3,601 research outputs found

    Functionalized optical fibre sensors for real-time environmental monitoring applications

    Get PDF
    The role of optical fibres as a medium for information transfer has found many applications. One of these is in environmental sensing, where slight perturbations in the ambient environment can be remotely detected through modulation of light at selected points along the optical fibre. These perturbations exist in the form of variations in refractive index (RI), temperature or strain. This paper reviews our recent work on optical fibre-based RI sensors, in particular long period fibre gratings (LPFGs), integrated with carbon nano-materials. These carbon nano-materials with their unique properties modified the sensing scheme of the conventional fibre sensors, allowing them to gain immunity from certain free spectral range limitations, extend their operation range and also present the potential for efficient real-time environmental monitoring applications

    Recent Progress in Optical Sensors for Biomedical Diagnostics

    Get PDF
    In recent years, several types of optical sensors have been probed for their aptitude in healthcare biosensing, making their applications in biomedical diagnostics a rapidly evolving subject. Optical sensors show versatility amongst different receptor types and even permit the integration of different detection mechanisms. Such conjugated sensing platforms facilitate the exploitation of their neoteric synergistic characteristics for sensor fabrication. This paper covers nearly 250 research articles since 2016 representing the emerging interest in rapid, reproducible and ultrasensitive assays in clinical analysis. Therefore, we present an elaborate review of biomedical diagnostics with the help of optical sensors working on varied principles such as surface plasmon resonance, localised surface plasmon resonance, evanescent wave fluorescence, bioluminescence and several others. These sensors are capable of investigating toxins, proteins, pathogens, disease biomarkers and whole cells in varied sensing media ranging from water to buffer to more complex environments such as serum, blood or urine. Hence, the recent trends discussed in this review hold enormous potential for the widespread use of optical sensors in early-stage disease prediction and point-of-care testing devices.DFG, 428780268, Biomimetische Rezeptoren auf NanoMIP-Basis zur Virenerkennung und -entfernung mittels integrierter Ansätz

    Sensores em POF baseados em intensidade para a avaliação da qualidade de águas

    Get PDF
    Nowadays there is the need for low-cost and user-friendly solutions for water quality assessment which can allow for remote, in-site and real-time monitoring of water contaminants. POF sensing technologies combined with specially developed sensitive layers for chemical detection may offer these possibilities, with proper interrogation systems. POF sensing platforms based on low-cost procedures were developed and characterized using aqueous solutions of different refractive indices (RI). The POF RI sensors were optimized by varying the length and/or roughness of the sensing region. The suitability of these sensing platforms for chemical detection was evaluated through the coating with sensitive layers, namely molecularly imprinted polymers (MIPs) using different deposition techniques. The dependency of proteins immobilization on the POF’s surface was evaluated aiming future developments in chemical detection using POF biosensors. A D-shaped POF chemical sensor was successfully developed using a sensitive MIP layer, allowing the detection of perfluorooctanoate (POFA/PFO-) in aqueous media with a limit of detection of 0.20 – 0.28 ppb. The collaboration of researchers from different areas was essential for the success of the developed work.Hoje em dia há uma necessidade de soluções simples e de baixo custo para a avaliação da qualidade de águas e que permitam a monitorização remota de contaminantes, no local e em tempo real. As tecnologias baseadas em POF podem oferecer essa possibilidade através de sistemas de interrogação óptica adequados, combinados com camadas sensíveis especialmente desenvolvidas para detecção química. As plataformas ópticas baseadas em POF foram desenvolvidas e caracterizadas com soluções aquosas com diferentes índices de refracção. Os sensores foram optimizados através da variação do comprimento e/ou rugosidade da região sensível. A capacidade de detecção química das plataformas ópticas desenvolvidas foi avaliada através do revestimento com camadas sensíveis, nomeadamente polímeros molecularmente impressos (PMI), utilizando diferentes técnicas de deposição. A dependência da imobilização de proteínas na superfície de POFs modificadas foi avaliada com o objectivo de desenvolver biossensores para detecção química. Um sensor POF para detecção química, em configuração D-shape, foi desenvolvido com sucesso através do revestimento com um PMI, permitindo a detecção de perfluorooctanoato (POFA/PFO-) em soluções aquosas com um limite de detecção entre 0.20 – 0.28 ppb. A colaboração com investigadores de diferentes áreas foi essencial para o sucesso do trabalho desenvolvido.Programa Doutoral em Engenharia Físic

    Carbon dioxide measurements using long period grating optical fibre sensor coated with metal organic framework HKUST-1

    Get PDF
    An optical fibre long period grating (LPG) based carbon dioxide (CO2) sensor coated with HKUST-1, a material from the metal organic framework family, functional coating is presented. In-situ crystallization and layer by layer (LbL) techniques of HKUST-1 thin film synthesis are compared in terms of the feasibility of the deposition procedure (time and cost efficiency) and the sensitivity of the film to carbon dioxide. The sensing mechanism is based on the measurement of the change of the refractive index (RI) of the coating that is induced by the penetration of CO2 molecules into the HKUST-1 pores. The HKUST-1 film was characterized by scanning electron microscopy (SEM). The thickness and refractive index (RI) of the 10, 20 and 40 layers thick films were determined using ellipsoetry. The crystallinity of the films was examined by X-ray diffraction pattern (XRD). While no response to CO2 was observed for the sensor coated using the in-situ crystallization technique, an LPG modified with 10, 20 and 40 layers of HKUST-1 films using LbL method upon exposure to CO2 in the range of 500 ppm to 40,000 ppm showed good sensitivity. The film containing 40 layers exhibited the highest sensitivity to CO2 with an obtained detection limit of 401 ppm

    Optical Microfibre Based Photonic Components and Their Applications in Label-Free Biosensing

    Get PDF
    Optical microfibre photonic components offer a variety of enabling properties, including large evanescent fields, flexibility, configurability, high confinement, robustness and compactness. These unique features have been exploited in a range of applications such as telecommunication, sensing, optical manipulation and high Q resonators. Optical microfibre biosensors, as a class of fibre optic biosensors which rely on small geometries to expose the evanescent field to interact with samples, have been widely investigated. Due to their unique properties, such as fast response, functionalization, strong confinement, configurability, flexibility, compact size, low cost, robustness, ease of miniaturization, large evanescent field and label-free operation, optical microfibres based biosensors seem a promising alternative to traditional immunological methods for biomolecule measurements. Unlabeled DNA and protein targets can be detected by monitoring the changes of various optical transduction mechanisms, such as refractive index, absorption and surface plasmon resonance, since a target molecule is capable of binding to an immobilized optical microfibre. In this review, we critically summarize accomplishments of past optical microfibre label-free biosensors, identify areas for future research and provide a detailed account of the studies conducted to date for biomolecules detection using optical microfibres
    corecore