6,715 research outputs found

    Fuzzy-rough set and fuzzy ID3 decision approaches to knowledge discovery in datasets

    Get PDF
    Fuzzy rough sets are the generalization of traditional rough sets to deal with both fuzziness and vagueness in data. The existing researches on fuzzy rough sets mainly concentrate on the construction of approximation operators. Less effort has been put on the knowledge discovery in datasets with fuzzy rough sets. This paper mainly focuses on knowledge discovery in datasets with fuzzy rough sets. After analyzing the previous works on knowledge discovery with fuzzy rough sets, we introduce formal concepts of attribute reduction with fuzzy rough sets and completely study the structure of attribute reduction

    On the Relation of Probability, Fuzziness, Rough and Evidence Theory

    Get PDF
    Since the appearance of the first paper on fuzzy sets proposed by Zadeh in 1965, the relationship between probability and fuzziness in the representation of uncertainty has been discussed among many people. The question is whether probability theory itself is sufficient to deal with uncertainty. In this paper the relationship between probability and fuzziness is analyzed by the process of perception to simply understand the relationship between them. It is clear that probability and fuzziness work in different areas of uncertainty. Here, fuzzy event in the presence of probability theory provides probability of fuzzy event in which fuzzy event could be regarded as a generalization of crisp event. Moreover, in rough set theory, a rough event is proposed representing two approximate events, namely lower approximate event and upper approximate event. Similarly, in the presence of probability theory, rough event can be extended to be probability of rough event. Finally, the paper shows and discusses relation among lower-upper approximate probability (probability of rough events), belief-plausibility measures (evidence theory), classical probability measures, probability of generalized fuzzy-rough events and probability of fuzzy events

    A Comprehensive study on (α,β)-multi-granulation bipolar fuzzy rough sets under bipolar fuzzy preference relation

    Get PDF
    The rough set (RS) and multi-granulation RS (MGRS) theories have been successfully extended to accommodate preference analysis by substituting the equivalence relation (ER) with the dominance relation (DR). On the other hand, the bipolar fuzzy sets (BFSs) are effective tools for handling bipolarity and fuzziness of the data. In this study, with the description of the background of risk decision-making problems in reality, we present (α,β) (\alpha, \beta) -optimistic multi-granulation bipolar fuzzified preference rough sets ((α,β)o (\alpha, \beta)^o -MG-BFPRSs) and (α,β) (\alpha, \beta) -pessimistic multi-granulation bipolar fuzzified preference rough sets ((α,β)p (\alpha, \beta)^p -MG-BFPRSs) using bipolar fuzzy preference relation (BFPR). Subsequently, the relevant properties and results of both (α,β)o (\alpha, \beta)^o -MG-BFPRSs and (α,β)p (\alpha, \beta)^p -MG-BFPRSs are investigated in detail. At the same time, a relationship among the (α,β) (\alpha, \beta) -BFPRSs, (α,β)o (\alpha, \beta)^o -MG-BFPRSs and (α,β)p (\alpha, \beta)^p -MG-BFPRSs is given

    Active Clothing Material Perception using Tactile Sensing and Deep Learning

    Full text link
    Humans represent and discriminate the objects in the same category using their properties, and an intelligent robot should be able to do the same. In this paper, we build a robot system that can autonomously perceive the object properties through touch. We work on the common object category of clothing. The robot moves under the guidance of an external Kinect sensor, and squeezes the clothes with a GelSight tactile sensor, then it recognizes the 11 properties of the clothing according to the tactile data. Those properties include the physical properties, like thickness, fuzziness, softness and durability, and semantic properties, like wearing season and preferred washing methods. We collect a dataset of 153 varied pieces of clothes, and conduct 6616 robot exploring iterations on them. To extract the useful information from the high-dimensional sensory output, we applied Convolutional Neural Networks (CNN) on the tactile data for recognizing the clothing properties, and on the Kinect depth images for selecting exploration locations. Experiments show that using the trained neural networks, the robot can autonomously explore the unknown clothes and learn their properties. This work proposes a new framework for active tactile perception system with vision-touch system, and has potential to enable robots to help humans with varied clothing related housework.Comment: ICRA 2018 accepte

    Fuzzy Supernova Templates I: Classification

    Full text link
    Modern supernova (SN) surveys are now uncovering stellar explosions at rates that far surpass what the world's spectroscopic resources can handle. In order to make full use of these SN datasets, it is necessary to use analysis methods that depend only on the survey photometry. This paper presents two methods for utilizing a set of SN light curve templates to classify SN objects. In the first case we present an updated version of the Bayesian Adaptive Template Matching program (BATM). To address some shortcomings of that strictly Bayesian approach, we introduce a method for Supernova Ontology with Fuzzy Templates (SOFT), which utilizes Fuzzy Set Theory for the definition and combination of SN light curve models. For well-sampled light curves with a modest signal to noise ratio (S/N>10), the SOFT method can correctly separate thermonuclear (Type Ia) SNe from core collapse SNe with 98% accuracy. In addition, the SOFT method has the potential to classify supernovae into sub-types, providing photometric identification of very rare or peculiar explosions. The accuracy and precision of the SOFT method is verified using Monte Carlo simulations as well as real SN light curves from the Sloan Digital Sky Survey and the SuperNova Legacy Survey. In a subsequent paper the SOFT method is extended to address the problem of parameter estimation, providing estimates of redshift, distance, and host galaxy extinction without any spectroscopy.Comment: 26 pages, 12 figures. Accepted to Ap
    • …
    corecore