
����������
�������

Citation: Mancilla, A.; García-Valdez,

M.; Castillo, O.; Merelo-Guervós, J.J.

Optimal Fuzzy Controller Design for

Autonomous Robot Path Tracking

Using Population-Based

Metaheuristics. Symmetry 2022, 14,

202. https://doi.org/10.3390/

sym14020202

Academic Editor: Cengız

Kahraman

Received: 16 December 2021

Accepted: 18 January 2022

Published: 21 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Optimal Fuzzy Controller Design for Autonomous Robot Path
Tracking Using Population-Based Metaheuristics †

Alejandra Mancilla 1 , Mario García-Valdez 1,* , Oscar Castillo 1 and Juan Julian Merelo-Guervós 2

1 Division of Graduate Studies and Research, Tijuana Institute of Technology, Tijuana 22414, Mexico;
alejandra.mancilla@tectijuana.edu.mx (A.M.); ocastillo@tectijuana.mx (O.C.)

2 Department of Computer Architecture and Computer Technology, University of Granada,
16741 Granada, Spain; jmerelo@ugr.es

* Correspondence: mario@tectijuana.edu.mx; Tel.: +52-664-123-7806
† This paper is an extended version of our paper published in INFUS-21, Izmir, Turkey, 24–26 August 2021.

Abstract: In this work, we propose, through the use of population-based metaheuristics, an opti-
mization method that solves the problem of autonomous path tracking using a rear-wheel fuzzy logic
controller. This approach enables the design of controllers using rules that are linguistically familiar to
human users. Moreover, a new technique that uses three different paths to validate the performance
of each candidate configuration is presented. We extend on our previous work by adding two more
membership functions to the previous fuzzy model, intending to have a finer-grained adjustment.
We tuned the controller using several well-known metaheuristic methods, Genetic Algorithms (GA),
Particle Swarm Optimization (PSO), Grey Wolf Optimizer (GWO), Harmony Search (HS), and the
recent Aquila Optimizer (AO) and Arithmetic Optimization Algorithms. Experiments validate that,
compared to published results, the proposed fuzzy controllers have better RMSE-measured perfor-
mance. Nevertheless, experiments also highlight problems with the common practice of evaluating
the performance of fuzzy controllers with a single problem case and performance metric, resulting in
controllers that tend to be overtrained.

Keywords: fuzzy systems; fuzzy control; bioinspired algorithms

1. Introduction

Proposed by Lofti Zadeh [1], fuzzy logic introduces the concepts of fuzzy sets and
fuzzy logic operators [2]. Contrary to Boolean logic, in which an element is a member of
a set or is not, elements have a degree of membership to many sets in fuzzy logic. Fuzzy
logic uses so-called membership functions (MFs) to assign a numerical value to each set
member, indicating their degree of membership. We must define MFs for each linguistic
variable. These variables can be used in a rule-based system to express knowledge similarly
to natural language. For instance, the rule “if distance is near” uses the linguistic variable
distance, with a fuzzy MF assigning a degree of membership to the set near to each element
of the distance domain; for instance, for 2 mm and 50 mm, the function will assign the
following degrees of membership: near (2) = 0.92 and near (50) = 0.40. These rule-based
systems can express complex relationships well suited for control applications.

That is why, since the earlier years of fuzzy logic theory, fuzzy inference systems [3]
have been applied to control problems [3–6], in many research projects [7,8] and commer-
cial systems.

Many papers address the problem of path tracking control with fuzzy logic, the
earlier works used simple fuzzy rules to make adjustments to linear controllers [9], or
integrated fuzzy logic to a complex adaptive controller [10]. Meng [11] proposes a Fuzzy
PID (proportional integral derivative) Controller algorithm to a two-degree-of-freedom
arm robot. Antonelli et al. [12] propose a set of rules to emulate the way humans drive,
using as inputs of curve and distance to the system. We have also reviewed works where
authors use controllers for the follow-up and planning of routes. For example, using a

Symmetry 2022, 14, 202. https://doi.org/10.3390/sym14020202 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14020202
https://doi.org/10.3390/sym14020202
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-0430-8152
https://orcid.org/0000-0002-2593-1114
https://orcid.org/0000-0002-7385-5689
https://orcid.org/0000-0002-1385-9741
https://doi.org/10.3390/sym14020202
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14020202?type=check_update&version=1

Symmetry 2022, 14, 202 2 of 17

simplified kinematic model of the bicycle type using the control law for the navigation and
follow-up of a path [13], in work presented by Beleño et al. [14] they propose the planning
and tracking of the trajectories of a land vehicle based on the steering control in a natural
environment. Guerrero-Castellanos et al. [15] addresses the path following problem for the
robot (3, 0) based on its kinematic model and proposes a solution by designing a control
strategy that mainly considers the maximum permitted levels of the control signal.

An essential caveat of applying fuzzy control strategies to real-world problems is that
we require optimization or adaptive techniques to tune some aspects of the fuzzy inference
system. From the membership functions (MFs) that define the linguistic variables to the
definition of a rule-based system, including a defuzzification method [16,17].

Tuning is needed because the fuzzy controllers’ performance is highly dependent on
the parameters of the fuzzy system used. Moreover, the option of making a manual selection
of these parameters is difficult because the search space is of considerable size and requires
the validation of establishing the controller’s performance by running time-consuming
simulations. Evolutionary Algorithms (EAs) and other population-based metaheuristics
are often employed in tuning Fuzzy Inference Systems (FISs) [18,19].

Population-based metaheuristics are stochastic techniques that search for optimal
solutions using two strategies: exploration and exploitation. Exploration searches the space
globally, avoiding to be trapped in a local optimum, while exploitation searches locally for
nearby promising solutions. Genetic Algorithms (GAs) are the canonical representatives
of population-based metaheuristics [20]. GAs work on a set of potential solutions called a
population that is evolved for a certain number of generations until a suitable or optimal
solution is found [21]. In each generation, potential solutions (individuals) are evaluated,
and then surviving individuals reproduce through genetic crossover (exploration) and
mutation operators (exploitation) to generate new offspring. Finally, there is a replacement
mechanism to select the most adapted offspring and generate a new generation of the
population. Most population-based metaheuristics, create an initial set of random candidate
solutions. These candidates are evaluated against a quality function, then taking the
quality and the position or structure of each solution in consideration, a nature-inspired
metaheuristic is applied to generate a new set of candidates.

Population-based metaheuristics have been extensively used for structural optimiza-
tion tasks [22–25], together with more traditional gradient-based algorithms. These nature-
inspired metaheuristics can be broadly grouped into evolutionary algorithms (EAs) [26]
and swarm intelligence (SI) [27], as well as other categories; popular EAs are Genetic
Algorithms (GAs) [28,29], Genetic Programming (GP) [26], and Differential Evolution
(DE) [30], while examples of (SI) [27] are particle swarm optimization (PSO), [31], Grey
Wolf Optimization (GWO) [32], and Aquila Optimizer (AO) [33]. Moreover, examples of
other categories are the Harmony Search (HS) [34] algorithm, which is inspired by how
jazz musicians improvise when playing with others, and finally, the arithmetic optimiza-
tion algorithm (AOA) [35], inspired by the distribution behavior of the main arithmetic
operators in mathematics.

We have found in the literature various studies that optimize the parameters of
a fuzzy controller applied to mobile autonomous robots using different bio-inspired
metaheuristics [36,37]. Wagner and Hagras [38] propose a GA to evolve the architec-
ture of a type-2 fuzzy controller in robot navigation for real environments; they optimize
the standard deviation of Gaussian type-2 MFs. Again a GA is presented by Wu and Wan
Tan [39] for evolving the parameters of all the MFs of a coupled-tank liquid-level control
system. Astudillo et al. [40] propose a new metaheuristic based on chemical reactions
to tune the parameters of a fuzzy controller for a uni-cycle robot. There is also work
focused on the metaheuristic optimization of fuzzy type-2 controllers, the main works are
reviewed by Castillo [41], and the main reason for using this type of controller is to model
the uncertainty of the sensor data or the fuzzy model itself. We have observed that most of
these studies optimize the parameters of MFs directly. For instance, if we have a triangular
function for a fuzzy set A, defined by a lower limit a, and upper limit of b and a value m
where a < m < b as

Symmetry 2022, 14, 202 3 of 17

µtrian(x) =

0, x ≤ a
x−a
m−a , a < x ≤ m
b−x
b−m , m < x ≤ b
0, x ≥ b

, (1)

each value is optimized independently, sometimes validating only the restriction a < m < b.
This approach has the advantage of not limiting the search because candidate solutions can
represent all possible MFs.

In this work, we propose a novel method that adds further restrictions, including a
symmetric definition and limiting the range of values of each parameter. To achieve that,
we first designed the structure of a parameterizable fuzzy controller, using five member-
ship functions for each fuzzy input variable. In our previous work [42,43], we compared
symmetrical and asymmetrical definitions and found that symmetrical restrictions give
better results for rear-wheel-based controllers. We propose a new parameterization tech-
nique that enables symmetric MFs’ definition by using an aperture factor instead of the
previous method that used a delta from a fixed point. Moreover, in this work, we also
propose a change on how candidate controllers are typically evaluated by other works in
the literature by using a single simulation and path as the fitness function. As experiments
show, in the case of rear-wheel path tracking, evaluating candidate solutions with three
simulations, gives better results. As experiments show, these additions greatly improve the
controller’s optimal design by significantly decreasing the tracking error (RMSE) compared
to our previous work. Experimental results also show that this method reduces the risk of
generating an over-trained controller with low error for a specific path but cannot function
in other paths.

To demonstrate the application of the method, we report an experimental case study
using a bicycle-like mobile robot with nonholonomic constraints. In this work, we choose
the problem of trajectory tracking since it has the particularity of being naturally symmetric
since the error is measured by moving away either to the left or right of the desired path.
Furthermore, in the literature, we have not found applications of fuzzy systems to follow
the trajectory of a path so that this research could solve similar problems.

The main contribution of this work is to propose an optimization method to solve
the problem of autonomous path tracking using a rear-wheel controller. The method ties
population-based metaheuristics with parameterizable fuzzy controllers. This approach
enables the design of controllers using rules that are linguistically familiar to human users.

We structure this document as follows: in Section 2, we present the proposed method,
configurations, and we describe the experimental setup. In Section 3 we present the
results achieved, and finally, in Section 4 we discuss the results and highlight future
research directions.

2. Materials and Methods
2.1. Rear-Wheel Feedback and Kinematic Model

In this work, we use a simplified model of a bicycle-type kinematic robot consisting of
two wheels connected by a rigid link of size l with nonholonomic restrictions [44,45]. The
front-wheel can steer in the axis normal to the plane of motion, the steering angle is δ (see
Figure 1), The position of the midpoint of the rear-wheel is given by the coordinates xr and
yr. The heading θ is the angle of the link between the two wheels and the x axis. We follow
the model described in [46], with the differential constraint:

ẋr = vr cos(θ),
ẏr = vr sin(θ),
θ̇ = vr

l tan(δ).
(2)

Symmetry 2022, 14, 202 4 of 17

�

�t̂
l

Figure 1. Feedback and actuator variables for the rear-wheel-based control. The magnitude of e
illustrated in red is the error measured from the rear wheel to the nearest point on the path. When
e > 0, the wheel is at the right of the path, and when e < 0 is at the left. θe is the difference between the
tangent at the nearest point in the path and the heading θ. The output of the controller is the heading
rate ω, a value we use to calculate the front wheel’s steering angle δ.

The controller selects the steering angle δ with a value between the limits of the vehicle
δ ∈ [δmin, δmax] and a desired velocity vr again limited by v ∈ [vmin, vmax]. The heading rate
ω is related to the steering angle by

δ = arctan
(

lω
vr

)
, (3)

and we can simplify the heading dynamics to

θ̇ = ω, ω ∈
[vr

l
tan(δmin),

vr

l
tan(δmax)

]
. (4)

Now we explain the path tracking method described by Paden et al. [46]. This
controller takes the feedback from the rear-wheel position as Figure 1 illustrates. The path
(shown in red in the figure) is a continuous function with properties described in [47], and
the feedback is a function of the nearest point on the reference path given by

s(t) = arg min
γ

‖(xr(t), yr(t))− (xre f (γ), yre f (γ))‖. (5)

and the tracking error vector is

d(t) = (xr(t), yr(t))− (xre f (s(t)), yre f (s(t))) (6)

The heading error is based on a unit vector t̂ (shown in green on Figure 1) tangent to
the path at s(t) given by

t̂ =

(
∂xre f

∂s

∣∣∣
s(t)

,
∂yre f

∂s

∣∣∣
s(t)

)
∥∥∥(∂xre f (s(t))

∂s ,
∂yre f (s(t))

∂s

)∥∥∥ , (7)

The error e is the cross product of the two vectors

e = dx t̂y − dy t̂x (8)

The heading error uses the angle θe between the robot’s heading vector and (ṫ)

θe(t) = θ − arctan2

(
∂xre f (s(t))

∂s
,

∂yre f (s(t))
∂s

)
(9)

Symmetry 2022, 14, 202 5 of 17

2.2. Fuzzy Controller

To design a fuzzy controller for the model we just described, we must decide which
variables we are going to treat as fuzzy variables. First, we must consider the error (e),
defined as the distance from the rear wheel to the path’s closest point. This error is positive
if it is on the right and negative if on the left side of the path. Another input variable is the
angle θe defined between the heading vector and the tangent vector of the path. This angle
can also be negative or positive depending on the vehicle’s position concerning the path;
the controller output is the heading rate ω, a value we use to calculate the front wheel’s
steering angle δ. The target velocity of the robot will be constant, so we will not control
the velocity v using the fuzzy controller. We will use the following simple proportional
controller instead

a = Kp(vre f − vr). (10)

Parameterizable Fuzzy Controller

We proposed a parameterizable fuzzy controller suitable for optimization using a bio-
inspired metaheuristic. We must define the structure of the fuzzy controller consisting of
fuzzy rules and parameterizable membership functions. Extending our previous work [43],
in which we used three MFs for each variable, we now add two more membership functions
to the previous fuzzy model, intending to have a finer grain of control. Adding more MFs
also adds more complexity to the rules, and now we have even more parameters to tune.
Instead of having just two values for each type of error hi and low we add a middle value,
represented by the medium membership function. The knowledge in the fuzzy rule base
is now more complex than before, with 25 rules. In this case, defining the rules was not
done by simply specifying a driver’s knowledge. We needed to adjust the rules by running
several simulations. The rules are presented in Table 1.

Table 1. Proposed fuzzy rules for the basic controller with three membership functions.

Rule 1: If θe is hi_neg and e is hi_neg then ω is hi_pos
Rule 2: If θe is hi_neg and e is med_neg then ω is hi_pos
Rule 3: If θe is hi_neg and e is low then ω is hi_pos
Rule 4: If θe is hi_neg and e is med_pos then ω is med_pos
Rule 5: If θe is hi_neg and e is hi_pos then ω is low
Rule 6: If θe is med_neg and e is hi_neg then ω is med_pos
Rule 7: If θe is med_neg and e is med_neg then ω is med_pos
Rule 8: If θe is med_neg and e is low then ω is med_pos
Rule 9: If θe is med_neg and e is med_pos then ω is med_pos
Rule 10: If θe is med_neg and e is hi_pos then ω is low
Rule 11: If θe is low and e is hi_neg then ω is hi_pos
Rule 12: If θe is low and e is med_neg then ω is low
Rule 13: If θe is low and e is low then ω is low
Rule 14: If θe is low and e is med_pos then ω is low
Rule 15: If θe is low and e is hi_pos then ω is hi_neg
Rule 16: If θe is med_pos and e is hi_neg then ω is low
Rule 17: If θe is med_pos and e is med_neg then ω is med_neg
Rule 18: If θe is med_pos and e is low then ω is med_neg
Rule 19: If θe is med_pos and e is med_pos then ω is med_neg
Rule 20: If θe is med_pos and e is hi_pos then ω is med_neg
Rule 21: If θe is hi_pos and e is hi_neg then ω is low
Rule 22: If θe is hi_pos and e is med_neg then ω is med_neg
Rule 23: If θe is hi_pos and e is low then ω is hi_neg
Rule 24: If θe is hi_pos and e is med_pos then ω is hi_neg
Rule 25: If θe is hi_pos and e is hi_pos then ω is hi_neg

Symmetry 2022, 14, 202 6 of 17

The other component of a fuzzy controller are MFs; these must be defined as param-
eterizable structures, suitable to be optimized using a metaheuristic. We describe these
structures in the following section.

2.3. Parameterizable Membership Functions

In this section, we describe our proposed method for MFs parameter optimization.
First, we need to establish which parameters of the MFs we will keep fixed and which
parameters we are going to optimize. As a general rule, we keep the MFs symmetrical
around zero; this means that the middle point of the triangular MF for low will be zero
in all cases. We also kept the extreme values of high trapezoidal MFs, fixed at 50 and 5,
positive or negative depending on the side. We kept the parameters of ω fixed to limit
the search space. The parameters are illustrated in Table 2. In this case, we just needed 10
variables to parameterize the controller.

Table 2. Ten parameter configuration for five MFs fuzzy controller.

Variable Linguistic Value MF Parameters

θe high negative µtrap [−50,−5,−b,−b + c]
θe medium negative µtria [−d− e,−d,−d + e]
θe low µtria [−a, 0, a]
θe medium positive µtria [−d− e, d, d + e]
θe high positive µtrap [b− c, b, 5, 50]

error high negative µtrap [−50,−5,−g,−g + h]
error medium negative µtria [−i− j,−i,−i + j]
error low µtria [− f , 0, f]
error medium positive µtria [−i− j, i, i + j]
error high positive µtrap [g− h, g, 5, 50]

ω high negative µtrap [−50,−5,−1,−0.5]
ω medium negative µtria [−1,−0.5, 0]
ω low µtria [−0.5, 0, 0.5]
ω medium positive µtria [0, 0.5, 1]
ω high positive µtrap [0.5, 1, 5, 50]

Another essential aspect to consider when tuning the above parameters is the range of
values each parameter can have. Usually, we keep all the parameters in the same range
when using a population-based metaheuristic. In our previous work [43], we compared two
ranges, [0, 1] and [0, 2]. Our experiments showed better results with the narrower range, so
we selected the same configuration for the three MFs controllers for this work. In this work,
we propose a simple technique to change the tuning ranges for the MFs while keeping the
adjustable parameters in the same range of values [0, 1]. We define different ranges for
the input variables and normalize the values before they are passed to the membership
functions. We can treat this as an aperture factor. Now each parameter of an MF can have a
distinct range while keeping the parameters or be optimized fixed on [0, 1]. We defined
from our experience the range for each parameter; these are shown in Table 3.

Table 3. Ranges defined for each parameter for the 5 MF controller.

Parameter Range Parameter Range

a [0, 1] f [0, 1]
b [0.5, 2] g [0.5, 2]
c [0, 2] h [0, 2]
d [0.5, 1.5] i [0.5, 1.5]
e [0, 1] j [0, 1]

Symmetry 2022, 14, 202 7 of 17

2.3.1. Optimization Problem Formulation

An optimization procedure is needed to tune the membership functions’ parameters
to generate a fuzzy controller that maintains a low positional error over the desired path.
We can define the optimization problem as searching for the parameter vector xm f that
defines the membership functions, which minimizes the error. We can define this as:

arg min
xm f

{FCerror} (11)

where the fitness function FCerror is the average RMSE of three simulations:

FCerror =
1
3

3

∑
k=1

rmse(FC(xm f), sk, tmax) (12)

in which k is the number of paths sk. A simulation consists of running a control problem as
defined in Section 2.1 in which the control is performed by the fuzzy controller FC(xm f)
with membership functions defined by xm f . The constant tmax is the number of cycles
executed in one simulation. As described before, the controller objective is to minimize
the tracking error. To obtain the RMSE, we can use the tracking error vector defined in
Equation (13):

rmse =

√
∑tmax

t=1 (xr(t), yr(t))− (xre f (sk(t)), yre f (sk(t)))2

tmax
(13)

The vector xm f defines the parameters of the membership functions defined in Table 2
and the knowledge base in Table 1:

xm f = {xa
1, xb

2, xc
3, xd

4 , xe
5, x f

6 , xg
7 , xh

8 , xi
9, xj

10} (14)

The range of all parameters is between 1 and 0:

0 ≤ xi ≤ 1 (15)

2.3.2. Metaheuristic Optimization Procedure

In general, a population-based metaheuristic needs to evaluate the fitness of each
candidate solution (also called individuals) in its population. This process is illustrated in
Figure 2. Each candidate solution is represented by a vector xm f , here implemented as a list
of objects of type float. To evaluate each solution, we need to generate an instance of the
fuzzy controller. Once created, the fuzzy controller is passed as a parameter, together with
the mobile robot’s paths. The output of the simulations is the RMSE of the accumulated
errors e obtained during the simulations. We consider this measure as the fitness of the
candidate solution.

In our previous work [43] we used a GA to evolve the controllers using a single path;
we noticed that this could lead to over-training. Similar to what happens in supervised
learning algorithms, the controller found by the GA could be specialized only to the path
used for its evolution. It is well known that in rule-based learning, adding more rules can
harm the capacity to generalize to unseen problems [48]. Noticing this, we added a list of
three paths to evaluate the fitness for the experiments, which is the average RMSE of the
three simulations. We ran experiments with one and three paths. We defined each path
using cubic splines over a list of coordinates; this is a common approach in the literature [49].
The paths and the parameters to define them are shown in Table 4. The first path was
used in previous work and was taken from the library of [50]. This path starts with a very
narrow curve to the left that is difficult for controllers to follow, but it remains differentiable
throughout the path, we call this path “M”. The other paths are called “A” and “S” and

Symmetry 2022, 14, 202 8 of 17

have smoother curves, with long straight segments and different curvatures. All paths
have seven anchor points for the cubic spline.

Simulation

Parameterized Fuzzy
Controller FC(xmf)

Path (sk)

Population-based metaheuristic

[a,b,c,d,e,f,g,h,i j] Fitness

Candidate Solutions

Evaluate
Population

 Population
Fitness

RMSE

Fuzzy
Controller
Definition

Figure 2. For each candidate solution in the population, a controller is created with the parameter
vector. This controller is then tested by running one or more simulations. The RMSE of the tracking
is considered as the fitness for that particular candidate solution. This process is repeated for each
member of the population.

Table 4. Tracks used for fitness evaluation. They are defined by cubic splines with the parameters
shown below each plot.

Track M Track A Track S

5 0 5 10 15
x (mts)

6

4

2

0

2

4

6

8

10

y
(m

ts
)

spline
route
tracking

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5
x (mts)

4

2

0

2

4

6

8

10

y
(m

ts
)

spline
route
tracking

4 2 0 2 4 6 8
x (mts)

2

0

2

4

6

y
(m

ts
)

spline
route
tracking

ax = [0, 6, 12, 5, 7.5, 3,−1] ax = [0, 1, 2.5, 5, 7.5, 3,−1] ax = [0, 2, 2.5, 5, 7.5,−3,−1]
ay = [0, 0, 5, 6.5, 3, 5,−2] ay = [0,−4, 6, 6.5, 3, 5,−2] ay = [0, 3, 6, 6.5, 5, 5,−2]

2.3.3. Complexity of the Optimization Procedure

The computational complexity of the optimization procedure described earlier de-
pends mostly on the evaluation of the fitness function. It is difficult to estimate the cost
of each simulation step because it depends on an ordinary differential equation solver
(ODEInt). In particular, this is a multi-step solver (lsode), and the number of iterations
changes depending on the initial conditions. Moreover, in order to calculate the current
nearest point to the path as described in Equation (5), there is a local optimization procedure
to find γ to establish this nearest point (xre f (γ), yre f (γ)). Nevertheless, we can consider
the cost of the function evaluation as domain-dependent and with a high order complexity
of at least \3. Because of this, normally, the number of function evaluations needed to find
a solution is considered when establishing the performance of a metaheuristic algorithm.

All the algorithms that we tested on this paper follow the same procedure: randomly
initialize the population, this has aO(n) complexity, with n the population size (the number

Symmetry 2022, 14, 202 9 of 17

of candidate solutions). After the evaluation, there is a step for updating the solution. The
complexity for this is O(m ∗ n) + O(m ∗ n ∗ l), m is the number of iterations and l the
number of parameters in the fitness function. Some algorithms add a step for keeping
only the generated solutions if the new fitness is better than the previous solution; this has
an additional cost of O(n). Finally, some algorithms order the population by fitness after
every iteration; this adds a complexity of O(nlogn).

2.3.4. Experimental Setup

In this section, we compare the parameter optimization procedure proposed in the
previous section, using the following algorithms:

1. Genetic Algorithm (GA) [20];
2. Particle Swarm Optimization (PSO) [27];
3. Aquila Optimization (AO) [33];
4. Grey Wolf Optimizer (GWO) [32];
5. Arithmetic Optimization Algorithm (AOA) [35];
6. Harmony Search (HS) [34].

All algorithms have the same population size of 50, and the number of iterations
was set at 30, from theses values, the total number of function evaluations is 1000. The
parameters of the comparative algorithms is shown in Table 5.

Table 5. Parameter values for the algorithms compared.

Algorithm Parameter Value

GA

Selection Tournament Selection (k = 3)
Mutation Gaussian (µ = 0.0 and σ = 0.2)
Mutation probability 0.3
Crossover One point crossover (probability = 0.7)

PSO
Topology Fully connected
Speed limit Min = −0.25, Max = 0.25
Cognitive and Social constants C1 = 2, C2 = 2

AO α 0.1
δ 0.1

GWO Convergence parameter (a) Linearly decreased from 2 to 0

AOA α 5
µ 0.5

HS HMConsidering Rate (HMCR) 0.95
Pitch Adjusting Rate 0.05

The fitness function returns the RMSE of the simulation as mentioned earlier, but to
economize the computational resources, while the simulations were running, we inter-
rupted those simulations where the robot was clearly out of the path or did not finish near
the final point of the path. In these cases, we assigned a very low fitness (we wanted to
minimize the error) of 5000 to the first case and 2000 to the second.

As the basis for comparison, we compare our results against the controller in [46], with
the following control law defined as

ω =
vrK(s) cos(θe)

1−K(s)e − (kθ |vr|)θe −
(

kevr
sin(θe)

θe

)
e, (16)

the parameters of the simulations and the canonical controller we are comparing against
are summarized in Table 6.

Symmetry 2022, 14, 202 10 of 17

Table 6. Simulation and controller parameters.

Parameter Value

Wheel-base l = 2.5
Steering limit |δ| ≤ π

4
Initial configuration xr(0), yr(0), θ(0) = (0, 0, 0)
Velocity controller configuration Kp = 1, v(0) = 0, a(0) = 0
Target velocity vr =

10
3

Maximum time 50
Control law parameters ke = 0.3, kθ = 1.0

We ran the experiments on a Desktop PC with AMD Ryzen 93,900× 12-core processor
with 24 threads and 48 GB RAM with Ubuntu Linux 21.04, and Python 3.7.5 code. Code
and data can be found in the following GitHub repository https://github.com/mariosky/
fuzzy-control (accessed on 2 January 2020).

We compared the algorithms using the mean, median, and standard deviation of the
RMSE of 30 algorithm executions. Moreover, we performed a Wilcoxon rank-sum test
between algorithms for performance comparison.

3. Results

This section shows the optimization results for the controller described in the previous
sections. The descriptive statistics of these results are shown in Table 7. As expected,
and because the optimization is non-deterministic, there are a few outliers at both ex-
tremes of the performance. In particular, outliers are presented on the GA algorithm with
RMSE = 0.18205, and the AOA algorithm with RMSE = 0.7978. The PSO algorithm obtained
the lower RMSE average (0.00546) and the best controller (0.00158) and AOA obtained the
lower median (0.00523).

Table 7. Descriptive statistics (n = 30) results for algorithms with an evaluation with three paths.

Algorithm Average RMSE Standard Deviation Median Min Max

GA 0.01564 0.03163 0.00918 0.00574 0.18205
PSO 0.00546 0.00202 0.00536 0.00158 0.00102
AO 0.00695 0.00210 0.00696 0.00355 0.01407
GWO 0.00617 0.00170 0.00643 0.00315 0.00849
AOA 0.03413 0.14403 0.00198 0.00198 0.79780
HS 0.00774 0.00273 0.00740 0.00320 0.01454

In Figure 3, we can see that the GA algorithm has the worst median and overall results,
while the remaining algorithms obtained competitive results.

Table 8 gives the results of the Wilcoxon rank-sum test with an alternative hypothesis
H1 comparing if the algorithm in each row has a lower median than the algorithm on
each column with a significance level at α = 0.05. Results with a p-value lower than 0.05
are shown in bold. The PSO outperformed the GA, AO, GWO, and HS among the six
algorithms, while all outperformed the GA algorithm. The AOA algorithm is a particular
case; there was not enough statistical significance to outperform other algorithms while
having the lowest median. The GWO algorithm beat the HS algorithm, making it the
second best considering the number of wins. Nevertheless, most algorithms (PSO, AO,
AOA, and GWO) achieved good results.

https://github.com/mariosky/fuzzy-control
https://github.com/mariosky/fuzzy-control

Symmetry 2022, 14, 202 11 of 17

GA PSO AO GWO AOA HS

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

RM
SE

Figure 3. Boxplot showing the results of 30 experiments, with outliers filtered in order to show the
plot at a larger scale.

Table 8. Wilcoxon rank-sum test between algorithms, showing p-values for H1 : A < B.

GA PSO AO GWO AOA HS

GA 1.00 ×100 1.00 ×100 1.00 ×100 9.99 ×10−1 9.99 ×10−1

PSO 6.44 ×10−9 2.23 ×10−3 3.80 ×10−2 1.73 ×10−1 9.54 ×10−5

AO 1.20 ×10−5 9.98 ×10−1 9.22 ×10−1 7.76 ×10−1 1.33 ×10−1

GWO 1.19 ×10−7 9.63 ×10−2 7.96 ×10−2 4.80 ×10−1 1.31 ×10−2

AOA 1.02 ×10−3 8.31 ×10−2 2.28 ×10−1 5.25 ×10−1 1.10 ×10−1

HS 1.24 ×10−3 1.00 ×100 8.70 ×10−1 9.87 ×10−1 8.92 ×10−1

To present a qualitative comparision, we selected 2 of the best controllers found in the
30 experiments, one from the best algorithm (PSO) and the other from the worst (GA), and
then compared them against the baseline, a controller using the control law in Equation (16).
These results are presented in Table 9. We can see that even the fuzzy controller optimized
with the GA outperformed the control law in two paths. The results of the PSO are highly
competitive against the baseline.

Table 9. RMSE of the best controllers in all three paths.

Path Control Law PSO GA

Path M 2.003 0.00217 0.00396
Path A 0.014 0.00168 0.00575
Path S 0.521 0.00195 0.00845

When we observe the optimized MFs for both controllers, GA in Figure 4a and PSO in
Figure 4b, we can see that they are similar on the low and high MFS, for both the θr and e.
however, there is a noticeable difference in the high negative and low negative MFs in each
of them; both variables are very similar. We can also see that both MFs of ω remain fixed
because we kept those parameters fixed. The best parameters found from all algorithms
are shown in Table 10.

Symmetry 2022, 14, 202 12 of 17

Table 10. RMSE of the best controllers in all three paths.

Algorithm Parameter Vector

GA
PSO [0.78, 0.48, 0.43, 0.69, 0.88, 0.96, −0.13, 0.36, 0.60, 0.77]
AO [0.71, 0.41, 0.44, 0.22, 0.52, 0.61, 0.12, 0.36, 0.50, 0.18]
GWO [0.74, 0.46, 0.49, 0.59, 0.40, 0.40, 0.11, 0.36, 0.30, 0.53]
AOA [1.0, −0.36, 0.37, 0.83, −0.47, 1.0, 0.00, 0.27, 0.27, 0.92]
HS [0.96, 0.65, 0.55, 0.13, 0.62, 0.56, 0.12, 0.36, 0.96, 0.96]

We now show a plot of the paths and the robot’s movement following the path. First,
we have the path “M” (see Figure 5), in which all controllers have problems at the beginning
with a curve that is very sharp to the left and then a sharp U-turn to go back to the start.
We can see that the Control law follows the path with less zig-zag than the GA and PSO
controllers, which keep the tracking closer to the path but with noticeable zig-zagging.

The plots in Figure 6 show the “A” path. This time all controllers closely follow the
path. Again controller GA has a noticeable zig-zagging but manages to have a lower RMSE
than the Control law.

The results of Figure 7 highlight the overall behavior of the three controllers on path
“S”. The control law takes more time to reach the path when it deviates from the reference
because it has smoother steering, but once it is over the path, e does not increase. That is
by design because one of the conditions is that a small initial tracking error will remain
small. On the other hand, controller PSO does not deviate much from the reference, and
has a smoother control than the GA.

3 2 1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
Theta Error

High Negative
Medium Negative
Low
Medium Positive
High Positive

3 2 1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
Error

High Negative
Medium Negative
Low
Medium Positive
High Positive

3 2 1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
Omega

High Negative
Medium Negative
Low
Medium Positive
High Positive

(a)

Figure 4. Cont.

Symmetry 2022, 14, 202 13 of 17

3 2 1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
Theta Error

High Negative
Medium Negative
Low
Medium Positive
High Positive

3 2 1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
Error

High Negative
Medium Negative
Low
Medium Positive
High Positive

3 2 1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0
Omega

High Negative
Medium Negative
Low
Medium Positive
High Positive

(b)

Figure 4. Optimized membership functions with PSO and GA algorithms, parameters are shown in
Table 10. (a) Optimized membership functions of the best controller optimized with the PSO algorithm;
(b) optimized membership functions of the best controller optimized with the GA algorithm.

5 0 5 10 15
x (mts)

6

4

2

0

2

4

6

8

10

y
(m

ts
)

spline
route
tracking

(a)

5 0 5 10 15
x (mts)

6

4

2

0

2

4

6

8

10

y
(m

ts
)

spline
route
tracking

(b)

5 0 5 10 15
x (mts)

6

4

2

0

2

4

6

8

10

y
(m

ts
)

spline
route
tracking

(c)

Figure 5. Plot for the best simulations on Track M. (a) Control law; (b) PSO; (c) GA.

Symmetry 2022, 14, 202 14 of 17

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5
x (mts)

4

2

0

2

4

6

8

10

y
(m

ts
)

spline
route
tracking

(a)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5
x (mts)

4

2

0

2

4

6

8

10

y
(m

ts
)

spline
route
tracking

(b)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5
x (mts)

4

2

0

2

4

6

8

10

y
(m

ts
)

spline
route
tracking

(c)

Figure 6. Plot for the best simulations on Track A. (a) Control law; (b) PSO; (c) GA.

4 2 0 2 4 6 8
x (mts)

2

0

2

4

6

y
(m

ts
)

spline
route
tracking

(a)

4 2 0 2 4 6 8
x (mts)

2

0

2

4

6

y
(m

ts
)

spline
route
tracking

(b)

4 2 0 2 4 6 8
x (mts)

2

0

2

4

6

y
(m

ts
)

spline
route
tracking

(c)

Figure 7. Plot for the best simulations on Track S. (a) Control law; (b) PSO; (c) GA.

We added more MFs when compared with our previous work [42] and consequently
added more complexity to the knowledge base; we have shown that this change improved
the control in terms of RMSE, although needing more computational resources on the

Symmetry 2022, 14, 202 15 of 17

evolutionary phase. The best previous results using a GA and a Fuzzy Controller with
3 MFs, are: RMSE = 0.6831, Standard Deviation = 0.1096, Median = 0.4133.

4. Discussion and Conclusions

In this paper, we proposed a new optimal parameterization method for a fuzzy con-
troller, aimed at autonomous path tracking, using rear-wheel feedback. First, we presented
a novel technique for handling the membership function’s parameters and designed the
controller’s fuzzy rules. The controller parameters can be optimized using a population-
based metaheuristic. In addition, we proposed a new fitness function consisting of running
a certain number of simulations to validate the candidate controller’s performance.

To validate the method, we conducted a series of experiments comparing the results of
six population-based metaheuristics. The statistical results show that the PSO, GWO, and
AO metaheuristics provided good results. On the other hand, the GA metaheuristic gave
the worst results among the selected algorithms. Nevertheless, all algorithms gave better
average results than the control rule baseline. The proposed method offers a practical tool
to help design and optimize fuzzy controllers for other applications.

When qualitatively comparing the controllers, we found that some solutions had un-
desired yaw oscillation while keeping a low RMSE; this is a crucial aspect to be considered
in future work. We can consider including a damping module or an evaluation metric
that negatively weights this kind of oscillation. We can even include a fuzzy variable to
the controller; in comparison, the control law also uses the curvature of the path K(s) as
a variable for determining ω. Perhaps we need to treat the evolutionary optimization of
fuzzy controllers as a supervised learning task. The assessment of the quality of solutions
needs to consider other metrics as part of the desired control properties, such as oscillation,
overshoot, and generalization capabilities.

Furthermore, because of the high computational cost, as future work, we will propose
a technique to execute these experiments in a distributed way, adding multiple populations
such as the island-model, or a pool-based evolutionary approach, that could enhance the
search, giving supralinear execution times. Later we could try other bio-inspired methods
and compare the results. We could also add more membership functions and test other
functions to improve the inference system.

Author Contributions: Conceptualization, A.M., M.G.-V. and O.C.; methodology, A.M.; software,
M.G.-V.; validation, O.C. and J.J.M.-G.; data curation, A.M.; writing—original draft preparation, A.M.;
writing—review and editing, M.G.-V. and J.J.M.-G.; visualization, A.M.; supervision, O.C. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by projects TecNM-5654.19-P and DemocratAI PID2020-115570GB-C22.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data and code is available with an open source license from
https://github.com/mariosky/fuzzy-control (accessed on 15 December 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Goguen, J. LA Zadeh. Fuzzy sets. Information and control, vol. 8 (1965), pp. 338–353.-LA Zadeh. Similarity relations and fuzzy

orderings. Information sciences, vol. 3 (1971), pp. 177–200. J. Symb. Log. 1973, 38, 656–657. [CrossRef]
2. Zadeh, L.A. Fuzzy sets. In Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers by Lotfi a Zadeh; World Scientific: Singapore,

1996; pp. 394–432.
3. Driankov, D.; Hellendoorn, H.; Reinfrank, M. An Introduction to Fuzzy Control; Springer Science & Business Media: Berlin/Heidel-

berg, Germany, 2013.
4. Mamdani, E.H. Application of fuzzy algorithms for control of simple dynamic plant. Proc. Inst. Electr. Eng. IET 1974,

121, 1585–1588. [CrossRef]
5. King, P.J.; Mamdani, E.H. The application of fuzzy control systems to industrial processes. Automatica 1977, 13, 235–242.

[CrossRef]

https://github.com/mariosky/fuzzy-control
http://doi.org/10.2307/2272014
http://dx.doi.org/10.1049/piee.1974.0328
http://dx.doi.org/10.1016/0005-1098(77)90050-4

Symmetry 2022, 14, 202 16 of 17

6. Passino, K.M.; Yurkovich, S.; Reinfrank, M. Fuzzy Control; Addison-Wesley: Reading, MA, USA, 1998.
7. Yang, X.; Moallem, M.; Patel, R.V. An improved fuzzy logic based navigation system for mobile robots. In Proceedings of the

2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003)(Cat. No. 03CH37453), Las Vegas, NV,
USA, 27–31 Octeber 2003; Volume 2, pp. 1709–1714.

8. Driankov, D.; Saffiotti, A. Fuzzy Logic Techniques for Autonomous Vehicle Navigation; Physica: Heidelberg, Germany, 2013; Volume 61.
9. Lee, T.; Lam, H.; Leung, F.H.; Tam, P.K. A practical fuzzy logic controller for the path tracking of wheeled mobile robots. IEEE

Control Syst. Mag. 2003, 23, 60–65.
10. Sanchez, O.; Ollero, A.; Heredia, G. Adaptive fuzzy control for automatic path tracking of outdoor mobile robots. Application to

Romeo 3r. In Proceedings of 6th International Fuzzy Systems Conference, Barcelona, Spain, 5 July 1997; Volume 1, pp. 593–599.
11. Bi, M. Control of Robot Arm Motion Using Trapezoid Fuzzy Two-Degree-of-Freedom PID Algorithm. Symmetry 2020, 12, 665.

[CrossRef]
12. Antonelli, G.; Chiaverini, S.; Fusco, G. A Fuzzy-Logic-Based Approach for Mobile Robot Path Tracking. IEEE Trans. Fuzzy Syst.

2007, 15, 211–221. [CrossRef]
13. Laumond, J.P. (Ed.) Robot Motion Planning and Control; Number 229 in Lecture Notes in Control and Information Sciences;

Springer: London, UK; New York, NY, USA, 1998.
14. Beleño, R.D.H.; Vítor, G.B.; Ferreira, J.V.; Meirelles, P.S. Planeación y Seguimiento de Trayectorias de un Vehículo Terrestre con

Base en el Control de Dirección en un Ambiente Real. Sci. Tech. 2014, 19, 407–412.
15. Guerrero-Castellanos, J.; Villarreal-Cervantes, M.; Sánchez-Santana, J.; Ramírez-Martínez, S. Trajectory tracking of a mobile robot

(3, 0) by means of bounded control. RIAI-Rev. Iberoam. Autom. Inform. Ind. 2014, 426–434. [CrossRef]
16. Xia, J.; Zhang, J.; Feng, J.; Wang, Z.; Zhuang, G. Command filter-based adaptive fuzzy control for nonlinear systems with

unknown control directions. IEEE Trans. Syst. Man Cybern. Syst. 2019, 51, 1945–1953. [CrossRef]
17. Isaka, S.; Sebald, A.; Karimi, A.; Smith, N.; Quinn, M. On the design and performance evaluation of adaptive fuzzy controllers.

In Proceedings of the 27th IEEE Conference on Decision and Control, Austin, TX, USA, 7–9 December 1988; pp. 1068–1069.
18. Martinez-Soto, R.; Castillo, O.; Aguilar, L.T.; Baruch, I.S. Bio-inspired optimization of fuzzy logic controllers for autonomous

mobile robots. In Proceedings of the 2012 Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS),
Berkeley, CA, USA, 6–8 August 2012; pp. 1–6.

19. Salem, M.; Mora, A.M.; Guervós, J.J.M.; García-Sánchez, P. Evolving a TORCS Modular Fuzzy Driver Using Genetic Algorithms.
In Applications of Evolutionary Computation—21st International Conference, Proceedings of the EvoApplications 2018, Parma, Italy, 4–6
April 2018; Sim, K., Kaufmann, P., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2018; Volume
10784, pp. 342–357._24. [CrossRef]

20. Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–73. [CrossRef]
21. Muelas, S.; Pena, J.; LaTorre, A.; Robles, V. Algoritmos Distribuidos Heterogéneos para Problemas de Optimización Continua.

In Proceedings of the VI Congreso Español sobre Metaheurísticas, Algoritmos Evolutivos y Bioinspirados, MAEB, 2009; pp.
425–432. Available online: https://www.researchgate.net/publication/257330461_Algoritmos_Distribuidos_Heterogeneos_
para_problemas_de_Optimizacion_Continua (accessed on 15 December 2021).

22. Perez, R.l.; Behdinan, K. Particle swarm approach for structural design optimization. Comput. Struct. 2007, 85, 1579–1588.
[CrossRef]

23. Durgun, İ.; Yildiz, A.R. Structural design optimization of vehicle components using cuckoo search algorithm. Mater. Test. 2012,
54, 185–188. [CrossRef]

24. Yildiz, A.R. A new hybrid particle swarm optimization approach for structural design optimization in the automotive industry.
Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2012, 226, 1340–1351. [CrossRef]

25. Geem, Z.W.; Lee, K.S.; Tseng, C.L. Harmony search for structural design. In Proceedings of the 7th Annual Conference on Genetic
and Evolutionary Computation, Washington, DC, USA, 25–29 June 2005; pp. 651–652.

26. Back, T. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms; Oxford
University Press: Oxford, UK, 1996.

27. Kennedy, J. Swarm intelligence. In Handbook of Nature-Inspired and Innovative Computing; Springer: Berlin/Heidelberg, Germany,
2006; pp. 187–219.

28. Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial
Intelligence; MIT Press: Cambridge, MA, USA, 1992.

29. Eiben, A.E.; Smith, J.E. Genetic algorithms. In Introduction to Evolutionary Computing; Springer: Berlin/Heidelberg, Germany,
2003; pp. 37–69.

30. Karaboğa, D.; Ökdem, S. A simple and global optimization algorithm for engineering problems: Differential evolution algorithm.
Turk. J. Electr. Eng. Comput. Sci. 2004, 12, 53–60.

31. Clerc, M. Particle Swarm Optimization; John Wiley & Sons: Hoboken, NJ, USA, 2010; Volume 93.
32. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
33. Abualigah, L.; Yousri, D.; Abd Elaziz, M.; Ewees, A.A.; Al-qaness, M.A.; Gandomi, A.H. Aquila Optimizer: A novel meta-heuristic

optimization Algorithm. Comput. Ind. Eng. 2021, 157, 107250. [CrossRef]
34. Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new heuristic optimization algorithm: Harmony search. Simulation 2001, 76, 60–68.

[CrossRef]

http://dx.doi.org/10.3390/sym12040665
http://dx.doi.org/10.1109/TFUZZ.2006.879998
http://dx.doi.org/10.1016/j.riai.2014.09.005
http://dx.doi.org/10.1109/TSMC.2019.2911115
http://dx.doi.org/10.1007/978-3-319-77538-8_24
http://dx.doi.org/10.1038/scientificamerican0792-66
https://www.researchgate.net/publication/257330461_Algoritmos_Distribuidos_Heterogeneos_para_problemas_de_Optimizacion_Continua
https://www.researchgate.net/publication/257330461_Algoritmos_Distribuidos_Heterogeneos_para_problemas_de_Optimizacion_Continua
http://dx.doi.org/10.1016/j.compstruc.2006.10.013
http://dx.doi.org/10.3139/120.110317
http://dx.doi.org/10.1177/0954407012443636
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1016/j.cie.2021.107250
http://dx.doi.org/10.1177/003754970107600201

Symmetry 2022, 14, 202 17 of 17

35. Abualigah, L.; Diabat, A.; Mirjalili, S.; Abd Elaziz, M.; Gandomi, A.H. The arithmetic optimization algorithm. Comput. Methods
Appl. Mech. Eng. 2021, 376, 113609. [CrossRef]

36. Hernandez, E.; Castillo, O.; Soria, J. Optimization of fuzzy controllers for autonomous mobile robots using the grey wolf
optimizer. In Proceedings of the 2019 IEEE international conference on fuzzy systems (FUZZ-IEEE), New Orleans, LA, USA,
23–26 June 2019; pp. 1–6.

37. Lagunes, M.L.; Castillo, O.; Soria, J. Methodology for the optimization of a fuzzy controller using a bio-inspired algorithm. In
Proceedings of the North American Fuzzy Information Processing Society Annual Conference, West Lafayette, IN, USA, 7–9 June
2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 131–137.

38. Wagner, C.; Hagras, H. A genetic algorithm based architecture for evolving type-2 fuzzy logic controllers for real world
autonomous mobile robots. In Proceedings of the 2007 IEEE International Fuzzy Systems Conference, London, UK, 23–26 July
2007; pp. 1–6.

39. Wu, D.; Tan, W.W. Genetic learning and performance evaluation of interval type-2 fuzzy logic controllers. Eng. Appl. Artif. Intell.
2006, 19, 829–841. [CrossRef]

40. Astudillo, L.; Melin, P.; Castillo, O. Optimization of a fuzzy tracking controller for an autonomous mobile robot under
perturbed torques by means of a chemical optimization paradigm. In Recent Advances on Hybrid Intelligent Systems; Springer:
Berlin/Heidelberg, Germany, 2013; pp. 3–20.

41. Castillo, O.; Melin, P. A review on the design and optimization of interval type-2 fuzzy controllers. Appl. Soft Comput. 2012,
12, 1267–1278. [CrossRef]

42. Mancilla, A.; Castillo, O.; Valdez, M.G. Evolutionary Approach to the Optimal Design of Fuzzy Controllers for Trajectory Tracking.
In Intelligent and Fuzzy Techniques for Emerging Conditions and Digital Transformation; Kahraman, C., Cebi, S., Cevik Onar, S., Oztaysi,
B., Tolga, A.C., Sari, I.U., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 461–468.

43. Mancilla, A.; Castillo, O.; Valdez, M.G. Optimization of Fuzzy Logic Controllers with Distributed Bio-Inspired Algorithms.
In Recent Advances of Hybrid Intelligent Systems Based on Soft Computing; Melin, P., Castillo, O., Kacprzyk, J., Eds.; Springer
International Publishing: Cham, Switzerland, 2021; pp. 1–11. [CrossRef]

44. Pamucar, D.; Ćirović, G. Vehicle route selection with an adaptive neuro fuzzy inference system in uncertainty conditions. Decis.
Mak. Appl. Manag. Eng. 2018, 1, 13–37. [CrossRef]

45. De Luca, A.; Oriolo, G.; Samson, C. Feedback control of a nonholonomic car-like robot. In Robot Motion Planning and Control;
Springer: Berlin/Heidelberg, Germany, 1998; pp. 171–253.

46. Paden, B.; Čáp, M.; Yong, S.Z.; Yershov, D.; Frazzoli, E. A survey of motion planning and control techniques for self-driving
urban vehicles. IEEE Trans. Intell. Veh. 2016, 1, 33–55. [CrossRef]

47. Samson, C. Path following and time-varying feedback stabilization of a wheeled mobile robot. In Proceedings of the International
Conference on Control, Automation, Robotics and Vision, Nice, France, 12–14 May 1992.

48. Tan, P.N.; Steinbach, M.; Kumar, V. Introduction to Data Mining; Pearson Education India: Delhi, India, 2016.
49. Zhang, K.; Guo, J.X.; Gao, X.S. Cubic spline trajectory generation with axis jerk and tracking error constraints. Int. J. Precis. Eng.

Manuf. 2013, 14, 1141–1146. [CrossRef]
50. Sakai, A.; Ingram, D.; Dinius, J.; Chawla, K.; Raffin, A.; Paques, A. PythonRobotics: A Python code collection of robotics

algorithms. arXiv 2018, arXiv:1808.10703.

http://dx.doi.org/10.1016/j.cma.2020.113609
http://dx.doi.org/10.1016/j.engappai.2005.12.011
http://dx.doi.org/10.1016/j.asoc.2011.12.010
http://dx.doi.org/10.1007/978-3-030-58728-4_1
http://dx.doi.org/10.31181/dmame180113p
http://dx.doi.org/10.1109/TIV.2016.2578706
http://dx.doi.org/10.1007/s12541-013-0155-2

	Introduction
	Materials and Methods
	Rear-Wheel Feedback and Kinematic Model
	Fuzzy Controller
	Parameterizable Membership Functions
	Optimization Problem Formulation
	Metaheuristic Optimization Procedure
	Complexity of the Optimization Procedure
	Experimental Setup

	Results
	Discussion and Conclusions
	References

