481 research outputs found

    Bibliography on Induction Motors Faults Detection and Diagnosis

    No full text
    International audienceThis paper provides a comprehensive list of books, workshops, conferences, and journal papers related to induction motors faults detection and diagnosis

    Induction Motor Stator Faults Diagnosis by a Current Concordia Pattern Based Fuzzy Decision System

    No full text
    International audienceThis paper deals with the problem of detection and diagnosis of induction motor faults. Using the fuzzy logic strategy, a better understanding of heuristics underlying the motor faults detection and diagnosis process can be achieved. The proposed fuzzy approach is based on the stator current Concordia patterns. Induction motor stator currents are measured, recorded and used for Concordia patterns computation under different operating conditions, particularly for different load levels. Experimental results are presented in terms of accuracy in the detection motor faults and knowledge extraction feasibility. The preliminary results show that the proposed fuzzy approach can be used for accurate stator fault diagnosis if the input data are processed in an advantageous way, which is the case of the Concordia patterns

    A review of physics-based models in prognostics: application to gears and bearings of rotating machinery

    Get PDF
    Health condition monitoring for rotating machinery has been developed for many years due to its potential to reduce the cost of the maintenance operations and increase availability. Covering aspects include sensors, signal processing, health assessment and decision-making. This article focuses on prognostics based on physics-based models. While the majority of the research in health condition monitoring focuses on data-driven techniques, physics-based techniques are particularly important if accuracy is a critical factor and testing is restricted. Moreover, the benefits of both approaches can be combined when data-driven and physics-based techniques are integrated. This article reviews the concept of physics-based models for prognostics. An overview of common failure modes of rotating machinery is provided along with the most relevant degradation mechanisms. The models available to represent these degradation mechanisms and their application for prognostics are discussed. Models that have not been applied to health condition monitoring, for example, wear due to metal–metal contact in hydrodynamic bearings, are also included due to its potential for health condition monitoring. The main contribution of this article is the identification of potential physics-based models for prognostics in rotating machinery

    Prognostics and health management for maintenance practitioners - Review, implementation and tools evaluation.

    Get PDF
    In literature, prognostics and health management (PHM) systems have been studied by many researchers from many different engineering fields to increase system reliability, availability, safety and to reduce the maintenance cost of engineering assets. Many works conducted in PHM research concentrate on designing robust and accurate models to assess the health state of components for particular applications to support decision making. Models which involve mathematical interpretations, assumptions and approximations make PHM hard to understand and implement in real world applications, especially by maintenance practitioners in industry. Prior knowledge to implement PHM in complex systems is crucial to building highly reliable systems. To fill this gap and motivate industry practitioners, this paper attempts to provide a comprehensive review on PHM domain and discusses important issues on uncertainty quantification, implementation aspects next to prognostics feature and tool evaluation. In this paper, PHM implementation steps consists of; (1) critical component analysis, (2) appropriate sensor selection for condition monitoring (CM), (3) prognostics feature evaluation under data analysis and (4) prognostics methodology and tool evaluation matrices derived from PHM literature. Besides PHM implementation aspects, this paper also reviews previous and on-going research in high-speed train bogies to highlight problems faced in train industry and emphasize the significance of PHM for further investigations

    Assessing the Technical Specifications of Predictive Maintenance: A Case Study of Centrifugal Compressor

    Get PDF
    Dependability analyses in the design phase are common in IEC 60300 standards to assess the reliability, risk, maintainability, and maintenance supportability of specific physical assets. Reliability and risk assessment uses well-known methods such as failure modes, effects, and criticality analysis (FMECA), fault tree analysis (FTA), and event tree analysis (ETA)to identify critical components and failure modes based on failure rate, severity, and detectability. Monitoring technology has evolved over time, and a new method of failure mode and symptom analysis (FMSA) was introduced in ISO 13379-1 to identify the critical symptoms and descriptors of failure mechanisms. FMSA is used to estimate monitoring priority, and this helps to determine the critical monitoring specifications. However, FMSA cannot determine the effectiveness of technical specifications that are essential for predictive maintenance, such as detection techniques (capability and coverage), diagnosis (fault type, location, and severity), or prognosis (precision and predictive horizon). The paper proposes a novel predictive maintenance (PdM) assessment matrix to overcome these problems, which is tested using a case study of a centrifugal compressor and validated using empirical data provided by the case study company. The paper also demonstrates the possible enhancements introduced by Industry 4.0 technologies.publishedVersio

    Self-tuning routine alarm analysis of vibration signals in steam turbine generators

    Get PDF
    This paper presents a self-tuning framework for knowledge-based diagnosis of routine alarms in steam turbine generators. The techniques provide a novel basis for initialising and updating time series feature extraction parameters used in the automated decision support of vibration events due to operational transients. The data-driven nature of the algorithms allows for machine specific characteristics of individual turbines to be learned and reasoned about. The paper provides a case study illustrating the routine alarm paradigm and the applicability of systems using such techniques

    Closed-Loop Drive Detection and Diagnosis of Multiple Combined Faults in Induction Motor Through Model-Based and Neuro-Fuzzy Network Techniques

    Get PDF
    In this paper, a fault detection and diagnosis approach adopted for an input-output feedback linearization (IOFL) control of induction motor (IM) drive is proposed. This approach has been employed to detect and identify the simple and mixed broken rotor bars and static air-gap eccentricity faults right from the start its operation by utilizing advanced techniques. Therefore, two techniques are applied: the model-based strategy, which is an online method used to generate residual stator current signal in order to indicate the presence of possible failures by means of the sliding mode observer (SMO) in the closed-loop drive. However, this strategy is not able to recognise the fault types and it can be affected by the other disturbances. Therefore, the offline method using the multi-adaptive neuro-fuzzy inference system (MANAFIS) technique is proposed to identify the faults and distinguish them. However, the MANAFIS required a relevant database to achieve satisfactory results. Hence, the stator current analysis based on the HFFT combination of the Hilbert transform (HT) and Fast Fourier transform (FFT) is applied to extract the amplitude of harmonics due to defects occur and used them as an input data set for the MANFIS under different loads and fault severities. The simulation results show the efficiency of the proposed techniques and its ability to detect and diagnose any minor faults in a closed-loop drive of IM
    corecore