2,470 research outputs found

    Bat Algorithm: Literature Review and Applications

    Full text link
    Bat algorithm (BA) is a bio-inspired algorithm developed by Yang in 2010 and BA has been found to be very efficient. As a result, the literature has expanded significantly in the last 3 years. This paper provides a timely review of the bat algorithm and its new variants. A wide range of diverse applications and case studies are also reviewed and summarized briefly here. Further research topics are also discussed.Comment: 10 page

    Novel metaheuristic hybrid spiral-dynamic bacteria-chemotaxis algorithms for global optimisation

    Get PDF
    © 2014 Elsevier B.V. All rights reserved. This paper presents hybrid spiral-dynamic bacteria-chemotaxis algorithms for global optimisation and their application to control of a flexible manipulator system. Spiral dynamic algorithm (SDA) has faster convergence speed and good exploitation strategy. However, the incorporation of constant radius and angular displacement in its spiral model causes the exploration strategy to be less effective hence resulting in low accurate solution. Bacteria chemotaxis on the other hand, is the most prominent strategy in bacterial foraging algorithm. However, the incorporation of a constant step-size for the bacteria movement affects the algorithm performance. Defining a large step-size results in faster convergence speed but produces low accuracy while de.ning a small step-size gives high accuracy but produces slower convergence speed. The hybrid algorithms proposed in this paper synergise SDA and bacteria chemotaxis and thus introduce more effective exploration strategy leading to higher accuracy, faster convergence speed and low computation time. The proposed algorithms are tested with several benchmark functions and statistically analysed via nonparametric Friedman and Wilcoxon signed rank tests as well as parametric t-test in comparison to their predecessor algorithms. Moreover, they are used to optimise hybrid Proportional-Derivative-like fuzzy-logic controller for position tracking of a flexible manipulator system. The results show that the proposed algorithms significantly improve both convergence speed as well as fitness accuracy and result in better system response in controlling the flexible manipulator

    Optimal Fuzzy Model Construction with Statistical Information using Genetic Algorithm

    Full text link
    Fuzzy rule based models have a capability to approximate any continuous function to any degree of accuracy on a compact domain. The majority of FLC design process relies on heuristic knowledge of experience operators. In order to make the design process automatic we present a genetic approach to learn fuzzy rules as well as membership function parameters. Moreover, several statistical information criteria such as the Akaike information criterion (AIC), the Bhansali-Downham information criterion (BDIC), and the Schwarz-Rissanen information criterion (SRIC) are used to construct optimal fuzzy models by reducing fuzzy rules. A genetic scheme is used to design Takagi-Sugeno-Kang (TSK) model for identification of the antecedent rule parameters and the identification of the consequent parameters. Computer simulations are presented confirming the performance of the constructed fuzzy logic controller

    Optimal Fuzzy Controller Design for Autonomous Robot Path Tracking Using Population-Based Metaheuristics

    Get PDF
    This researchwas funded by projects TecNM-5654.19-P and DemocratAI PID2020-115570GB-C22.In this work, we propose, through the use of population-based metaheuristics, an optimization method that solves the problem of autonomous path tracking using a rear-wheel fuzzy logic controller. This approach enables the design of controllers using rules that are linguistically familiar to human users. Moreover, a new technique that uses three different paths to validate the performance of each candidate configuration is presented. We extend on our previous work by adding two more membership functions to the previous fuzzy model, intending to have a finer-grained adjustment. We tuned the controller using several well-known metaheuristic methods, Genetic Algorithms (GA), Particle Swarm Optimization (PSO), GreyWolf Optimizer (GWO), Harmony Search (HS), and the recent Aquila Optimizer (AO) and Arithmetic Optimization Algorithms. Experiments validate that, compared to published results, the proposed fuzzy controllers have better RMSE-measured performance. Nevertheless, experiments also highlight problems with the common practice of evaluating the performance of fuzzy controllers with a single problem case and performance metric, resulting in controllers that tend to be overtrained.TecNM-5654.19-PDemocratAI PID2020-115570GB-C2

    Chaotic multi-objective optimization based design of fractional order PI{\lambda}D{\mu} controller in AVR system

    Get PDF
    In this paper, a fractional order (FO) PI{\lambda}D\mu controller is designed to take care of various contradictory objective functions for an Automatic Voltage Regulator (AVR) system. An improved evolutionary Non-dominated Sorting Genetic Algorithm II (NSGA II), which is augmented with a chaotic map for greater effectiveness, is used for the multi-objective optimization problem. The Pareto fronts showing the trade-off between different design criteria are obtained for the PI{\lambda}D\mu and PID controller. A comparative analysis is done with respect to the standard PID controller to demonstrate the merits and demerits of the fractional order PI{\lambda}D\mu controller.Comment: 30 pages, 14 figure

    PAC: A Novel Self-Adaptive Neuro-Fuzzy Controller for Micro Aerial Vehicles

    Full text link
    There exists an increasing demand for a flexible and computationally efficient controller for micro aerial vehicles (MAVs) due to a high degree of environmental perturbations. In this work, an evolving neuro-fuzzy controller, namely Parsimonious Controller (PAC) is proposed. It features fewer network parameters than conventional approaches due to the absence of rule premise parameters. PAC is built upon a recently developed evolving neuro-fuzzy system known as parsimonious learning machine (PALM) and adopts new rule growing and pruning modules derived from the approximation of bias and variance. These rule adaptation methods have no reliance on user-defined thresholds, thereby increasing the PAC's autonomy for real-time deployment. PAC adapts the consequent parameters with the sliding mode control (SMC) theory in the single-pass fashion. The boundedness and convergence of the closed-loop control system's tracking error and the controller's consequent parameters are confirmed by utilizing the LaSalle-Yoshizawa theorem. Lastly, the controller's efficacy is evaluated by observing various trajectory tracking performance from a bio-inspired flapping-wing micro aerial vehicle (BI-FWMAV) and a rotary wing micro aerial vehicle called hexacopter. Furthermore, it is compared to three distinctive controllers. Our PAC outperforms the linear PID controller and feed-forward neural network (FFNN) based nonlinear adaptive controller. Compared to its predecessor, G-controller, the tracking accuracy is comparable, but the PAC incurs significantly fewer parameters to attain similar or better performance than the G-controller.Comment: This paper has been accepted for publication in Information Science Journal 201

    Improving Transparency in Approximate Fuzzy Modeling Using Multi-objective Immune-Inspired Optimisation

    Get PDF
    In this paper, an immune inspired multi-objective fuzzy modeling (IMOFM) mechanism is proposed specifically for high-dimensional regression problems. For such problems, prediction accuracy is often the paramount requirement. With such a requirement in mind, however, one should also put considerable efforts in eliciting models which are as transparent as possible, a ‘tricky’ exercise in itself. The proposed mechanism adopts a multi-stage modeling procedure and a variable length coding scheme to account for the enlarged search space due to simultaneous optimisation of the rule-base structure and its associated parameters. We claim here that IMOFM can account for both Singleton and Mamdani Fuzzy Rule-Based Systems (FRBS) due to the carefully chosen output membership functions, the inference scheme and the defuzzification method. The proposed modeling approach has been compared to other representatives using a benchmark problem, and was further applied to a high-dimensional problem, taken from the steel industry, which concerns the prediction of mechanical properties of hot rolled steels. Results confirm that IMOFM is capable of eliciting not only accurate but also transparent FRBSs from quantitative data
    • …
    corecore