2,112 research outputs found

    Water filtration by using apple and banana peels as activated carbon

    Get PDF
    Water filter is an important devices for reducing the contaminants in raw water. Activated from charcoal is used to absorb the contaminants. Fruit peels are some of the suitable alternative carbon to substitute the charcoal. Determining the role of fruit peels which were apple and banana peels powder as activated carbon in water filter is the main goal. Drying and blending the peels till they become powder is the way to allow them to absorb the contaminants. Comparing the results for raw water before and after filtering is the observation. After filtering the raw water, the reading for pH was 6.8 which is in normal pH and turbidity reading recorded was 658 NTU. As for the colour, the water becomes more clear compared to the raw water. This study has found that fruit peels such as banana and apple are an effective substitute to charcoal as natural absorbent

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Performance Metrics for Network Intrusion Systems

    Get PDF
    Intrusion systems have been the subject of considerable research during the past 33 years, since the original work of Anderson. Much has been published attempting to improve their performance using advanced data processing techniques including neural nets, statistical pattern recognition and genetic algorithms. Whilst some significant improvements have been achieved they are often the result of assumptions that are difficult to justify and comparing performance between different research groups is difficult. The thesis develops a new approach to defining performance focussed on comparing intrusion systems and technologies. A new taxonomy is proposed in which the type of output and the data scale over which an intrusion system operates is used for classification. The inconsistencies and inadequacies of existing definitions of detection are examined and five new intrusion levels are proposed from analogy with other detection-based technologies. These levels are known as detection, recognition, identification, confirmation and prosecution, each representing an increase in the information output from, and functionality of, the intrusion system. These levels are contrasted over four physical data scales, from application/host through to enterprise networks, introducing and developing the concept of a footprint as a pictorial representation of the scope of an intrusion system. An intrusion is now defined as “an activity that leads to the violation of the security policy of a computer system”. Five different intrusion technologies are illustrated using the footprint with current challenges also shown to stimulate further research. Integrity in the presence of mixed trust data streams at the highest intrusion level is identified as particularly challenging. Two metrics new to intrusion systems are defined to quantify performance and further aid comparison. Sensitivity is introduced to define basic detectability of an attack in terms of a single parameter, rather than the usual four currently in use. Selectivity is used to describe the ability of an intrusion system to discriminate between attack types. These metrics are quantified experimentally for network intrusion using the DARPA 1999 dataset and SNORT. Only nine of the 58 attack types present were detected with sensitivities in excess of 12dB indicating that detection performance of the attack types present in this dataset remains a challenge. The measured selectivity was also poor indicting that only three of the attack types could be confidently distinguished. The highest value of selectivity was 3.52, significantly lower than the theoretical limit of 5.83 for the evaluated system. Options for improving selectivity and sensitivity through additional measurements are examined.Stochastic Systems Lt

    Review on Intrusion Detection System Based on The Goal of The Detection System

    Get PDF
    An extensive review of the intrusion detection system (IDS) is presented in this paper. Previous studies review the IDS based on the approaches (algorithms) used or based on the types of the intrusion itself. The presented paper reviews the IDS based on the goal of the IDS (accuracy and time), which become the main objective of this paper. Firstly, the IDS were classified into two types based on the goal they intend to achieve. These two types of IDS were later reviewed in detail, followed by a comparison of some of the studies that have earlier been carried out on IDS. The comparison is done based on the results shown in the studies compared. The comparison shows that the studies focusing on the detection time reduce the accuracy of the detection compared to other studies

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated

    Modélisation formelle des systèmes de détection d'intrusions

    Get PDF
    L’écosystème de la cybersécurité évolue en permanence en termes du nombre, de la diversité, et de la complexité des attaques. De ce fait, les outils de détection deviennent inefficaces face à certaines attaques. On distingue généralement trois types de systèmes de détection d’intrusions : détection par anomalies, détection par signatures et détection hybride. La détection par anomalies est fondée sur la caractérisation du comportement habituel du système, typiquement de manière statistique. Elle permet de détecter des attaques connues ou inconnues, mais génère aussi un très grand nombre de faux positifs. La détection par signatures permet de détecter des attaques connues en définissant des règles qui décrivent le comportement connu d’un attaquant. Cela demande une bonne connaissance du comportement de l’attaquant. La détection hybride repose sur plusieurs méthodes de détection incluant celles sus-citées. Elle présente l’avantage d’être plus précise pendant la détection. Des outils tels que Snort et Zeek offrent des langages de bas niveau pour l’expression de règles de reconnaissance d’attaques. Le nombre d’attaques potentielles étant très grand, ces bases de règles deviennent rapidement difficiles à gérer et à maintenir. De plus, l’expression de règles avec état dit stateful est particulièrement ardue pour reconnaître une séquence d’événements. Dans cette thèse, nous proposons une approche stateful basée sur les diagrammes d’état-transition algébriques (ASTDs) afin d’identifier des attaques complexes. Les ASTDs permettent de représenter de façon graphique et modulaire une spécification, ce qui facilite la maintenance et la compréhension des règles. Nous étendons la notation ASTD avec de nouvelles fonctionnalités pour représenter des attaques complexes. Ensuite, nous spécifions plusieurs attaques avec la notation étendue et exécutons les spécifications obtenues sur des flots d’événements à l’aide d’un interpréteur pour identifier des attaques. Nous évaluons aussi les performances de l’interpréteur avec des outils industriels tels que Snort et Zeek. Puis, nous réalisons un compilateur afin de générer du code exécutable à partir d’une spécification ASTD, capable d’identifier de façon efficiente les séquences d’événements.Abstract : The cybersecurity ecosystem continuously evolves with the number, the diversity, and the complexity of cyber attacks. Generally, we have three types of Intrusion Detection System (IDS) : anomaly-based detection, signature-based detection, and hybrid detection. Anomaly detection is based on the usual behavior description of the system, typically in a static manner. It enables detecting known or unknown attacks but also generating a large number of false positives. Signature based detection enables detecting known attacks by defining rules that describe known attacker’s behavior. It needs a good knowledge of attacker behavior. Hybrid detection relies on several detection methods including the previous ones. It has the advantage of being more precise during detection. Tools like Snort and Zeek offer low level languages to represent rules for detecting attacks. The number of potential attacks being large, these rule bases become quickly hard to manage and maintain. Moreover, the representation of stateful rules to recognize a sequence of events is particularly arduous. In this thesis, we propose a stateful approach based on algebraic state-transition diagrams (ASTDs) to identify complex attacks. ASTDs allow a graphical and modular representation of a specification, that facilitates maintenance and understanding of rules. We extend the ASTD notation with new features to represent complex attacks. Next, we specify several attacks with the extended notation and run the resulting specifications on event streams using an interpreter to identify attacks. We also evaluate the performance of the interpreter with industrial tools such as Snort and Zeek. Then, we build a compiler in order to generate executable code from an ASTD specification, able to efficiently identify sequences of events

    Evaluation of Classification Algorithms for Intrusion Detection in MANETs

    Get PDF
    Mobile Ad-hoc Networks (MANETs) are wireless networks without fixed infrastructure based on the cooperation of independent mobile nodes. The proliferation of these networks and their use in critical scenarios (like battlefield communications or vehicular networks) require new security mechanisms and policies to guarantee the integrity, confidentiality and availability of the data transmitted. Intrusion Detection Systems used in wired networks are inappropriate in this kind of networks since different vulnerabilities may appear due to resource constraints of the participating nodes and the nature of the communication. This article presents a comparison of the effectiveness of six different classifiers to detect malicious activities in MANETs. Results show that Genetic Programming and Support Vector Machines may help considerably in detecting malicious activities in MANETs.This work has been partially supported by the Marie Curie IEF, project "PPIDR: Privacy-Preserving Intrusion Detection and Response in Wireless Communications", grant number 252323, and also by the Comunidad de Madrid and Carlos III University of Madrid, Project EVADIR CCG10-UC3M /TIC-5570.Publicad
    • …
    corecore