2,359 research outputs found

    Association of Alleles Carried at TNFA -850 and BAT1 -22 with Alzheimer\u27s Disease

    Get PDF
    Background: Inflammatory changes are a prominent feature of brains affected by Alzheimer\u27s disease (AD). Activated glial cells release inflammatory cytokines which modulate the neurodegenerative process. These cytokines are encoded by genes representing several interleukins and TNFA, which are associated with AD. The gene coding for HLA-B associated transcript 1 (BAT1) lies adjacent to TNFA in the central major histocompatibility complex (MHC). BAT1, a member of the DEAD-box family of RNA helicases, appears to regulate the production of inflammatory cytokines associated with AD pathology. In the current study TNFA and BAT1 promoter polymorphisms were analysed in AD and control cases and BAT1 mRNA levels were investigated in brain tissue from AD and control cases. Methods: Genotyping was performed for polymorphisms at positions -850 and -308 in the proximal promoter of TNFA and position -22 in the promoter of BAT1. These were investigated singly or in haplotypic association in a cohort of Australian AD patients with AD stratified on the basis of their APOE ε4 genotype. Semi-quantitative RT-PCR was also performed for BAT1 from RNA isolated from brain tissue from AD and control cases. Results: APOE ε4 was associated with an independent increase in risk for AD in individuals with TNFA -850*2, while carriage of BAT1 -22*2 reduced the risk for AD, independent of APOE ε4 genotype. Semi-quantitative mRNA analysis in human brain tissue showed elevated levels of BAT1 mRNA in frontal cortex of AD cases. Conclusion: These findings lend support to the application of TNFA and BAT1 polymorphisms in early diagnosis or risk assessment strategies for AD and suggest a potential role for BAT1 in the regulation of inflammatory reactions in AD pathology

    Innate immunity and inflammation in ageing: a key for understanding age-related diseases

    Get PDF
    The process of maintaining life for the individual is a constant struggle to preserve his/her integrity. This can come at a price when immunity is involved, namely systemic inflammation. Inflammation is not per se a negative phenomenon: it is the response of the immune system to the invasion of viruses or bacteria and other pathogens. During evolution the human organism was set to live 40 or 50 years; today, however, the immune system must remain active for much a longer time. This very long activity leads to a chronic inflammation that slowly but inexorably damages one or several organs: this is a typical phenomenon linked to ageing and it is considered the major risk factor for age-related chronic diseases. Alzheimer's disease, atherosclerosis, diabetes and even sarcopenia and cancer, just to mention a few – have an important inflammatory component, though disease progression seems also dependent on the genetic background of individuals. Emerging evidence suggests that pro-inflammatory genotypes are related to unsuccessful ageing, and, reciprocally, controlling inflammatory status may allow a better chance of successful ageing. In other words, age-related diseases are "the price we pay" for a life-long active immune system: this system has also the potential to harm us later, as its fine tuning becomes compromised. Our immune system has evolved to control pathogens, so pro-inflammatory responses are likely to be evolutionarily programmed to resist fatal infections with pathogens aggressively. Thus, inflammatory genotypes are an important and necessary part of the normal host responses to pathogens in early life, but the overproduction of inflammatory molecules might also cause immune-related inflammatory diseases and eventually death later. Therefore, low responder genotypes involved in regulation of innate defence mechanisms, might better control inflammatory responses and age-related disease development, resulting in an increased chance of long life survival in a "permissive" environment with reduced pathogen load, medical care and increased quality of life

    Interleukin-6 gene (IL-6): a possible role in brain morphology in the healthy adult brain

    Get PDF
    Background: Cytokines such as interleukin 6 (IL-6) have been implicated in dual functions in neuropsychiatric disorders. Little is known about the genetic predisposition to neurodegenerative and neuroproliferative properties of cytokine genes. In this study the potential dual role of several IL-6 polymorphisms in brain morphology is investigated. Methodology: In a large sample of healthy individuals (N = 303), associations between genetic variants of IL-6 (rs1800795; rs1800796, rs2069833, rs2069840) and brain volume (gray matter volume) were analyzed using voxel-based morphometry (VBM). Selection of single nucleotide polymorphisms (SNPs) followed a tagging SNP approach (e.g., Stampa algorigthm), yielding a capture 97.08% of the variation in the IL-6 gene using four tagging SNPs. Principal findings/results: In a whole-brain analysis, the polymorphism rs1800795 (−174 C/G) showed a strong main effect of genotype (43 CC vs. 150 CG vs. 100 GG; x = 24, y = −10, z = −15; F(2,286) = 8.54, puncorrected = 0.0002; pAlphaSim-corrected = 0.002; cluster size k = 577) within the right hippocampus head. Homozygous carriers of the G-allele had significantly larger hippocampus gray matter volumes compared to heterozygous subjects. None of the other investigated SNPs showed a significant association with grey matter volume in whole-brain analyses. Conclusions/significance: These findings suggest a possible neuroprotective role of the G-allele of the SNP rs1800795 on hippocampal volumes. Studies on the role of this SNP in psychiatric populations and especially in those with an affected hippocampus (e.g., by maltreatment, stress) are warranted.Bernhard T Baune, Carsten Konrad, Dominik Grotegerd, Thomas Suslow, Eva Birosova, Patricia Ohrmann, Jochen Bauer, Volker Arolt, Walter Heindel, Katharina Domschke, Sonja Schöning, Astrid V Rauch, Christina Uhlmann, Harald Kugel and Udo Dannlowsk

    Human leukocyte antigen class I, class II, and tumor necrosis factor-alpha polymorphisms in a healthy elder Mexican Mestizo population

    Get PDF
    BACKGROUND: There is strong evidence that an individual's genetic background is an important predisposing factor to longevity. In the present study we analysed the frequency of HLA class I, class II, as well as the TNF-α -308 polymorphism that may be related to an increased life span in Mexican Mestizo healthy elders. RESULTS: HLA typing was performed by polymerase chain reaction sequence specific oligonucleotide (PCR SSO) reverse dot blot. The TNF-α -308 polymorphism was assessed by PCR restriction fragment length polymorphism. A significant increased frequency of HLA-DRB1*11 was found in elderly women whereas this allele was not present in elderly males. The TNF2 allele was also increased in the elder group when compared to young controls. The frequencies of the remaining alleles tested were not statistically different among groups. CONCLUSION: These data suggest an ethnicity independent tendency of HLA-DRB1*11 in elder females to increase life span and a possible role of the TNF2 allele with the successful remodelling of senescent immune system

    TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease

    Get PDF
    The role of tumor necrosis factor (TNF) as an immune mediator has long been appreciated but its function in the brain is still unclear. TNF receptor 1 (TNFR1) is expressed in most cell types, and can be activated by binding of either soluble TNF (solTNF) or transmembrane TNF (tmTNF), with a preference for solTNF; whereas TNFR2 is expressed primarily by microglia and endothelial cells and is preferentially activated by tmTNF. Elevation of solTNF is a hallmark of acute and chronic neuroinflammation as well as a number of neurodegenerative conditions including ischemic stroke, Alzheimer's (AD), Parkinson's (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). The presence of this potent inflammatory factor at sites of injury implicates it as a mediator of neuronal damage and disease pathogenesis, making TNF an attractive target for therapeutic development to treat acute and chronic neurodegenerative conditions. However, new and old observations from animal models and clinical trials reviewed here suggest solTNF and tmTNF exert different functions under normal and pathological conditions in the CNS. A potential role for TNF in synaptic scaling and hippocampal neurogenesis demonstrated by recent studies suggest additional in-depth mechanistic studies are warranted to delineate the distinct functions of the two TNF ligands in different parts of the brain prior to large-scale development of anti-TNF therapies in the CNS. If inactivation of TNF-dependent inflammation in the brain is warranted by additional pre-clinical studies, selective targeting of TNFR1-mediated signaling while sparing TNFR2 activation may lessen adverse effects of anti-TNF therapies in the CNS

    Meta-analysis of genes in commercially available nutrigenomic tests denotes lack of association with dietary intake and nutrient-related pathologies

    Get PDF
    Nutrigenomics is an emerging discipline that aims to investigate how individual genetic composition correlates with dietary intake, as well as how nutrition influences gene expression. Herein, the fundamental question relates to the value of nutrigenomics testing on the basis of the currently available scientific evidence. A thorough literature search has been conducted in PubMed scientific literature database for nutrigenomics research studies on 38 genes included in nutrigenomics tests provided by various private genetic testing laboratories. Data were subsequently meta-analyzed to identify possible associations between the genes of interest and dietary intake and/or nutrient-related pathologies. Data analysis occurred according to four different models due to data sparsity and inconsistency. Data from 524,592 individuals (361,153 cases and 163,439 controls) in a total of 1,170 entries were obtained. Conflicting findings indicated that there was a great incompatibility regarding the associations (or their absence) identified. No specific-and statistically significant-association was identified for any of the 38 genes of interest. In those cases, where a weak association was demonstrated, evidence was based on a limited number of studies. As solid scientific evidence is currently lacking, commercially available nutrigenomics tests cannot be presently recommended. Notwithstanding, the need for a thorough and continuous nutrigenomics research is evident as it is a highly promising tool towards precision medicine

    Association of interleukin 1 beta polymorphisms and haplotypes with Alzheimer's disease

    Get PDF
    Our study aimed to associate IL-1 beta and IL-1RN polyrnorphisms with AD disease in comparison with elderly control group from São Paulo - Brazil. We genotyped 199 Alzheimer's disease (AD) patients, 165 elderly control and 122 young control samples, concerning VNTR (IL-1RN) and -511C>T and -31T>C (IL-1 beta) polymorphisms. Our findings revealed that -511C/-31T/2-repetitions VNTR haplotype had a protective effect for AD when compared to EC (p=0.005), whereas -511C/-31C/1-repetition VNTR haplotype was associated as a risk factor for AD (p=0.021). Taken together, we may suggest that there is a relevant role of IL-1 genes cluster in AD pathogenesis in this Brazilian population. (c) 2012 Elsevier B.V. All rights reserved.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Universidade do Sagrado Coracao de BauruConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Faculdade de Medicina de Marilia (FAMEMA)USC, São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med UNIFESP EPM, Dept Morfol, Disciplina Genet, São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med UNIFESP EPM, Disciplina Neurol Ambulatorio Neurol Comportament, São Paulo, BrazilFac Med Marilia FAMEMA, Hemoctr, Disciplina Genet, São Paulo, BrazilFac Med Sao Jose do Rio Preto, Nucleo Pesquisa Bioquim & Biol Mol, São Paulo, BrazilUniv Marilia UNIMAR, Fac Med, São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med UNIFESP EPM, Dept Morfol, Disciplina Genet, São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med UNIFESP EPM, Disciplina Neurol Ambulatorio Neurol Comportament, São Paulo, BrazilFAPESP: 06/07240-3FAPESP: 09/15857-9FAPESP: 04/15273-3Web of Scienc
    • …
    corecore