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Abstract 

Nowadays, with the development in construction of geo-exploratory datasets and data 
processing techniques, mineral exploration modeling for recognition of mineralization 
associated geological features and mapping of mineral potentials become more dependent 
on GIS-based analysis and geo-information from multi-source datasets. Geological, 
geochemical and geophysical data as three main sources of geo-information in support of 
mineral exploration have long been employed in many researches. Spatial distributions of 
geological bodies or controlling factors associated with mineralization were frequently 
interpreted from these datasets. However, former characterizations of the controlling 
factors were simply focused on their location information; concerns on spatial variations 
of their geological signatures and controlling effects on mineralization were not 
sufficiently emphasized. Therefore, through a series of newly developed GIS-based 
manipulations, current study intends to demonstrate a comprehensive mineral exploration 
modeling process for more explicit recognition of controlling factors and their 
interactions on mineralization and delineation of hydrothermal mineral potentials in 
southeastern Yunnan mineral district, China. The hydrothermal mineralization as a non­
linear geo-process is accompanied with anomalous energy release and material 
accumulation in a narrow spatial-temporal interval. Simultaneously, it is a cascade 
process associated with various geological activities (e.g., magmatism, tectonism, etc.). 
Knowledge of these associated geo-activities is consequently beneficial to the exploration 
of hydrothermal mineralization. As the key point of this study, the singularity index 
mapping method in the context of fractal/multifractal efficient in separating geo­
anomalies from both strong and weak background is applied to characterize variations of 
geological signatures of three controlling factors (i.e., granitic intrusions, faults and the 
Gejiu formation). With the guidance of multidisciplinary approaches, these geo­
information derived from multi-source datasets is further integrated to produce the 
potential map. In comparison with traditionally used methods, the newly depicted 
predictor maps enhance weak geo-anomalies hidden within a strong variance of 
background. In addition, three geo-information integration methods including RGB 
composition, the principal component analysis and the weights of evidence method are 
implemented. By the weights of evidence method, the qualitatively and quantitatively 
interpretable result possessing advantages of the other two methods, simultaneously, is 
accepted as the final result of currently proposed mineral exploration modeling. 
Summarized experiences through this study will not only support future exploration in 
the study area, but also benefit the work in other areas. 
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Chapter 1. Introduction 

Mineral exploration is a systematic process objective to find mineral deposits with 

economic values (Haldar, 2012). A general process of mineral exploration includes 

regional area selection, reconnaissance exploration and a series of follow-up (Hodgson, 

1990; Woodall, 1994; Haldar, 2012). Considering the cost-benefit balance and 

exploration strategies, the regional area selection is critical to mineral exploration, since 

all of the following stages will be implemented within the selected areas (Fig. 1.1 ). The 

selected areas are the delineated spaces with mineral potentials or favorable to the 

occurrence of mineralization (Bonham-Carter, 1994; Harris and Sanborn-Barrie, 2006). 

In order to depict the target areas or mineral potentials (i.e., a large area is reduced to a 

small area with favorability of mineralization), a series manipulations are employed to 

investigate mineralization associated knowledge (i.e., geo-information), the process of 

which is so-called mineral exploration modeling (Fig. 1.2) (Hodgson, 1990; Woodall, 

1994; Haldar, 2102). 

The selection of geological criteria for exploration modeling is mainly dependent on 

conceptual and empirical models. The conceptual model coincident with metallogenetic 

models is used to define geological criteria for the exploration. In other words, based on 

the conceptual model, geological issues significant to mineralization are decided and 

consequently considered as the main components of the mineral exploration modeling 

(Bonham-Carter, 1994). For example, the criteria for skarn mineral exploration is 



generally associated with three factors consisting of intensive tectonic activities, 

magmatic intrusions, and carbonate strata (Pirajno, 2009); magmatic mineralization is 

controlled by magmatic intrusions and associated tectonic activities; sedimentary massive 

sulphide mineralization (i.e., SEDEX type) may be only related with hydrothermal 

emanations on or near the sea floor in association with the deposition of sedimentary 

rocks (Misra, 2000; Edwards and Atkinson, 1986; Guilbert and Park, 1986). In the aspect 

of empirical models, geological issues regarding the criteria significant to mineral 

exploration are decided based on statistical analysis and/or experiments rather than the 

descriptive features of deposit types (Woodall, 1994 ). In practice, these two models are 

used jointly. The conceptual models are applied to choose controlling factors of 

mineralization, while the empirical models are employed to estimate significance of these 

controlling factors to mineralization (Bonham-Carter, 1994; Harris and Sanborn-Barrie, 

2006). 

Cost 

Decision point: start of 
reconnaissance exploration 

econnaissance exploration 

Benefit -• ____ __.,,_> 

etailed follow-up 

Fig. I. 1. A general process of mineral exploration. All stages of exploration are projected 
to a cost-benefit system. 
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Geological criteria for 
exploration area 

selection 
+ 

Exploration teclmiques 

Fig. I. 2. A schematic diagram of mineral exploration modeling. A large area is reduced 
to a small area based on exploration techniques and geological criteria. 

In addition to geological criteria, exploration data and techniques are important to 

mineral exploration as well. In recent years, commonly used gee-exploratory datasets are 

geological, geochemical, geophysical and remote sensing data, from which geo-

information of mineralization and/or its controlling factors can be identified for mineral 

potential mapping. With development of observation techniques, more aspects of the 

Earth's properties can be investigated that greatly improved the efficiency of data 

collection. For example, some formerly inaccessible locations can be currently observed 

with the aid of remotely sensed techniques (e.g., remote sensing image, aero-surveys); 

furthermore, utilization of portable X-ray fluorescence analyzer in field work can greatly 

improve the efficiency of testing the element content in rock samples. 

In recent decades, various advanced observations are mainly recorded in form of 

geographic information system (GIS) database. With a great numbers of add-on spatial 

analysis extensions, the GIS-based mineral exploration modeling has become a common 

practice in support of mineral exploration (Bonham-Carter, 1994; Carranza, 2008; Pan 

and Harris, 2000). In this dissertation, the GIS-based mineral exploration modeling will 

be discussed according to a series of applications of gee-information extraction and 

integration for mapping mineral potentials in southeastern Yunnan mineral district, China. 
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1.1. Mineral exploration modeling 

In order to analyze and delineate geo-anomalies (i.e., geo-information associated with 

mineralization) for prediction of mineral deposits, a sophisticated exploration model is 

required to support not only the qualitative description of geo-anomalies according to 

types, distributions and geneses but also the knowledge of advanced techniques for 

quantitative mapping of geo-anomalies (Wang et al., 2011, 2012; Zhao et al., 2012). 

Exploration of hydrothermal ore deposits is one of examples benefitting from the 

advances of mineral exploration modeling. Hydrothermal mineralization as a cascade 

process (Cheng, 2008, 2012) is associated with multiple geological activities consisting 

of transportation of ore-bearing hydrothermal fluids, interaction of fluids with wall rocks, 

precipitation of minerals and consequent accumulation of ore deposits of certain elements 

or metals ( Cheng, 2007a; Pirajno, 2009). These geological activities can generate diverse 

geo-anomalies exhibiting significant differences in geological, geochemical and 

geophysical characteristics from their surroundings (Cheng, 2007a; Cheng and Agterberg, 

2009; Zhao, 1999). It has been a common practice that geological interpreters apply 

analysis techniques in both frequency and spatial domains to recognize geo-anomalies, 

and identified geo-anomalies are further employed as guidance to mineral exploration 

(Agterberg, 1989; Bonham-Carter, 1994). 

Nowadays, advancements in computer sciences and constructions of geo-databases have 

led to flourishing developments in spatial analysis of geo-anomalies using GIS (Bonham­

Carter, 1994; Darnley, 1995; Pan and Harris, 2000; Carranza, 2008). Characterization and 
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delineation of gee-anomalies were achieved greatly by advanced spatial analysis methods 

(Cheng et al., 2010, 2011; Wang et al., 2011, 2012; Zhao et al., 2012). The primary 

functions of GIS techniques are for extracting and integrating gee-information from uni­

or multi-source gee-datasets to characterize occurrences of geological events. Multi­

source gee-datasets consist of ground-based and/or remotely-sensed observations. 

Ground-based geochemical data among the most important sources of gee-information 

are about the presence and spatial distribution of mineral deposits at or near the Earth's 

surface, while geophysical data (e.g., ground-based gravity and aeromagnetic data) are 

efficient to collect gee-information regarding buried geological bodies. In the past 

decades, two basic methods had been widely used to analyze these gee-exploratory data: 

frequency analysis and spatial analysis (Grunsky and Smee, 1999; Harris et al., 2000; Xu 

and Cheng, 2001; Pereira et al., 2003). Statistical approaches including univariate (e.g., 

Q-Q plot) and multivariate data analyses (e.g., cluster analysis) are, under certain 

circumstances, effective for solving problems in the statistical frequency domain rather 

than in the spatial domain. Fractal and multifractal methods consider both frequency 

distributions and spatial self-similar properties of geochemical variables have been 

supportive to many case studies (Agterberg, 1994; Cheng et al., 1994; Carranza, 2008, 

2011; Carranza et al., 2009; Cheng, 2006; Cheng and Agterberg, 2009; Cheng et al., 2010; 

Zuo et al., 2009; Zuo and Xia, 2009; Wang et al., 2011). 

In the aspect of gee-information integration, identified gee-information representing 

mineralization associated gee-anomalies are combined to comprehensively characterize 

geological signatures of mineralization (Harris and Sanborn-Barrie, 2006). Based on 
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metallogenetic properties of most of the hydrothermal deposits, ore-controlling factors 

are mainly composed of magmatism, tectonism and wall rocks. Tectonic activities 

provide spaces for transportation and precipitation of ore materials (Faulkner et al., 2010; 

Micklethwaite et al., 2010; Yuan et al., 1979; Zhai et al., 1999). Magmatic activities 

associated with hydrothermal mineralization can be significant sources of both ore­

forming elements and heat (Wang et al., 2011). Wall rock is another key factor of 

hydrothermal mineralization, properties of which are important to the types of 

mineralization. For instance, skam-type ore deposits formed in contact zones of felsic 

intrusions and carbonate rocks (Einaudi and Burt, 1982). Therefore, these three 

geological features are main concerns in most of hydrothermal mineralization exploration 

modeling processes. 

As previously introduced, a general modeling process is consisted of geo-information 

extraction and integration (Fig. 1.3). Geo-information extracted from various geo-datasets 

is so-called geo-anomaly identification which indicates mineralization-favored areas 

produced by certain geological activities (i.e., controlling factors). According to geo­

information integration, identified geo-anomalies are combined by weighted overlay 

methods. Based on approaches to assign weights to these indicators, data-driven, 

knowledge-driven and hybrid methods are the three general categories for geo-

information integration. 
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Fig.I. 3. A general mineral exploration modeling process. 

Mineral 
potentials 

Among these three categories of geo-information integration methods, data-driven 

methods required sufficient samples of mineral occurrences are readily available in many 

GIS software packages. In these methods, weights of geo-information of individual 

controlling factors are defined according to their spatial association with mineral 

occurrences, and consequently used to delineate mineral potentials (Bonham-Carter, 

1994). Some frequently used data-driven methods are weights of evidence (WofE) 

(Bonham-Carter et al., 1989), logistic regression (Chung and Agterberg, 1980), neural 

networks (Harris et al., 2003), etc. In Bonham-Carter et al. (1989), location information 

of known gold deposits were used as training data to calculate a series of predictor maps 

of gold mineralization. The WofE method was further used to integrate these predictor 

maps for predicting gold mineral potentials in the Meguma terrane of the eastern shore in 

Nova Scotia, Canada. Knowledge-driven methods require geologic interpreters to define 

weights for identified geo-information, and used the subjective weights to map target 
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areas (An et al., 1991). Typical knowledge-driven methods are Boolean overlay (Harris, 

1989), index overlay (Renez et al., 1994), fuzzy logic (An et al., 1991), etc. In An et al. 

(1991), the fuzzy set theory was used to define fuzzy memberships of nine sets of 

geological and geophysical datasets, integration of which successfully delineate the "base 

metal deposits" and "iron formation deposits" favored areas in the Farley Lake area, 

Canada. Besides the methods of data- and knowledge-driven, Cheng and Agterberg (1999) 

proposed a fuzzy weights of evidence method (Carranza and Hale, 2001; Luo and 

Dimitrakopoulos, 2003; Porwal et al., 2004). By this hybrid method, patterns of predictor 

maps in forms of binary or ternary can be reclassified to multi-classes by fuzzy sets 

according to more expert knowledge,. The definition of membership function is more 

general where binary or ternary patterns in the ordinary W ofE method become two 

special situations of non-fuzzy sets. In Cheng and Agterberg (1999), this method was 

applied to predict gold deposits in Meguma Terrane, Nova Scotia, Canada, and the 

problem of losing useful information by defining non-fuzzy patterns were improved. 

More detailed reviews on these three categories of methods can be found in Bonham­

Carter (1994) and Harris sand Sanborn-Barrie (2006). 

In previous researches, geo-information regarding controlling factors of hydrothermal 

mineralization can be interpreted from geological data which records the location 

information of geological occurrences consisting of discovered mineral deposits, fault 

traces and outcrops of igneous or sedimentary rocks. By comparison of spatial 

correlations between these factors (e.g., outcrops of intrusions, fault traces, carbonate 

rocks, etc.) and mineral occurrences with statistical analysis (e.g., student's !-value), 
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optimal influencing zones (i.e., buffers) from these locations can be estimated. Areas 

within the buffers are applied as indicators to mineralization-favored spaces (i.e., geo­

information). In Carranza (2004), optimal buffers of granodiorite margins and 

faults/fractures were defined by using the student's !-value, which were further integrated 

with other geological features by the weights of evidence method for mapping mineral 

potentials in the administrative province of Abra in the northwestern Philippines. 

However, regardless of spatial variation of geological signatures or their controlling 

effects to mineralization within the extent of optimal buffers, indicators supported by the 

location information are somehow arbitrary in many places. Since the concept of fractal 

introduced to geology, several nonlinear models have been successfully applied to 

characterize spatial properties of geological occurrences. For example, fault traces highly 

associated with hydrothermal mineralization can be analyzed by fractal/multifractal 

methods. From the fractal/multifractal point of view, active and complex fault systems 

corresponding with high fractal dimension can benefit ore-bearing fluid flow and provide 

favorable environment for mineralization (Zhao et al., 2011 ). There is an increasing 

interest in applying fractal dimension and multifractal spectra to describe complexity and 

self-similarity of fault systems in recent decades (Agterberg et al., 1996; McCaffrey, et 

al., 1999; Wang et al., 2012). Excluding analysis to location information from geological 

data, there are many options to characterize spatial distributions of ore-controlling factors 

by employing additional gee-exploratory datasets (e.g., geophysical data and 

geochemical data). 
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In geophysical exploration, upward continuation and vertical derivative are commonly 

employed in gravity and magnetic data processing (Kearey et al., 2002). The upward 

continuation works as a low-pass filter to attenuate high-frequency anomalies and 

emphasize low-frequency anomalies by transforming geophysical data as it was measured 

at a higher altitude. It can be implemented in frequency domain by means of 2-D Fourier 

transformation for gravity and magnetic data. As the altitude from the causative body 

increases, wave numbers are influenced exponentially and large wave numbers (i.e., the 

short wavelength) are filtered. The upward continuation is to determine the form of 

regional gravity/magnetic variations caused by relatively deep structures stretching over a 

wide area. In contrast, the first and second-order vertical derivative emphasize local high­

frequency anomalies resulting from shallow resources and/or edges of geological bodies 

and attenuate low-frequency regional anomalies caused by large causative bodies from 

depth. Based on the fact that the vertical derivative of gravity/magnetic data reaches a 

zero value at the edge of causative bodies, zero-contour lines of the vertical derivative are 

frequently used to outline the boundary of causative bodies (Wang et al., 2010). The first 

order-vertical derivative has become a routine analysis in gravity/magnetic interpretation, 

while the second-order vertical derivative with more resolving power to high-frequency 

anomalies can supplement to the first-order vertical derivative. Therefore, a band-pass 

filter technique composed by upward continuation and the first- or second-order vertical 

derivative were applied to delineate causative bodies in _many cases (Cheng and Xu, 

1998). For hydrothermal mineralization associated geological bodies, intrusions as a 

typical causative body of geophysical anomalies are often detected by gravity and/or 
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magnetic data, the spatial variations of which can be delineated by the upward­

continuation and the vertical derivative (Cheng and Xu, 1998; Kearey et al., 2002); 

however, identified geophysical anomalies are more dependent on upward distances, 

interpretations of which are somehow subjective. Furthermore, the application of the 

band-pass filter technique requires high data quality, because when it emphasizes high 

frequency anomalies, the undesirable data noise will be greatly enhanced as well. 

In geochemical exploration, concentrations of geochemical elements as the end products 

of various geological processes, spatial distributions of which are consequently 

heterogeneous. Geochemical samples collected from rocks or other secondary media (e.g., 

stream sediments, lake sediments, soils, etc.) as good carrier of geo-information are 

necessary to be analyzed for further interpretation (Ali, 2005; Cheng et al., 1994; Xu and 

Cheng, 2001). For identifying geochemical signatures of mineralization, the separation of 

anomalies from background is one of the top issues in exploration geochemistry. Ali et al. 

(2006) applied principal component analysis (PCA) to map the spatial distribution of 

mineralization associated element associations in Yunnan, China. Cheng (1999) 

introduced a multifractal-based singularity index mapping techniques to characterize 

spatial variations of ore-forming elements. Some other commonly used approaches to 

separate geochemical anomalies from background include mean ± 2l1 ( l1 is the standard 

deviation) statistical methods (Hawkes and Webb, 1962), probability graphs, and fractal 

models such as Concentration-Area (C-A) model (Cheng et al., 1994). However, other 

than focusing on the geochemical signatures of ore-forming elements in previous works, 

attentions to delineate spatial distributions of other mineralization associated geological 
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features (i.e., geological bodies produced by diverse geological activities) have not been 

paid sufficiently. 

In recent decades, acquisition of geo-information resources is more dependent on 

multiple investigations (e.g., geological, geochemical, and geophysical surveys). With the 

development of multidisciplinary approaches, mineral exploration as one of beneficiaries 

possesses enormous application prospects. Interactions of geological activities associated 

with hydrothermal mineralization, which are significant to mineral exploration can be 

analyzed by quantitative collaborations of geography, geochemistry, geophysics, etc. 

Several common attempts of interdisciplinary collaborations are the integration of 

aeromagnetic data and remotely sensed images for structural interpretation (Kowalik and 

Glenn, 1987), fusion of remote sensing and geochemical data to identify mineral 

exploration target areas (Harris et al., 1998), and fusion of remote sensing, geophysical 

and geochemical data to identify geological features (Harris et al., 1994; Rivard et al., 

1994; Teruiya et al., 2008). Although interdisciplinary collaborations of multi­

geosciences have been strongly supported by theories and applications (Zhai et al., 1999), 

due to some uncontrollable limitations (e.g., algorithms, software, exploration models, 

etc.), they have not been thoroughly investigated. For example, there are still no 

significant collaborations to enhance knowledge of spatial distributions of geochemical 

features of faults or the spatial association between the tectonism and the heterogeneously 

distributed elemental concentration. The latest achievement on this topic is to identify 

faults along the axis of anomalous geochemical patterns in some case studies (Zhai et al., 

1999). 
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Analyzed by advanced geo-information extraction and integration methods, 

characterization of properties of controlling factors (i.e., geological activities or 

geological bodies) have been improved significantly; however, there still are some 

shortages and/or limitations of formerly introduced hydrothermal mineralization 

modeling processes. First of all, a majority of identified geochemical anomalies are 

focused on ore-forming elements, while the geochemical anomalies associated with other 

ore-controlling factors are frequently ignored. Concerns to spatial distributions of 

geochemical signatures of intrusions, faults and wall rocks are insufficient to support a 

comprehensive mineral exploration model. Secondly, interactions of ore-controlling 

factors significant to hydrothermal mineralization were only indicated by means of 

weighted overlay (i.e., geo-information integration) that cannot quantitatively describe 

spatial variations of the interactions. Thirdly, mineral exploration modeling simply 

delineates spatial distributions of mineral potentials without any suggestion for the spatial 

variations of controlling effects of geological bodies in many cases. As a result, the same 

weight will be assigned to all locations of identified controlling factors, which is 

somehow subjective. To overcome the shortage, multidisciplinary approaches can be 

attempt. 

1.2. Objectives 

Hydrothermal mineralization being a cascade geo-process associated with various 

geological activities is often accompanied with energy release and material accumulation. 

Appropriate interpretation to the singular properties and its associated non-linear geo-
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processes will greatly improved the efficiency of the hydrothermal mineral exploration. 

In most of the previous work in southeastern Yunnan mineral district, China, there are 

two main components of the mineral exploration modeling: ( 1) location information of 

controlling factors (i.e., geological bodies); (2) spatial distributions of geochemical and 

geophysical signatures of mineralization. These geological features with location 

information are valuable for potential mapping; however, variation of the influence of 

individual controlling factors (e.g., magmatism, tectonism, etc.) on mineralization may 

not be sufficiently illustrated. Furthermore, as introduced in previous sections, advanced 

spatial analysis techniques are necessary to be used to characterize these geological 

features. Therefore, current study will demonstrate an improved mineral exploration 

modeling process to recognize mineralization associated controlling factors and delineate 

spatial distributions of mineral potentials in southeastern Yunnan mineral district, China, 

summarized experiences of which will not only support future exploration in the study 

area, but also benefit the future work in other areas. 

Primary objectives of current mineral ~xploration modeling are to: (1) characterize 

hydrothermal mineralization associated geological signatures by considering the non­

linear properties of corresponding singular geo-processes; (2) delineate spatial 

distributions of ore-controlling factors and their influences on hydrothermal 

mineralization in Southeastern Yunnan Sn-Cu polymetallic mineral district, China; (3) 

map mineral potentials in the study areas. 
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In order to achieve these primary objectives, the singularity index mapping method, the 

principal component analysis (PCA), and the weights of evidence (WofE) method are 

employed in this dissertation. Among these methods, the singularity index mapping 

technique efficient in characterizing spatial variations of physical quantities is applied to 

derive geophysical and geochemical behaviors of the controlling factors; the PCA 

advanced in reducing the multi-dimensional geo-datasets to less variables with 

interpretable geo-information is employed to integrate singularity indices of 

geophysical/geochemical signatures; and the WofE as a classic geo-information 

integration method is utilized to produce comprehensive spatial distributions of mineral 

potentials. During mineral exploration modeling, there are several issues are taken into 

consideration to facilitate future geological exploration. 

1. In previous geochemical exploration of hydrothermal mineralization, only ore­

forming elements were characterized by their spatial distribution of geochemical 

signatures; whereas geo-information of geological bodies (i.e., controlling factors) 

which might be more significant to locate occurrences of mineralization was only 

analyzed by limited sources of geo-exploratory datasets. To improve the 

characterization of mineralization, current study will apply a series of advanced 

spatial analysis techniques (e.g., singularity index mapping, PCA, etc.) to delineate 

spatial variations of geochemical signatures of geological bodies in the study area. 

2. The band-pass filter technique is commonly used to extract anomalies from 

geophysical datasets; however, results derived from this process are more dependent 

on scales of measurements (i.e., scale dependence). By applying multifractal-based 
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singularity index mapping technique to geophysical data, current study intends to 

achieve scale independent results for depicting spatial variations of geophysical 

properties of granitic intrusions in the study area. 

3. In order to extract mineralization associated geo-information from faults and 

characterize controlling effects of fault activities to the mineralization, several 

manipulations were implemented. Although numerous efforts (e.g., fault density) 

were attempted to characterize faults, spatial variations of physical properties of 

which associated with mineralization have not been described in a spatial scenario. In 

this dissertation, spatial variations of fault density will be characterized. The areas 

with the accumulation of fault density which transmit magma and/or ore-forming 

fluids will be indicated to delineate mineralization favored spaces produced by fault 

activities. 

4. Anisotropy of geochemical, geophysical and geological signatures has been noticed 

in a long time. In mineral exploration, the anisotropic mineralization is caused by 

interactions of various gee-processes. The influence of controlling factors (e.g., faults, 

geochemical signatures) which are significant to locate favorable areas of 

mineralization can be interpreted by characterizing the anisotropy of their associated 

gee-exploratory datasets. In this dissertation, location information of fault traces and 

spatial distributions of geochemical signatures will be characterized jointly to 

describe the anisotropic properties of geochemical signatures of mineralization. 

Furthermore, the newly identified anisotropy of interactions of fault activities on ore-
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forming fluids can further describe the controlling effects of faults to the 

mineralization. 

1.3. Outlines 

In chapter 2, details regarding geological background and geo-exploratory datasets of the 

study area located in southeastern Yunnan mineral district, China are introduced. 

In chapter 3, methods involved in current mineral exploration modeling process are 

introduced. As the key method of this dissertation to characterize hydrothermal 

mineralization associated geological activities, the singularity index mapping technique 

frequently applied to extract geo-anomalies from geo-exploratory datasets is reviewed. 

Furthermore, a newly developed fault trace-oriented singularity index mapping technique 

is firstly introduced to identify anisotropy of geochemical signatures. Principal 

component analysis (PCA) and weights of evidence (WofE) methods for integrating 

identified geo-information are reviewed as well. 

In chapter 4, the fractal/multifractal based singularity index mapping technique efficient 

in characterizing singular physical or chemical properties is applied in the analysis of 

gravity and aeromagnetic data in the southeastern Yunnan mineral district, China. As 

follow-up after the introduction of singularity theory to geochemical mapping scenarios, 

this study extends its application to delineate geophysical potential fields. Based on low 

gravity and low magnetic properties of granitic intrusions in the study area, singularity 

mapping technique is used as a high-pass filter to emphasize the geophysical anomalies 
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caused by granitic intrusions in support of future mineral exploration. Comparing with 

traditionally used band-pass filtering methods, it is shown that the new technique 

provides an improved and simplified approach in geophysical data analysis with the 

advantage of scale independence. Two journal papers associated with this chapter had 

been published in Journal of Computer & Geosciences (Wang et al., 2011) and Journal of 

Applied Geophysics (Wang et al., 2013a). 

In chapter 5, a tectonic-geochemical exploration model is constructed to support mineral 

exploration in the southeastern Yunnan mineral district, China. Fault systems are 

significant to mineralization in this district because faulting activities have confined 

magmatic activities into certain spatial scales and temporal stages, which provide both 

hydrothermal fluids and heat for mineralization within fracture zones. Analysis of fault 

density using the singularity theory to characterize development of fault systems suggests 

that spaces produced by faulting activities favored the migration of hydrothermal fluids 

and mineralization. In addition, the singularity theory is applied to examine singular 

distributed ore-forming elements. Principal component analysis (PCA) was used to model 

the spatial distribution of enrichment of the association of ore-forming elements, which 

suggests that geochemical haloes are linked with characteristic hydrothermal 

mineralization in the study area. In addition, PCA is further employed to integrate these 

identified anomalies of faults and ore-forming elements. By the integrated patterns, 

distributions of enrichments of ore-forming elements and faulted spaces favorable to 

mineralization can be delineated. The consistency of the results with information from 

published documents demonstrates that the exploration model discussed in this study is 
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useful and effective for investigating geological issues related with faulting activities. 

This part of work had been published in Journal of Geochemical Exploration (Wang et al., 

2012). 

In chapter 6, as an example of interdisciplinary collaboration, this chapter using a newly 

developed fault trace-oriented singularity index mapping technique intends to 

characterize hydrothermal mineralization associated anisotropic geochemical signatures. 

Fault traces located in a sub-district of southeastern Yunnan mineral district, China are 

divided into segments with equal length. Centered by fault segments, a set of rectangular 

windows are defined to estimate singularity index. Variations of geochemical signatures 

along the vertical direction of fault traces are characterized. The fault trace-oriented 

singularity indices assigned to their corresponding fault segments term faults as positive, 

negative and regular fault segments to qualitatively and quantitatively describe 

interrelations between fault structures and hydrothermal fluids or mineralization. In 

comparison with frequently employed fault properties (e.g., length, density, types, etc.), 

the new fault attributes (i.e., positive, negative, and regular fault segment) are applicable 

to describe variations of physical-chemical reactions between ore-forming fluids and wall 

rocks along fault traces that benefit the interpretation to metallogenic mechanism. The 

newly developed method can considered as a supplement to the formerly introduced 

square window-based isotropic singularity index mapping technique. This part of work 

had been published in Journal of Geochemical Exploration and under reviewed (Wang et 

al., 2013b). 
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In chapter 7, the Gejiu formation as another important geological body with controlling 

effects to hydrothermal mineralization in the study area is analyzed. The geochemical 

signatures of elements associated with the Gejiu formation are integrated by PCA. 

Obtained principal components (PCs) are evaluated, and the approximate one is selected 

to represent spatial distributions of geochemical signature of the Gejiu formation. In 

addition, singularity indices of these selected elements/oxides are integrated by PCA. The 

integration result well indicates the spatial variations in geochemical signatures of the 

Gejiu formation which is coincident with the mineralization-favored positions within the 

Gejiu formation. The general idea of this chapter applied to another district had been 

published in Journal of Geochemical Exploration (Zhao et al., 2012). 

In chapter 8, based on the identified geo-information of geological bodies (i.e., 

controlling factors), three selected geo-information integration methods are employed to 

depict mineral potentials in southeastern Yunnan mineral district, China. First of all, the 

RGB composite image is produced to illustrate spatial variations of interactions of these 

three controlling factors. Secondly, PCA is applied to integrate these three sets of geo­

information for quantitatively delineate spatial distributions of mineral potentials. Thirdly, 

other than PCA method, the student's !-value is applied in the three sets of geo­

information to define three binary patterns. By each of binary patterns, one part 

corresponds to mineralization while the other corresponds to background. By using the 

WofE method, spatial distributions of both mineral potentials and interactions of the three 

controlling factors are depicted, simultaneously. Comparison on these three integration 

methods is made at the end of this chapter. 
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In chapter 9, summaries and discussions of current study are provided which can be 

useful experiences to the future studies regarding GIS-based geological exploration 

modeling not only in southeastern Yunnan mineral district, China, but also in other areas 

with hydrothermal mineralization. 
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Chapter 2. Study area and geo-exploratory datasets 

2.1. Study area 

Southeastern Yunnan district, China is chosen as the study area because of its world-class 

reserves of Sn-Cu polymetallic resources. It covers an area of about 300 km by 150 km at 

a longitude of 102°25' - 104°43'£ and a latitude of 23°50' - 24°50'N and bounded to 

the north by the W enshan fault, to the south by the Red River fault, to the east by the 

Malipo area, and to the west by the Jianshui-Yuanyang area (Fig. 2.1). The long history 

of mining activities in this area can be dated back to 2000 years ago (i.e., Han dynasty of 

China). After the founding of P.R. China, systematical exploration and investigations 

were significantly developed. In past two decades, knowledge on types, origins and 

distributions of the Sn-Cu polymetallic deposits had been greatly improved by profound 

and detailed researches. 

From a geological point of view, southeastern Yunnan mineral district, China is located 

in a mineralization-favored environment which is advantage to ore-forming element 

accumulation and metal mineralization. In Zhuang et al. (1996), the specific geological 

environment was summarized in three factors. First of all, well developed fault/fold 

systems by intensive tectonic activities provide favorable spaces for mineralization (Li, 

1998; Tan et al., 2004; Zhuang et al., 1996). The study area is located in the junction zone 

between Tethyan tectonic domain and the Pacific tectonic domain. Secondly, structural 

layers of the Yangtze craton where the study area locates in is believed as a source of 
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minerals from depth that is significant to mineralization. Thirdly, the tension ofYoujiang 

basin during the Hercynian (386-257 Ma) to the lndo-China (257-205 Ma) epoch caused 

widespread volcanic eruption which triggered the earliest metallic mineralization in this 

area. The subsequent plate subduction and collision in the Late lndo-China epoch led to 

the formation and emplacement of the remelted granite in the Y anshanian epoch (205-

135 Ma) which facilitated the enrichment of ore materials. A simplified regional 

geological map of southeastern Yunnan Sn-Cu polymetallic metallogenic belt can be 

found in Fig. 2.1. 
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Fig.2. 1. a: Simplified map of regional tectonics, magmatic rocks and main metal 
mineralization district in southeastern Yunnan Province (after Wang et al., 2012). 1 = 

faults. 2 = Y anshanian granite. 3 = main metal deposits. 4 = cities and towns. F 1 = 
Ailaoshan deep fault. F2 = Red River fault. F3 = Ping-Jian-Shi fault. F4 = Xiaojiang 
fault. F5 = Shizong-Mile fault. F6 = Nanpanjiang fault. F7 = Mengzi-Yanshan fault. F8 
= Wenshan-Malipo fault. F9 = Lvzhijiang fault. The study area is shaded in gray. b: 
Geological map of southeastern Yunnan mineral district, China from 1 :500,000 
geological map database produced by China geological survey. The NS trending blue 
straight line on the southeast of the Gejiu batholith is shown to indicate location of the 
profile in Fig. 2.2. 

In general, there are three main opinions of the metallogeny of southeastern Yunnan 

mineral district, China. Before the 1990s, it was believed that the source of the deposits 

was magmatic hydrothermal deposits associated with the Y anshanian granitic intrusions 

(Yang, 1990). Some researchers argued that the mineralization is part of "massive 

sulfide deposits from submarine exhalative sediment" (Zhou et al., 1997). The third 

model which has been widely accepted to support mineral exploration and exploitation 
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holds that the mineralization is a superimposed process involving submarine exhalative 

sedimentation and magmatic hydrothermal alteration (Chen et al., 1998). 

Magmatic-hydrothermal ore deposit as a major type of Sn-Cu polymetallic mineralization 

in the study area is the main target of interest in this dissertation. The magmatic­

hydrothermal mineralization is therefore accepted as a guideline to current mineral 

exploration modeling process. Gejiu, Wenshan and Dulong are three most productive ore 

districts distributed from the west to the east in the study area. The magmatic­

hydrothermal ore deposits in the study area are genetically and spatially associated with 

granite batholiths including the Gejiu granite (107-85 Ma) (Guan, 1991), Bozhushan 

granite (114-97 Ma) (Gao, 1996) and Laojunshan granite (102-93 Ma) (Guan, 1991). 

These granite batholiths are spatially and genetically confined by fault systems. Most of 

the magmatic-hydrothermal ore bodies in the three ore districts are hosted in carbonate 

rocks. In Gejiu, wall rocks are the Middle Triassic dolomite and limestone. In Wenshan, 

wall rocks are the low-grade metamorphic Middle to Late Cambrian pelitic-arenaceous 

carbonatite formation. The ore-hosting strata in Dulong consist of the Early-Middle 

Cambrian alternating layers of medium to high-grade metamorphic mica-quartz schist, 

plagioclase gneiss and marble (Luo, 1995). Therefore, three main controlling factors of 

magmatic-hydrothermal mineralization in southeastern Yunnan mineral district are 

tectonic systems, granitic intrusions and the sedimentary layers (Zhuang et al., 1996). 
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2.1.1. Regional tectonics 

In southeastern Yunnan mineral district, well-developed fault systems are mainly crustal 

fractures which dominate tectonic frameworks, basin structures, sedimentary evolution, 

magmatic activities and mineralization (Cui, 2000; Zhuang et al., 1996) (Fig. 2.1 ). 

Depending on characteristics, activities and influences, fault systems in the study area can 

be grouped in two types. The first one is the long-term active and large-scale deep crustal 

fracture. The second is the contemporaneous faults exhibiting both long-term and 

intermittent activities (Zhuang et al., 1996). Former researches (Qin and Li, 2008; Wang, 

2004; Zhuang et al., 1996) suggest that regional fault systems are significant to 

mineralization-associated granites in the study area. According to geochemical analysis, 

most of mineralization-associated anomalies are centered on the fault systems (Tao et al., 

2002). For some sub-districts, ore bodies can even be found in the faults (Gao et al., 

2004a). In addition, applications of remotely sensed techniques can support the point of 

view that fault systems dominate the distribution of Sn deposits (Tang et al., 2004). 

Major faults (Fig. 2.1) in the study area include the following. The Red River fault is a 

NW-SE trending deep crustal fault accompanied by ultramafic intrusion, mafic extrusion 

and sedimentation of siliceous rocks (Qin and Li, 2008). The N-S trending Xiaojiang 

fault divides the Gejiu ore district into two parts, the eastern and the western. The earliest 

activities of the Xiaojiang fault occurred in the Late Neoproterozoic. It developed into a 

tensile fault in the Permian and was the migration channel of massive mafic extrusion and 

intrusion. The Ailaoshan fault parallel to and situated in the south of the Red River fault 
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is another deep crustal fault in the study area. Frequent and intensive magmatic activities 

during the Lvliang (2500-1800 Ma) to the Himalayan (23.5-0.78 Ma) epoch caused the 

pinch and swell structure of igneous rocks along the Ailaoshan fault. Siliceous 

sedimentation can be found in the fault zone as well. The NE-SW trending Zongshi-Mile 

fault is the boundary of the Yangtze craton (in the west) and the Youjiang basin (in the 

east). Permian basalt is distributed along the Zongshi-Mile fault. Parallel to the Zongshi­

Mile fault, the Nanpanjiang fault was formed in the Neoproterozoic and became a reverse 

fault in the Triassic. Basalt is extensively distributed along the Nanpanjiang fault zone 

(~ 688 - 1,603 m thick). In the study area, the ore belt along the Nanpanjiang fault is 

characterized by mineralization of Sb, Hg and Au. The faults described above constitute 

the tectonic framework of the study area, and control the scale and the spatial distribution 

of intrusive rocks. 

Four groups of faults spread along different orientations (i.e., NE, EW, NS and NW 

trending faults) throughout the study area. Over the history of the basin evolution, their 

activities occurred in different directions and durations (Zhuang et al., 1996). NE 

trending faults (e.g., the Shizong-Mile fault and the Nanpanjiang fault) in the study area 

were caused by tectonic activities in the Middle Hercynian, Indo-China, and Y anshanian 

epoch. Most of the faults in this group are deep-rooted and extend for long distances. EW 

trending faults (e.g., the Mengzi-Wenshan-Geduo fault and the Qiubei-Guangnan fault) 

are well-developed in the eastern of the Gejiu mineral district and often play as primary 

spatially controlling factors of mineralization. EW trending faults are not widespread in 

the western of the Gejiu mineral district and their controlling effects on mineralization 
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are not as important as in the eastern district (Zhuang et al., 1996). The Xiaojiang fault as 

the most important and the largest NS trending faults separate the Gejiu sub-district into 

two parts. Similar to NE trending faults, it is large-scale and deep-seated. Performing as 

main regional division faults, Xiaojiang fault does not support mineralization itself. 

However, the intersections with other geological or tectonic features (e.g., fold and 

feather fractures) may have ore-controlling effects on the tin-polymetallic mineralization 

(Qin et al., 2006a; Zhuang et al., 1996). The activities of NW trending faults (e.g., the 

Ailaoshan fault and the Red River fault) highly influenced magmatic activities and 

mineralization in southeastern Yunnan mineral district. They confine the spatial 

distribution of both igneous rocks and sediment rocks in the study area. In general, NE, 

NS and EW trending faults are large in scale but less active during the geological 

evolution; whereas NW faults are small in spatial distribution but more active. They all 

contributed in controlling the main basin structure and stratigraphic distribution (Zhuang 

et al., 1996). 

Besides these fault groups, there are three fold systems spreading in the EW, NE and NW 

directions. They constrained the spatial distribution of magmatic emplacement and ore 

bodies. Two large-scale folds (i.e., the Wuzishan duplex anticline and the Jiasha duplex 

syncline) dominate extents of the east and the west of mining areas in the Gejiu sub­

district, respectively (Zhuang et al., 1996). 
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2.1.2. Regional stratigraphy 

The sedimentation history of strata in southeastern Yunnan mineral district can be 

summarized as follows (Yang, 1990; Zhang et al., 2006; Zhou et al., 1997). A series of 

flyschoid facies formed in the Sinian (Late Proterozoic) period (800-570 Ma). Then, a 

series of marine carbonate rocks formed during the Cambrian and Middle Ordovician. An 

uplift-erosion stage occurred during the Late Ordovician to the Silurian. Continental 

elastics and carbonate rocks then formed during the Devonian to the Early Permian. 

Mafic volcanic rocks and volcaniclastic rocks were precipitated during the Late Permian 

to the Late Triassic. The Indo-China orogeny (230-200 Ma) in the Middle to Late 

Triassic changed the study area into a denudation environment. The emplacement of 

three main granite batholiths occurred during the Late Y anshanian. 

Sedimentary rocks are well developed and widespread in the study area. Besides the 

Cretaceous, strata formed during the Precambrian to Quaternary are outcropped in the 

study area (Fig. 2.1 ). The strata formed before the Upper Triassic is dominated by marine 

materials, while after that is by continental sediments (Li, 1998; Lue, 2005; Zhuang et al., 

1996). 

The Proterozoic strata are mainly distributed in the Jinpin-Jianshui and Shiping-Jianshui 

areas, some of which are exposed in the Pingbian area as well. As the oldest outcropped 

rock series of folded basement, the Kunyang group (i.e., formed in the Mesoproterozoic 

spreading over the areas of Kunyang, Dongchuan and Huize) is a set of quasi-flysch and 
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shallow marine carbonate sediment with a thickness of more than 11,550 meters. It can 

be found in the Shiping and Jianshui areas. Besides, The Pingbian group (i.e., formed in 

the Precambrian spreading over Pingbian area) is composed of a set of low metamorphic 

sand-shale rocks with a thickness of more than 4,292 meters. The Ailaoshan group (i.e., 

formed between the Proterozoic and the Early Cambrian lies between the Red River and 

the Ailaoshan fault) is shown as a strip of metamorphic rock extending in the NW 

orientation. It consists of a series of deeply metamorphic complex rocks with a thickness 

of more than 9,226 meters. The Sinian strata (i.e., formed between the Proterozoic and 

the Early Cambrian) consisting of sandstone, dolomite, conglomerate, shale and slate are 

mainly located in Shiping and Jianshui areas, (Zhuang et al., 1996). 

The Paleozoic strata are well developed in the study area. The Cambrian strata are 

located in Shiping, Jianshui, and Mengzi and Malipo areas. The Lower Ordovician strata 

are widespread, whereas Middle-Upper Ordovician strata have been generally eroded 

except the Yuanyang area. The Silurian strata are scattered. Except in Shiping and 

Jianshui areas, the Lower Devonian strata are generally missing, while the Upper and 

Middle Devonian strata are extensively developed. The Carboniferous strata are also well 

distributed. For the Permian strata, both carbonate sediments in the Lower Permian and 

basalt in the Upper Permian are prevalent (Zhuang et al., 1996). 

Mesozoic strata are not well developed in the study area. Only the Triassic has a 

relatively complete stratigraphic distribution. The Middle-Lower Jurassic strata can be 
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found in the Lvchun and Shiping areas. The Cretaceous strata are generally missing in the 

area (Zhuang et al., 1996). 

The Tertiary strata are scattered throughout Jinping, Gejiu, Jianshui, Kaiyuan, Mengzi, 

Maguan, Wenshan areas and the strip district along Yuanjiang to the Red River. 

Quaternary strata composed of lacustrine, deluvium, saprolite and cave deposits are 

distributed in the lakes, rivers, mountains, and the Cenozoic basin (Zhuang et al., 1996). 

2.1.3. Regional magmatic rocks 

Caused by tectonic activities occurred from the Proterozoic to the Cenozoic, magmatism 

in the study area presents multiphase and multistage characteristics. Magmatic activities 

during the Jinning (1000-800 Ma) to the Hercynian epoch (386-257 Ma) were dominated 

by medium- to small-scale ultramafic-felsic extrusions. Drastic activities of the Red River 

fault during the Indo-China epoch (257-205 Ma) caused the massive emplacement of 

mafic magma along the fault (Guan, 1991; Wang, 2004). Magmatic activities during the 

Yanshanian epoch (205-135 Ma) are important, which are highly related with the Sn-Cu 

polymetallic mineralization in the three main ore districts (Guan, 1991; Luo, 1995). The 

main ore-forming elements in the study area consist of Au, Ag, Cu, Pb, Zn, Sn and W 

(Dai, 1990). In the Himalayan epoch (23.5-0.78 Ma), magmatic activities were moderate 

resulting only mafic-ultramafic rocks scattered in the Maguan area (Guan, 1993). 

According to Zhuang et al. (1996), primary types of magmatic rocks produced during the 

Proterozoic era are granite, diorite and other mafic/ultramafic rocks. The biotite granite 
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distributed in Shiping-Longwu-Takeju is considered as a part of Eshan-Chahe complex 

rocks, outcrop of which is about 4 km2
• Alteration in the contact zones of granitic rocks 

and country rocks are weak. Besides, metamorphosed granite can be found in the areas 

along the Ailaoshan fault as well. Diorite mainly appears in northwest of Shiping area in 

forms of dikse, veins, and stocks, etc. Mafic/ultramafic intrusive rocks are scattered in 

Ailaoshan fault belt (Liu, 2007). 

The main magmatic rocks produced in the Hercynian epoch are mafic/ultramafic 

extrusive and intrusive rocks (Tan et al., 2004; Xiong and Shi, 1994; Zheng and Yang, 

1997). Basalts by fissure eruptions are broadly spread over Jianshui, Kaiyuan, Jinping, 

Lvchun, Mengzi, and Wenshan areas. Lithologically, the lower part is consisted of huge 

thickness of basaltic volcanic breccia and/or compact or amygdaloidal basalts. A small 

amount of basaltic phosphate rocks, intermediate-felsic lava and marine sediment layers 

are presented; the content of phosphatic materials are increased from lower to higher 

parts. Intrusions in Hercynian epoch are mainly mafic, which intruded into the Ailaoshan 

group and are mainly located in Mianhuadi to Maandi areas. Mineralization of Cu, Ni, V, 

Ti and Fe can be found in the Ailaoshan group (Liu, 2007; Zhuang et al., 1996). 

Magmatic activities are intensive in the Indo-China epoch. Both felsic intrusions and 

mafic extrusions/intrusions were witnessed in the study area (Gao et al., 2004b; Qin et al., 

2006b; Zhuang et al., 1996). Most of them are distributed mainly in Jinping, Wenshan, 

Pingbian, Yuanyang, and Lvchun areas and a few scattered in other areas. The felsic 

intrusive rocks with gneissic structure are primarily composed of biotite granite, biotite 
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monzogranite and biotite plagiogranite. These felsic intrusive rocks present as aluminum­

supersaturated series. The mafic/ultramafic intrusive rocks in this epoch are mainly 

composed of olivine gabbro and gabbro dolerite (in Jinping-Jiangjiaping to Niulanchong 

areas), diabase gabbro (in Chonggang area), quartz-gabbro dolerite (in Gulinqing area), 

and peridotite and diabase gabbro (in Malipo area). All these magmatic rocks which 

intruded into the Paleozoic to the Middle-Upper Triassic strata are considered as 

productions of the lndo-China tectonism. Moreover, outcrops of the extrusive rocks are 

mainly distributed in Yuanyang and Lvchun areas while scattered in Jinping, Gejiu and 

Kaiyuan areas (Liu, 2007; Zhuang et al., 1996). Some scholars suggested that the mafic 

magma in the Late Indo-China epoch and the felsic igneous rocks in the following Early 

Yanshanian epoch originated from the Earth's mantle provided parts of ore-forming 

materials. The abundance of Sn is, therefore, much higher than the average in the Earth's 

crust (Li et al., 2005, 2006; Qin et al., 2006a). 

Magmatic activities in the Y anshanian epoch are characterized by hypabyssal 

emplacement of magma. Lithologically, the magmatic rocks show a complete evolution 

series from mafic/ultramafic, intermediate, felsic to alkalic members. Meanwhile, 

noticeable concentrated skam type mineralization was accompanied as intruding of these 

rocks. Therefore, magmatic activities in the Y anshanian epoch played an important role 

in the mineralization of this area (Li et al., 2005; Qin et al, 2006a; Xiong and Shi, 1994). 

The lithology and spatial distribution of various types of the igneous rocks are described 

as following. 
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Mafic/ultramafic rocks are extensively spread over Gejiu, Jianshui, Red River, Jinping 

and Yuanyang areas. The intrusive rocks are consisted of gabbro, pyroxenite, peridotite 

and dolerite. Intermediate rocks are primarily distributed in Shiping area as stocks, dikes, 

and veins along faults. Most of them have been intensively weathered off. The main types 

of these rocks are biotite quartz diorite and diorite in fine to medium-grained semi­

automorphic granular texture. Plagioclase, hornblende, biotite and quartz are primary 

minerals. Accessory minerals include leucoxene and apatite. Granite is the most 

important felsic rocks which is wildly distributed in Gejiu, Wenshan, Eshan, Yuanjiang, 

Jinping, and Lvchun areas. Main felsic rocks include Eshan granite (not discussed in this 

dissertation), Gejiu granite, Bozhushan granite, and Laojunshan granite. The felsic rocks, 

especially the well-differentiated remelting granitic intrusions are greatly associated with 

the formation of Sn, Cu, Pb, Zn and W deposits in the study area (Zhuang et al., 1996). 

Alkalic rocks in the study area are less outcropped, which are mainly found in 

Baiyunshan area. 

The magmatic activities in the Himalayan epoch were inactive. The magmatic rocks are 

mainly composed of mafic extrusive rocks and alkalic rocks, and only scattered in the 

Ailaoshan area (Liu, 2007). 
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Table 2. 1. Average concentrations (in ppm) of trace elements in granites, southeastern Yunnan (Zhang et al., 2006). 

Area Intrusion Li Rb Cs Sr Ba Be Nb Ta Sn w Mo Pb Cr Ni Co v 
Longchahe 72.59 345 15.29 508 1079 2.19 23.14 2.93 13.97 2.50 1.03 62.4 12.72 13.89 11.55 31.36 

Masong 79.71 467 33.40 162 302 5.47 41.09 5.59 28.40 16.00 1.51 61.3 5.19 6.60 3.98 1.70 
Ge jiu Shenxianshui 57.20 517 28.00 201 308 4.79 28.00 9.00 1.15 5.89 0.65 48.7 2.84 5.80 6.00 5.86 

Baishachong 127 584 79.30 199 335 5.35 54.00 8.12 29.80 9.00 1.15 64.3 14.40 1.60 3.89 15.00 
Laoka 153 861 53.40 38.2 107 4.50 45.9 11.50 22.00 10.50 1.05 43.4 3.29 1.93 0.75 3.4 

Bozhushan 
Bozhushan 100 287 24.10 350 1025 0.85 24.4 1.62 11.80 1.00 0.95 16.9 20.00 7.60 7.70 43.60 

Bainiuchang 35.30 n/a n/a 259 846 5.08 18.45 >10 ll.40 4.05 <4 31.98 18.35 5.27 8.0 50.28 
Stage I 87.2 399 33.40 48.1 175 10.50 30.4 4.00 71.00 30.00 0.75 57.0 5.18 15.80 2.86 10.05 

Laojunshan 
Stage Il 146.8 519 68.30 26.3 128 16.90 29.00 14.90 103 26.50 0.55 96.7 3.9 2.7 19.l 8.7 

Average in granite 
intrusions 40 200 100 300 830 5.5 1.0 3.5 3 1.5 1.0 20 25 8 5 40 

~Vino~radov value) 
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2.1.4. Metallogenetic model 

Former researches suggested that the Sn-Cu polymetallic mineralization in southeastern 

Yunnan district is a complex process controlled by various geo-processes including the 

Middle Triassic Gejiu carbonate formation, fault systems and the Yashanian granitic 

intrusions (Gao, 1996; Guan, 1991; Zhuang et al., 1996). Among the three factors, the 

Gejiu formation is the main ore-bearing strata; interactions of tectonic-magmatic 

activities dominate the intensity and scales of mineralization; the Y anshanian granitic 

intrusions provide not only ore-forming elements but also fluids for hydrothermal 

alteration. 

There are three reasons in support of the granitic intrusions to be main controlling factors 

of the mineralization in the study area. Firstly, most of the known Sn-polymetallic 

deposits in southeastern Yunnan ore district are distributed around the intrusions. Many 

large scale Sn-polymetallic deposits in the study area sit on the protuberances of the 

granite intrusions. The primary sulfide ores in the Sn-polymetallic deposits are mainly 

found in the Middle Triassic Gejiu carbonate formation and in contact zones of these 

strata and surrounding granitic intrusions. Although most of the orebodies are hosted by 

sedimentary strata overlying the granites, they are skam deposits and, thus, were likely 

associated genetically to certain igneous intrusions. Secondly, in the study area, the trace 

element associations characterizing the Sn-polymetallic deposits are coherent with the 

trace element associations characterizing the granites (Table 2.1 ). The concentrations of 
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Sn, W, Pb, Nb, Ta, etc. in the granite intrusions are comparable to the enrichment of each 

of these elements in the Sn-polymetallic deposits. Thirdly, the protuberances of the 

granite intrusions and their surroundings and the fracture zones in the overlying 

sedimentary strata are the main controls on ore formation and localization. 

Tectonism is another important factor in controlling the mineralization in the study area. 

First of all, large-scale faults control the spatial distribution of regional geochemical 

fields by dominating the emplacement of granites. Secondly, small-scale faults and 

fractures within the carbonate rocks supported the migration and differentiation of 

hydrothermal fluids. During the emplacement of granites, interchanging of ore materials 

occurred within the fracture zones between magma and wall rocks, which benefitted the 

enrichment of metal elements. Therefore, .these small faults, especially the intersections 

of faults provided favorable places for mineralization. 

In general, granitic intrusions, the Gejiu formation and fault systems as the main 

controlling factors to the formation of Sn-Cu polymetallic deposits in the study area mean 

significantly to mineral exploration (Fig. 2.2). More details can be found in Zhang et al. 

(2006). 
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Fig.2. 2. A schematic diagram of profile of Sn ore, granites and surface geochemical 
anomalies demonstrate the metallogenetic model of the study area (after Cheng, 2011). 
The singularity indices describing spatial variations of geochemical anomalies will be 
introduced in following chapters. Occurrence of the mineralization is coincident with the 
accumulation of ore elements. 1: the Middle Triassic Gejiu formation; 2: Dolerite; 3: 
Altered biotite granite; 4: Vein orebody; 5: the Late Yanshanian granitic intrusions; 6: 
Granitic rocks; 7: Placer deposits (Cu); 8: Skams; 9: Carbonate rocks; 10: Porphyritic 
biotite granite; 11: Stratabound orebodies; 12: Reticular orebodies. 
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2.2. Geo-exploratory datasets 

According usages of exploratory datasets associated with geological exploration, 

geological data including location information of geological features, geophysical data 

investigating the spatial distribution of subsurface objects, and geochemical data of the 

concentration of different elements can be considered as spatial indicators of geological 

bodies. The GIS datasets including geological data, stream sediment geochemical data, 

ground-based gravity data and aeromagnetic data used in this dissertation were produced 

by China Geological Survey. 

2.2.1. Geological data 

The geological data are from the database of 1 :500,000 scale geological maps of China, 

and stored in vector type format. It includes locations of mineral deposits and occurrences 

(i.e., points), fault traces (i.e., poly lines) and outcrops of lithological units (i.e., polygons) 

(Fig. 2.1 b ). Descriptions of the properties of these datasets (e.g.,, name, age, length or 

lithology) are recorded in the tabular database associated with the vector data. 

2.2.2. Geochemical data 

Since the initiation of the Chinese National Geochemical Mapping Project in 1979, a 

great amount of geochemical data covering 5 .17 million km2 of P. R. China were 

collected and associated geochemical database had been constructed (Xie et al., 1997). 

Geochemical data used in this dissertation includes stream sediment sampling data. Each 
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sample recording concentration values of 39 elements/compounds was mainly analyzed 

by means of X-ray Fluorescence. The data points are distributed evenly at an interval of2 

km throughout the whole study area. Further details with respect to the characteristics of 

geochemical data can be found in Xie et al. (1997). As an extension provided by 

GeoDAS (Cheng, 2000), the Inverse Distance Weighted (IDW) method is currently 

applied to interpolate and convert the vector data (i.e., point) to grid surface (i.e., image) 

at a 2 km spatial resolution. 39 images are available to represent the geochemical 

distributions of these elements and compounds. 

2.2.3. Geophysical data 

Geophysical datasets used in this dissertation are composed of ground-based gravity data 

and aeromagnetic data. The gravity and aeromagnetic data were acquired from 1 :200,000 

and 1: 100,000 scale geophysical databases, respectively, produced by Chinese national 

geological exploration project. Sample points at an interval of 2 km are currently 

interpolated by the IDW technique. Similar as the geochemical data, the spatial resolution 

of gravity and aeromagnetic grid maps are 2 km as well. 
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Chapter 3. Methodologies 

Mineralization-associated geo-anomalies play an important role to guide mineral 

exploration, recognization of which often depends on geo-information extraction and 

integration (Cheng, 2012; Wang et al., 2011, 2012, 2013; Zhao et al., 2012). In this 

chapter, some recently developed and advanced GIS-based geo-anomaly analysis 

methods (i.e., key methodologies of this dissertation) are introduced before mineral 

exploration modeling in following chapters. In the aspect of geo-anomaly extraction, a 

square window-based singularity index mapping technique initiated by Cheng (1999) is 

reviewed, and an improved fault trace-oriented singularity index mapping method is 

introduced. In the aspect of geo-anomaly integration, principal component analysis (PCA) 

and weights of evidence (W ofE) are reviewed as well. 

3.1. Singularity index mapping techniques 

Geo-information extraction so-called geo-anomaly identification or separation from 

background is a primary task in geological exploration (Cheng et al., 1994). After the 

introduction of multifractals by Mandelbrot (1972), various fractal/multifractal models 

were developed and commonly used to investigate geological issues (Agterberg, 1995; 

Turcotte, 1997; Cheng, 2007a; Carranza, 2008; Carranza et al., 2009; Carranza and 

Sadeghi, 2010). Singular geo-processes like earthquakes, volcanoes, floods, cloud 

formation, rainfall, hurricanes, landslides and mineralization have been discussed in 
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many published literatures (Malamud et al., 1996; Schertzer and Lovejoy, 1987; Turcotte, 

1997; Veneziano, 2002). "Singularity", a multifractal concept proposed by Cheng (1999), 

is a quantitative and qualitative characteristic of particular natural phenomena 

accompanied by energy release or material accumulation within narrow spatial-temporal 

intervals. In Cheng (2007a), anomalous concentrations of ore-forming elements caused 

by hydrothermal mineralization were delineated by the singularity index mapping 

technique. It has been demonstrated that the results may provide new geo-information as 

complements of original concentration values. In Cheng et al. (2009), peak flow events 

considered as special phenomena of environmental issues were analyzed by singularity 

analysis to characterize their frequency distribution. In Wang et al. (2011), the singularity 

theory was applied to characterize singular physical properties caused by magmatic 

activities. Zuo et al. (2009) stated that the singularity index mapping technique is 

efficient in indicating weak geo-anomalies usually hidden within a strong variance of 

background. More sophisticated association between singularity and other subjects of 

geostatistics can be found in Cheng (2006) and Agterberg (2012a). 

3.1.1. A window-based singularity index mapping technique 

Within a system of hydrothermal mineralization, the amount of metal in a small area A 

can be denoted as µ(A) and the average concentration of metals in A can be denoted as 

C(A) (Cheng, 2007a). Within a heterogeneous medium, both µ(A) and C(A) change as A 

changes. From a multifractal point of view, µ(A) and C(A) follow power-law 

relationships with A: 
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(µ(A))= cAa<x> (3.1) 

( C(A)) = cAa<xH (3.2) 

where c is a constant and a(x) = a!E is the exponent of the power-law relationships.Eis 

the Euclidian dimension of area A. The power-law relationship is generally represented in 

a statistical sense as ( ) or "expectation". Regarding other singular geo-processes and 

without loss of generality, the C(A) can denote the amount of certain physical quantities 

(e.g., energy, rainfall, etc.) in a spatial or temporal interval (e.g., volume, day, etc.). The 

power-law relationship in either Eq. (3.1) or Eq. (3.2) is determined by c and a. The 

constant c determines the magnitude function. The a, so-called singularity index, is a 

scaling exponent and preserves the shape of the magnitude function and the changes in 

certain physical quantities across various scales of spatial-temporal intervals. 

If a remains constant throughout an area, then the physical quantities of singular geo­

processes do not have fractality. Otherwise, if a has multiple values, the physical 

quantities of singular geo-processes may follow a multifractal distribution. In general, the 

parameter a can be divided into three categories: (1) a = E corresponds to a linear 

distribution when C(A) (i.e., a given physical quantity) is independent of A (i.e., the 

interval); (2) a < E, considered to be positive singularity, implies a "convex" property of 

C(A) within A and indicates enrichment of the physical quantity; (3) a> E, considered to 

be negative singularity, implies a "concave" property of C(A) within A and indicates 

depletion of the physical quantity. 
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In addition, the singularity index in Eqs. (3.1) and (3.2) can be expressed as: 

dµ(A) 2 
a=--·--

dA C(A) 
(3.3) 

where the singularity index a is related to a high-pass filter transformation of the amount 

of a certain physical quantity µ(A). It implies that a is the result of the first derivative 

transformation of the µ(A) with a characteristic of scale independence in comparison with 

other types of high-pass filters (Cheng, 2007b, 2008). Although there is an A in the Eq 

(3.3), the estimation of a is independent of scales of A if the scale independence in Eqs. 

(3.1) and (3.2) are existing (Cheng, 2007b). 

The value of a in 2D is estimated by means of a windows-based method (Cheng, 1999). 

Preparations for the estimation of a include delineation of study area, definition of a set 

of windows with an area A(e;) and sizes e; (e; = e1 < e2 < e3 ... <en), and calculation of 

average values C[A(e;)] (Fig. 3.1). If values of C[A(e;)] and e; are plotted in a log-log 

graph, a linear relationship between them can be described by the least-squares method 

(Fig. 3.1). The value of a is given by the slope of Eq. (3.4). By sliding the windows, 

singularity indices for all locations are estimated. More details can be found in Cheng 

(2000). 

logC[A(c; )]= log(c)+(a-2)log(&;) ( 3 . 4) 
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Fig.3. 1. A schematic diagram to demonstrate singularity index estimated by a square 
window-based method. (a) and (b) represent a calculation process for positive singularity 
index (i.e., a < 2). (c) and (d) represent a calculation process for negative singularity 
index (i.e., a > 2). 

3.1.2. A fault-orientated singularity index mapping technique 

Being non-linear and complex, the occurrence of mineralization is usually dominated by 

a cascade process involving various controlling factors (Cheng, 2012). Geochemical 

distributions indicating mineral deposits are anisotropic in many cases. Therefore, in 

addition to characterize the heterogeneity by the isotropic square window-based method, 

a fault trace-oriented singularity index mapping method is introduced here. 
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Fig.3. 2. A schematic diagram to demonstrate an estimation process to characterize 
anisotropic properties of geochemical signatures based on a fault trace-oriented 
singularity index mapping technique. (a) represents definition process of a set of fault 
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By the fault trace-oriented method, each individual fault trace is divided into segments 

with a pre-defined constant length r. Centered by an individual fault segment, a set of 

rectangular windows are defined with sizes of r x 8; (Fig. 3.2). The width values of 8; are 

same as the definition in the square window-based method. Therefore, rather than the 

isotropy described by a square window-based method, only variations of geochemical 

distributions along the vertical direction of the fault trace are considered to characterize 

anisotropy of geochemical signatures. The new C(A;) will be the average concentration of 

metals within different rectangular areas A (r x 8;). Since the 8;2 used in square window­

based mapping method (i.e. 2-D) is changed tor x 8;, an updated Eq. (3.2) will be in a 1-

dimensional scenario: 

(3.5) 

where, ar = a/2 and a is the singularity index in the 2-dimensional scenario. Similarly, if 

a log-transformation is applied to both sides of Eq. (3.5), a linear relationship between 

log(8;) and logC(r x 8;) (Fig. 3.2) can be expressed as: 

logC(A;) = log(c) +(a, -l)log(&;) (3.6) 

where, c is the constant and ar is the singularity index estimated by the rectangular 

window-based mapping method. Compared with isotropic singularity index, newly 

proposed anisotropic singularity index is sorted into comparable categories. ar = 1 

indicates monofractal geochemical distributions along the direction perpendicular to a 

fault segment. a, f:. 1 depicts variations of a certain geochemical element concentration 
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along the vertical direction to a fault segment. Specifically, ar < 1 is termed as positive 

singularity corresponding with continuous enrichment of metals during approaching to 

the fault space, while ar > 1 is termed as negative singularity corresponding with gradual 

depletion of metals during approaching to the fault space. Since the definition of 

rectangular windows is based on the spatial distribution of fault traces, the updated 

singularity indices of different fault segments along the fault traces are meaningful to 

characterize geochemical behaviors of metallic concentration within the fault spaces. 

When ore-bearing fluids transport through a fault trace, interactive geochemical reactions 

facilitating hydrothermal mineralization might occur between fluids and the wall rocks 

along the fault trace. These reactions can be characterized by fault trace-oriented 

singularity index a7 • In segments with ar = 1, homogenous metal concentration within 

rectangular windows implies that no and/or equivalent interactions between hydrothermal 

fluids and wall rocks occurred. Segments with ar > 1 imply that fluids may extract ore­

forming materials from wall rocks and cause metal depletion in wall rocks. In segments 

with ar < 1, metal enrichment implies that ore-forming materials migrated by fluids may 

increase contents of them in wall rocks. Extremely, the fluids might be ore-forming ones, 

and variations of the circumstance within fault segments facilitate deposition and 

mineralization of the fluids. As a result, the vein-type hydrothermal deposits might be 

presented within the fault spaces. Therefore, based on these influences on hydrothermal 

mineralization, a fault trace can be subdivided into positive segments ( ar < 1 ), negative 

segments ( ar > 1) and regular segments ( ar = 1 ). 
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3.2. Principal component analysis (PCA) 

Principal component analysis (PCA) is one of the best-known techniques for multivariate 

analysis. It is a useful statistical technique frequently employed in various fields such as 

face recognition (Zhao et al., 2003) and image compression (Smith, 2002). A main 

purpose to use PCA is to reduce the dimensionality of datasets by transforming 

interrelated variables of datasets into new sets of datasets consisting of uncorrelated 

variables. These uncorrelated variables are the so-called principal components (PCs) 

(Joliffe, 2002). 

The foundation of principal component analysis is the covariance or correlation 

coefficient matrix, which represents interrelationships among multidimensional variables. 

By orthogonal transformation, a set of interrelated variables are converted into a new 

coordinate system, in which the eigenvectors acting as the axes are linear combinations of 

the original variables (Fig. 3.3). Eigenvalues (i.e., variances of PCs) and eigenvectors can 

be used to characterize PCs (i.e., vectors). In the vector space, these directions of these 

vectors are orthogonal, meaning that these PCs are independent. Stretching degrees are 

associated with their corresponding eigenvalues. The definition of the covariance and 

correlation coefficient between two sets of variables X and Y can be expressed as (Cheng, 

2006b): 

m n _ _ 

LL(X; -X)(Yj -Y) 
cov(X,Y) = _;=_•-=-j_=• _____ _ (3.9) 

mn 
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1 m n _ _ 

-II<X; -X)(Yj-Y) 
mn i=I j=I 

Px,r = -;::=======-r====== 
_1 f (X; -X)2 _1 I<Yj -Y)2 
mn i=I mn j=I 

(3.10) 

where i and j represent the indices in X and Y, X; and Jj represent the variables, and X 

and Y are the mean values of X and Y, respectively. The values of m and n represent the 

column and row of X and Y, respectively. When it is supposed that the correlation 

coefficient matrix of X and Y is A, If there is a vector x that satisfies the function: 

Ax=A.x (3.11) 

then the x and A. are termed as the eigenvector and the eigenvalue, respectively. The 

newly achieved PCs represent most variability (i.e., information) of original 

multidimensional variables. For the case of two variables X and Y, the first PC (i.e., PCl) 

contains more information, while PC2 carries residual information independent of PC 1. 

The two PCs can be expressed as follow: 

(3.12) 

where i is the order of PCs, while a; and b; are contributions of X and Y. As linear 

combinations of original variables, individual PCs are often interpreted to achieve geo-

information. 
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Fig.3. 3. A schematic diagram of applying principal component analysis to two input 
variables. 

3.3. Weights of evidence (W ofE) 

One of the most well-known approaches to mapping mineral potential is weights of 

evidence (WofE) method based on Bayesian probability theory (Agterberg et al., 1990; 

Agterberg 1992; Bonham-Carter et al., 1989). By WofE (i.e., a geo-information 

integration method), binary patterns can be defined for each of identified geo-information 

according to their associations with mineral deposits, and posterior probabilities of all 

combinations of these patterns can be estimated to indicate presence and absence of 

mineralization in a study area. 

In the aspect of binary pattern definition, weights of Evidence method (W ofE) commonly 
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used for mineral potential mapping can quantitatively describe spatial associations of 

identified geo-information and objective geological features (Bonham-Carter 1994). This 

method had been successfully used to reclassify multi-category patterns to binary patterns 

in many cases (Cheng et al., 1994; 2007a; Wang et al., 2012; Zhao et al., 2012; Zuo et al., 

2009). If we assume that a study area is divided into N cells with n cells corresponding 

with mineral deposits (i.e., events D), then the prior probability of mineral occurrences 

P(D) can be: 

P(D) = .!!_ 
N 

(3.13) 

Suppose that there are a set of binary pattern of identified geo-information, A for 

presence of mineral occurrences and A for absence of mineral occurrences, the 

conditional probability of mineral deposits located in these patterns can be: 

P(DIA) = P(D) P(AID) 
P(A) 

P(AjD) 
P(Dp) = P(D)-P____,_(A-) 

(3.14) 

(3.15) 

The weights W- and W of binary patterns can be calculated by means of the following 

formulas: 

+ P[AID] 
W = log P[ AID] 

(3.16) 
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- P[AIDJ 
W = log P[ AID] 

(3.17) 

(3.18) 

u(W )= .AnD +Ann _ ~ I I (3.19) 

(3.20) 

where A denotes numbers of the area enclosed by patterns indicating presence of mineral 

occurrences; A denotes the area not enclosed by the patterns; D and D indicate the 

presence and absence of mineral occurrences, respectively; and u(W+), u(W-) and 

u(Total) represent the standard deviation of all types of weights. The contrast C is a 

measure of the spatial association between points and patterns, and the corresponding 

studentized value of the contrast, t provides a measure of its statistical significance. The 

contrast C and !-value can be expressed as follow: 

C=W+ -w- (3.21) 

t = C/u(Total) (3.21) 

where C is the contrast of weights and t is the studentized value of contrast. In this work, 

the t value is the parameter for validation by comparison of the spatial association 
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coefficients of all patterns of identified geo-information. 

In the aspect of integration, the odds form, 0 is involved, prior probability of which is 

O=P/(1-P). Posterior odds can be expressed to the presence and absence of binary 

patterns: 

O(DIA) = O(D) P(AID) = O(D) x w+ 
P(AID) 

(3.23) 

(3.24) 

The formulation introduced above is only for one set of binary patterns. Identified geo-

information in mineral exploration is often multiple. The posterior odds of the 

combination of patterns indicating presence of mineral occurrences can be calculated by: 

(3.25) 

More detailed introduction and applications of W ofE can be found in Bonham-Carter 
(1994). 
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Chapter 4. Granitic intrusion characterization by 

geophysical data analysis 

4.1. Introduction to geophysical data analysis 

Geophysical exploration has been greatly aided over past decades by the development in 

computer sciences and the availability of multi-source geophysical data which has 

become an important geo-information source in engineering, environment study, and 

resource exploration (Nabighian et al., 2005a, b ). From a geological perspective, 

mineralization related geological bodies can arouse geophysical anomalies (Zhao, 1999). 

Interpreting geophysical anomalies from various observational datasets is not only 

beneficial to recognition of the presence and spatial distribution of underneath geological 

bodies (i.e., causative bodies), but also significant to knowledge of geological settings 

and mineral potential mapping issues (Cheng, 2012; Cianciara and Marcak, 1979). 

Among various geophysical datasets, gravity and magnetic data are broadly employed in 

mineral resource exploration. Although these two typical observational datasets are 

distinctive in potential fields, measured parameters, and operative physical properties, 

they are processed by similar and even same ways during data processing in many cases 

(e.g., wavelength filter, upward continuation, vertical derivative, directional filter, etc.) 

(Bhattacharyya, 1965; Hood and McClure, 1965; Hood and Teskey, 1989; Kearey et al., 

2002; Wang et al., 2010). 
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Gravity and magnetic data detect spatial variations of gravitational and geomagnetic 

fields caused by causative bodies. In practice, regional anomalies caused by large or 

deeply buried sources are of low-frequency with long wavelength (e.g., sedimentary 

basin), while local anomalies caused by small or shallow sources are of high-frequency 

with short wavelength (e.g., anticline and salt dome) (Kearey et al., 2002). Anomaly 

interpretation requires gravity/magnetic data to be decomposed into two constituent parts, 

so called regional-residual separation (Agarwal and Sivaji, 1992; Li and Oldenbur, 1998). 

Spatial and frequency analysis are popular in geophysical exploration, methods of which 

involving Fourier transformation are mostly utilized. Meanwhile, many world-wide 

borehole measurements show that source (e.g., density or susceptibility) distribution is 

fractal (Dimri, 2000). Therefore, fractal and multifractal methods which consider both 

frequency distribution and spatial self-similar properties of causative bodies are effective 

on analyzing causative bodies as well (Cheng, 2007a; Li and Cheng, 2006). 

Since the concept of :fractal/multifractal introduced by Mandelbrot (1977; 1989), 

numerous studies have been carried out to understand complex natural properties. 

Researches in various fields were focused on characterizing measures with scale 

independence (Agterberg, 2012a; Cheng 2007b; Dimri and Srivastava, 2005). Natural 

processes with fractal behaviors like rainfall (Veneziano and Furcolo, 2002), flooding 

(Cheng, 2008; Malamud et al., 1996), cloud formation (Schertzer and Lovejoy, 1987) and 

mineralization (Cheng, 2007a, b) exhibit non-linear characteristics that satisfy fractal or 

multifractal statistics. Comparing with the classic geophysical data analysis, 

fractal/multifractal methods are advanced to characterize the spatial distribution of 
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underground causative bodies with arbitrary shapes. Dimri and Srivastava (2005) used 

modified Voronoi tessellation to generate fractal geometry of the causative bodies and 

provided an irregular realistic final model. Thorarinsson and Magnusson (1990) defined 

the fractal dimension as roughness of Bouguer anomaly surface, and by minimizing the 

roughness they used a new method to determine density values for the Bouguer reduction. 

Based on a series of experiments, Lovejoy et al. (2001) and Pecknold et al. (2001) 

concluded that the multifractality and scaling anisotropy as two essential components 

cannot be ignored in geophysical modeling. Cheng (2007b) introduced some multifractal 

imaging filtering and decomposition methods in space, frequency, and eigen domains, in 

which the singularity theory (Cheng, 1999) was applied to quantify the local scaling 

property in space domain and used as a high-pass filter to enhance high frequency 

patterns. The study in the current chapter applies a singularity theory-based technique 

integrated in GeoDAS software (Cheng, 2000) to characterize Bouguer gravity and 

aeromagnetic anomalies in southeastern Yunnan district, China. The spatial information 

of the causative bodies of these anomalies can be further used to support mineral 

exploration in the study area. 

4.2. Physical properties of granitic intrusions in the study area 

Since the significance of magmatism to mineralization, most researches used the geo­

information of granitic intrusions as a main component in mineral exploration modeling 

(Cheng et al., 2011; Wang et al., 2011; Wang et al., 2012; Xiong and Shi, 1994). Among 

these efforts, Xiong and Shi (1994) demonstrated a physico-geological exploration model 
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to delineate spatial distribution of igneous rocks in this area by using geophysical data; 

nowadays, it still provides an important clue to distinguish various rock types based on 

specific geophysical properties. As described by Xiong and Shi (1994), the density of 

sedimentary rocks are uniform without significant variations (2.7-2.75 g/cm3), while the 

igneous rocks show a wide density range. Specifically, the density of granitic intrusions 

are the lightest among all rock types (<0.15-0.24 g/cm3); mafic (around 3.00 g/cm3
) and 

ultra-mafic (around 3.10 g/cm3
) igneous rocks are much denser than the sedimentary 

rocks and with the increase of femic constituents the rocks become denser. Ore bodies are 

the densest. In the aspect of magnetism of rocks in this area, sedimentary rocks with low 

or no magnetism do not arouse magnetic anomalies; mafic rocks can cause distinctive 

magnetic anomalies due to the high content of ferromagnetic minerals; granitic intrusions 

without sufficient ferromagnetic minerals show flat gradients or low magnetic anomalies 

in the aeromagnetic map of this area (Xiong and Shi, 1994). Therefore, a typical 

geophysical character for recognition of the granitic intrusions is the intersection of low 

gravity and low magnetic anomalies. Furthermore, in many cases, the patterns with high 

magnetic anomalies distributed around the round shape areas with low magnetic 

anomalies are probably caused by mineralization of magnetite and pyrrhotite around 

and/or in the contact zones between the granitic intrusions and their surroundings (Xiong 

and Shi, 1994). 

Demonstrated by former researches, magmatic-hydrothermal mineralization in 

southeastern Yunnan mineral district is highly associated with granitic intrusions (Zhuang 

et al., 1996). Delineating outlines of the granitic intrusions is essential for better 
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understanding of their spatial association with mineralization and predicting Sn-Cu 

polymetallic deposits in this area. Bouguer gravity and aeromagnetic datasets are 

currently available to delineate the spatial distribution of granitic intrusions in the study 

area. 

4.3. Geophysical data analysis 

By ground-based gravity measurements, lateral variations in the gravity field at different 

points (P) are recorded in gravity data. After subtracting a regional field and relative 

corrections (Ervin, 1997), currently used Bouguer gravity data records gravitational 

variations related to causative bodies with different density. The Bouguer gravity 

anomalies (gb) can be expressed as 

gb(P) = gobs(P)- y(P) (4.1) 

where, gobs(P) is the observed gravity at point P and y(P) is a model value or reference 

gravity and Bouguer anomaly related corrections. 

Similar to gravity measurements, magnetic differences (M) between the observed 

magnetic field and the modeled magnetic field at various locations (P) are recorded by 

magnetometers. It can be expressed as 

(4.2) 
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where, µo is the magnetic permeability of a vacuum, His the magnetization force in a 

homogeneous and infinite magnetic field, and k is the magnetic susceptibility of causative 

bodies. The variation of the magnetic field (i.e., magnetic anomalies) is caused by the 

contrast of magnetic susceptibility of subterranean materials. In addition, magnetic 

anomalies are influenced by other issues consisting of the inclination and declination of 

local magnetic fields and causative bodies' magnetization, and the orientation of 

causative bodies with respect to the magnetic north (Nabighian et al., 2005a). In general, 

the vector of His not normal to the Earth's surface except in the north or the south poles. 

It is often difficult to interpret the magnetic field due to polarity effects. Therefore, a 

Reduction to pole {RTP) transformation (Cooper and Cowan, 2005) is applied, and 

observed till is accordingly transformed into anomalies with vertical magnetization and 

ambient fields measured at magnetic poles to satisfy interpretation. 

4.3.1. Band-pass filter 

The foundation of differentiating granitic intrusions from their surroundings in this area is 

their distinctive contrast of density and magnetism with the sedimentary rocks (Xiong 

and Shi, 1994). In order to delineate the main granitic intrusions on the basis of 

gravity/magnetic fields and attenuate influences of relatively small geological bodies near 

the surface, a combination of filter operation (i.e., band-pass filter) is currently used. 

Using the bouguer gravity anomaly as an example, the upward-continuation can be 

expresses as: 
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where,(~, 17) is the ground location of the mass point P, and z > 0 is the distance of 

upward-continuation while the z < 0 is the distance of downward-continuation. 

The second-order vertical derivative can be expressed as: 

a2gb(q,17) _ a2gb(q,17) a2
gb(q,17) 

az2 - axi ay2 

where, 2 represents the second-order of the vertical derivative. 

Implemented in frequency domain, the calculation for the upward-continuation and 

vertical derivative will be greatly simplified: 

-z~u 2+v2 

G continuation = G b ( ~, 17) · e 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

where, Gb is the Fourier transformation of gb, and u and v are the wave numbers in the 

directions of x and y. Therefore, the band-pass filter can be expressed as: 

G G ( j: ) (.J 2 2 )n -z~u2 +v2 

band-pass = b ":> ,1] ·U + V • e (4.7) 
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It is consisted of the high-pass operator (.Ju 2 +v2 r and the low-pass operatore-z~u2 +v2 • 

For the analysis of aeromagnetic data, the same operation is applicable as well. 

Both Bouguer and aeromagnetic data are firstly processed by upward continuation (i.e., 

low-pass filter) to remove the high-frequency anomalies aroused by small/shallow 

geological bodies and noisy signals and to retain the low-frequency anomalies caused by 

the large and deeply buried geological bodies. In this chapter, different upward­

continuation distances from 4 km to 12 km at an interval of 2 km are used. Secondly, 

both the first- and second-order derivative (i.e., high-pass filter) are applied to enhance 

local anomalies and to outline boundaries of the causative intrusions. Therefore, currently 

used band-pass filters consisting of upward continuations using various continuation 

distances and the first-/second-order vertical derivatives can minimize the influences 

caused by small source bodies near surface and highlight variations of gravity/magnetic 

gradients of large and deeply buried granitic intrusions. Results by band-pass filters are 

demonstrated in Figs. 4.1, 4.2, 4.3 and 4.4. Zero-value contour lines (Figs. 4.lf, 4.2f, 4.3f 

and 4.4f) depicting edges of deeply buried granitic intrusions are supported by gravity 

and magnetic anomalies, respectively. The intrusions delineated by both gravity and 

magnetic data with second-order vertical derivative (Figs. 4.2 and 4.4) are more detailed 

than the ones by the first-order vertical derivative (Figs. 4.1 and 4.3). It is coincident with 

the fact that the second-order derivative has more resolving power than the first-order 

derivative. Simultaneously, the shapes of the contours are altered when the upward­

continuation distances change (Figs. 4.lf, 4.2f, 4.3f and 4.4f). It can be noticed that 
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currently used band-pass filtering technique is depended on upward-continuation 

distances (i.e., scale dependence). Therefore, the parameters to define the model of band-

pass filters require geophysical interpreters' judgment which is somehow subjective. 
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Fig.4. 1. The spatial distribution of Bouguer anomalies by means of a band-pass filter consisting 
of upward continuation using distances from 4 km to 12 km at an interval of 2 km and the first­
order derivative. Zero-contour lines are shown here to highlight edges of deeply buried granitic 
intrusions. a: Band-pass filter with upward continued 4 km; b: Band-pass filter with upward 
continued 6 km; c: Band-pass filter with upward continued 8 km; d: Band-pass filter with upward 
continued 10 km; e: Band-pass filter with upward continued 12 km; f: Zero-contour lines of Figs. 
a toe. 
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Fig.4. 2. The spatial distribution of Bouguer anomalies by means of a band-pass filter consisting 
of upward continuation using distances from 4 km to 12 km at an interval of 2 km and the 
second-order derivative. Zero-contour lines are shown here to highlight edges of deeply buried 
granitic intrusions. a: Band-pass filter with upward continued 4 km; b: Band-pass filter with 
upward continued 6 km; c: Band-pass filter with upward continued 8 km; d: Band-pass filter with 
upward continued 10 km; e: Band-pass filter with upward continued 12 km; f: Zero-contour lines 
of Figs. a toe. 
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Fig.4. 3. The spatial distribution of aeromagnetic anomalies by means of a band-pass filter 
consisting of upward continuation using distances from 4 km to 12 km at an interval of 2 km and 
the first-order derivative. Zero-contour lines are shown here to highlight edges of deeply buried 
granitic intrusions. a: Band-pass filter with upward continued 4 km; b: Band-pass filter with 
upward continued 6 km; c: Band-pass filter with upward continued 8 km; d: Band-pass filter with 
upward continued 10 km; e: Band-pass filter with upward continued 12 km; f: Zero-contour lines 
of Figs. a toe. 
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Fig.4. 4. The spatial distribution of aeromagnetic anomalies by means of a band-pass filter 
consisting of upward continuation using distances from 4 km to 12 km at an interval of 2 km and 
the second-order derivative. Zero-contour lines are shown here to highlight edges of deeply 
buried granitic intrusions. a: Band-pass filter with upward continued 4 km; b: Band-pass filter 
with upward continued 6 km; c: Band-pass filter with upward continued 8 km; d: Band-pass filter 
with upward continued 10 km; e: Band-pass filter with upward continued 12 km; f: Zero-contour 
lines of Figs. a to e. 
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4.3.2. Singularity index mapping 

The formation of the granitic intrusions by magmatic activities is accompanied with 

energy release and material accumulation. This geo-process satisfies the definition of 

non-linear theory for singular processes (Cheng, 1999), and singularity index mapping is 

therefore applicable to characterize abnormal distributions of density and magnetism of 

granitic intrusions in this area. 

In order to apply the singularity index mapping technique to geophysical data, the 

negative values become an issue, since the input data is subjected to a logarithmic 

transformation. Consequently, positive values need to be added to the values of Bouguer 

anomaly and RTP transformed aeromagnetic data, respectively, so that modified 

values, gb + v > 0 and M + v > 0, are positive. 

The estimation for singularity indices of gravity data is by means of the window-based 

method. Averaged Bouguer gravity values within square windows gb[A(r;)] against 

window sizes r; are plotted on a log-log graph. The slope of the linear trend can be used 

to estimate singularity indices. With the same process for each location, the spatial 

distribution of geophysical anomalies will be obtained by moving the window across the 

space. In order to demonstrate its scale independence, the maximum window sizes r max 

from 17 km to 25 km at an interval of 2 km are currently used. 

Applying the window-based singularity index mapping technique to the Bouguer 

anomalies, spatial distributions of gravity singularity indices by various r max are 
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delineated (Fig. 4.5). Referring to properties of singularity indices and the granitic 

intrusions, areas with a > 2 (i.e., depletion of gravity gradients) indicate low-density, 

which is presumably a symptom of granitic intrusions. Areas with a < 2 (i.e., enrichment 

of gravity gradients) indicate objects with higher density. In addition, a cutoff (i.e., a= 2) 

is used to separate the granitic intrusions with lower density from the country rocks with 

higher density (Fig. 4.5f). Similarly, estimated by the window-based mapping method, 

spatial distributions of singularity indices of R TP transformed aeromagnetic data by 

various rmax are shown in Fig. 4.6. Based on properties of the intrusions, areas with a> 2 

depict low magnetic susceptibility corresponding with the low- or non-magnetic granitic 

intrusions, while areas with a < 2 depict regional tectonic structures and/or 

mafic/ultramafic rocks showing round shapes in the study area. The contour lines with a 

= 2 separating positive and negative singularity indices serve as zero-value contour lines 

in the previously used high-pass filter (Fig. 4.6f). 

In comparison with band-pass filters, the singularity index mapping method preserves the 

shapes of granitic intrusions when the r max change. The fact well demonstrates its 

advantages of scale independence (Figs. 4.5f and 4.6f). In addition, singularity indices of 

both gravity and aeromagnetic anomalies in Figs. 4.5 and 4.6 provide more detailed 

results than most of the band-pass filtered patterns do in Figs. 4.2 and 4.4, respectively; 

meanwhile, the singularity index mapping method produces similar but not exactly same 

delineations (Figs. 4.5f and 4.6f) as some results by the band-pass filters (Figs. 4.2f and 

4.4f). It is because that the first-order derivative transformation of the µ(A) introduced in 

singularity index model ( 4) serves as a high-pass filter. In addition, the definition of 
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window sizes (r;) is based on intentions to pursue a regional or local singularity index. In 

other words, processed Bouguer and aeromagnetic data in model (4) are mean values (i.e., 

C(A;)) within square windows (A;) that implies a moving average operation included 

during the singularity index estimation process. Therefore, currently achieved singularity 

indices by a window-based method are products of the first-order derivative of gravity 

and aeromagnetic fields accompanying with a moving average operation to attenuate 

signals of small causative bodies near surface and highlight anomalies of the large and 

deeply buried granitic intrusions. 

Based on the models and results of currently used methods, the singularity index mapping 

technique is related to a first-order derivative and moving average operation, but its 

results are much more detailed than a band-pass filter consisting of the upward 

continuation and first-order vertical derivative; meanwhile it provides similar but not 

exactly same results as a band-pass filter consisting of the upward continuation and the 

second-order vertical derivative. That might be due to two reasons: (1) both the second­

order vertical derivative and singularity index mapping have more resolving power than 

the first-order vertical derivative. More detailed variations can be identified by these two 

approaches; (2) the objectives of both singularity mapping and the second-order vertical 

derivative are proposed to outline boundaries of large and deeply buried granitic 

intrusions, the patterns which depend on the shapes of the granitic intrusions might be 

delineated similarly. 
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Fig.4. 5. The spatial distribution of singularity indices of Bouguer anomalies by a window-based 
method with rmax from 17 km to 25 km. Contour lines (i.e., a= 2) separating the positive (a< 2) 
and negative (a> 2) singularity outline edges of deeply buried granitic intrusions. a: r max = 17 km; 
b: Ymax = 19 km; c: Ymax = 21 km; d: Ymax = 23 km; e: Ymax = 25 km; f: a= 2 contour lines of Figs. a 
toe. 
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Fig.4. 6. The spatial distribution of singularity indices of aeromagnetic anomalies by a window­
based mapping method with r max from 17 km to 25 km. Contour lines (i.e., a = 2) separating the 
positive (a< 2) and negative (a> 2) singularity outline edges of deeply buried granitic intrusions. 
a: rmax = 17 km; b: rmax = 19 km; c: rmax = 21 km; d: rmax = 23 km; e: rmax = 25 km; f: a= 2 
contour lines of Figs. a to e. 
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4.4. Summary and conclusions 

Through current applications, band-pass filters consisting of a combination of upward 

continuations and the vertical derivatives have not only shown their advantages to 

interpret causative bodies, but also exposed their shortages in scale dependence that 

makes interpretations are somehow subjective. In contrary, the fractal/multifractal based 

singularity index mapping technique provides an improved and simplified approach for 

band-pass filtering in geophysical data analysis. Operated in space domain, the results 

produced by singularity index mapping method are scale independent (i.e., results are not 

influenced by changing the scale of measurement). After achieving geo-information 

regarding to singular aggregation of ore-forming elements by former researchers, studies 

introduced in this chapter extend the application of singularity theory to delineate 

geophysical potential fields. Spatial distributions of density and magnetic susceptibility 

characterized by singularity index mapping are more suitable geo-information in support 

of future mineral exploration in southeastern Yunnan mineral district. Furthermore, 

according to the similar geo-information extracted by both the band-pass filter (i.e., 

upward-continuations and the second-order derivative) and the singularity index mapping 

technique in some cases, it is concluded that the currently used singularity filter can be 

used to identify the granitic intrusions in the study area. Advantages of this method over 

traditional band-pass filters need to be further discussed by according to more 

applications and studies in future work. 
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A comprehensive mineral exploration modeling requires geo-information extracted and 

integrated from multi-sources. Magmatic-hydrothermal mineralization in this area is 

associated with other issues besides granitic intrusions. Mineralization related non-linear 

geo-processes (e.g., magmatic activities, tectonic activities, sedimentary processes, etc.) 

satisfy definition of singularity theory, and the products of these processes can be 

characterized by singularity index mapping technique that will provide various indicators 

to mineralization. Therefore, a singularity theory based modeling process is suggested 

here to enhance the efficiency of mineral exploration. 
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Chapter 5. Tectonic-geochemical anomaly identification 

by geological and geochemical data analysis 

5.1. Introduction to tectonic and geochemical analysis 

Recognition and mapping of geochemical signatures of the presence of mineralization 

plays an important role in mineral exploration modeling. Directed by metallogenic 

features, data-driven, knowledge-driven, and hybrid methods are applied to integrate 

geochemical anomalies with other indicators for investigating mineral targets of interest. 

Similar procedures can be applied to clarify geological processes associated with 

mineralization (Wang et al., 2011 ). Exploration for hydrothermal ore deposits is one of 

the examples benefitting from the advances in mineral exploration modeling. 

Geochemical anomaly indicates the spatial distribution of associated ore-forming 

elements, and mineral deposits are frequently discovered within geochemical haloes. 

However, mineralization is a complex process in an anomalous environment (Yu, 2002). 

Concerns about exploration of hydrothermal ore deposits are therefore comprehensive 

(e.g., igneous rocks, tectonics, wall rocks, etc.). 

Tectonic activities provide spaces for transportation and precipitation of ore-forming 

materials (Zhai et al., 1999). Tectonics features (e.g., faults, folds, etc.) are important for 

the migration of hydrothermal solutions during mineralization. From the point of view of 

economic geology, tectonics as a process is highly related with the spatial and mechanical 
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properties of ore deposits in terms of two controlling factors (Zhai et al., 1999). One 

controlling factor is scale. Tectonics at regional scales controls the spatial distribution of 

mineral deposits as well as their properties; whereas tectonics at local scales controls the 

spatial distribution, shape and interior structures of ore bodies (Faulkner et al., 201 O; 

Micklethwaite et al., 201 O; Zhai et al., 1999). The other controlling factor is stage of 

tectonism. Tectonic stages may play an even more essential role in mineralization than 

scales. Tectonic stages linked with mineralization may be referred to as pre­

mineralization, syn-mineralization or post-mineralization (Zhai et al., 1999). Pre­

mineralization faults, for example, provide spaces for migration of ore-bearing fluids. In 

addition, faults facilitate precipitation and storage of ore minerals. Syn-mineralization 

faults release pressure in rocks and create more migration spaces. As a result, structures 

and components of ore bodies become complicated. During space-filling and 

metasomatism of wall rocks, chemical and physical properties of fluids are changed 

gradually; consequently, within spaces created by faults, wall rock alterations and 

mineral assemblages change dramatically both in vertical and lateral extents. Post­

mineralization faults affect deposits more mechanically rather than in chemical ways 

such that ore bodies are destroyed, re-shaped or more strongly influenced by supergene 

enrichment (Faulkner et al., 2010; Micklethwaite et al., 2010; Zhai et al., 1999). Since 

post-mineralization faulting of a deposit might be a continuation of pre- or syn­

mineralization faulting related with another deposit, fault activities can support 

thermodynamic power for fluid migration in this case (Zhai et al., 1999). It is sometimes 

difficult to differentiate types of faulting activities without detailed field observations and 
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mineralogical and isotope geochemical studies. Tectonic activities discussed in this paper 

are focused on pre-mineralization and syn-mineralization faulting activities. 

To outline areas favorable for mineralization of a certain type, comprehensive research 

on related geological processes is necessary (Wang et al., 2011). This chapter applies 

advanced gee-information extraction and integration techniques in GeoDAS GIS 

software (Cheng, 2000) to construct a tectonic-geochemical exploration model for 

southeastern Yunnan ore district, China. Anomalous distributions of tectonic and 

geochemical signatures are mapped and integrated to investigate the relationship between 

tectonics and ore-forming element association. Furthermore, ore-controlling properties of 

geological structures are analyzed to map locations favorable for mineralization. 

5.2. Geo-anomaly recognition 

5.2.1. Geochemical anomalies 

Hydrothermal ore deposits are characterized by high concentrations of certain metals, 

distributions of which have fractal or multifractal properties. As previously introduced, 

main ore-forming elements in the southeastern Yunnan district, China, are Au, Ag, Cu, 

Pb, Sn, W and Zn. In order to delineate anomalous areas likely containing mineral 

deposits in this area, singularity theory is currently used to characterize geochemical 

distributions of these ore-forming elements. 
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Using the window-based method in GeoDAS GIS software, singularity indices (a) of the 

distribution of ore-forming elements are estimated (Fig. 5.1). According to the properties 

of a, areas with a < 2 (or positive singularity) indicate distributions of intensely 

concentrated ore-forming elements, spatially coincident with known deposits (i.e., 

mineral occurrences) of certain elements; whereas, areas with a 2: 2 (or negative 

singularity) represent geochemical background and/or depletion of ore-forming elements 

(Fig. 5.1). 

In order to characterize mineralization better, PCA is applied to determine geochemical 

signatures based on singularity indices of elements in an association of ore-forming 

elements (instead of original concentrations of elements) in the study area. A scree plot 

(Fig. 5.2a) shows the distribution of eigenvalues representing relative importance of each 

component. The first principal component (PCl) accounts for 55% of the total variance. 

PC 1 with an eigenvalue > 1 (Kaiser, 1960) can be retained for interpretation. Positive 

loadings (Fig. 5.2b) indicate that PCl mainly reflects the singular association of ore­

forming elements. In comparison with singularity maps of individual ore-forming 

elements, areas with high PCl scores (Fig. 5.3) have stronger coincidence with known 

mineral occurrences (Fig. 5.3). This goes to show that integrated singularity indices (a) of 

elements in an association of ore-forming elements reflect more accurately geochemical 

anomalies linked with hydrothermal mineralization. Furthermore, there is a noticeable 

spatial correlation between fault traces and intermediate to high PC 1 scores, implying 

that fluid-rock interactions along faults resulted in enrichment of a suite of elements 

similar to those in the known occurrences of hydrothermal mineral deposits (Fig. 5.3). 
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Low: 0.56 

Fig.5. 1. Spatial distributions of singularity indices for Sn (a) and Cu (b) are shown as 
examples for demonstration the efficiency of singularity index mapping in anomaly 
identification. Mineral occurrences, fault traces and boundaries of felsic intrusions are 
shown for reference. 
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principal component (PCl), which represents 55% of the total variance in singularity 
indices of ore-forming element data. 
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Fig.5. 3. Spatial distribution of PCI scores of singularity indices the stream sediment 
geochemical data for the ore-forming elements. Mineral occurrences, fault traces and 
boundaries of felsic intrusions are shown for reference. 

By cross referencing the simplified geological map (Fig. 2.1) and the map of PC 1 scores 

(Fig. 5.3), areas with enrichment of the ore-forming elements are those within and/or 

along major fault zones. The anomalous areas (i.e., with a < 2) in Gejiu, Wenshan and 

Dulong districts are characterized by high-density mineral occurrences and intersections 

of regional faults, intensely developed local faults, and granite intrusions (Fig. 5.3). 

These characteristics are in accordance with regional metallogenic features (i.e., regional 

faults confine magmatic activities to certain scales and ranges; hydrothermal fluids 

permeate rocks through local faults; metasomatism and mineralization occur within 

fault/fracture zones). Therefore, the complexity of fault systems is significant to 

mineralization in the study area (Ford and Blenkinsop, 2008; Zhao et al., 2011): well 

developed fault systems provided spaces for hydrothermal fluid flow and mineralization. 
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5.2.2. Fault anomalies 

Fault systems as products of non-linear geo-processes (i.e., faulting activities) are 

frequently accompanied by energy released within short spatial-temporal intervals and 

increase in numbers and total length of parallel or intersecting faults. Fault density (I) 

defined as total length L of fault traces per unit area A (i.e., I= LIA) can be currently used 

to describe development extent of a fault system in 2-D (Xypolias and Koukouvelas, 

2004). High fault density indicates intensely developed fault systems, which benefit 

migration of ore-bearing fluids and permit accumulation of ore-forming elements. From a 

multifractal point of view, I(A) follows a power-law relationship with A: 

(!(A))= cAa/2-l ( 5 . 1 ) 

where c is a constant. The singularity index (a) characterizes singular distributed fault 

density (i.e., intensely developed fault systems). An example is shown here to 

demonstrate a well developed fault system characterized by a singularity index a < 2 at a 

local scale (Fig. 5.4), which is favorable for mineralization. In contrast, singularity index 

a ~ 2 stands for depletion or non-singular distribution of fault density, and will not be 

discussed here. 
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Fig.5. 4. Conceptual diagram of positive singularity of fault density. It corresponds to a 
special case where fault traces (grey lines) are well developed at a local scale. The 
background squares with different colors represent fault density within areas (After Wang 
et al., 2012). 

Fig.5. 5. Spatial distribution of singularity indices (a< 2 for positive fault singularity, a> 
2 for negative fault singularity) of fault density. Mineral occurrences, fault traces and 
boundaries of felsic intrusions are shown for reference. 
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The estimated singularity indices of fault density (Fig. 5.5) clearly indicate areas with 

high fault density by a < 2. All positive singularity indices (i.e., a < 2) are coincident 

with areas where local faults intersect and/or where regional faults intersect with local 

faults. From a geological point of view, positive singularity describes drastic 

enhancement of fault density. The changes of fault density are represented by increase of 

broken spaces where the internal pressure-temperature conditions of passing 

hydrothermal fluids will be reduced abruptly, which benefits crystallization, 

differentiation and mineralization of hydrothermal fluids (Zhai et al., 1999). In addition, 

most hydrothermal-type mineral occurrences are located in and/or nearby areas with a< 

2 (Fig. 5.5). These findings show that hydrothermal mineralization in this area is 

positively correlated with degree of development of fault systems. Mineralization was 

favored by spaces provided by fault systems modeled by positive singularity indices (i.e., 

a< 2). Furthermore, based on student's /-values of the singularity indices of fault density 

(Fig. 5.6a) and of the fault density (Fig. 5.6b) estimated by WofE method, two binary 

maps are constructed (Fig. 5. 7). Anomalies identified by using singularity indices of fault 

density indicate well areas with fault intersections; whereas, anomalies identified by 

using only fault density are spread overwhelmingly in the study area. Singularity indices 

of fault density can, thus, be used to efficiently characterize enhancement of fault density, 

and can be accepted as a suitable geo-information in support of mineral exploration 

modeling. 

95 



2.5 

2 a 
!ifJ 1.5 a> 

= -= ;;i.. 
~ 1 

0.5 

0 

0 5 10 15 20 

Classes of singularity indices of fault density 

3 

2.5 b 
2 

!ifJ 1.5 
a> = 1 -= ;;i.. 
I 

0.5 -
0 

-0.5 

-1 

0 5 10 15 20 
Classes of fault density 
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spatial correlation between deposits and (a) singularity indices of fault density, and (b) 
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Fig.5. 7. Binary maps indicating areas highly correlated with mineral occurrences based 
on the highest t-values for (a) singularity of fault and (b) fault density. Mineral 
occurrences, fault traces and boundaries of felsic intrusions are shown for reference. 
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5.2.3. Anomaly integration 

The positive singularity indices (a < 2) of the association of ore-forming elements (Fig. 

5.3) likely represent geochemical anomalies related to geochemical haloes of 

mineralization in the study area. According to the relationship between faults and 

mineralization introduced at the beginning of this chapter, the positive singularity indices 

of fault density (Fig. 5.5) likely represent anomalous faulted areas (i.e., faults in these 

areas are intensive) where fluid-rock interactions may have occurred resulting in 

mineralization. In order to study the interrelation of mineralization and faults, it is 

instructive to integrate the previously achieved two layers of geo-information (i.e., 

geochemical and fault anomalies). 

In current study, PCA is further used to integrate previously achieved geo-information (i.e. 

singularity of the element association and fault intensity). The PC 1 with an eigenvalue > 

1 is retained, and positive loadings of the two geo-variables (i.e., fault singularity and 

geochemical anomalies of the element association) in PC 1 support that low PC 1 scores 

are indicative to the hydrothermal mineralization (Fig. 5.8). Representing 54% of the 

total variances of these two geo-variables, the reasonable integration delineates 

geochemical and tectonic anomalies, simultaneously (Fig. 5.9). The integration result 

properly reveals the regional metallogenic features; that is, mineral occurrences are 

spatially coincident with intensively faulted areas. Geo-information related to mineral 

occurrences not previously indicated (Fig. 5.3) is enhanced by geo-information of faults 

(Fig. 5.5). From the result, favorable spaces for migration of ore-forming fluids along 

98 



faults and accumulation of ore-forming elements within fracture zones can be tracked. 

Compared with the singularity of fault intensity, highly faulted areas without supporting 

mineralization are constrained by geochemical anomalies. 
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Fig.5. 8. a: Scree plot of eigenvalues of principal components of the ore-forming element 
assemblage and fault singularity. b: Loadings of ore-forming element assemblage and 
fault singularity, which represents 54% of the total variances of these two geo-variables. 
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Fig.5. 9. Spatial distributions of PC 1 scores by integrating geochemical anomalies of ore­
forming the element association and fault singularity indices. Mineral occurrences, fault 
traces and boundaries of felsic intrusions are shown for reference. 

5.3. Summary and discussions 

Strong enrichment of an association of ore-forming elements is an important precondition 

of mineralization in the area; meanwhile, fault systems played significant roles in 

mineralization by controlling the spatial distributions of magmatic intrusions, 

hydrothermal fluid flow and wall rock metasomatism. The tectonic-geochemical model 

constructed in this paper, supported by the application of the singularity theory for geo-

information extraction and principal component analysis for geo-information integration, 

is useful and efficient for identifying and locating areas most favorable for the occurrence 

of mineralization. Those areas are characterized by the combination of fault and 

geochemical anomalies, which exhibit strong spatial association with known locations of 
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mineral deposits. The results support mineral exploration, and provide suggestions for 

future research on fault systems in the southeastern Yunnan district, China. 

The formation of hydrothermal mineral deposits is a complex process produced by 

various geological processes. The tectonic-geochemical exploration model discussed in 

this study is based on fault and geochemical anomalies. This model focuses on fault­

controlled and geochemical halo-associated deposits. Identification of areas favorable for 

the occurrence of other types of hydrothermal mineral deposits that are not relevant to the 

discussed model (e.g., known mineral deposits in the study area located within the range 

of magmatic intrusions) could rely on a comprehensive mineral exploration model 

constructed through similar procedures described in this study. However, other issues 

(e.g., spatial characteristics of intrusions, ore-hosting strata, etc.) must be taken into 

consideration. In addition, integration of other multidisciplinary datasets (e.g., remote 

sensing-geochemical exploration; geophysical-geochemical exploration; etc.) into the 

currently introduced tectonic-geochemical exploration model can be applied to enhance 

the efficiency of mineral exploration. 
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Chapter 6. Characterization of interrelations between 

tectonic and geochemical signatures 

6.1. Introduction to interrelations of tectonic and geochemical 

signatures 

Mineralization is a complex and non-linear dynamic process (Cheng, 2007a; Cheng and 

Agterberg, 2009; Yu, 2002; Zhao, 1999). As an end product of mineralization, formation 

of mineral deposits is caused by multiple geo-processes consisting of ore-forming 

element activation/transportation, ore-bearing fluid formation, migration, accumulation 

and precipitation, etc. Furthermore, these geo-processes are associated with many issues 

respectively. Interactions between fluids and tectonism believed as important ones mostly 

influence mineralization, and concerns to these two are thus significant to mineral 

exploration (McCaffrey, et al., 1999). Fluid as a major medium to extract and transport 

ore-forming materials from their original positions can facilitate dispersion and 

accumulation of ore-forming materials (Zhai et al., 1999). Meanwhile, tectonism within 

the metallogenetic environment plays an important role in influencing the physical and 

chemical properties of ore-forming fluids (McCaffrey, et al., 1999; Zhai et al., 1999). 

First of all, the prominent decrease of tectonic stress within the faults (e.g., the dilatant 

faults) can benefit alteration of the thermodynamic equilibrium among various 

components of fluids when they passing through the faults system. Consequent variations 
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in component concentration and saturation which further disturb the physical-chemical 

stability of fluids may cause the occurrences of mineralization. Secondly, the variation of 

tectonic stress can cause dissolution, activation and migration of ore-forming materials 

from ore-bearing strata to hydrothermal fluids. In addition, dilatant structures with high 

permeability can advantage dispersion of ore-forming materials and provide space for 

mineralization. Therefore, proper analysis for tectonic system will benefit understandings 

of mineralization, especially hydrothermal mineralization. 

Hydrothermal mineralization is an important mineralization type in geosciences, the 

occurrence of which is normally dominated by three controlling factors consisting of 

igneous intrusions, mineralization-favored wall rocks and tectonic systems, (Cheng, 

2007a; Heinrich, 1995; Wang et al., 2011, 2012; Zhao et al., 2012). The previous two 

factors determine chemical reactions during mineralization, which confine occurrences of 

metasomatism within the mineralization system (Yuan et al., 1979). Controlling effects of 

tectonic systems on spatial and mechanical characteristics of hydrothermal deposits are 

undertaken by two properties: tectonic scales and stages (Zhai et al., 1999). In general, 

local tectonics influence the local distribution, shapes and interior structures of 

hydrothermal ore bodies, while regional tectonics influence the spatial distribution and 

properties of hydrothermal deposits (Faulkner et al., 201 O; Micklethwaite et al., 201 O; 

Zhai et al., 1999). Chronologically, tectonic stages involve pre-, syn- and post­

mineralization tectonics which provides spaces for ore-bearing fluid flow, releases 

pressure in wall rocks and affects deposits mechanically (e.g., re-shaped, disassemble or 

supergene enrichment), respectively (Zhai et al., 1999). Since the effects of tectonic 

103 



system on hydrothermal fluid flow and ore formation, properties of tectonic activities 

(e.g., types and spatial distributions) have long been noticed. Fault as Qne of the most 

significant productions of tectonic activities is the focus of many researches (Faulkner et 

al., 201 O; Kim and Sanderson, 2005; Torabi and Berg, 2011 ). By analyzing fault 

properties (e.g., fault length, population, and displacement, etc.), knowledge regarding to 

various mineralization-associated issues can be derived to support further studies 

(Agterberg et al., 1996; Wang et al., 2012; Zhao et al., 2011). 

It is broadly understood that the formation of faults and geochemical haloes are caused by 

multiple non-linear geo-processes, the distributions of which are consequently complex 

and anisotropic (Agterberg et al., 1996; Agterberg, 2012b; Cheng, 2007a; Zhao et al., 

2011 ). As the description in Zhai (2003), migration of geochemical elements cannot be 

occurred without force and power. Forced by tectonic stress, geochemical elements are 

transported within the spaces of faults toward certain positions and further mineralized 

accompanying with heterogeneously distributed geochemical anomalies, rock 

deformation and/or metamorphism of wall rocks. As a result, the geochemical anomalies 

are spatially confined within certain tectonic units, and faults can be accordingly 

identified by the long axis of anomalous patterns in some cases (Zhai et al., 1999). The 

tectonic stress-related deformation and geochemical element accumulation constitute a 

uniform physical-chemical system, so-called as tectonic-geochemical system (Zhai et al., 

1999). Therefore, concerns of interrelations between geochemical signatures and tectonic 

features are necessary to understand the tectonic-geochemical associated mineralization. 
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Interpretation of the interrelations requires the collaboration of geochemistry and 

tectonics in many cases. 

With the development of computer sciences (De Paor, 1996) and constructions of geo­

database all over the world (Darnley, 1995), multidisciplinary approaches nowadays are 

flourishing. Geosciences as the beneficiary have been greatly progressed in geo­

information integration for datasets from multi-source and at multi-scale (Harris et al., 

1998; Wang et al., 2011; Cheng, 2012). Among these interdisciplinary collaborations, 

tectonic-geochemical exploration is the one employed frequently (Zhai, 2003; Zhai et al., 

1999; Wang et al., 2012). Statistical methods are popular and effective to frequency 

domain rather than spatial domain, by which optimal buffers of fault traces and their 

intersections are often applied as indicators to mineralization-favored spaces (Bonham­

Carter, 1994; Cheng et al., 2009; Koch and Link, 1980). Since the concept of 'fractals' 

proposed by Mandelbrot (1972), fractal and multifractal approaches taking care of both 

frequency and spatial properties of geological signatures have been widely used to fault 

analysis (Agterberg et al., 1996; McCaffrey, et al., 1999; Wang et al., 2012; Zhao et al., 

2011 ). There is an increasing interest in applying fractal dimension and multifractal 

spectra to describe complexity and self-similarity of fault systems. In fractal/multifractal 

point of view, active and complex fault system corresponding with high fractal dimension 

can benefit ore-bearing fluid flow and provide favorable environment for mineralization 

(Zhao et al., 2011 ). Furthermore, the multi fractal based singularity index mapping 

technique (Cheng, 2007a) has proven to be efficient in qualitatively and quantitatively 
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characterizing spatial variations of fault density and delineating mineralization-favored 

spaces provided by fault systems (Wang et al., 2012). 

After characterizing spatial distribution of fault intensity and modelling hydrothermal 

mineralization-associated tectonic-geochemical signatures in southeastern Yunnan 

mineral district, China in chapter 5, this chapter as a successor to the previous research 

intends to apply an interdisciplinary collaboration method to characterize anisotropic 

distributions of geochemical signatures in Gej iu area (i.e., a sub-district of this 

dissertation) (Fig. 6.1 ). In addition, current results will define a new fault property based 

on variations of geochemical signatures or mineralization favorability along the 

directions of fault traces. 

Fig.6. 1. A simplified geological map of the Gejiu mineral district, China (after Cheng, 
2007a). Segments used in following analysis are shown for reference. 
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6.2. Geological settings of Gejiu area 

Similar to southeastern Yunnan mineral district, China, Gejiu mineral district (Fig. 6.1) 

approximately 200 km south of the city of Kunming, the capital of Yunnan Province, 

China, chosen for current research is well-known for its world class Sn-Cu polymetallic 

deposits, the centre of which is at a longitude of 103°09
1

26
11

E and a latitude of 23°2i40
11

N. 

Located in the suture zone of the Indian Plate and the Eurasian plate on southeastern of 

China sub-plate, tectonic-magmatism is well developed and provides a mineralization­

favored environment. 

As a major type of mineral deposits, magmatic-hydrothermal polymetallic deposits (e.g., 

Sn, Cu, Pb, Zn, W, et al.) are spreading in this district (Zhuang et al., 1996). Recognized 

by previous researches (Zhuang et al., 1996), main controlling factors of the 

mineralization are tectonic settings, magmatism (e.g., intrusions and hydrothermal 

activities) and wall rocks. The interactions of these factors are believed to be important 

for metallic mineralization. The Middle Triassic Gejiu formation (i.e., the wall rocks) 

consisting of limestone and minor dolomites is the main ore-bearing strata (Qin et al., 

2008; Zhuang et al., 1996). Magmatic activities in the Gejiu mineral district experienced 

medium- to small-scale ultramafic-felsic extrusions in the period of the Jinning epoch 

(1000-800 Ma) to the Hercynian epoch (386-257 Ma), massive mafic intrusions in the 

Indo-China epoch (257-205 Ma) and felsic intrusions in the Yanshanian epoch (205-135 

Ma). Among these magmatic activities, the Yanshanian intrusions (i.e., the Gejiu 

Batholith) supplied both heat and material resources to the Sn-Cu polymetallic 
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mineralization in the Gejiu mineral district (Guan, 1993; Zhuang et al., 1996). Tectonic 

activities controlled the spatial-temporal distribution of both mineralization and 

diagenesis not only in the Gejiu mineral district but also in southeastern Yunnan region 

(Qin et al., 2008; Zhuang et al., 1996; Wang et al., 2012). 

In general, faults in the Gejiu mineral district are shown as an annular structure around 

the Gejiu Batholith in the center of the study area (Fig. 3). They can be sorted into four 

orientations (i.e., the NS, NW, EW and NE trending faults) with different mechanic 

properties and stratigraphy- and mineralization-controlling effects. The distinct NS 

trending Gejiu fault as a part of the regional Xiaojiang fault located in the east of the 

Gejiu Batholith divides the study area into two parts, the eastern and the western districts. 

Mineral resources discovered in the eastern district are much more than which were 

explored in the western district. The NW trending faults (e.g., the Red river fault) are 

well developed in the western district rather than in the eastern district, which dominate 

the mineralization in the southwestern area. The EW trending faults are broadly 

developed in the eastern district and control the spatial distribution of ore fields (Zhuang 

et al., 1996). The NE trending faults were produced by tectonic activities in the 

Hercynian, Indo-China, and Y anshanian epochs. They are considered as the most 

significant stratigraphy- and mineralization-controlling structures. Most of the discovered 

mineral occurrences are located within their buffer zones (Cheng et al., 2009). 

In the Gejiu mineral district, interrelations between faults and ore-forming fluids or 

mineralization can be derived from lithological analysis, discussions of which are mostly 
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qualitative rather than spatially quantitative (Qin et al., 2008; Zhuang et al., 1996). In fact, 

quantitative analysis on faults was formerly attempted. According to statistical 

approaches, Cheng et al. (2009) used buffer analysis on fault traces and intersections of 

fault traces to identify mineralization-favored spaces. In addition, singularity index 

mapping technique was applied to indicate mineralization-favored spaces by 

characterizing variations of fault density (Wang et al., 2012). However, the influences of 

faults to ore-forming fluids and mineralization were not explained quantitatively, 

especially the spatial variations of controlling effects of faults. Therefore, according to a 

tectonic-geochemical collaboration, current research contributes a new effort to this topic 

by using the anisotropic singularity index mapping technique which was introduced in the 

former section. 

6.3. Singularity index mapping and results 

In the Gejiu mineral district, China Sn-Cu polymetallic mineralization is accompanied 

with the accumulation of Sn, Cu, Pb, W, and Zn. In this study, geochemical distributions 

of these elements are selected for singularity index mapping. Integrated geochemical 

distribution of these elements by the principal component analysis (PCA) method (Table 

6.1) is used as well to represent ore-forming elemental association (Fig. 6.2). As shown 

by these geochemical distributions (Fig. 6.2), patterns of both geochemical anomalies of 

individual elements and the association are controlled by tectonic-magmatism related 

granitic intrusions and fault structures. In the eastern district, geochemical anomalies of 

individual elements are extensively distributed, which are constrained by the EW 
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trending faults. In addition, the junctions of the faults striking along different orientations 

are the most important places for mineralization, where intensive release of tectonic 

stress is occurred. It is coincident with the occurrences of the known deposits located 

around the intersections of the EW trending faults and the NS trending Gejiu fault. 

Without presenting distinct geochemical anomalies, the Gejiu Batholith in the western 

district may not have great mineralization potentials due to the insufficiency of ore 

materials. However, the apparent geochemical anomalies around the intersections of the 

granitic intrusions and the fault structures (e.g., the northwestern edge of the Gejiu 

Batholith) may be caused by the interactions between wall rocks and the hydrothermal 

fluids during their migration within the fault systems. As the source of heat, these. 

hydrothermal fluids, which were probably differentiated from the Gejiu Batholith, altered 

the chemical properties of the carbonate wall rocks and boosted the directed migration 

and accumulation of ore-forming materials in the wall rocks. Therefore, faulted areas 

with less geo-stress dominating the physical-chemical reactions between hydrothermal 

fluids and wall rocks provide a mineralization-favored environment in the Gejiu mineral 

district. 

By the square window-based singularity mapping technique, a set of window sizes (i.e., 

e;) ranging from 6 to 26 km are defined, and fault traces can be classified based on the 

values of the singularity index a which describes the geochemical behaviors (i.e., 

enrichment and depletion) of the elements in space (Fig. 6.3). Since the isotropic nature 

of the square window-based singularity mapping technique, identified geochemical 

behaviors of the elements are the end products by combined effects of multiple geo-
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processes (e.g., magmatism and tectonic activities). The influences of each geo-process to 

mineralization cannot be recognized and reflected by the singularity index. Without 

emphasizing to certain geo-processes, the isotropic singularity indices are not supportive 

to describe mechanism of mineralization (i.e., interrelations of mineralization related 

controlling factors), although they are efficient to indicate locations of both weak and 

strong geochemical anomalies for geological exploration. 

Table 6. 1 Results of PCA of selected geochemical distributions and loadings of PC 1 
representing the spatial distribution of ore-forming fluids. 

PCl PC2 PC3 PC4 PCS 
Component Variance 3.04 0.91 0.52 0.32 0.21 

Cumulactive Importance 0.61 0.79 0.89 
of omponents 

0.96 1.00 

Cu Pb Sn w Zn 
PCl Loadings 0.40 0.48 0.46 0.42 0.46 

In order to apply currently introduced fault trace-oriented singularity index mapping 

techniques to characterize anisotropic geochemical signatures, fault traces in the study 

area are divided into equal segments (i.e., r = 3 km). Furthermore, a set of rectangular 

windows with half window sizes ranging from 3 km to 13 km at an interval of 1 km are 

predefined (i.e., c; = 6 km, 8 km, ... , 26 km). Consequently, 11 rectangular windows with 

sizes r x c; (i.e., 3x6 km2
, 3x8 km2

, ••• , 3x26 km2
) will be used. During the singularity 

estimation process, element concentration C[A(rxc;)] is calculated by averaging the 

values of all geochemical samples within the window. Plotting c; and C[A(rxc;)] on a log-

log graph, a linear trend can be achieved by means of the least square method. The slope 

of the regression is the value of ar - 1 (Fig. 6.4). From the spatial distributions of 
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singularity indices of selected ore-forming elements and elemental association (Fig. 6.5), 

the positive fault segments ( ar < 1) are well coincident with the mineral occurrences. 

Comparing with the isotropic singularity indices (Fig. 6.3), the newly estimated 

anisotropic singularity indices (Fig. 6.5) with more physical-chemical meanings support 

understandings to mechanism of mineralization (i.e., interrelations between hydrothermal 

fluids, fault spaces, and wall rocks), and the variations of patterns of fault segments are 

more delicate. 

Due to the variations of tectonic stress, faults with diverse mechanical properties can 

provide various influences on fluids or mineralization. Through currently achieved results 

(Fig. 6.5), the influences of an individual fault on hydrothermal fluids or mineralization 

are characterized by the continuous chemical reactions between wall rocks and fluids at 

different segments along the fault trace. The EW trending faults controlling the spatial 

distributions of the ore fields in the eastern mineral district possesses positive singularity 

indices (ar < 1). Especially, the segments intersecting with the NS trending faults with 

even smaller ar are corresponding with the accumulation of individual elements and 

elemental association. It is coincident with the fact that areas near/around the 

intersections are the major mineralized positions in the eastern district. For the EW 

trending segments in a longer distance from the intersections, the medium singularity 

indices indicate that the reactions of fluids and wall rocks within these segments are not 

sufficient to facilitate mineralization. In the western district, positive segments (i.e., ar < 

1) are mainly trending along the NE direction that satisfies former discussions (i.e., the 

NE trending faults dominated the spatial distributions of mineral deposits). However, the 
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negative segments (i.e., ar > 1) indicate that hydrothermalism is inactive at the positions 

far away from the intrusions (Fig. 6.5). Without fluids passing through the faults, 

hydrothermal mineralization is not well developed in these areas. From the patterns of 

these faults, segments of an individual fault trace possess different singularity indices. It 

might be due to the differences of interchange of materials between fluids and wall rocks 

during the fluids passing through the fault structures and the migration of ore-forming 

material toward the segments with positive singularity indices. These segments are 

mainly located near/around the intersections of the faults in different orientations and the 

intersections of the faults and intrusions. 

6.4. Discussions 

Singularity index mapping technique efficient in identifying heterogeneity of 

geochemical signatures had been utilized to identify geochemical anomalies in many 

cases. As an example of interdisciplinary collaboration, this chapter applies a newly 

proposed fault trace-oriented singularity index mapping technique to characterize 

anisotropic geochemical signatures associated with hydrothermal mineralization. 

According to a case study in Gejiu area, it can be considered as a supplement to the 

formerly introduced square window-based isotropic singularity index mapping technique. 

The fault trace-oriented singularity index assigned to its corresponding fault segment 

provides an inspiring way to qualitatively and quantitatively explain the interrelations 

between fault activities and hydrothermal fluids or mineralization. In comparison with 

frequently employed fault properties (e.g., length, density, types, etc.), the fault trace-
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oriented singularity index as an new fault attribute is applicable to describe variations of 

physical-chemical reactions between ore-forming fluids and wall rocks along fault traces 

that benefit the interpretation to metallogenic mechanism. 

Because of currently used geochemical data at a 2 km spatial resolution, fault traces are 

predefined at a longer unit (i.e., 3 km) which is advantage to employ sufficient 

geochemical samples for the singularity index estimation (i.e., regression) and to preserve 

geo-information of 2 km resolution geochemical data. If fault traces can be divided by a 

finer unit and cooperate with geochemical data at a higher resolution, more detailed 

variations of interrelations between fault systems and hydrothermal fluids or 

mineralization will be expected. 

Mineralization which is mentioned again is complex and controlled by various non-linear 

geo-processes. Geochemical signatures of mineralization-favored spaces inherited from 

these geo-processes are anisotropic. The fault trace-oriented singularity index properly 

depicts the anisotropy associated with fault systems. Other controlling factors including 

wall rocks, intrusions, and their contact zones influence the formation of anisotropic 

geochemical signatures as well. If the anisotropy of these controlling factors can be 

characterized by other interdisciplinary collaborations (e.g., tectonics-geophysics, 

geochronology-geochemistry, etc.), then approaches like regression analysis can be 

employed to examine the anisotropic influences of each controlling factor on 

mineralization, and more comprehensive understandings to cascade mineralization 

process is expected. 
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Fig.6. 2. Geochemical distributions of main ore-forming elements and elemental 
association. a: Cu; b: Pb; c: Sn; d: W; e: Zn; f: the ore-forming element association. 
Occurrences of mineral deposits (i.e., Cu, Pb, Sn, W, and Zn), fault traces, and outcrops 
of intrusions are shown for reference. 

115 



I N 

/~. 

I .a. z...,..n 
I 
I 
! t.ff·l.77 

l.'77·1M 
lM·?.17 
l.ll•LU 

a..-h'eroct.I 

Fig.6. 3. Spatial distributions of isotropic singularity index estimated by the square 
window-based method. Various a in a 2-dimensional scenario estimated based on ore 
forming elements and elemental association are demonstrated in a: Cu; b: Pb; c: Sn; d: W; 
e: Zn; f: element association. 
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Fig.6. 4. Example fault segments in the Gejiu mineral district are provided to demonstrate 
how the anisotropic singularity index is estimated for individual fault segment. Locations 
of these four segments can be found in Fig. 6.1. a: ar = 0.89; b: ar = 0.82; c: ar = 1.15; d: 
ar = 1.23. 
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Fig.6. 5. Spatial distributions of anisotropic singularity index indicate the spatial 
variations of interrelations between faults and fluids or mineralization. Various ar in a 1-
dimensional scenario estimated based on ore forming elements and elemental association 
are demonstrated in a: Cu; b: Pb; c: Sn; d: W; e: Zn; f: elemental association. Positive 
and negative fault segments are defined by a,< 1 and a,> 1, respectively. 

118 



Chapter 7. Gejiu formation characterization by 

geochemical data analysis 

7 .1. Introduction to geological f ea tu re identification by 

geochemical data analysis 

As introduced in former chapters, the hydrothermal mineralization accompanied with 

formation of various geological bodies is produced by a series of geological activities. 

Knowledge of these geological bodies assistant to characterize these geological activities 

is consequently significant to mineral exploration (Agterberg et al., 1996; Bonham-Carter, 

1994; Cheng et al., 2011, 2012). Based on detailed field observations and studies of 

mineralogy and isotope geochemistry, controlling effects of the geological bodies or 

activities can be analyzed; however, achieved knowledge of these geological issues in 

terms of types, distributions and geneses are only qualitatively interpretable rather than 

spatially and quantitatively (Wang et al., 2011). Nowadays, advancements in computer 

sciences and geo-databases (e.g., geological, geophysical and geochemical data) have 

greatly improved the knowledge (i.e., geo-information) acquisition of these concerns. 

Geological database consisting of location information of geological occurrences provide 

spatial distributions of various outcropping geological bodies (e.g., mineral deposits, 

earthquakes, etc.). For hydrothermal mineral exploration modeling, spatial distributions 

of fault traces, intrusions and wall rocks as three important controlling factors can be 
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interpreted from their location information and further considered as main components of 

an exploration model (Bonham-Carter, 1994). Buffer analysis is a typical data processing 

method commonly employed in mineral exploration. Based on distance from locations of 

a certain geological bodies (i.e., controlling factors), its controlling effects to 

mineralization can be estimated. For hydrothermal mineralization, areas surrounding 

igneous rocks (e.g., intrusions), close to fault traces or their intersections, and within ore­

bearing strata (e.g., wall rocks) are believed as mineralization favored spaces. In addition 

to the intuitive characterization of mineral potentials by creating buffers, based on their 

spatial association with discovered mineral occurrences, spatial statistical approaches 

(e.g., student's !-value) further reclassify these multiple buffers to binary patterns that are 

influence areas of corresponding geological bodies to hydrothermal mineralization and 

the background, respectively. With more geological guidance, the interpretation to the 

new characterization are more quantitative; however, due to the variations of geological, 

geophysical and geochemical signatures of these geological bodies or activities across the 

space, their controlling effects to mineralization are spatially varying (Wang et al., 

2013b); therefore, The optimal buffer may not properly indicate the influenced areas of 

the controlling factors, and delineations from more detailed observations are necessary. 

Geophysical and geochemical data as two primary geo-information resources can be 

utilized to indicate geological bodies by characterizing their physical and chemical 

properties. Geophysical data efficient in identifying underground objects is frequently 

employed to depict spatial distributions of geological bodies (Cheng and Xu, 1998; 

Nabighian et al., 2005a, 2005b; Wang et al., 2011, 2013a). As introduced in chapter 4, 
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granitic intrusions can be outlined base on spatial variations of geophysical anomalies. 

Geochemical data as another important geo-information resource is applicable to describe 

presence and absence of geological bodies as well. In mineral exploration, geochemical 

data analysis plays a significant role in indicating spatial distributions of mineralization 

associated geo-anomalies. Numerous advanced analysis methods have been employed to 

characterized spatial distributions of geochemical signatures (Cheng et al., 1994; Cheng, 

2007a; Xie et al., 2007; Zuo et al., 2009). Reviewing applications of geochemical data 

analysis to mineral exploration, it can be noticed that most published researches mainly 

focused on characterizing ore-forming elements or element assemblages, results of which 

were used to represent geochemical signatures of mineralization (e.g., identified 

mineralization in Chapter 5); whereas, geological bodies associated with geological 

activities which constitute the cascade process of mineralization are not often concerned 

by geochemical data analysis. Consequently, geo-information integration without 

geochemical signatures of these geological bodies may not be a comprehensive indication 

to mineralization (Cheng, 2012; Wang et al., 2011, 2012; Zhao et al., 2012). 

Until recent years, several efforts have been attempted to delineate mineralization 

associated geological bodies according to their spatially distributed geochemical 

signatures (Cheng, 2012; Cheng et al., 2011; Wang et al., 2011, 2012; Zhao et al., 2012). 

Cheng et al (2011) and Zhao et al (2012) employed major oxides to describe geochemical 

signatures of intrusions in southeastern Yunnan and eastern Tianshan mineral districts, 

China, respectively. These results are more interpretable and well delineate spatial 

distributions of mineralization associated intrusions. As a follow-up research of 
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geological body identification, the Gejiu formation as main ore-bearing strata in the study 

area is identified by using PCA to integrate geochemical signatures of several selected 

elements and oxides. As a comparison, singularity index mapping technique is applied to 

characterize spatial variations of selected elements and oxides, results of which are 

further integrated by PCA to describe spatial variations of geochemical signatures of the 

Gejiu formation. Detailed information about these two processes can be found in the 

following sections. 

7 .2. Characterization of Gejiu formation 

7.2.1 Geochemical signatures identification for Gejiu formation 

Pointed out by former researches (Zhuang et al., 1996), the Middle Triassic Gej iu 

formation is mainly composed of carbonate rocks (e.g., dolostone and limestone) (i.e., 

high contents of CaO and MgO, low content of Si02, K20, and Na20); furthermore, as 

the main ore-bearing strata, ore-forming elements are accumulated in the Gejiu formation, 

concentrations of which are higher than other formations in the study area (Zhuang et al., 

1996). Therefore, current research chooses four oxides associated with carbonate 

rocks (i.e., CaO, Si02, K20 and Na20) and five typical ore-forming elements (i.e., Ag, 

Cu, Pb, Sn, and Zn) to delineate spatial distributions of the Gejiu formation, by which 

both general and specific geochemical signatures can be characterized by PCA, 

simultaneously. 
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T bl 7 1 R a e esu ts o fPCA f 1 d o se ecte h . 1 1 d ·d geoc em1ca e ements an ox1 es. 
Principal Components (PCs) PCl PC2 PC3 PC4 PCS PC6 
Component variance (Eigenvalues) 3.57 1.95 1.43 0.84 0.53 0.52 
Standard Deviation 1.89 1.40 1.20 0.92 0.73 0.72 
Relative Importance of Components 0.36 0.20 0.14 0.08 0.05 0.05 
Cumulative Importance of Components 0.36 0.55 0.70 0.78 0.83 0.88 

0.6 

0.3 

0 

-0.3 

-0.6 

Zn Sn Pb Cu Cao Ag 

Fig.7. 1. PCl loadings of the Gejiu formation associated elements and oxides. It supports 
the PCl can represent geochemical signatures of the Gejiu formation. 

According to the results shown in Table 7.1, the first three principal components (PCs) 

with eigenvalues greater than 1 (Kaiser, 1960) can be retained for interpretation. 

Positively loadings of selected oxides and elements are consistent with geochemical 

signatures of the Gejiu formation while negative loadings correspond to geochemical 

signatures of felsic rocks (Fig. 7 .1 ). Geo-information interpreted from the loadings 

123 



satisfies the metallogenetic model that the mineralization occurred within the Gejiu 

formation (i.e., wall rocks). Therefore, high scores of the PCl can be suggested to 

indicate the presence of the Gejiu formation by spatial distributions of its geochemical 

signatures (Fig. 7 .2). Overlaid with geological occurrences, outcrops of the Gejiu 

formation are well correspond to patterns with high PC 1 scores. Most discovered mineral 

deposits are located in the high scores. Furthermore, the hydrothermal mineralization 

favored spaces provided by the Gejiu formation are delineated as well. 

-Low ~ --~~---"---=----'o'--~-=-~~=-~~'---' 
Fig.7. 2. PCl scores to indicate spatial distribution of geochemical signatures of the Gejiu 
formation. 

7.2.2 Spatial distributions of mineralization in the Gejiu formation 

Stages of the hydrothermal mineralization include intrusions of magma, migration of ore-

forming materials through fault systems, hydrothermal metasomatism, and mineralization 

in wall rocks, occurrences of which located in specific positions of wall rocks can cause 

variations of geochemical signatures, or so-called geo-anomalies, which are frequently 
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employed to locate mineral deposits. Former studies introduced that geochemical 

anomalies associated with these geo-processes are proper indicators of occurrences of 

mineralization (Cheng, 2007a; Wang et al., 2011, 2012, 2013a; Xie et al., 2007; Zhao et 

al., 2012; Zuo et al., 2009). Therefore, in addition to delineate spatial distributions of the 

ore-bearing strata, spatial variations of geochemical signatures of the Gejiu formation are 

necessary to be characterized to enhance exploration efficiency. Singularity index 

mapping technique formerly used to map geo-anomalies by characterizing spatial 

variations of physical or chemical quantities is currently utilized to analyze these selected 

oxides and elements, results of which are integrated by PCA to indicate the presence of 

mineralization within the Gejiu formation. 

By singularity index mapping technique, areas with accumulation of selected elements 

and oxides are indicated by patterns with a < 2. Similar to the interpretation of PCA for 

selected geochemical distributions (Table 7.1 and Fig. 7.1), the first three PCs with 

eigenvalues greater than one are retained (Table 7 .2), and loadings of singularity indices 

of these elements and oxides in PCl (Fig. 7.3) support the scores of PCl can be used to 

represent spatial variations of geochemical signatures of the Gejiu formation. Indicated 

by patterns with low scores, areas with accumulations of ore-forming element association 

not only characterize spatial variations of geochemical signatures but also indicate 

specific locations of mineralization within the Gejiu formation (Fig. 7.4). The newly 

obtained geo-information by integrating singularity indices of these elements and oxides 

is more appropriate to be used theoretically and visually for hydrothermal mineral 
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exploration modeling. Statistical and quantitative comparisons of the results will be 

demonstrated in the following chapter of geo-information integration. 

Table 7. 2 Results of PCA of singularity indices of selected geochemical elements and 
oxides. 
Principal Components (PCs) PCl PC2 PC3 PC4 PCS PC6 
Component variance (Eignvalues) 3.45 1.76 1.56 0.74 0.71 0.53 
Standard Deviation 1.86 1.32 1.25 0.86 0.84 0.73 
Relative Importance of Components 0.35 0.18 0.16 0.07 0.07 0.05 
Cumulative Importance of Components 0.35 0.52 0.68 0.75 0.82 0.88 

0.6 

0.4 

0.2 

0 

-0.2 

-0.4 

a(Zn) a(Sn) a(Si02) a(Pb) a(Na.iO) a(MgO) a(K20) a(Cu) a(CaO) a(Ag) 

Fig. 7. 3. PC 1 loadings of singularity indices of the Gej iu formation associated elements 
and oxides. It supports the PC 1 can represent spatial variations of geochemical signatures 
the Gejiu formation. 
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7 .3. Discussions 

In this chapter, both traditionally used integration of geochemical signatures and 

currently used integration of geochemical behaviors (i.e., spatial variations of 

geochemical signatures) are employed to characterize the Gejiu formation in support of 

mineral exploration modeling in the study area. In comparison with commonly used geo-

information from geological database, currently achieved results are more reasonable to 

define influencing areas of geological bodies. Furthermore, identified from geochemical 

signatures, these results will benefit the interpretation to spatial variations of the 

controlling effects of various geological bodies across the space. 

Spatial distributions of geochemical signatures of the ore-bearding strata generally 

delineate mineralization favored space (i.e., the Gejiu formation). Identified geochemical 
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anomalies coincident with the Gejiu formation are indicative to spatial variations of 

regional geochemical signatures. In other words, the result is suitable to classify the 

regional lithological units; whereas, within spaces of the Gejiu formation, occurrences of 

the hydrothermal mineralization are located on specific positions (i.e., localized spaces) 

where interactions of the controlling factors facilitated the mineralization. The integration 

of singularity indices of these elements and oxides delineate geo-anomalies caused by 

spatial variations of local geochemical signatures. It is more indicative to the specific 

positions corresponding to occurrences of the hydrothermal mineralization within the 

Gejiu formation. Therefore, chosen as an indicator to the presence of the hydrothermal 

mineralization occurred in wall rocks, geo-information of the Gejiu formation identified 

by singularity-based methods is involved in the mineral exploration modeling of this 

dissertation. 
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Chapter 8. Geo-information integration for mineral 

potential mapping 

8.1. Introduction to the integration 

With the development of Earth observation techniques, mineral exploration becomes 

more dependent on the geo-information identified from data. By interpreting 

observational datasets (e.g., geological, geophysical, geochemical and remotely sensed 

data), various Earth's properties can be inferred, the spatial variations of which can be 

further employed to concerns of diverse geological issues (Wang et al., 2011, 2012, 

2013a; Zhao et al., 2012). In mineral exploration, uni-source datasets can be processed by 

advanced spatial analysis methods and provide geo-information in support of the 

exploration modeling, examples of which can be found in former chapters. In order to 

achieve comprehensive interpretation to mineralization, geo-information from multi-scale 

is required to be integrated frequently. For instance, regional tectonic features (e.g., fault 

traces) as one of causative bodies of magnetic anomalies can be tracked by aeromagnetic 

data in some cases (Kearey et al., 2002); whereas, the detection to tectonic features 

without geophysical anomalies is frequently assisted by remotely sensed data (Kowalik 

and Glenn, 1987). As introduced in former chapters, geological processes associated with 

the hydrothermal mineralization in the southeastern Yunnan mineral district, China were 

characterized based on the spatial analysis of geophysical and geochemical datasets that 

well demonstrated the efficiency of uni-source datasets in identifying geological features. 
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However, mineralization is a complex geo-process denominated by superposition of 

various associated geological activities (e.g., sedimentation, magmatism, tectonism, 

metamorphism, etc.). Uni-source geo-information interpretable to individual geological 

process may not properly indicate the characteristics of mineralization. Consequently, 

geo-information integration is necessary in the mineral exploration modeling. 

Nowadays, improved accessibility to multi-source datasets strongly enhanced the 

knowledge of various Earth's properties that benefits interpreters to better understand 

geological settings from different aspects of geological signatures (e.g., physical and 

chemical). Furthermore, with the participation of GIS and its additional extensions in 

identifying target areas for mineral exploration, advantages of multi-source geo­

information integration have been widely received by geologists (Harris and Sanbom­

Barrie, 2006). In Cheng (2007a), identified geochemical anomalies of ore-forming 

elements by singularity index mapping technique were successfully integrated by PCA to 

indicate mineralization in Gejiu mineral district, China. In Harris et al (2006) weights of 

evidence (W ofE) and logistic regression were applied to create gold prospectivity maps 

in the Red Lake mineral district, Canada. More comprehensive reviews regarding to geo­

information integration can be found in Bonham-Carter (1994) and Harris and Sanbom­

Barrie (2006). 

As introduced in Chapter 1, the mineral exploration modeling is a dynamic process. With 

the improvements of data collection and processing technique, some formerly achieved 

geo-information (e.g., spatial distributions of geological features) will be modified or 
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retired. Using these geo-information as main components, the exploration modeling 

process can be updated accordingly, results of which will be replaced by more significant 

and accurate geo-information. In current chapter, geo-information associated with 

hydrothermal mineralization in the study area extracted from geological, geochemical 

and geophysical datasets to represent different controlling factors are integrated by 

selected methods. Moreover, geo-information identified by traditional approaches and the 

currently employed singularity mapping-based technique are compared to demonstrate 

the improvements of the updated mineral exploration modeling. 

8.2 Geo-information preparation 

Geo-anomalies (i.e., geo-information) of the hydrothermal mineralization associated 

controlling factors (i.e., Gejiu formation, fault traces and felsic intrusions) of the study 

area had been extracted by singularity index mapping-based spatial analysis methods 

from geochemical, geological and geophysical data in former chapters, respectively. In 

this chapter, three selected geo-information integration methods are employed. First of all, 

RGB composite image commonly used in remote sensing field is currently applied to 

combine geo-information of the three controlling factors. Secondly, principal component 

analysis (PCA) which is one of the most well-known multivariate statistical approaches 

to integrated geo-variables is currently chosen to mapping mineral potentials based on 

extracted geo-information by traditionally and currently used singularity mapping-based 

methods. Thirdly, weights of evidence method (WofE) as one of the most important 

prospecting methods in mineral exploration is employed as well. Before the integration, 
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there are several preparations need to be completed. 

8.2.1. Fault traces 

By traditionally used spatial analysis methods, geo-information of fault traces are often 

derived from the density analysis (e.g., total number of faults per area and total length of 

faults per area) (Xypolias and Koukouvelas, 2004). As introduced in chapter 5, the geo­

information of fault length density was extracted from geological data (Fig. 8.1 r Fault 

length density defined as an estimator of fault intensity can be used to evaluate if an area 

is favorable to the mineralization of hydrothermal deposits or not. Furthermore, as 

illustrated in chapter 5, the student's t-value assists to determine a threshold which 

reclassified the spatial distribution of fault length density (Fig. 8.1) to a binary pattern: 

one corresponds to mineralization favored fault anomalies, while the other corresponds to 

the background (Fig. 5.7b). By currently used the singularity index mapping technique, 

spatial variations of fault density (i.e., accumulation and depletion) had been 

characterized in chapter 5 (Fig. 5.5). As well as the spatial distribution of fault length 

density, spatial distributions of the fault singularity indices had been defined to be a 

binary pattern consisting of fault anomalies and the background (Fig. 5.7a). The spatial 

distributions of fault length density, fault singularity indices and their corresponding 

binary patterns will be used as geo-information of faults to be integrated with geo­

information of the other two controlling factors. 
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Fig. 8. 1. Fault length density of southeastern Yunnan mineral district, China. Areas with 
high density values are favor to the mineralization of hydrothermal mineralization. 

8.2.2. The Gejiu formation 

In the aspect of traditional analysis of the Gejiu formation, geochemical distributions 

associated with its geochemical signatures were selected and integrated by PCA. The 

spatial distribution of the ore-bearing strata had been depicted clearly (Fig. 7 .1 ). In order 

to evaluate the spatial association between identified geo-information of the Gejiu 

formation and known mineral occurrences, student's t-value is used. Similar to the 

analysis to faults, a threshold can be estimated to define a binary map. Supported by the 

geo-information of the Gejiu formation, one class of patterns indicates spatial 

distributions of areas highly associated with the hydrothermal mineralization, while the 

other class of patterns corresponds to the background (Fig. 8.2). 
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Fig. 8. 2. a: Student's !-values calculated by weights of evidence (WofE) method for 
measuring the spatial correlation between deposits and spatial distributions of 
geochemical signatures of the Gejiu formation. b: Binary map of the Gejiu formation 
indicating areas highly associated with mineral occurrences. 
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Fig. 8. 3. a: Student's !-values calculated by weights of evidence (WotE) method for 
measuring the spatial correlation between deposits and mineralization in the Gejiu 
formation. b: Binary map of mineralization in the Gejiu formation indicating areas highly 
associated with mineral occurrences. 

Spatial distributions associated with singularity indices of geochemical signatures of the 

Gejiu formation were firstly derived, and then PCA was applied to integrate these 

identified spatial variations to characterized geochemical behaviors of 
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elements/compounds enriched in the Gejiu formation (Fig. 7.3). Similar to the analysis of 

geochemical signatures of the Gejiu formation, student's !-value is employed as well. 

Anomalous areas highly associated with known mineral occurrences are indicated in the 

binary map (Fig. 8.3). Furthermore, in comparison with the result supported by 

geochemical signatures of the Gejiu formation, newly achieved result improves the 

indication to mineral occurrences that well demonstrates the advantages of currently used 

singularity index mapping techniques. The spatial distributions of geochemical signatures 

(Fig. 7.1) and behaviors (Fig. 7.3) of element association enriched in the Gejiu formation 

and their corresponding binary patterns (Figs. 8.2 and 8.3) will be used as geo­

information of the Gejiu formation to be integrated with geo-information of the other two 

controlling factors. 

8.2.3. Granitic intrusions 

As introduced in chapter 4, both traditionally used band-pass filter technique and 

currently applied singularity index mapping technique had been discussed. Advantages of 

singularity theory to scale independence are demonstrated in Figs. 4.5 and 4.6, 

respectively. In current study, spatial distributions of physical properties of granitic 

intrusions in the Gejiu mineral district, China are mainly delineated by the geo­

information from gravity and aeromagnetic data. In order to integrate with the other geo­

information of controlling factors, geo-information of rock density and magnetism are 

necessary to be pre-integrated for representing geo-information of granitic intrusions. For 

the traditionally used data analysis methods, Bouguer anomalies and aeromagnetic data 
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are integrated by PCA (Table 8.1 ). According to the loadings of the two PCs, both geo-

information from gravity and aeromagnetic data are positively loaded in PC2 (Fig. 8.4a). 

It satisfies the fact that granitic intrusions are characterized by low values of both gravity 

and magnetism. Therefore, low PC2 scores can be accepted to represent spatial 

distributions of physical properties of granitic intrusions in current research (Fig. 8.4b ). 

In order to delineate mineralization favored areas supported by geo-information of 

granitic intrusions, student's !-value is applied to estimate the threshold (Fig. 8.4c) which 

is further employed to define a binary map indicating anomalies and the background, 

simultaneously (Fig. 8.4d). 

Table 8. 1 Results of PCA of Bou uer anomalies and aeroma etic data. 
PCI PC2 
1.08 0.92 
1.04 0.96 
0.54 0.46 
0.54 1.00 

Table 8. 2 Results of PCA of singularity indices of Bouguer anomalies and aeromagnetic 
data. 

PCI PC2 
1.12 0.88 

Standard Deviation 1.06 0.94 
0.56 0.44 
0.56 1.00 

Correspondingly, spatial variations of rock density and magnetism which had been 

characterized by singularity index mapping technique need to be pre-integrated to 

represent spatial variations of physical properties of granitic intrusions. By PCA, the 

singularity indices of Bouguer anomalies and aeromagnetic data are integrated (Table 

8.2). According to the loadings of the two PCs, these two variables are positively loaded 
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in PCI (Fig. 8.5a). It satisfies that granitic intrusions are corresponding to high 

singularity indices (i.e., depletion) of both gravity and aeromagnetic data. Therefore, the 

high PC I scores can be used to represent spatial variations of gee-physical properties of 

granitic intrusions (Fig. 8.5b). By student's !-value (Fig. 8.5c), a binary map is defined to 

indicate both anomalies and the background, simultaneously (Fig. 8.5d). 
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Fig. 8. 4. Geo-information extracted from geophysical data by PCA. a: PC2 loadings of 
gravity and magnetic data supporting that the PC2 can represent physical signatures of 
the granitic intrusions. b: Spatial distributions of PC2 scores of aeromagnetic and 
Bouguer anomalies. c: Student's t-values calculated by weights of evidence (WofE) 
method for measuring the spatial correlation between deposits and values of PC2 scores. 
d: Binary map of PC2 scores indicating areas highly associated with mineral occurrences. 
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Fig. 8. 5. Geo-information extracted from singularity indices of geophysical data by PCA. 
a: PC I loadings of singularity indices of gravity and magnetic data supporting that the 
PCl can represent physical signatures of the granitic intrusions. b: Spatial distributions of 
the PC 1 scores of singularity indices of aeromagnetic and Bouguer anomalies. c: 
Student's /-values calculated by weights of evidence (WofE) method for measuring the 
spatial correlation between deposits and values of the PCI scores. d: Binary map of the 
PC 1 scores indicating areas highly associated with mineral occurrences. 
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8.3. Geo-information Integration 

After preparation, all geo-information of faults, the Gejiu formation and granitic 

intrusions are obtained for mineral exploration modeling. Due to the non-linear nature of 

mineralization and its associated geo-processes, influences of these controlling factors to 

the hydrothermal mineralization are diverse and varying. In addition to indicate areas 

with mineral potentials, all achieved gee-information are necessary to be integrated to 

demonstrate the variations (Fig.8.6). 

Geochemical signatures 

Singularity indices 

Geophysical anomaly by 
band- ass filter 

Geophysical anomaly by 
sin ari filter 

Fault length density 

Fault singularity 

The Gejiu formation 

Granitic intrusions 

Faults 

RGB 

PCA 

WofE 

RGB integration by 
traditional methods 

RGB integration by 
sin lari -basedmethods 

PCA integration by 
traditional methods 

PCA integration by 
sin ulari -basedmethods 

WofE integration by 
traditional methods 

Fig. 8. 6. A concept model to indicate integration processes demonstrated in this chapter. 

8.3.1 RGB composite image 

As an important gee-information integration method in remote sensing, the RGB 

composite image of the three controlling factors is provided to exhibit mineral potentials 

and the influences of these controlling factors on mineralization. Before the combination, 

high values of all geo-information are defined to indicate presences of their 
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corresponding factors. Furthermore, since the former studies indicated that the 

hydrothermal mineralization mainly occurred within the contact zone of intrusions and 

wall rocks, the areas of outcrops of granitic intrusions identified from the geological map 

are masked from the geo-information of granitic intrusions (Figs. 8.4b and 8.5b) to 

indicate the buried ones. The red, green and blue transformations are applied to the geo­

information of fault, the Gejiu formation and buried granitic intrusions, respectively (Fig. 

8. 7). According to the RGB color model, the reddish, greenish and bluish patterns imply 

that the hydrothermal mineralization is controlled by single corresponding factors, while 

the off-white patterns imply combining effects of all three controlling factors. Most of 

known mineral deposits located in the areas of secondary colors rather than primary 

colors satisfy the fact that hydrothermal mineralization was caused by interactions of 

multiple ore-controlling factors at specific locations, especially the bright patterns at the 

southeast of the Gejiu batholith demonstrating the mineralization caused by interactions 

of intensive influences of faults, granitic intrusions and hydrothermal alteration within the 

Gejiu formation. The cyan patterns as a combination of the Gejiu formation and granitic 

intrusions may correspond to the skam mineralization at their contract zones caused by 

the emplacement of the intrusions to the carbonate strata. The magenta patterns as a 

combination of faults and granitic intrusions may correspond to the vein type 

mineralization caused by the migration of ore-bearing hydrothermal fluids within spaces 

produced by faults. The yellow patterns as a combination of faults and the Gej iu 

formation may correspond to mineralization favored spaces within the Gejiu formation 

produced by faults. 
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Fig. 8. 7. RGB composite images of geo-information of three controlling factors. Red, 
green and blue transformations are applied to gee-information of fault, the Gejiu 
formation and granitic intrusions, respectively. a: RGB image based on gee-information 
identified by traditional methods. b: RGB image based on gee-information identified by 
currently used singularity-based methods. Mineral occurrences and outcrops of granitic 
intrusions are shown for reference. 
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Through the comparison of these two RGB composite images, it can be noticed that the 

patterns by traditional methods are complicated to be interpreted. Interactions of three 

controlling factors are not explicit to be classified (Fig. 8.7a); whereas the singularity­

based result can assist to infer the hydrothermal mineralization by interpreting 

interactions of three controlling factors (Fig. 8. 7b ). However, although the composite 

colors representing different combinations of the three controlling factors, current results 

are essentially dependent on geological interpretation to the composite color and 

quantitative and qualitative interpretation of mineral potentials may not be feasible to 

support of mineral exploration. Therefore, in addition to the RGB composite image, other 

integration methods are necessary to be attempted to improve the mineral exploration 

modeling process. 

8.3.2 Principal component analysis 

In former chapters, principal component analysis (PCA) as a classic multivariate analysis 

method were successfully applied to integrate gee-variables for characterizing controlling 

factors of the hydrothermal mineralization in southeastern Yunnan mineral district, China. 

In order to achieve an improved delineation of mineral potentials by RGB composite 

image, PCA is currently employed to integrate geo-information of the three controlling 

factors (i.e., granitic intrusions, the Gejiu formation and faults). Similar to the RGB 

composite image, the areas of outcrops of granitic intrusions identified from the 

geological map are masked off from the gee-information of granitic intrusions as well. 
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Therefi ore, the three sets of geo-information integrated by PCA in this section are spatial 

distrib utions of buried granitic intrusions, the Gejiu formation and faults, respectively. 

Table 8. 3 Results of PCA of three controllin factors identified by traditional methods. 

Princi pal Components (PCs) PC 1 PC2 PC3 

Comp onent variance (Eignvalues) 1.37 0.91 0.72 

Stand ard Deviation 1.17 0.95 0.85 

Relati ve Importance of Components 0.46 0.30 0.24 

Cumu lative Importance of Components 0.46 0.76 1.00 

For th e geo-information identified by traditional methods, high values of the Gejiu 

form a ti on and faults indicate presences of their corresponding controlling factors, while 

low va lues of the granitic intrusions indicate the presence of their corresponding factor. 

Applyi ng PCA to the geo-information identified by traditional methods, results in Table 

8.3 ind icate that the PC 1 with an eignvalue greater than 1 can be retained for further 

analysi s (Kaiser, 1960). The loadings of the three sets of geo-information in PC 1 support 

that lo w scores of PC 1 are qualified to describe interactions of the three controlling 

factors which illustrate the spatial distribution of mineral potentials of the study area (Fig. 

8.8). F rom the patterns (Fig. 8.8b ), mineral occurrences are well correlated with the areas 

with lo w scores. 

Table 8. 4 Results of PCA of three controlling factors identified by singularity-based 
s. method 

Princi pal Components (PCs) PCl PC2 PC3 

Comp onent variance (Eignvalues) 1.13 0.99 0.88 

Stand ard Deviation 1.06 0.99 0.94 

Relati ve Importance of Components 0.38 0.33 0.29 

Cumu lative Importance of Components 0.38 0.71 1.00 
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For the geo-information identified by singularity-based methods, low values of the Gejiu 

formation and faults indicate presences of their corresponding controlling factors, while 

high values of granitic intrusions indicate the presence of their corresponding controlling 

factor. Applying PCA to the three sets of geo-information, the results in Table 8.4 

indicate that the PC 1 with an eignvalue greater than 1 can be retained for further analysis. 

According to the loadings of the three factors in PC 1, the low scores are accepted as 

indicators to the mineral potentials in the study areas (Fig. 8.9). From the patterns (Fig. 

8.9b), mineral deposits are well correlated with areas with low scores. 

Comparing two spatial distributions of mineral potentials (Figs. 8.8b and 8.9b ), there are 

some improvements of the result by singularity-based methods. First of all, the currently 

achieved result is more remarkable. Some overestimated and underestimated mineral 

potentials by traditional methods are confined by singularity-based methods. It well 

demonstrates the advantages of singularity index mapping technique in separating geo­

anomalies from both high and weak background. Secondly, the singularity-based result is 

· more interpretable to the process of hydrothermal mineralization because singularity 

indices integrated by PCA characterize geochemical behaviors associated to various geo­

processes. From the patterns (Fig. 8.9b ), spatial distributions of mineral potentials (i.e., 

low scores) satisfy that the granitic intrusions provided heat and metal resources; ore­

forming fluids migrated within the space produced by faults; and the hydrothermal 

mineralization occurred at the mineralization-favored locations within the contract zones 

of the granitic intrusions and the Gejiu formation. In contrary, such inference is not easy 
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to be clarified by the spatial distributions of mineral potentials from traditional methods 

identified geo-information (Fig, 8.8b ). 

If currently achieved PCA results are compared with RGB composite images 

demonstrated in the last section, some differences among these results are worth to be 

discussed. First, mineral potentials delineated by PCA results are more explicit. The 

results can be used independently, whereas RGB composite images were dependent on 

interpretation to various composite colors. Second, as introduced formerly, the 

hydrothermal mineralization in the study area was caused by the interactions of its 

controlling factors at the specific locations, whereas the PCA results cannot indicate these 

interactions properly. Mineralization favored areas supported by all sets of geo­

information are integrated without ranking them in any orders to demonstrate the degrees 

that each controlling factor contributed to the hydrothermal mineralization. In other 

words, the PCA results can depict the comprehensive mineral potentials efficiently, but 

necessary interpretable geological meanings to the mineralization are not supported 

sufficiently. Therefore, in order to achieve a quantitatively, qualitatively and easily 

interpretable result, more integration methods need to be attempted. 
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Fig. 8. 8. Applications of PCA to integrate geo-information identified by traditional 
methods. a: Loadings of each controlling factors in PC 1 supporting that PC 1 
corresponding to mineral potentials. b: Scores of PCI indication the mineral potentials. 
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Fig. 8. 9. Applications of PCA to integrate geo-information identified by singularity­
based methods. a: Loadings of each controlling factors in PC 1 supporting that PC 1 
corresponding to mineral potentials. b: Scores of PC 1 indicate mineral potentials. 

8.3.3 Weights of evidence 

Based on the Ba~esian probability theory, weights of evidence (WofE) can map mineral 

potentials in areas where a number of occurrences were discovered. As introduced in 

former sections of this chapter, areas highly associated with the hydrothermal 
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mineralization had been identified by student's t-values from geo-information of the three 

controlling factors. As shown in the pre-defined binary maps (Figs. 5.7, 8.2, 8.3, 8.4, and 

8.5), green patterns are the mineralization favored space supported by their corresponding 

controlling factors, respectively. By the WofE method, all of these binary patterns with 

explicit geological meanings are combined. Indications of integrated patterns to the 

hydrothermal mineralization can be interpreted according to the combinations of 

controlling factors (i.e., qualitatively and easily interpretable). Furthermore, the Bayesian 

theory-based W ofE method can calculate the posterior probability of the hydrothermal 

mineralization for all patterns within the areas based on the prior probability of mineral 

occurrences in the study area (i.e., quantitatively interpretable). 

For the integration of geo-information identified by traditional methods, three sets of geo­

information are integrated and the specific interactions of certain controlling factors are 

easily to be interpreted (Table 8.5). Furthermore, applying the formulas introduced in the 

chapter of methodology to the parameters in Table 8.5, posterior probabilities of patterns 

of all combinations are calculated based on a prior probability of 0.017 for mineral 

deposit occurrence. The spatial distributions of posterior probabilities well demonstrate 

the hydrothermal mineralization-favored spaces, and can be interpreted either 

quantitatively or qualitatively (Fig. 8.lOa). Similarly, three sets of geo-information 

identified by singularity-based methods are integrated and the posterior probabilities of 

patterns of all combinations are calculated as well (Table 8.6). Simultaneously, the spatial 

distributions of posterior probabilities indicate favorability of certain areas to 

hydrothermal mineralization in the study area (Fig. 8.1 Ob). 
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When results from geo-information identified by both traditional methods and 

singularity-based methods are evaluated by the prior probability (i.e., 0.017) of the 

hydrothermal mineralization, patterns of three controlling factors are present (Fig. 8.10) 

where posterior probabilities of two results are nearly 18 and 25 times greater than the 

prior probability, respectively (Tables 8.5 and 8.6). It indicates that both results are 

meaningful and the three sets of singularity-based geo-information provide a more 

explicit result. Furthermore, comparing the spatial distributions of integrated patterns of 

two results, it can be noticed that mineral potentials by the singularity-based result (Fig. 

8.lOb) are more informative than the traditional methods-based result (Fig. 8.lOa). Areas 

with mineral occurrences located which were indicated as low or non-favorable to 

mineralization by traditional methods (Fig. 8.1 Oa) are now inferred as targets with high 

mineral potentials by singularity-based methods (Fig. 8.1 Ob). All of these facts further 

demonstrate the efficiency of singularity index mapping technique in separating 

anomalies from both weak and strong background. 

In comparison with the results of RGB composite image (Fig. 8. 7) and PCA (Figs. 8.8 

and 8.9), the newly achieved spatial distributions of posterior probabilities not only 

describe qualitatively interactions of controlling factors to mineralization but also 

indicate quantitatively probabilities of mineral deposit occurrence at different locations. 

Therefore, in addition to informative integration results by the RGB composite image and 

the PCA, the W ofE provides improved results to indicate mineral potentials in a more 

straightforward and informative way. The following mineral exploration can be guided 

by geological meanings of integrated patterns and corresponding posterior probabilities. 
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Table 8. 5 Weights of evidence method (WofE) for integrating gee-information identified by traditional methods. 
Patterns Areas Number of mineral occurrences W s+ W s- C=W-W S(C) T=C/S(C) 

Gejiu 229 17 1.97 0.15 -0.23 0.08 2.2 0.17 
Intrusions 576 21 0. 77 0.22 -0.06 0.07 0.83 0.23 

Fault 677 15 0.16 0.09 -0.22 0.11 0.38 0.14 

12.73 
3.55 
2.63 

Patterns Posterior probability Posterior/prior 
Background 
Granitic intrusions 
Fault 
Granitic intrusions and fault 
Gejiu 
Gejiu and granitic intrusions 
Gejiu and Fault 
Integration anomaly 

0.010 
0.023 
0.015 
0.034 
0.092 
0.211 
0.135 
0.309 

0.60 
1.38 
0.88 
2.01 
5.42 
12.43 
7.92 
18.17 

Table 8. 6 Weights of evidence method (WofE) for integrating gee-information identified by singularity-based methods. 
Patterns Areas Number of mineral occurrences W s+ W s- C=W-W S(C) T=C/S(C) 

Gejiu 386 42 1.94 0.16 -0.2 0.08 2.14 0.18 11.81 
Intrusions 258 10 1.2 0.14 -0.24 0.08 1.44 0.16 9.09 

Fault 658 11 0.10 0.08 -0.23 0.13 0.34 0.16 2.14 
Patterns 
Background 
Granitic intrusions 
Fault 
Granitic intrusions and fault 
Ge jiu 
Gejiu and granitic intrusions 
Gejiu and Fault 
Integration anomaly 

Posterior probability 
0.009 
0.037 
0.012 
0.051 
0.074 
0.312 
0.114 
0.434 

Posterior/prior 
0.53 
2.18 
0.71 
3.00 
4.35 
18.35 
6.71 

25.53 
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Fig. 8. 10. Applications of WofE to mapping mineral potentials. a: Posterior probability of mineralization by geo-information 
identified by traditional methods. b: Posterior probability of mineralization indicated by geo-information identified by 
singularity-based methods. 
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8.4. Discussions 

In this chapter, the student's t-test is used to define binary patterns with highest spatial 

association with mineral occurrences. Normally, the t-test is applied only to evaluate if 

the spatial relationship between a point pattern and a map pattern is statistically 

significant at the 5% or 1 % significance level. This is equivalent to test if the estimated t­

value is greater than 2 or 3. However, there are some large student's t-values as obtained 

in current example (Table 8.5) which might be related to the selection of sample size. 

However, our previous experiments (Zhao et al, 2012) with multiple sample size 

demonstrated that the t-value decreases with increasing sample sizes while the threshold 

is relatively stable. Therefore, in this study, to delineate areas highly associated with 

mineralization supported by their corresponding controlling factors, these binary patterns 

are currently accepted, and more detailed investigations regarding the student's t-test will 

be implemented in future work. 

Geo-information of three controlling factors of the hydrothermal mineralization identified 

by both traditional and singularity-based methods is integrated to delineate mineral 

potentials of southeastern Yunnan mineral district, China. Integration methods consisting 

of RGB composite image, PCA and WofE are employed. Among these results, the ones 

by integrating singularity-based geo-information well demonstrate the advantages of this 

technique in characterizing geo-anomalies. 
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For the results by RGB composite images, combinations of controlling factors indicating 

mineralization favored spaces can be interpreted from composite colors directly; however, 

due to the complicated patterns of secondary colors, mineralization caused by various 

interactions of the controlling factors cannot be clarified properly. Furthermore, the 

interpreted interactions of controlling factors cannot be further quantified to describe the 

mineral potentials. For the results by PCA, although mineral potentials can be indicated 

more explicitly and comprehensively than the RGB composite images, interactions of 

controlling factors contributed to the hydrothermal mineralization cannot be depicted and 

the delineation is not quantitative. As a further attempted integration method, the W ofE 

provides the most significant results, by which delineations are both quantitatively and 

qualitatively interpretable to map the mineral potentials of the study area. Comparing 

results by three integration methods, the W ofE possesses advantages of RGB (i.e., 

explicit geological meanings) and PCA (i.e., explicit delineation), simultaneously. 

Further, mineral potentials are described in forms of posterior probability of occurrence 

of hydrothermal mineralization that is a meaningful improvement in comparison with the 

other two methods. Therefore, the result of the W ofE by integrating singularity-based 

geo-information is accepted as the final result by the mineral exploration modeling in 

support of the future mineral exploration in southeastern Yunnan mineral district, China. 

As repeatedly introduced in former chapters, mineralization is a complex non-linear geo­

process associated with various geological activities. Geological activities or controlling 

factors analyzed in current study are three general factors (i.e., faults, granitic intrusions 

and ore-bearing strata). Currently achieved mineral potentials are from a regional 
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prospective. More detailed controlling factors or geological activities which are not 

involved in this study will be considered in localized areas. Their associated geo­

exploratory datasets will be collected and analyzed in future work. 
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Chapter 9. Discussions and conclusions 

The three main objectives introduced in the chapter 1 to characterize the non-linear 

properties of singular geo-processes associated with the hydrothermal mineralization, to 

depict spatial distributions of ore controlling factors, and to map mineral potentials in 

Southeastern Yunnan Sn-Cu polymetallic mineral district, China had been achieved 

according to a series of geo-information extraction and integration methods, respectively. 

Furthermore, limitations regarding scale dependence in geophysical data analysis, less 

descriptive to spatial variations of geological signatures, insufficient concerns to 

geological features in geochemical data analysis are improved as well. In this 

dissertation, the general mineral exploration modeling process producing an improved 

indication to mineral potentials well demonstrates advantages of these spatial analysis 

methods in geological exploration. 

In the aspect of geo-anomaly (i.e., geo-information) extraction, singularity index mapping 

technique are currently used to characterize spatial variations of physical and/or chemical 

signatures of mineralization associated geological bodies (i.e., controlling factors) which 

were traditionally identified simply based on the location information of geological 

occurrences. Limitations regarding to the scale dependence of band-pass filter for 

identifying the granitic intrusions are rectified by using the singularity method. 

Furthermore, extracted by the singularity method and integrated by PCA, recognized 

geochemical anomalies which were mainly used to delineate spatial distributions of 
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mineralization associated geochemical signatures are innovatively used to characterize 

the geochemical signatures of the Gejiu formation. The result well indicates the 

mineralization favored positions within the Gejiu formation. The application of advanced 

geochemical anomaly extraction methods which were mainly to investigate ore-forming 

elements is currently extended to analyze geological features associated with 

mineralization. In chapter 5, areas favorable to the hydrothermal mineralization are 

delineated by characterizing spatial variations of physical distributions of fault traces. 

The result is more beneficial to describe favorable spaces for mineralization produced by 

the non-linear fault activities. In conclusion, geo-information of the three controlling 

factors identified by singularity index mapping technique is more quantitatively and 

qualitatively interpretable to the spatial variations of physical or chemical properties. The 

quantification of the influence of the controlling factors on the hydrothermal 

mineralization will benefit further mineral exploration. In addition, geological features 

measured by different observations were expressed in various units. By singularity 

methods, characterized geological features can be described uniformly that greatly 

improves the interpretation of these geological features. 

In the aspect of geo-anomaly integration, although RGB as an intuitive integration is not 

convenient to delineate mineral potentials, interactions of the controlling factors can still 

be interpreted from the composite map (i.e., geologically interpretable). It might be the 

first time to use the RGB composite image to map mineral potentials in the study area. In 

this dissertation, PCA commonly used to characterize ore-forming element associations is 

firstly applied to integrate the geo-information of controlling factors for mineral potential 
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mapping in southeastern Yunnan mineral district, China. Based on correlations of the 

three controlling factors, PCA is used to integrate the three sets of geo-information, result 

of which is evaluated to delineate spatial distributions of mineral potentials. However, 

although the result well demonstrates the mineralization favored areas supported by its 

associated geological activities, interactions of these factors cannot be interpreted or 

described through the integration, approximately. To solve the problems aroused by using 

both RGB and PCA methods, the WofE method is applied to map the mineral potentials, 

the result of which not only qualitatively describe the interactions of the controlling 

factors but also quantitatively describe the mineral potentials by providing posterior 

probabilities. Therefore, the WofE is chosen as the geo-information integration method of 

the mineral exploration modeling in this dissertation. 

In addition to the extraction and integration involved in the mineral exploration modeling, 

this dissertation newly introduces a fault trace-oriented singularity index mapping method, 

and it is applied to characterize the controlling anisotropic effects of faults to the 

hydrothermal mineralization. Although the geo-information is not further used in 

mapping mineral potentials, the case study of the new method well demonstrates the 

application of the idea of geo-information integration, by which spatial information of 

faults and geochemical signatures are used jointly for characterizing interactions of 

tectonic activities and mineralization. According to the case study, a new attribute of fault 

traces is defined based on the identified anisotropic controlling effects of faults to the 

mineralization. 
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In comparison with the traditional method-based modeling process, the singularity-based 

mineral exploration modeling process using quantitatively and qualitatively characterized 

spatial variations of the controlling factors as main components provides more explicit 

mineral potentials to support future exploration in the study area. Since only three general 

controlling factors of the hydrothermal mineralization are selected, the result is 

accordingly to be regional. For more detailed spatial distributions of mineral potentials at 

local scale, additional localized controlling factors and geo-exploratory datasets with 

higher resolution are necessary to be analyzed. 

Several issues (e.g., data quality, errors in modeling process, etc.) can cause spatial 

analysis results with uncertainties that should be kept in mind. In current study, there are 

several ways to investigate the uncertainty. In the aspect of geo-information extraction, 

spatial distributions of If and standard deviation of estimated singularity indices of 

Bouguer anomalies, aeromagnetic and fault traces are supplied in Appendix to evaluate 

the uncertainties of geo-information extraction. In the aspect of gee-information 

integration, student's t-test is employed to define binary patterns: one for geological 

features and the other for background. The student's t-test defines an optimal threshold 

separating patterns highly associated with mineralization from the other patterns 

indicative to geological features with uncertainties. In addition to the treatments 

implemented in this study, the uncertainty can be investigated quantitatively as well. 

Therefore, evaluating uncertainty by means of mathematical approaches will be discussed 

in my future work. 
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Appendix 
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Fig. A. I. Spatial distributions of R square and standard deviation of estimated singularity index 
of Bouguer anomalies. 
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Fig. A. 2. Spatial distributions of R square and standard deviation of estimated singularity index 
ofRTP transformed aeromagnetic data. 

Fig. A. 3. Spatial distributions of R square and standard deviation of estimated singularity index 
ofRTP transformed aeromagnetic data. 
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