1,200 research outputs found

    Functional Alarms for Systems of Interoperable Medical Devices

    Get PDF
    Alarms are essential for medical systems in order to ensure patient safety during deteriorating clinical situations and inevitable device malfunction. As medical devices are connected together to become interoperable, alarms become crucial part in making them high-assurance, in nature. Traditional alarm systems for interoperable medical devices have been patient-centric. In this paper, we introduce the need for an alarm system that focuses on the correct functionality of the interoperability architecture itself, along with several considerations and design challenges in enabling them

    Interoperability and standardisation in community telecare: a review

    Get PDF

    Requirement Engineering for Functional Alarm System for Interoperable Medical Devices

    Get PDF
    This paper addresses the problem of high-assurance operation for medical cyber-physical systems built from interoperable medical devices. Such systems are diferent from most cyber-physical systems due to their plug-and-play nature: they are assembled as needed at a patient\u27s bedside according to a specification that captures the clinical scenario and required device types. We need to ensure that such a system is assembled correctly and operates according to its specification. In this regard, we aim to develop an alarm system that would signal interoperability failures. We study how plug-and-play interoperable medical devices and systems can fail by means of hazard analysis that identify hazardous situations that are unique to interoperable systems. The requirements for the alarm system are formulated as the need to detect these hazardous situations. We instantiate the alarm requirement generation process through a case-study involving an interoperable medical device setup for airway-laser surgery

    Security and Interoperable Medical Device Systems: Part 1

    Get PDF
    Interoperable medical devices (IMDs) face threats due to the increased attack surface presented by interoperability and the corresponding infrastructure. Introducing networking and coordination functionalities fundamentally alters medical systems\u27 security properties. Understanding the threats is an important first step in eventually designing security solutions for such systems. Part 1 of this two-part article provides an overview of the IMD environment and the attacks that can be mounted on it

    Improving Patient Safety With X-Ray and Anesthesia Machine Ventilator Synchronization: A Medical Device Interoperability Case Study

    Get PDF
    When a x-ray image is needed during surgery, clinicians may stop the anesthesia machine ventilator while the exposure is made. If the ventilator is not restarted promptly, the patient may experience severe complications. This paper explores the interconnection of a ventilator and simulated x-ray into a prototype plug-and-play medical device system. This work assists ongoing interoperability framework development standards efforts to develop functional and non-functional requirements and illustrates the potential patient safety benefits of interoperable medical device systems by implementing a solution to a clinical use case requiring interoperability

    Security and Interoperable Medical Device Systems, Part 2: Failures, Consequences and Classifications

    Get PDF
    Interoperable medical devices (IMDs) face threats due to the increased attack surface presented by interoperability and the corresponding infrastructure. Introducing networking and coordination functionalities fundamentally alters medical systems\u27 security properties. Understanding the threats is an important first step in eventually designing security solutions for such systems. Part 2 of this two-part article defines a failure model, or the specific ways in which IMD environments might fail when attacked. An attack-consequences model expresses the combination of failures experienced by IMD environments for each attack vector. This analysis leads to interesting conclusions about regulatory classes of medical devices in IMD environments subject to attacks

    Smart vest for respiratory rate monitoring of COPD patients based on non-contact capacitive sensing

    Get PDF
    In this paper, a first approach to the design of a portable device for non-contact monitoring of respiratory rate by capacitive sensing is presented. The sensing system is integrated into a smart vest for an untethered, low-cost and comfortable breathing monitoring of Chronic Obstructive Pulmonary Disease (COPD) patients during the rest period between respiratory rehabilitation exercises at home. To provide an extensible solution to the remote monitoring using this sensor and other devices, the design and preliminary development of an e-Health platform based on the Internet of Medical Things (IoMT) paradigm is also presented. In order to validate the proposed solution, two quasi-experimental studies have been developed, comparing the estimations with respect to the golden standard. In a first study with healthy subjects, the mean value of the respiratory rate error, the standard deviation of the error and the correlation coefficient were 0.01 breaths per minute (bpm), 0.97 bpm and 0.995 (p < 0.00001), respectively. In a second study with COPD patients, the values were -0.14 bpm, 0.28 bpm and 0.9988 (p < 0.0000001), respectively. The results for the rest period show the technical and functional feasibility of the prototype and serve as a preliminary validation of the device for respiratory rate monitoring of patients with COPD.Ministerio de Ciencia e Innovación PI15/00306Ministerio de Ciencia e Innovación DTS15/00195Junta de Andalucía PI-0010-2013Junta de Andalucía PI-0041-2014Junta de Andalucía PIN-0394-201

    Medical Device Interoperability With Provable Safety Properties

    Get PDF
    Applications that can communicate with and control multiple medical devices have the potential to radically improve patient safety and the effectiveness of medical treatment. Medical device interoperability requires devices to have an open, standards-based interface that allows communication with any other device that implements the same interface. This will enable applications and functionality that can improve patient safety and outcomes. To build interoperable systems, we need to match up the capabilities of the medical devices with the needs of the application. An application that requires heart rate as an input and provides a control signal to an infusion pump requires a source of heart rate and a pump that will accept the control signal. We present means for devices to describe their capabilities and a methodology for automatically checking an application’s device requirements against the device capabilities. If such applications are going to be used for patient care, there needs to be convincing proof of their safety. The safety of a medical device is closely tied to its intended use and use environment. Medical device manufacturers create a hazard analysis of their device, where they explore the hazards associated with its intended use. We describe hazard analysis for interoperable devices and how to create system safety properties from these hazard analyses. The use environment of the application includes the application, connected devices, patient, and clinical workflow. The patient model is specific to each application and represents the patient’s response to treatment. We introduce Clinical Application Modeling Language (CAML), based on Extended Finite State Machines, and use model checking to test safety properties from the hazard analysis against the parallel composition of the application, patient model, clinical workflow, and the device models of connected devices

    Challenges and Research Directions in Medical Cyber-Physical Systems

    Get PDF
    Medical cyber-physical systems (MCPS) are lifecritical, context-aware, networked systems of medical devices. These systems are increasingly used in hospitals to provide highquality continuous care for patients. The need to design complex MCPS that are both safe and effective has presented numerous challenges, including achieving high assurance in system software, intoperability, context-aware intelligence, autonomy, security and privacy, and device certifiability. In this paper, we discuss these challenges in developing MCPS, some of our work in addressing them, and several open research issue
    • …
    corecore