84 research outputs found

    Ultra-tight GPS/IMU Integration based Long-Range Rocket Projectile Navigation

    Get PDF
    Accurate navigation is important for long-range rocket projectile’s precise striking. For getting a stable and high-performance navigation result, a ultra-tight global position system (GPS), inertial measuring unit integration (IMU)-based navigation approach is proposed. In this study, high-accuracy position information output from IMU in a short time to assist the carrier phase tracking in the GPS receiver, and then fused the output information of IMU and GPS based on federated filter. Meanwhile, introduced the cubature kalman filter as the local filter to replace the unscented kalman filter, and improved it with strong tracking principle, then, improved the federated filter with vector sharing theory. Lastly simulation was carried out based on the real ballistic data, from the estimation error statistic figure. The navigation accuracy of the proposed method is higher than traditional method.

    Denoising MAX6675 reading using Kalman filter and factorial design

    Get PDF
    This paper aims to tune the Kalman filter (KF) input variables, namely measurement error and process noise, based on two-level factorial design. Kalman filter then was applied in inexpensive temperature-acquisition utilizing MAX6675 and K-type thermocouple with Arduino as its microprocessor. Two levels for each input variable, respectively, 0.1 and 0.9, were selected and applied to four K-type thermocouples mounted on MAX6675. Each sensor with a different combination of input variables was used to measure the temperature of ambient-water, boiling water, and sudden temperature drops in the system. The measurement results which consisted of the original and KF readings were evaluated to determine the optimum combination of input variables. It was found that the optimum combination of input variables was highly dependent on the system's dynamics. For systems with relatively constant dynamics, a large value of measurement error and small value of process noise results in higher precision readings. Nevertheless, for fast dynamic systems, the previous input variables' combination is less optimal because it produced a time-gap, which made the KF reading differ from the original measurement. The selection of the optimum input combination using two-level factorial design eased the KF tuning process, resulting in a more precise yet low-cost sensor

    Composite Disturbance Filtering: A Novel State Estimation Scheme for Systems With Multi-Source, Heterogeneous, and Isomeric Disturbances

    Full text link
    State estimation has long been a fundamental problem in signal processing and control areas. The main challenge is to design filters with ability to reject or attenuate various disturbances. With the arrival of big data era, the disturbances of complicated systems are physically multi-source, mathematically heterogenous, affecting the system dynamics via isomeric (additive, multiplicative and recessive) channels, and deeply coupled with each other. In traditional filtering schemes, the multi-source heterogenous disturbances are usually simplified as a lumped one so that the "single" disturbance can be either rejected or attenuated. Since the pioneering work in 2012, a novel state estimation methodology called {\it composite disturbance filtering} (CDF) has been proposed, which deals with the multi-source, heterogenous, and isomeric disturbances based on their specific characteristics. With the CDF, enhanced anti-disturbance capability can be achieved via refined quantification, effective separation, and simultaneous rejection and attenuation of the disturbances. In this paper, an overview of the CDF scheme is provided, which includes the basic principle, general design procedure, application scenarios (e.g. alignment, localization and navigation), and future research directions. In summary, it is expected that the CDF offers an effective tool for state estimation, especially in the presence of multi-source heterogeneous disturbances

    A Hybrid Adaptive Velocity Aided Navigation Filter with Application to INS/DVL Fusion

    Full text link
    Autonomous underwater vehicles (AUV) are commonly used in many underwater applications. Usually, inertial sensors and Doppler velocity log readings are used in a nonlinear filter to estimate the AUV navigation solution. The process noise covariance matrix is tuned according to the inertial sensors' characteristics. This matrix greatly influences filter accuracy, robustness, and performance. A common practice is to assume that this matrix is fixed during the AUV operation. However, it varies over time as the amount of uncertainty is unknown. Therefore, adaptive tuning of this matrix can lead to a significant improvement in the filter performance. In this work, we propose a learning-based adaptive velocity-aided navigation filter. To that end, handcrafted features are generated and used to tune the momentary system noise covariance matrix. Once the process noise covariance is learned, it is fed into the model-based navigation filter. Simulation results show the benefits of our approach compared to other adaptive approaches.Comment: 5 pages. arXiv admin note: substantial text overlap with arXiv:2207.1208

    On the vehicle sideslip angle estimation: a literature review of methods, models and innovations

    Get PDF
    Typical active safety systems controlling the dynamics of passenger cars rely on real-time monitoring of the vehicle sideslip angle (VSA), together with other signals like wheel angular velocities, steering angle, lateral acceleration, and the rate of rotation about the vertical axis, known as the yaw rate. The VSA (aka attitude or “drifting” angle) is defined as the angle between the vehicle longitudinal axis and the direction of travel, taking the centre of gravity as a reference. It is basically a measure of the misalignment between vehicle orientation and trajectory therefore it is a vital piece of information enabling directional stability assessment, in transients following emergency manoeuvres for instance. As explained in the introduction the VSA is not measured directly for impracticality and it is estimated on the basis of available measurements like wheel velocities, linear and angular accelerations etc. This work is intended to provide a comprehensive literature review on the VSA estimation problem. Two main estimation methods have been categorised, i.e. Observer-based and Neural Network-based, focusing on the most effective and innovative approaches. As the first method normally relies on a vehicle model, a review of the vehicle models has been included. Advantages and limitations of each technique have been highlighted and discussed

    Maximum likelihood estimation-assisted ASVSF through state covariance-based 2D SLAM algorithm

    Get PDF
    The smooth variable structure filter (ASVSF) has been relatively considered as a new robust predictor-corrector method for estimating the state. In order to effectively utilize it, an SVSF requires the accurate system model, and exact prior knowledge includes both the process and measurement noise statistic. Unfortunately, the system model is always inaccurate because of some considerations avoided at the beginning. Moreover, the small addictive noises are partially known or even unknown. Of course, this limitation can degrade the performance of SVSF or also lead to divergence condition. For this reason, it is proposed through this paper an adaptive smooth variable structure filter (ASVSF) by conditioning the probability density function of a measurementto the unknown parameters at one iteration. This proposed method is assumed to accomplish the localization and direct point-based observation task of a wheeled mobile robot, TurtleBot2. Finally, by realistically simulating it and comparing to a conventional method, the proposed method has been showing a better accuracy and stability in term of root mean square error (RMSE) of the estimated map coordinate (EMC) and estimated path coordinate (EPC)

    Novel Framework for Navigation using Enhanced Fuzzy Approach with Sliding Mode Controller

    Get PDF
    The reliability of any embedded navigator in advanced vehicular system depends upon correct and precise information of navigational data captured and processed to offer trustworthy path. After reviewing the existing system, a significant trade-off is explored between the existing navigational system and present state of controller design on various case studies and applications. The existing design of controller system for navigation using error-prone GPS/INS data doesn‟t emphasize on sliding mode controller. Although, there has been good number of studies in sliding mode controller, it is less attempted to optimize the navigational performance of a vehicle. Therefore, this paper presents a novel optimized design of a sliding mode controller that can be effectively deployed on advanced navigational system. The study outcome was found to offer higher speed, optimal control signal, and lower error occurances to prove that proposed system offers reliable and optimized navigational services in contrast to existing system
    corecore