2,603 research outputs found

    Fuzzy Logic and Singular Value Decomposition based Through Wall Image Enhancement

    Get PDF
    Singular value decomposition based through wall image enhancement is proposed which is capable of discriminating target, noise and clutter signals. The overlapping boundaries of clutter, noise and target signals are separated using fuzzy logic. Fuzzy inference engine is used to assign weights to different spectral components. K-means clustering is used for suitable selection of fuzzy parameters. Proposed scheme significantly works well for extracting multiple targets in heavy cluttered through wall images. Simulation results are compared on the basis of mean square error, peak signal to noise ratio and visual inspection

    Through-Wall Image Enhancement Using Fuzzy and QR Decomposition

    Get PDF
    QR decomposition and fuzzy logic based scheme is proposed for through-wall image enhancement. QR decomposition is less complex compared to singular value decomposition. Fuzzy inference engine assigns weights to different overlapping subspaces. Quantitative measures and visual inspection are used to analyze existing and proposed techniques

    Investigating Key Techniques to Leverage the Functionality of Ground/Wall Penetrating Radar

    Get PDF
    Ground penetrating radar (GPR) has been extensively utilized as a highly efficient and non-destructive testing method for infrastructure evaluation, such as highway rebar detection, bridge decks inspection, asphalt pavement monitoring, underground pipe leakage detection, railroad ballast assessment, etc. The focus of this dissertation is to investigate the key techniques to tackle with GPR signal processing from three perspectives: (1) Removing or suppressing the radar clutter signal; (2) Detecting the underground target or the region of interest (RoI) in the GPR image; (3) Imaging the underground target to eliminate or alleviate the feature distortion and reconstructing the shape of the target with good fidelity. In the first part of this dissertation, a low-rank and sparse representation based approach is designed to remove the clutter produced by rough ground surface reflection for impulse radar. In the second part, Hilbert Transform and 2-D Renyi entropy based statistical analysis is explored to improve RoI detection efficiency and to reduce the computational cost for more sophisticated data post-processing. In the third part, a back-projection imaging algorithm is designed for both ground-coupled and air-coupled multistatic GPR configurations. Since the refraction phenomenon at the air-ground interface is considered and the spatial offsets between the transceiver antennas are compensated in this algorithm, the data points collected by receiver antennas in time domain can be accurately mapped back to the spatial domain and the targets can be imaged in the scene space under testing. Experimental results validate that the proposed three-stage cascade signal processing methodologies can improve the performance of GPR system

    Fuzzy Logic-Based Histogram Equalization for Image Contrast Enhancement

    Get PDF
    Fuzzy logic-based histogram equalization (FHE) is proposed for image contrast enhancement. The FHE consists of two stages. First, fuzzy histogram is computed based on fuzzy set theory to handle the inexactness of gray level values in a better way compared to classical crisp histograms. In the second stage, the fuzzy histogram is divided into two subhistograms based on the median value of the original image and then equalizes them independently to preserve image brightness. The qualitative and quantitative analyses of proposed FHE algorithm are evaluated using two well-known parameters like average information contents (AIC) and natural image quality evaluator (NIQE) index for various images. From the qualitative and quantitative measures, it is interesting to see that this proposed method provides optimum results by giving better contrast enhancement and preserving the local information of the original image. Experimental result shows that the proposed method can effectively and significantly eliminate washed-out appearance and adverse artifacts induced by several existing methods. The proposed method has been tested using several images and gives better visual quality as compared to the conventional methods

    Computational fluids domain reduction to a simplified fluid network

    Get PDF
    The primary goal of this project is to demonstrate the practical use of data mining algorithms to cluster a solved steady-state computational fluids simulation (CFD) flow domain into a simplified lumped-parameter network. A commercial-quality code, “cfdMine” was created using a volume-weighted k-means clustering that that can accomplish the clustering of a 20 million cell CFD domain on a single CPU in several hours or less. Additionally agglomeration and k-means Mahalanobis were added as optional post-processing steps to further enhance the separation of the clusters. The resultant nodal network is considered a reduced-order model and can be solved transiently at a very minimal computational cost. The reduced order network is then instantiated in the commercial thermal solver MuSES to perform transient conjugate heat transfer using convection predicted using a lumped network (based on steady-state CFD). When inserting the lumped nodal network into a MuSES model, the potential for developing a “localized heat transfer coefficient” is shown to be an improvement over existing techniques. Also, it was found that the use of the clustering created a new flow visualization technique. Finally, fixing clusters near equipment newly demonstrates a capability to track temperatures near specific objects (such as equipment in vehicles)

    A review on initialization methods for nonnegative matrix factorization: Towards omics data experiments

    Get PDF
    Nonnegative Matrix Factorization (NMF) has acquired a relevant role in the panorama of knowledge extraction, thanks to the peculiarity that non-negativity applies to both bases and weights, which allows meaningful interpretations and is consistent with the natural human part-based learning process. Nevertheless, most NMF algorithms are iterative, so initialization methods affect convergence behaviour, the quality of the final solution, and NMF performance in terms of the residual of the cost function. Studies on the impact of NMF initialization techniques have been conducted for text or image datasets, but very few considerations can be found in the literature when biological datasets are studied, even though NMFs have largely demonstrated their usefulness in better understanding biological mechanisms with omic datasets. This paper aims to present the state-of-the-art on NMF initialization schemes along with some initial considerations on the impact of initialization methods when microarrays (a simple instance of omic data) are evaluated with NMF mechanisms. Using a series of measures to qualitatively examine the biological information extracted by a given NMF scheme, it preliminary appears that some information (e.g., represented by genes) can be extracted regardless of the initialization scheme used

    Mineral exploration modeling and singularity analysis for geological feature recognition and mineral potential mapping in southeastern Yunnan mineral district, China

    Get PDF
    Nowadays, with the development in construction of geo-exploratory datasets and data processing techniques, mineral exploration modeling for recognition of mineralization associated geological features and mapping of mineral potentials become more dependent on GIS-based analysis and geo-information from multi-source datasets. Geological, geochemical and geophysical data as three main sources of geo-information in support of mineral exploration have long been employed in many researches. Spatial distributions of geological bodies or controlling factors associated with mineralization were frequently interpreted from these datasets. However, former characterizations of the controlling factors were simply focused on their location information; concerns on spatial variations of their geological signatures and controlling effects on mineralization were not sufficiently emphasized. Therefore, through a series of newly developed GIS-based manipulations, current study intends to demonstrate a comprehensive mineral exploration modeling process for more explicit recognition of controlling factors and their interactions on mineralization and delineation of hydrothermal mineral potentials in southeastern Yunnan mineral district, China. The hydrothermal mineralization as a nonlinear geo-process is accompanied with anomalous energy release and material accumulation in a narrow spatial-temporal interval. Simultaneously, it is a cascade process associated with various geological activities (e.g., magmatism, tectonism, etc.). Knowledge of these associated geo-activities is consequently beneficial to the exploration of hydrothermal mineralization. As the key point of this study, the singularity index mapping method in the context of fractal/multifractal efficient in separating geo-anomalies from both strong and weak background is applied to characterize variations of geological signatures of three controlling factors (i.e., granitic intrusions, faults and the Gejiu formation). With the guidance of multidisciplinary approaches, these geo-information derived from multi-source datasets is further integrated to produce the potential map. In comparison with traditionally used methods, the newly depicted predictor maps enhance weak geo-anomalies hidden within a strong variance of background. In addition, three geo-information integration methods including RGB composition, the principal component analysis and the weights of evidence method are implemented. By the weights of evidence method, the qualitatively and quantitatively interpretable result possessing advantages of the other two methods, simultaneously, is accepted as the final result of currently proposed mineral exploration modeling. Summarized experiences through this study will not only support future exploration in the study area, but also benefit the work in other areas

    Critical Analysis of Background Subtraction Techniques on Real GPR Data

    Get PDF
    Ground penetrating radar (GPR) is used to detect the underground buried objects for civil as well as defence applications under varying conditions of soil moisture content. The capability of detection depends upon soil moisture, target characteristics and subsurface characteristics, which are mainly responsible for contaminating the GPR images with clutter. Researchers earlier have used averaging, mean, median, Eigen values, etc. for subtracting the background from GPR images. To analyse the background subtraction or clutter reduction problems, in this paper, we have experimentally reviewed background subtraction techniques with or without target conditions to enhance the target detection under variable soil moisture content. Indigenously developed GPR has been used to collect the data for different soil conditions and several background subtraction signal processing techniques were critically reviewed like, mean, median, singular value decomposition (SVD), principal component analysis (PCA), independent component analysis (ICA) and training methods. The signal to clutter ratio (SCR) measurement has been used for performance evaluation of each technique. The relative merits and demerits of each technique has also been analysed. The background subtraction techniques have been appliedto experimental GPR data and it is observed that in comparison of mean, SVD, median, ICA, PCA, the training method shows the highest SCR with buried target. Finally, this review helps to select the comparatively better background subtraction technique to enhance the detection capability in GPR
    corecore