rules for each data pairs are generated and 
conflicting rules are merged on the basis of their degree of soundness. The minimization 
technique for membership functions differs from other techniques in the sense that two or 
more membership functions are not merged but replaced by a new membership function 
whose minimum and maximum ranges are the minimum value of the first and maximum of 
the last membership function and bisection point of the two or more will be the peak of the 
new membership function. This technique can be used as an alternative to develop a model 
when available data may not be sufficient to train the model. 
A neuro-fuzzy system (Ajith, 2001; Kasabov, 1998; Juang, 1998; Jang, 1993; Halgamuge, 
1994 ) is a fuzzy system that uses a learning algorithm derived from, or inspired by, neural 
network theory to determine its parameters (fuzzy sets and fuzzy rules) by processing data 
samples. Modern neuro-fuzzy systems are usually represented as special multilayer 
feedforward neural networks (for example, models like ANFIS (Jang, 1993), FuNe 
(Halgamuge, 1994), Fuzzy RuleNet (Tschichold-German, 1994), GARIC (Berenji, 1992), 
HyFis (Kim, 1999) or NEFCON (Nauck, 1994) and NEFCLASS (Nauck, 1995)). A 
disadvantage of these approaches is that the determination of the number of processing 
nodes, the number of layers, and the interconnections among these nodes and layers are still 
an art and lack systematic procedures. 
Jamshidi (Jamshidi, 1997) proposed to use sensory fusion to reduce a rule base size. Sensor 
fusion combines several inputs into one single input. The rule base size is reduced since the 
number of inputs is reduced. Also, Jamshidi (Jamshidi, 1997) proposed to use the 
combination of hierarchical and sensory fusion methods. The disadvantage of the design of 
hierarchical and sensory fused fuzzy controllers is that much reliance has to be put on the 
experience of the system designer to establish the needed parameters. To solve this problem, 
we automatically estimate the parameters for the hierarchical method using GAs. 
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3.1 Sensory Fusion Method 
This method consists in combining variables before providing them to input of the fuzzy 
controller (Ledeneva, 2006b). These variables are often fused linearly. For example, we want 
to fuse two input variables y1 and y2 (see Figure 1). The fused variable Y will be calculated as 
Y = ay1 + by2. Here, it is considered that the input variables of the fuzzy controller are 
represented by m = 5 linguistic labels. Therefore, in this case, the number of rules will be 
thus reduced from 25 to 5. As we can observe, more variables has the fuzzy controller, more 
reduction can be obtained (see Figure 4). 
  

 
Fig. 1. Rule base reduction of sensory fusion fuzzy controller (when two variables are fused). 

 
As another example, consider that a fuzzy controller has three inputs variables y1 , y2 and y3. 
The total number of rules will be 125. In this case, we look into combining three variables in 
one of these four possible ways: 
1. Variables y1 and y2 are fused in the new variables Y1 and Y2: 
     

Y1 = ay1 + by2 
Y2 = y3 

 

 
2. Variables y1 and y3 are fused in the new variables Y1 and Y2: 
     

Y1 = ay1 + by3 
Y2 = y2 

 

 
3. Variables y2 and y3 are fused in the new variables Y1 and Y2:  
      

Y1 = ay2 + by3 
Y2 = y1 

 

 
4. Variables y1, y2 and y3 are fused in the new variable Y:  
      

Y = ay1 + by2 +cy3  

 
The number of rules will be thus reduced by 125 to 25 if two variables are fused or from 125 
to 5 if the three variables are combined. 
The reduction of the number of rules is optimal if one can fuse all the input variables in only 
one variable associated. In this case, the number of rules is equal to the definite number of 
linguistic labels for this variable. But it is obvious that all these variables cannot be fused 
arbitrarily, any combination of variables has to be reasoned and explained. In practice only 
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two variables are fused: generally the error and the change of error. The fusion can be done 
through the following rule 
      

E = ae + b∆e (1) 

 
where e and ∆e are error and its rate of change, E is the fused variable, and a and b found 
manually (Jamshidi, 1997).  
We want to point out that the manually selection of the parameters a and b convert into 
fastidious routine. Below, we describe a new method (Ledeneva, 2006a), which permits to 
estimate these parameters automatically. 

    
3.2 Hierarchical Method 

In the hierarchical fuzzy control structure from (Ledeneva, 2007a), the first-level rules are 
those related to the most important variables and are gathered to form the first-level 
hierarchy. The second most important variables, along with the outputs of the first-level, are 
chosen as inputs to the second level hierarchy, and so on. Figure 2 shows this hierarchical 
rule structure. 
      

IF y1 is A1i and … and y1 is A1i THEN u1 is B1 

IF y2 is A2i and … and y2 is A2i THEN u2 is B2 
… 
IF yNi+1 is ANi1 and … and yNi+nj is ANinj THEN ui is Bi 

 
(2) 

 
where i, j = 1, …, n; yi are output variables of the system, ui are control variables of the 

system, Aij and Bi are linguistic labels; ∑ −

=
≤=

1

1

i

j ji nnN  and nj is the number of j-th level 

system variables used as inputs. 
 

 

Fig. 2. Schematic representation of a hierarchical fuzzy controller. 

 
The goal of this hierarchical structure is minimize the number of fuzzy rules from 

exponential to linear function. Such rule base reduction implies that each system variable 

Level 
1 

y1 

y2 

Set of rules 1 

Set of rules 2 

Set of rules L+1 

Level 
2 y3 

Level 
L+1 

u2 

uL+1 

uL 

yL 

u1{y1,y2} 

www.intechopen.com



New Developments in Robotics, Automation and Control 

 

480 

provides one parameter to the hierarchical scheme. Currently, the selection of such 
parameters is manually done.   

   
3.3 Combination of Methods 

The more number of input variables of the fuzzy controller we have, the more it is 
interesting to combine the methods presented above with a goal to reduce more number of 
rules. We want to quote, as an example, the combination of the sensory fusion method 
(section 3.1) and the hierarchical method (section 3.2) for five variables as in Figure 3. 
Initially, the variables are fused linearly, as in Figure 1, and then are organized 
hierarchically according to a structure similar to that of Figure 2.  
 

 
Fig. 3. Rule base reduction for the combination of sensory fusion and hierarchical methods 
(for n = 5 and m = 5). 

 
The number of rules and the comparison of the sensory fusion method, the hierarchical 
method and the combination of these rule base reduction methods are presented in Table 1 
and Figure 4 correspondingly. Take into account that the variables are fused here per pair 
and that on each level of the hierarchy one and only one variable is added. The most 
significant reduction can be obtained when the sensory fusion and hierarchical methods are 
combined (Ledeneva, 2007b). 
 

The number of variables n > 1 
Method used to reduce 

the number of rules 

Even Odd 

Sensory Fusion 
mn/2 m(n+1)/2 

Hierarchical 
(n-1)⋅m2 

Combination of methods 

((n/2)-1)⋅m2 ((n+1)/2)-1 

Table 1. – The number of rules for the different reduction methods. 
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4. Genetic Optimization of the Parameters 
    

Firstly, we give some basic definitions of GAs, than we present the proposed method to 
estimate the parameters of the sensory fusion method, the hierarchical method, and the 
combination of these rule base reduction methods.  
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Fig. 4. Comparison of various rule base reduction methods with m = 5. 

 
4.1 Step Response Characteristics 

A fuzzy control system can be evaluated with the step response characteristics. We consider 
the following step response characteristics (see Figure 5):  
Overshoot (%) is the amount by which the response signal can exceed the final value. This 
amount is specified as a percentage of the range of steps. The range of steps is the difference 
between the final value and initial values. 
Undershoot (%) is the amount by which the response signal can undershoot the initial 
value. This amount is specified as a percentage of the range of steps. The range of steps is 
the difference between the final value and initial values. 
Settling time is time taken until the response signal settles within a specified region around 
the final value. This settling region is defined as the step value plus or minus the specified 
percentage of the final value. 
Settling (%) is the percentage used in the settling time. 
Rising time is time taken for the response signal to reach a specified percentage of the range 
of steps. The range of steps is the difference between the final value and initial value. 
Rise (%) is the percentage used in the rising time. 

 
4.2 Genetic Algorithms 

GA uses the principles of evolution, natural selection, and genetics from natural biological 
systems in a computer algorithm to simulate evolution (Goldberg, 1989). Essentially, the 
genetic algorithm is an optimization technique that performs a parallel, stochastic, but 
directed search to evolve the fittest population. GAs encode a potential solution to a specific 
problem on a simple chromosome-like data structure and apply recombination operators to 
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these structures so as to preserve critical information. GAs are often viewed as function 
optimizers, although the range of problems to which genetic algorithms have been applied 
is quite broad. The more common applications of GAs are the solution of optimization 
problems, where efficient and reliable results have been shown. That is the reason why we 
will use these algorithms to find parameters for the rule base reduction methods. 
 

 
Fig. 5. Step response characteristics. 

 
In the early 1970s, John Holland introduced the concept of genetic algorithms. His aim was 
to make computers do what nature does. Holland was concerned with algorithms that 
manipulate strings of binary digits. Each artificial “chromosome” consists of a number of 
“genes” and each gene is represented by 0 or 1: 
 

 
 
Nature has an ability to adapt and learn without being told what to do. In other words, 
nature finds good chromosomes blindly. GAs do the same. Two mechanisms link a GA to 
the problem it is solving: encoding and evaluation. The GA uses a measure of fitness of 
individual chromosomes to carry out reproduction. As reproduction takes place, the 
crossover operator exchanges parts of two single chromosomes, and the mutation operator 
changes the gene value in some randomly chosen location of the chromosome. 

   
4.2 Method for the Estimation of Parameters 

The scheme of the proposed method is shown in Figure 5. We have three modules: System 
Module, Fuzzy Controller Module, and Genetic Algorithm Module. These three modules 
interconnect in two loops: an internal loop to control a system and an external loop to 
modify the fusion-hierarchical parameters. The internal loop comprises the fuzzy controller 
module and the system module. In other words, this loop represents a closed-loop control 
scheme. The external loop is composed of the genetic algorithm module, the fuzzy controller 
module, and the system module. The objective of the genetic algorithm module is to 

0 1 0 0 0 1 1 1 1 1 1 
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estimate the fusion-hierarchical parameters of the fuzzy controller through the minimization 
of the error between the design specifications and the output of the process. 
Below we discuss each module of the proposed method. 
 

 
 
Fig. 5. Scheme of the proposed method. 

   
4.2.1 Control System Module 

The control system is defined as a complex system with p inputs and q outputs: 
      

u = [u1, …, up] 
 y = [y1, …, yq] 

(3) 

   
4.2.2 Fuzzy Controller Module 

The fuzzy controller module is represented by the fuzzy controller of reduced complexity 
which results after the application of the sensory fusion method, the hierarchical method, 
and the combination of these rule base reduction methods correspondingly such that it uses 
the combination of the fusion-hierarchical parameters. 
Generally, the fuzzy controller is composed of one or several fuzzy controllers (depending 
on the number of variables). These controllers are of the Takagi-Sugeno type and each has a 
two inputs. The variation of these inputs results from the design of the sensory fusion 
method, the hierarchical method, and the combination of these methods; or the output 
variables of another fuzzy controller.  
For example, let us describe general fuzzy controller with two input variables (see Figure 6) 

which are the vector of error ε = yd – y and variation of error Δε, where yd is the desirable 

system output. Kε = [Kε, …, εq] and KΔε = [KΔε, …, Δεq] are the gain input vectors. The 
output gain vector is noted as Ku = [Ku1, …, Kuq]. The vector containing the resulting 
variables from the fusion module is noted as X = [x1, …, xq]. So, for this example we have the 
output 
  

Xi = Kεi⋅εi + KΔεi⋅ΔεI     (4) 
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where i = 1, …, q. 

 
Fig. 6.  General fuzzy controller structure. 

   
4.2.3 Genetic Algorithm Module 

Genetic Algorithm Module represents a genetic algorithm that maintains a population of 
chromosomes where each chromosome represents a combination of candidate parameters. 
This genetic algorithm uses data from the system to evaluate the fitness of each parameter in 
the population. The evaluation is done at each time step by simulating out with each 
combination of the parameters and forming a fitness function based on the design 
specifications which characterize the desired performance of the system. Using this fitness 
evaluation, the genetic algorithm propagates parameters into the next generation via the 
combination of the genetic operations proposed below. The combination of the parameters 
that is the fittest one in the population is used in the sensory fusion fuzzy controller. 
This allows the proposed method to evolve automatically the combination of parameters 
from generation to generation (i.e., from one time step to the next, but of course multiple 
generations could occur between time steps), and hence to tune the combination of the 
parameters in response to changes in the system or due to user changes of the specifications 
in the fitness function of the GA.  
The proposed procedure of estimating the combination of parameters by GA is summarized 
as follows: 

1. Determine the rule base reduction method and the number of parameters it is 
necessary to find. 

2. Construct an initial population. 
3. Encode each chromosome in the population. 
4. Evaluate the fitness value for each chromosome. 
5. Reproduce chromosomes according to the fitness value calculated in Step 4. 
6. Create offspring and replace parent chromosomes by the offspring through crossover 

and mutation. 
7. Go to 3 until the maximum number of iterations is reached. 

   
4.2.3.1 Representation 

To encode the combination of parameters, chromosomes of length N · B are used, where N is 
the number of parameters and B the number of bits which we use to encode the parameters. 
To decide how many bits to use for each parameter, we should consider the range of all 
possible values for each of them. For example, suppose that the parameters we want to 
obtain are positive with one decimal after the dot. To encode all possible values of each 
parameter we will use 8 bits. In Figure 7, there is one chromosome, representing the 
combination of parameters, which has N = 4 parameters with B = 8 bits each. So, the total 
range of the parameters will be in the interval [0, 256]. To obtain the required precision (one 
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decimal after the dot), we multiply the output values of the parameters by 0.1. As a result, 
the searching parameters will be in the interval [0, 25.6]. 

 
4.2.3.2 Population 

The initial population is randomly generated. Its size is fixed and equal to 50 individuals. 
 

 
Fig. 7. Example of representation of one chromosome (or one combination of parameters) 
which has N = 4 parameters with B = 8 bits each. 

   
4.2.3.3 Fitness Function 

The genetic algorithm maintains a population of chromosomes. Each chromosome 
represents a different combination of parameters. It also uses a fitness measure that 
characterizes the closed-loop specifications. Suppose, for instance, that the closed-loop 
specifications indicate that the user want, for a step input, a (stable) response with a rise-
time of t*r, a percent overshoot of s*p, and a settling time of t*s. We propose the fitness 
function so that it measures how close each individual in the population at time t (i.e., each 
parameter candidate) is to meet these specifications. Suppose that tr, sp, and ts denote the 
rise-time, the overshoot, and the settling time, respectively, for a given chromosome (we 
compute them for a chromosome in the population by performing a simulation of the 
closed-loop system with the candidate combination of the parameters and a model of the 
system). Given these values, we propose (for each chromosome and every time step) 
      

J = w1 (tr – t*r)2 + w2 (sp – s*p)2 + w3 (ts – t*s)2 (4) 

 
where wi > 0, i = 1, 2, 3, are positive weighting factors. The function J characterizes how well 
the candidate combination of the parameters meets the closed-loop specifications; if J = 0 it 
meets the specifications perfectly. The weighting factors can be used to prioritize the 
importance of meeting the different specifications (e.g., a high value of w2 relative to the 
other values indicates that the percent overshoot specification is more important to meet 
than the others).   
Now, we would like to minimize J, but the genetic algorithm is a maximization routine. To 
minimize J with the genetic algorithm, we propose the fitness function 
      

Jres = 1/J (5) 
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Then, after knowing the design specifications of the system, and once we can obtain the step 
response characteristics for each chromosome in the population (rise-time, overshoot, and 
settling time), the fitness function is calculated in 2 steps: 

1. We ask if the results coming from the GA is in the range of the design specifications of 
the system. If they are, we go to step 2. Else, the fitness value of this chromosome is set to 
1000. 

2. The fitness function is defined as described above (equations 4, 5). 

   
4.2.3.4 Genetic Operators 

In this section, we determine some genetic operators that we will use below (in Table 4). 
Crossover: is a genetic operator that combines two chromosomes (parents) to produce one o 
two chromosomes (offspring). The idea behind crossover is that the new chromosome may 
be better than both of the parents if it takes the best characteristics from each of the parents. 
First, the crossover operator randomly chooses a crossover point where two parent 
chromosomes “break”, and then exchanges the chromosome parts after that point with a 
user-definable crossover probability. As a result, two new offspring are created (Melanie, 
1999). The most common forms of crossover are one-point and two-point. 
Mutation: represents a change in the gene. Its role is to provide and guarantee that the 
search algorithm is not trapped on a local optimum. The mutation operator uses a mutation 
probability denoted as pm previously set by the user, which is quite small in nature, and it is 
kept low for GAs, typically in the range 0.001 and 0.01. According with this probability, the 
bit value is changed from 0 to 1 or vice versa (Melanie, 1999). 
Elitism: copies the best individual (% of most fit individual) from the actual population to a 
new population and the rest of the new population is constructed according to the genetic 
algorithm.  
Half Uniform Crossover (HUX): In this operator, bits are randomly and independently 
exchanged, but exactly half of the bits that differ between parents are swapped (see 
Figure 8). The HUX operator (Eshelman, 1991 ; Gwiazda, 2006) ensures that the offspring are 
equidistant between the two parents. This serves as a diversity preserving mechanism.  
Truncation selection: implies that duplicate individuals are removed from population 
(Melanie, 1999). 
In roulette selection: parents are selected according to their fitness. The better is the fitness, 
the bigger chance to be selected. 
 

 

Fig. 8. Example of Half Uniform Crossover. 
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5. Simulation Results 
  

5.1 Inverted Pendulum System 

The inverted pendulum control system (Messner, 1998; Aguilar, 2005; Aguilar, 2007) is used 
to test the proposed methods. The objective of this control system is, on one hand, to 
maintain the stem of the pendulum in high driving position, on the other hand, to bring the 
cart towards a given position xo. The scheme in Figure 9 shows the main components of the 
system. 
The basic variables are:   

− the angular position of the stem θ; 
− the angular velocity of the stem ∆θ; 
− the horizontal position of cart x; 

− the velocity of the cart ∆x. 
The design specifications of the inverted pendulum system are: 

− the objective position of the cart is 30 cm; 

− the overshoot of no more than 5  ; 

− the settling time of no more than 5 sec. 
 

 
Fig. 9. Inverted pendulum, where M = 1 kg – mass of the cart, m =0.1 kg – mass of the 
pendulum, l = 1 kg – length to pendulum, F – force applied to the cart, x - cart position 
coordinate, θ   - pendulum angle with vertical. 

 
5.1.1 Design of the Sensory Fusion Method 

The design of sensory fusion on a fuzzy controller is described in this section. First the 
sensory fusion of the input variables is done as follows: 
 

⎩
⎨
⎧

Δ+=
Δ+=
edсeX

baX

е

θθθ      (6) 

 

where a, b, c, and d are positive. 

So, if Xe is null, that means that the cart reached its position of reference (e = 0 and Δe = 0), or 

that it moves towards this one (ce = -dΔe). Reasonably it is identical for Xθ.  If Xθ is null, the 
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angular position of the pendulum is stabilized to zero. Consequently, the stabilization of Xθ 
and Xe makes it possible to bring the pendulum towards a position of reference and ensure 
the maintenance of the stem of the pendulum in high driving position. The more absolute 

value of Xθ, more the horizontal position of the pendulum is critical. And the more absolute 

value of Xe, more the angular position of the pendulum is critical. The variables Xθ and Xe 
represent respectively the critical angular position and the critical horizontal position of the 
pendulum.   
 

 
 
 
 
 
Fig. 10. Scheme of the sensory fusion fuzzy controller. 

 
This control problem is far from being commonplace because two variables are to be 

controlled but only one has an action of control. The dynamics of θ being much faster than 
that of r, the adopted strategy is as follows: we initially seek to balance the pendulum (high 
driving position) then to gradually bring it towards its position of reference by unbalancing 
it on the "good side".  
We can then write the five following rules in order to control the pendulum at the same time 
horizontally and vertically: 
 

 R1:  IF Xθ is Negative THEN u is Negative, 

 R2:  IF Xθ is Positive THEN u is Positive, 

 R3:  IF Xθ is Zero y Xe is Negative THEN u is Negative,               (7) 

 R4:  IF Xθ is Zero y Xe is Zero THEN u is Zero, 

 R5:  IF Xθ is Zero y Xe is Positive THEN u is Positive, 

 
These five rules interpret well the priority objective which is the vertical stabilization of the 

pendulum:  Xe is considered only when Xθ is null.  Now let us examine the third rule (R3): 

"IF Xθ is Zero and Xe is Negative THEN u is Negative". This negative control involves Xθ 
positive.  The second rule R2 is then activated: us = ku becomes positive in order to balance 
the pendulum and the position of the cart increases as wished. The reasoning is similar for 
the fifth rule.   
The five rules (7) can be written in a more compact way in the form of table (Table 2):  
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Xθ N Z P 

N N 

Z Z Xe 

P 

N 

P 

P 

Table 2. Rule base of the sensory fusion fuzzy controller. 

 
5.1.2 Design of the Hierarchical Method 

The design of the hierarchical fuzzy controller is described in this section. The structure of 
the hierarchical fuzzy controller is represented in Figure 11. 
   

 
Fig. 11. - Hierarchical fuzzy controller. 

 
The hierarchical fuzzy controller is composed of three fuzzy controller series connected.  
The corresponding rule bases are represented in Tables 3, 4 and 5.  The total number of rules 
is 9 + 5 + 9 = 23 rules.   
The objective of the first fuzzy controller (FC1) is to bring the cart towards its position of 
reference rc. The first action u1 consists in unbalancing the pendulum in the "good direction".  
This imbalance must have as a consequence the displacement of the cart in the desired 
direction.   
 

dΔe N Z P 

N N N Z 

Z N Z P ce 

P Z P P 

Table 3. Rule base of the FC1. 

 
The objective of second fuzzy controller (FC2) is to balance the pendulum if this one is not 
so yet. The first decision of an action u1 is preserved if the angular position of the pendulum 
is zero, but if the pendulum is not balanced, the new action u2 is such as the pendulum 
converges towards a high driving position. 
As for the third fuzzy controller (FC3) it aims to refine the preceding control by considering 

an additional variable Δθ, the angular velocity of the pendulum.   

If Δθ is zero, it does not have a reason there to modify the preceding control u2. In the same 

way, if Δθ is negative (respectively positive) and u2 is negative (respectively positive) then 
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the preceding control does not have to be revised since it balances the pendulum. On the 
other hand, if the control u2 is zero and the pendulum tends to be unbalanced then it is 
necessary to choose a control consequently.  

 
5.1.3 Design of the Fusion-Hierarchical Method 

The objective position where we must to bring a cart is xo. The variables to fuse are θ and Δθ, 
e and Δe, where e is the error in position given by e  = x - xo and Δe  = Δx. The sensory fusion 
of the error in position and its variation Xe  = ce + d∆e combined with the hierarchical 
method led to the fuzzy controller represented in Figure 12. The first fuzzy controller (FC1) 
calculates the first control action according to Xe and the angular position θ. In the second 
fuzzy controller (FC2), it refines the value of preceding control by considering an additional 
variable ∆θ. The fuzzy controller based on fusion-hierarchical combination is represented in 
the Figure 12. The rule bases of FC1 and FC2 are represented in Tables 6-7.   
 

aθ N Z P 

N N 

Z Z u1 

P 

N 

P 

Z 

Table 4. Rule base of the FC2. 

 
dΔθ N Z P 

N N N Z 

Z N Z P u2 

P Z P P 

Table 5. Rule base of the FC3. 

 

 
 
 
 
Fig. 12. Fuzzy controller based on the combination of the sensory fusion and hierarchical 
methods. 
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aθ N Z P 

N N 

Z Z Xe 

P 

N 

P 

P 

Table 6. Rule bases of the fuzzy controllers FC1. 

 
bθ N Z P 

N N N Z 

Z N Z P u1 

P Z P P 

Table 7. Rule bases of the fuzzy controllers FC2. 

 
The simulation of the inverted pendulum is performed in Simulink, Matlab (Figure 13) 
starting from the nonlinear equations (Messner, 1998). The fuzzy controller is implemented 
in Matlab´s FIS Editor. The input fuzzy sets are represented by triangular functions (N, Z and 
P) regularly distributed on the universe of discourse [-1, 1]. The output fuzzy sets are 
singletons regularly distributed on [-1, 1].  
 

 
Fig. 13. Inverted pendulum control problem for the combination of methods implemented in 
Simulink. 

 
5.1.4 Results 

We apply the proposed method in order to find the parameters a, b, c, and d. The 
experiments were realized with the combination of some genetic operators in Table 8. The 
results of obtained parameters for each combination of genetic operators are presented in 
Tables 9-11. The best result is highlighted (Tables 9-11). The time response graphics are 
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illustrated for the best experiment from Tables 8-10 in Table 12. In these experiment, the 
weighting factors of overshoot, settling time and rising time are w1 = 1, w2 = 1, and w3 = 0 
respectively. 
 

Num. 
Selection 
Operator 

Num. of 
Generations 

Crossover Operator 
Mutation 
Operator 

Elitism 

1. Roulette 50 Two-point with pc=0.8 pm=0.01 6 % 

2. Roulette 100 Two-point with pc=0.8 pm=0.01 3 % 

3. Roulette 50 Two-point with pc=0.8 pm=0.15 3 % 

4. Truncation 30 HUX - - 

5. Truncation 50 HUX - - 

6. Truncation 100 HUX - - 

Table 8. The combinations of genetic operators for realize the experiments. 

 
For the reduction with the sensory fusion method we obtained the following parameters: a = 
23, b = 8, c = 1.3 and d= 2.8 (see experiment 6, Table 9). With these parameters the horizontal 
position of the cart is stabilized in 4.95 seconds with overshoot of 0%. The design 
specifications of the inverted pendulum system are totally satisfied. 
 

Num. a b c d Overshoot  
(%) 

Settling Time 
(sec.) 

Rising Time 
(sec.) 

1. 13.1 4.3 3 2.6 26 4.7 0.9 

2. 19.7 4.1 1.3 2.6 0.17 4.95 2.85 

3. 25 7 4 6 0 4.75 2.1 

4. 24.8 5.5 6 7 0 4 1.7 

5. 20.5 9.6 6.3 8.5 0 4.5 2.6 

6. 23 8 1.3 2.8 0 4.95 2.7 

Table 9. The results obtained for the sensory fusion fuzzy controller. 

 
For the reduction with hierarchical method we obtained the following parameters: a = 19.2, 
b = 6.4, c = 1.1 and d= 2.3 (see experiment 6, in Table 10). With these parameters the 
horizontal position of the cart is stabilized in 4.7 seconds with overshoot 0%.  
 

Num. a b c d Overshoot  
(%) 

Settling Time 
(sec.) 

Rising Time 
(sec.) 

1. 20.6 11.2 3.3 5.5 0 5 1.7 

2. 24.5 8.3 5.4 6.9 0 4 1.8 

3. 17 6 4 5 0 4 2 

4. 19.6 9.4 1 2.3 0 5.16 2.7 

5. 23.5 7.1 5.2 7.5 0 5 2.4 

6. 19.2 6.4 1.1 2.3 0 4.7 2.7 

Table 10. The results obtained for the hierarchical fuzzy controller. 
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For the reduction with the combination of the sensory fusion and the hierarchical methods 
we obtained the following parameters: a = 25.3, b = 10.1, c = 3.4, and d= 5.5. With these 
parameters the horizontal position of the cart is stabilized in 5 seconds with overshoot 0% 
(see experiment 6 in Table 11), and the behavior of the angle position of the stem of 
pendulum is shown in Table 12, experiment 6, the third column.  
 

Num. a b c d Overshoot  
(%) 

Settling Time 
(sec.) 

Rising Time 
(sec.) 

1. 20.9 7.6 1.9 2.9 5.4 5 1.8 

2. 14.7 5.1 2.7 3.1 3.5 3 1.2 

3. 19.2 6.5 5.7 6.4 0 4 1.5 

4. 24.7 7.2 3.1 4.8 0 4 2 

5. 19.6 7 1.1 2.3 0 4.5 2.6 

6. 25.3 10.1 3.4 5.5 0 5 2 

Table 11. The results obtained for the fusion-hierarchical fuzzy controller. 
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Horizontal position of the cart 

Angle position of the stem of the 
pendulum 

 

3. 

 
 

Table 12. The time response graphics obtained for the fusion-hierarchical fuzzy controller. 

 
The fitness value convergence diagrams calculated for 30 generations are presented in 
Figure 14. The main observation is that the best combination of parameters can be met 
around 25 generations. 
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Fig. 14. The fitness value convergence diagram (30 generations). 

 
5.2 Beam-and-Ball System  

A representation of the beam-and-ball system is given in Figure 15 (Messner, 1998). A ball of 
mass M placed on a beam of length L is allowed to roll along the length of the beam. A lever 
arm of negligible mass mounted onto a gear and driven by a servomotor is used to tilt the 

beam in either direction. The beam angle α is controlled by a rotational motion of the 

servomotor, shown as Ө. With α initially zero, the ball is in a stationary position. When α is 

positive (in relation to the horizontal) the ball moves to the left due to gravity, and when α is 
negative the ball moves to the right. The objective is to design a controller for this system so 
that the ball position can be controlled to any position r along the beam. 
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Fig. 15. Beam-and-ball system. 

 
For this problem, we will assume that the ball rolls without slipping and friction between 
the beam and ball is negligible. The constants and variables for this example are defined as 
follows: M = 1kg – mass of the ball, r = 0.015 m – radius of the ball, d = 0.03 m – lever arm 
offset, g – gravitation acceleration, L = 1.0 m – length of the beam, J – inertia moment of ball, 

α  - beam angle coordinate, θ - pendulum angle with vertical. 
The design specifications of this problem are: 

− Carry the ball to the position of 50 cm; 

− Overshoot no more than 5%; 

− The settling time no more than 3 seconds. 
The basic variables of the ball-and-beam system are:   

− Angular position Ө,  

− Angular velocity ∆ Ө,  

− Horizontal position of the ball r,  

− Velocity of the ball ∆r. 
             
The equation of motion for the ball is given by the following (Messner, 1998): 
 

0)(sin)( 2

2
=′−+′′+ αα mrmgrm

R

J      (6) 

 

Linearization of this equation about the beam angle, α = 0, gives us the following linear 
approximation of the system: 
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αmgrm
R

J
−=′′+ )(

2
     (7) 

 

The equation which relates the beam angle to the angle of the gear can be approximated as 
linear by the equation below: 
 

θα
L

d
=      (8) 

 

Substituting this in the previous equation, we get: 
 

α
L

d
mgrm

R

J
−=′′+ )(

2
    (9) 

 
The linearized system equations can also be represented in state-space form as shown 
below: 
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For this system the gear and lever arm would not be used, instead a motor at the center of 
the beam will apply torque to the beam, to control the position of the ball. 

 
5.2.1 Design of the Sensory Fusion Method 

The sensory fusion fuzzy controller is designed as show in Figure 16. The sensory fusion of 
the input variables is done as follows: 
 

⎩
⎨
⎧

Δ+=
Δ+=
rdсrX

baX

е

θθθ      (11) 

 

where a, b, c, and d are positive. 
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Fig. 16.  Design of the sensory fusion fuzzy controller for beam-and-ball system. 

 
We obtain the nine following rules in order to control the ball to any position rc. These nine 
rules interpret well the priority objectives which are the horizontal stabilization to the 
desired position of the ball and the horizontal stabilization of the beam (see Table 13).  
 

Xθ N Z P 

N P P Z 

Z N Z P Xe 

P Z N N 

Table 13. Rule base for the sensory fuzzy controller. 

 
5.2.2 Design of the Hierarchical Method 

The design of a hierarchical fuzzy controller is represented in Figure 17.  
  

 
Fig. 17. Hierarchical fuzzy controller. 

 
The hierarchical fuzzy controller is composed of three connected fuzzy controller. The 
corresponding rules are represented in Tables 14, 15, and 16. The total number of rules is 
9 + 9 + 9 = 27 rules.   
The objective of the first fuzzy controller (FC1) is to bring the ball towards its position of 
reference rc. The first action u1 consists in unbalancing the beam in the right direction. This 
imbalance must have as a consequence the displacement of the ball in the desired direction.   
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d∆e N Z P 

N N N Z 

Z N Z P ce 

P Z P P 

Table 14. Rule base for FC1. 

 
The objective of second fuzzy controller (FC2) is to balance the beam if it is not balanced. 
The new action u2 is such as the beam moves towards horizontal position. 
 

aθ N Z P 

N P P Z 

Z N Z P u1 

P Z N N 

Table 15. Rule base for FC2. 

 
The third fuzzy controller (FC3) aims to refine the preceding control by considering an 

additional variable: ∆θ  - the angular velocity of the beam.   
 

d∆θ N Z P 

N P P Z 

Z N Z P u2 

P Z N N 

Table 16. Rule base for FC3. 

 
5.2.3 Design of the Fusion-Hierarchical Method 

The sensory fusion method combined with the hierarchical method led to the fuzzy 
controller represented in Figure 18. The first fuzzy controller FC1 calculates the first control 

according to Xe and the angular position θ. The corresponding rule base is similar to that 
written for the fuzzy controller based on the sensory fusion only. In the second fuzzy 
controller FC2, it refines the value of preceding control by considering the additional 

variable ∆θ. Its rule base is obtained following the same reasoning as that which guided the 
writing of the third rule base for the fuzzy controller based on the hierarchical method. 
 

 
Fig. 18. FC based on the fusion-hierarchical combination. 
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 The rule bases of two fuzzy controllers FC1 and FC2 are represented in Tables 17-18.   
 

aθ N Z P 

N P P Z 

Z N Z P Xe 

P Z N N 

Table 17. Rule bases of the fuzzy controllers FC1. 

 
b∆θ N Z P 

N P P Z 

Z N Z P u1 

P Z N N 

Table 18. Rule bases of the fuzzy controllers FC2. 

 
5.2.4 Results 

Now we apply the proposed method in order to find the parameters a, b, c, and d for the 
beam-and-ball system. The experiments were realized with the combination of some genetic 
operators (Table 8). In all experiments the population size is 50 chromosomes. The results of 
obtained parameters for each combination of genetic operators are presented respectively in 
Tables 19-21. The time response graphics are illustrated for the best experiment from Tables 
19-21 in Table 22. In these experiment, the weighting factors of overshoot, settling time and 
rising time are w1 = 1, w2 = 1, and w3 = 0 respectively. 
For the reduction with the sensory fusion method we obtained the following parameters: 
a = 3, b = 4, c = 9.6 and d = 1.9 (see experiment 6, Table 19). With these parameters the 
horizontal position of the ball is stabilized in 3 seconds with overshoot of 0 % (see Table 19, 
experiment 6, the second column), and the behavior of the angle position of the beam is 
shown in Table 19, experiment 6, the third column. The design specifications of the beam-
and-ball system are totally satisfied. 
 

Num. a b c d 
Overshoot 

(%) 
Settling Time 

(sec.) 
Rising Time 

(sec.) 

1. 3.9 5.5 8.2 3.1 0 4.8 2.3 

2. 1.7 3.7 25.1 4.3 0 4.9 3.2 

3. 3.4 3.9 9.1 1.5 0 3.1 1.8 

4. 3 4.1 10.6 3.4 0 2.8 1.93 

5. 2.8 4.2 12.1 4.8 0.8 3 1.96 

6. 3 4 9.6 2.9 0 3 2 

Table 19. The results obtained for the sensory fusion fuzzy controller. 
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For the reduction with hierarchical method we obtained the following parameters: a = 8.9, 
b = 6.4, c = 1.1 and d = 2.3 (see experiment 6 in Table 20). With these parameters the 
horizontal position of the cart is stabilized in 3 seconds with overshoot 0%.  
For the reduction with the combination of methods we obtained the following parameters: 
a = 8.6, b = 0.9, c = 2.8 and d = 3.3 (see experiment 6 in Table 21). With these parameters the 
horizontal position of the ball is stabilized in 3 seconds with overshoot of 0.4% (see Table 21, 
experiment 6, the second column), and the behavior of the angle position of the beam is 
shown in Table 21, experiment 6, the third column. The design specifications of the beam-
and-ball system are totally satisfied. 
 

Num. a b c d 
Overshoot 

(%) 
Settling Time 

(sec.) 
Rising Time 

(sec.) 

1. 19.6 8.1 3.8 6.3 0 4.24 2.57 

2. 8.7 1.2 3.9 4.3 0 3.69 2 

3. 14.4 5.7 3.3 5.1 0 3.57 2.1 

4. 6.9 1.2 2.7 3 0 2.99 1.62 

5. 10.9 2.8 2.6 3.5 0 3 1.8 

6. 8.9 2.2 2.4 3.2 0 3 1.7 

Table 20. The results obtained for the hierarchical fuzzy controller. 

 

Num. a b c d 
Overshoot 

(%) 
Settling Time 

(sec.) 
Rising Time 

(sec.) 

1. 8.7 3 3.1 3.4 15.6 5 1.2 

2. 25.2 11.2 3.2 6.7 0 4.4 2.5 

3. 12.3 3.1 2.5 3.7 0.97 3.24 1.93 

4. 6.9 1.4 2.7 3.1 0 2.82 1.5 

5. 9 0.9 3 3.5 0.5 3 1.8 

6. 8.6 0.9 2.8 3.3 0.4 3 1.7 

Table 21. The results obtained for the fusion-hierarchical fuzzy controller. 
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The fitness value convergence diagrams calculated for 30 generations are presented in 
Figure 19. The main observation is that the best combination of parameters can be met 
around 25 generations. 
The sensory fusion controller, the hierarchical controller, and the fusion hierarchical 
controller were designed for the beam-and-ball control problem. The rule base of the 
sensory fusion controller was reduced from 625 to 9 rules. The rule base of the hierarchical 
controller was reduced from 625 to 27 rules. The rule base of the fusion hierarchical 
controller was reduced from 625 to 18 rules. 

 
6. Conclusions 
    

The sensory fusion method, the hierarchical method and the combination of these methods 
makes it possible to reduce the dimensionality of the control problem. In our approach, the 
problem of manually search for the required parameters was solved with an optimization 
algorithm (genetic algorithm). The proposed algorithm was tested by simulation of the 
inverted pendulum and beam-and-ball control problems. In both systems the fusion, the 
hierarchical, and the fusion-hierarchical parameters for the design specifications of this 
problem were adequately found. We conclude that manually search (can last several month 
if all of combination of parameters would be tried) are no more needed; instead the genetic 
estimation can be used. Due to the fact that the fitness function is based on the design 
specification of the system, we have the advantage to apply it to any combination of fusion-
hierarchical variables. Another very important advantage is that when the user changes the 
design specifications, we can obtain the necessary fusion-hierarchical parameters very 
quickly by using the proposed GA. GA helped us not only to automatically estimate the 
fusion-hierarchical parameters, but also to improve the results obtained using fusion-
hierarchical methods. 
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Table 22. The time response graphics obtained for the fusion-hierarchical fuzzy controller. 
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