University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

2019

Medical Device Interoperability With Provable
Safety Properties

David Eric Arney

University of Pennsylvania, dave@davearney.org

Follow this and additional works at: https://repositoryupenn.edu/edissertations

b Part of the Computer Sciences Commons

Recommended Citation

Arney, David Eric, "Medical Device Interoperability With Provable Safety Properties" (2019). Publicly Accessible Penn Dissertations.
3319.
https://repositoryupenn.edu/edissertations/3319

This paper is posted at ScholarlyCommons. https://repositoryupenn.edu/edissertations/3319

For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F3319&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F3319&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F3319&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fedissertations%2F3319&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/3319?utm_source=repository.upenn.edu%2Fedissertations%2F3319&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/edissertations/3319
mailto:repository@pobox.upenn.edu

Medical Device Interoperability With Provable Safety Properties

Abstract

Applications that can communicate with and control multiple medical devices have the potential to radically
improve patient safety and the effectiveness of medical treatment. Medical device interoperability requires
devices to have an open, standards-based interface that allows communication with any other device that
implements the same interface. This will enable applications and functionality that can improve patient safety
and outcomes.

To build interoperable systems, we need to match up the capabilities of the medical devices with the needs of
the application. An application that requires heart rate as an input and provides a control signal to an infusion
pump requires a source of heart rate and a pump that will accept the control signal. We present means for
devices to describe their capabilities and a methodology for automatically checking an application’s device
requirements against the device capabilities.

If such applications are going to be used for patient care, there needs to be convincing proof of their safety. The
safety of a medical device is closely tied to its intended use and use environment. Medical device
manufacturers create a hazard analysis of their device, where they explore the hazards associated with its
intended use. We describe hazard analysis for interoperable devices and how to create system safety properties
from these hazard analyses. The use environment of the application includes the application, connected
devices, patient, and clinical workflow. The patient model is specific to each application and represents the
patient’s response to treatment. We introduce Clinical Application Modeling Language (CAML), based on
Extended Finite State Machines, and use model checking to test safety properties from the hazard analysis
against the parallel composition of the application, patient model, clinical workflow, and the device models of
connected devices.

Degree Type
Dissertation

Degree Name

Doctor of Philosophy (PhD)

Graduate Group
Computer and Information Science

First Advisor
Insup Lee

Keywords
formal methods, interoperability, patient safety

Subject Categories
Computer Sciences

This dissertation is available at ScholarlyCommons: https://repositoryupenn.edu/edissertations/3319

https://repository.upenn.edu/edissertations/3319?utm_source=repository.upenn.edu%2Fedissertations%2F3319&utm_medium=PDF&utm_campaign=PDFCoverPages

MEDICAL DEVICE INTEROPERABILITY WITH PROVABLE SAFETY
PROPERTIES

David Arney

A DISSERTATION

n

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania
in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

2019

Supervisor of Dissertation

Insup Lee, Professor of Computer and Information Science

Graduate Group Chairperson

Rajeev Alur, Professor of Computer and Information Science

Dissertation Committee:

Oleg Sokolsky, Research Professor of Computer and Information Science
Rahul Mangharam, Associate Professor of Electrical and Systems Engineering
Steven Zdancewic, Professor of Computer and Information Science

John Hatcliff, Professor of Computer Science, Kansas State University

Acknowledgments

I have been privileged to work with and learn from many amazing people. This work has
benefited from conversations with literally hundreds of people at the MD PnP Lab and
conferences and workshops around the world

I’d like to thank the clinicians that have allowed me the privilege of accompanying
them as they care for patients and for sharing their challenges, frustrations, and hopes.
Soojin Park, Marco Zenati, John Walsh, and Margaret Mullen-Fontino among many
others, as well as Geoff Rance, Bill Driscoll, Ryan Ford, Luis Melendez, and Rick Schrenker
for sharing the challenges of clinical biomedical engineering

Julian Goldman for his support, vision of using interoperability to improve patient
safety and outcomes, and founding the MD PnP Program at Massachusetts General Hos-
pital where much of this work was done

Jeff Plourde, Jeff Peterson, and all of my colleagues at MD PnP for sharing the dream

Carlen Blackstone from Emmaus High School and Raymond McDowell, Alyce Brady,
Chris Latiolais from Kalamazoo College for their teaching and mentorship

My fellow students in the PRECISE group, especially Andrew King, BaekGyu Kim,

Miroslav Pajic, and Arvind Easwaran, who helped me puzzle out the initial semantics for

ii

CAML

At the FDA, Sandy Weininger, Paul Jones, and Raoul Jetley

My fellow Fellows and Affiliates at the Berkman Klein Center, and especially the
Healthcare Working Group, for support, encouragement, and wonderful discussions

The members of my committee for their mentorship

My advisor, Insup Lee, for his guidance and support

And finally my family. Laurie, Zachary, Eleanor and all of you who have helped and

supported me on this journey

iii

ABSTRACT
MEDICAL DEVICE INTEROPERABILITY WITH PROVABLE SAFETY

PROPERTIES

David Arney

Insup Lee

Applications that can communicate with and control multiple medical devices have
the potential to radically improve patient safety and the effectiveness of medical treat-
ment. Medical device interoperability requires devices to have an open, standards-based
interface that allows communication with any other device that implements the same in-
terface. This will enable applications and functionality that can improve patient safety
and outcomes.

To build interoperable systems, we need to match up the capabilities of the medical
devices with the needs of the application. An application that requires heart rate as an
input and provides a control signal to an infusion pump requires a source of heart rate
and a pump that will accept the control signal. We present means for devices to describe
their capabilities and a methodology for automatically checking an application’s device
requirements against the device capabilities.

If such applications are going to be used for patient care, there needs to be convincing
proof of their safety. The safety of a medical device is closely tied to its intended use
and use environment. Medical device manufacturers create a hazard analysis of their

device, where they explore the hazards associated with its intended use. We describe

iv

hazard analysis for interoperable devices and the creation of system safety properties from
these hazard analyses. The use environment of the application includes the application,
connected devices, patient, and clinical workflow. The patient model is specific to each
application and represents the patient’s response to treatment. We introduce Clinical
Application Modeling Language (CAML), based on Extended Finite State Machines, and
use model checking to test safety properties from the hazard analysis against the parallel
composition of the application, patient model, clinical workflow, and the device models

of connected devices.

Contents

1 Introduction 1
2 Medical Device Interoperability 14
2.1 Medical Interoperability Design Pillars 19
2.1.1 Design Pillars About Interoperability Goals 21

2.1.2 Design Pillars About Development Process 23

2.1.3 Design Pillars About System Attributes 25

2.2 Clinical Requirements 27
2.3 ASTMICE Standard 33
2.3.1 ICE Architecture 33

2.4 OpenlCE Implementation 35
2.5 Other Relevant Interoperability Standards 44
2.5.1 IEEE 11073 e 45

2.5.2 Medical Device Coordination Framework 46

2.5.3 ICEMAN 48

2.5.4 Universal Plugand Play 49

vi

2.6 Discussiono e 52
Clinical Application Modeling Language 56
3.1 Clinical Application Modeling Language 56
3.2 CAMDLs semantics oo i 57
3.2.1 Extended Finite State Machine (EFSM) 57
3.2.2 Communicating Extended Finite State Machine (CEFSM) 62
3.3 EFSM and CEFSM Execution 66
3.3.1 EFSMexecution 67
3.3.2 CEFSM execution 67
3.3.3 Parallel Composition of CEFSMs 71
3.4 Translating from CAML to UPPAAL 81
3.5 Java code generation from CAML 82
3.6 Discussion 91
Architecture for Provably Safe Interoperability 94
4.1 Device Models e 97
4.1.1 Header. e 100
4.1.2 Body definition for Variable List 101
4.1.3 Body definition for Functional Models 102
4.1.4 Example: X-Ray and Ventilator Device Models 102
4.2 Device Requirements Lo Lo 104
4.2.1 Variable Constraint Device Requirements 107
4.2.2 CTL Device Requirements 109

vii

4.2.3 Example: Device Requirements for X-Ray and Ventilator 110

4.3 System Safety Propertieso 111
4.3.1 Device and System Level Safety Properties 112
4.3.2 Relation of System Safety Properties to Hazard Analysis. 113

4.4 Patient Model 115
4.4.1 Interaction Between Patient Model and Safety Properties 118

4.5 Clinical Application Script 119

4.6 Caregiver Workflow Model oo 121

4.7 Workflow Modeling Example: Coronary Artery Bypass Graft Post-surgical
Careo e 124

4.8 Discussion e e e e 131

Proving Safety Properties of Interoperable Systems 136

5.1 Creating Safety Properties 144
5.1.1 Hazard Analysis and the Generation of Safety Properties 147
5.1.2 Creating Safety Properties from Hazards. 150
51.3 PCA pumpexample 151

5.2 Consistency and Completeness Checks for Device Models 160

5.3 Checking an Application’s Device Requirements 161

5.4 Proving System Safety Properties oL 164

5.5 Discussion e 167

Case Studies 172

6.1 Synchronizing an X-Ray with an Anesthesia Machine Ventilator 174

viii

6.1.1 Xray / Ventilator Synchronization System
6.1.2 Modeling, Verification, and Code Generation
6.1.3 X-Ray / Ventilator in CAML
6.1.4 System Properties for X-Ray / Ventilator
6.1.5 Device Requirements for X-Ray and Ventilator
6.1.6 X-Ray and Ventilator Device Models

6.1.7 X-Ray / Ventilator Synchronization Summary

6.2 Patient-Controlled Analgesia Smart Alarms and Safety Interlocks

6.2.1 PCA System Implementation

6.2.2 System Architecture

6.2.3 Verification and Validation of Components and System in UPPAAL 204

6.2.4 PCA Safety Interlock Summary

6.3 Discussion

7 Conclusion

A Hazard Analyses

A.1 Generic Infusion Pump Hazard Analysis

A.2 X-Ray Ventilator Synchronization Application Hazard Analysis

B UPPAAL Export Example

ix

214

216

219

239

266

List of Tables

4.1 Tasksin CABG Workflow, 127
4.2 Actors in CABG Workflow, 128
4.3 Devices in CABG Workflow 128
4.4 Patient Parts 129
4.5 Tasks, Resources, and People 130
6.1 System Component Use in the Case Studies 173
6.2 Variables for critical timing loop oL 200
6.3 Sliding Window Size for Pulse Oximeter 201

List of Figures

1.1

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.1

3.2

3.3

3.4

3.5

Components of the System,

Requirements and Middleware Selection Process
Sample Clinical Requirements
OpenlCE Functional Architecture
Mapping ICE Architecture to OpenlCE Demo Implementation
A BeagleBone single board computer in a custom 3D printed case

OpenlCE Data Flow
MDCF ICE e
MDCFE PCA

Sample UPnP Message Sequence

CFR: An Example EFSM
Graph of CFR
EFSM Grammar
Extended Finite State Machine

Communicating Extended Finite State Machine

xi

3.6

3.7

4.1

4.2

4.3

4.4

4.5

4.6

5.1

5.2

5.3

5.4

5.5

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

Simulator User Interface

Codegeneration Example o000

Components of the System
Device Models are provided by devices at connection time
Device Model Header IDLo oo
X-ray / Ventilator Example: X-Ray Device Model
X-ray / Ventilator Example: Ventilator Device Model

Checking Device Requirements against Device Model

Workflow for Device Model and Safety Property Checks
Hazards and Causes
Generic Infusion Pump Data Elements
Combinations of Device Model and Device Requirements Types

Checking System Safety Properties

Overview of the System
Respiratory Cycle. o
Variables for dead reckoning Lo 0oL
Variables for dynamic synchronization
X-ray / Ventilator Example: Top Level Application Model
X-ray / Ventilator Example: Supervisor Inspiratory Dynamic Model . . .
X-ray / Ventilator Example: Caregiver Model
X-ray / Ventilator Example: Patient Model

PCA Demo System

xii

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17

B.1

Hardware for PCA Demo System 200

OpenlCE Infusion Safety App 212
PCA System Control Loop 212
Communication structure of the UPPAAL model 212
Timed automaton for the PCA pump 213
Timed automaton for the pulse oximeter 213
Timed automaton for the supervisor 213
Timed automaton for the patient 213
CFR example EFSM 266

xiii

Chapter 1

Introduction

Medical devices are increasingly being connected together to collect vital signs, propagate
alarms, and feed data to electronic health record systems. There are many standards
organizations, companies, and non-profit organizations working on medical device inter-
operability and, ironically, they all seem to have slightly different definitions of the word.
Since interoperability means so many different things to different people, we need to start
by defining what we mean by it here.

Conceptually, interoperability means that pieces from different sources should work
together. The idea is that if you need a part to build something you can give requirements
for your part and, as long as you’ve correctly specified the important aspects, any part
from any manufacturer that meets your specifications should work. This concept has been
standard practice in manufacturing for about the last 200 years, and is a basic tenet of
object-oriented software, but is only recently making inroads in the medical domain.

There is an important distinction between interoperable devices as defined here and

interconnected devices. Device connectivity simply means that there is a way to connect

a device to something else. In most cases, this ‘something else’ is made by the same
manufacturer. We use the term interoperability only for devices with an open, standards-
based interface that allows communication with any other device or software application
that implements the same interface. All interoperable devices are connected, but not all

connectivity solutions are interoperable.

Interoperability Standards. The concept of interoperable medical devices is not par-
ticularly new, but adoption has been very slow. Early electronic medical devices in the
1950s had analog output ports, and some devices sold today still have such ports. Analog
ports do allow devices to connect to a variety of systems, but they are limited to car-
rying a single variable per port and they do not include meta-data such as the device
type, unique ID, or signal processing parameters. Manufacturers each decide what volt-
age range to use, whether to have a linear or logarithmic relationship between the voltage
and the mapped variable, and many other aspects of the analog signal, so even seemingly
simple analog interfaces are beset with the same semantics and protocol compatibility
problems as digital interfaces. In the 1970’s the Medical Information Bus (MIB) standard
offered a degree of interoperability, but failed in the marketplace. The ISO 1073 family of
standards grew out of the MIB work and inspired, in turn, the ISO/IEC 11073 standards
that are still being developed today. While there are a limited number of implementa-
tions of the 11073 standards, there have been offshoots that are more widely used. Most
notable of these are the Continua Alliance, which adapted and reused portions of 11073
to create a new standard for personal health (home use) medical devices, and the reuse

of the 11073-10101 terminology set by several other groups. Continua’s Personal Health

Domain (PHD) adaptation of 11073 has since been adopted as an official part of 11073.
Data encoding, and especially terminology, has been a major issue in medical device
connectivity. There are many groups working on medical terminologies and ontologies.
11073 includes portions of medical terminology, along with communications protocols.
Other major terminologies come from Health Level 7 (HLT7), and the Systematized Nomen-
clature of Medicine—Clinical Terms (SNOMED-CT) developed by the College of American
Pathologists and maintained by the International Health Terminology Standards Devel-
opment Organization. In this thesis, we largely stay away from questions of terminology,
using English-language terms to enhance readability. Standardizing terminology is largely
a political process, though with a need for strong technical support. The group Integrating
the Healthcare Enterprise (IHE) is currently working on a promising set of domain-specific
terminologies under the Rosetta name. Their Rosetta table for ventilators, for example,
provides a normalized technical vocabulary for terms used on ventilator electronic in-
terfaces. Interoperability can not be achieved without much more work on terminology,
whether through Rosetta or another pathway. At present, a common approach to build
a terminology by adding individual terms with each manufacturer’s definition of a vital
sign. This pushes the problem to the eventual users of the standards, who now have to
decide whether each of the multiple definitions of, for instance, respiratory rate, is ap-
propriate for their application. Eventually, we would hope for a common vocabulary of
terms with standardized, well-understood semantics; this will be necessary to enable the

types of systems described here.

Data Logging and Applications. Medical device interoperability by itself is useless
— interoperability is only helpful insofar as it enables applications and functionality that
are otherwise impossible. Two important abilities enabled by device interoperability are
centralized data logging and the ability to run software applications that interact with
multiple devices.

Standards-based, normalized, time-synchronized recording of device messages and pa-
tient physiological data will enable significant shifts in the practice of medicine. A coordi-
nated record of device interactions will enable better post-market surveillance of medical
devices, allowing for easier adverse event analysis and meaningful root cause analysis [13].

The real benefit of an ICE-style data logger will be in improvements to our under-
standing of basic medicine. “Evidence-based medicine” is the practice of basing medical
decisions and treatments on scientific evidence. To engineers, scientists, and many prac-
titioners in other domains, this sounds like an oxymoron — what else would doctors be
doing? Clinical studies are expensive, and large scale clinical studies, especially of thing
that are believed to be best practices, are difficult to fund and conduct. As we add the
capability to routinely document high-resolution information about treatments and out-
comes, we will finally be able to realize the promise of evidence-based medicine to improve
patient safety and outcomes.

A major difference between the design of physiologic closed-loop control systems and
control systems in other domains, such as chemical plants or aircraft, is our inability to
predict in detail how a specific patient will respond to treatment. When an airplane is
designed, engineers can mathematically model its behavior and even fly the new design

in simulation before a single part is made. They can try different designs in a simulated

environment and experiment with changing individual variables to see how they effect
the plane’s overall performance- for instance, changing the shape of a control surface
may allow for sharper turns, but at the cost of increasing drag in level flight. When you
or I go to the hospital, the doctors predict the outcome of potential treatments based
on their knowledge and experience of treating similar patients. Drug dosages are based
on gross measurements like height and weight, rather than on an actual measurement,
or even estimate, of a patient’s individual rate of absorption of the drug. This is like
estimating the gas mileage of a car based solely on its length without taking into account
its engine size, aerodynamics, or load. In medicine, this works because medications are
give to effect. That is, the dose is increased until the desired effect is observed, with the
physician closing the loop.

An ICE-style data logger offers the potential to build a large database recording the
specific responses of individual patients to particular courses of treatment. This database
will improve our knowledge of medicine in two ways. First, it would immediately benefit
the study of treatments across populations. The database would be an unprecedented
resource for outcomes research. Second, such a database could build a record of an
individual’s reaction to treatment over time. If a doctor knows that last time the patient
was in the hospital, they tended to react in a particular way to a particular treatment,
then the doctor can tailor the treatment to the patient the next time. Medical data
logging is the subject of ongoing AAMI standards activity with a new standard nearing
completion in Spring 2019. Data logging can be done locally in each connected device, in
an appliance on the local network, or in the cloud[64].

Using the data log faces technical and political barriers. The political barriers are

often much more formidable. Probably the hardest barrier to surmount is concerns about
liability. Liability seems to be used (sometimes with excellent reason!) as an argument
against the implementation of every new technology in healthcare. In the case of the data
logger, there are liability concerns from device manufacturers, healthcare providers, and
patients. Other barriers to adoption include: patient privacy and data security [12], data
ownership, and liability issues.

The data logger will contain protected health information (PHI). Different jurisdictions
have different rules, which are sometimes contradictory. Who is responsible for ensuring
compliance? Suppose (and this is based on a real example too complex for a non-lawyer to
explain) that California has a requirement that patient data related to workplace chemical
exposure be retained for 10 years, and Oregon has a regulation that patient data related
to a particular medical condition be destroyed within 5 years of a patient’s death. If a
patient living in New Mexico has a workplace chemical exposure in California, develops
that condition, and is treated in Oregon by a HDO that stores its records on a server in
Arizona, which regulation should they comply with?

Right now, in hospitals around the world, patients are connected to medical devices
that record physiologic data and provide treatments. That data could feed into a data
repository, but instead it scrolls by unrecorded. Development of an ICE-style data logger
has the potential to revolutionize healthcare by enabling both a better understanding of
the effectiveness of medical treatments across populations, as well as allowing for individ-
ualized treatment based on a patient’s history.

Applications that can communicate with and control multiple medical devices have

the potential to radically improve patient safety and the effectiveness of medical treat-

ment. Many doctors, nurses, and other clinicians have great ideas that could improve the
efficiency and effectiveness of medical devices. These ideas frequently require devices to
share information or coordinate their actions. But these ideas are wasted because medical
devices have very limited electronic interfaces and do not allow other devices to read their

data or make changes to their settings.

Interoperable Devices. To get an application to work with a set of devices, we first
need the devices to implement a standardized electronic interface. In other words, we
need interoperable devices. We also need a platform to run the application, and we need
the networking infrastructure to connect everything together. These pieces are included
in the ASTM 2761-09 ‘ICE’ standard. An overview of the system is shown in Figure 1.1,

and the architecture is discussed in detail in Chapter 4.

ICE Manager

Network Supervisor 3 \
Controller)
Clinical Scenario

Compatibility

Checker
J

Clinician

Interpreter

Patient

Figure 1.1: Components of the System

Medical systems are used within clinical workflows by clinicians to treat patients. An

application that is safe and effective in one clinical context may be unsafe in the hands

of a different user in a different environment. Medical context is an important part of
demonstrating system safety [38]. In this work, we include clinician and workflow models

to capture some of the essential aspects of the environment.

Overview. This thesis addresses two technical problems that present barriers to the
adoption of interoperable medical devices.

First, we need to match up the capabilities of the medical devices in the system with
the needs of the application. An application that requires heart rate as an input and
provides a control signal to an infusion pump requires a source of heart rate and a pump
that will accept the control signal. The ICE architecture requires devices to provide a
device model that describes their capabilities. We present a format and set of required
fields for the device model and a format for the application’s device requirements along
with a methodology for automatically checking the device requirements against the device
models using model checking.

Second, if such applications are going to be used for patient care, there needs to be
convincing proof of their safety. The safety of a medical device (and these applications
are medical devices in their own right) is closely tied to their intended use and use envi-
ronment. We provide an architecture and methodology for formulating and testing safety
properties of such medical applications, taking into account the clinical workflow in which
they are used.

We want to ensure that medical device plug-and-play systems are acceptably safe for
their intended use in a particular use environment. We define safety in the usual way

for medical devices, as freedom from unnecessary risk, where risk is the product of the

probability and severity of a known hazard. The use environment for these systems in-
cludes the clinical workflow they are used in as well as the specific set of devices connected
to the system at the time of use. The challenge is to represent the intended use of the
application, the capabilities of the devices, the clinicians’ actions in their workflow, and
the safety properties in a way such that the system safety can be evaluated.

We begin with the hazard analysis for the medical application, which lists new hazards
introduced by assembling the devices into a system with a coordinating application.

The essential inputs for this are:

hazard analysis, and resulting safety properties
clinical workflow model

application model

patient model

device models for each device

device requirements

S OU W=

The actual checks are done in two stages. First, we check device models against device
requirements to see whether the set of connected devices at the time of checking satisfy the
requirements of the application as defined by the application developers. Second, we check
safety properties, again defined by the application developers, against the combination
of clinical, application, device, and patient models. This tells us whether the system as
assembled includes any of the known hazards as documented by the application developer

and represented by the system safety properties.

Contributions. This thesis is structured around three primary contributions.
The first is a formal definition of components and interfaces for medical device interop-
erability. We describe the Clinical Application Modeling Language (CAML), a workflow

language for describing clinical applications and caretaker workflows, which supports for-

malization of device models and an analysis of the types of device requirements supported
by each type of device model. ASTM 2761, ISO 11073 and others introduce high level
concepts around medical device interoperability. However, concepts like device models
and safety requirements remain either undefined or too inexpressive to allow verifying
properties using devices from multiple manufacturers. Ad-hoc data mapping and exten-
sive integration work and testing remain the norm. We address this by defining a set of
components and interfaces sufficient to enable proving realistic safety properties.

Next, we present a methodology for checking safety properties derived from hazards
against the system composed of device models, clinical applications, patient model, and
clinical workflows.

Finally, we discuss a hazard analysis for systems of connected medical devices from
which we can draw common safety properties. Section 5.1 and Appendix A include a sys-
tematic analysis of system-level safety hazards for plug-and-play medical device systems,
which serves as a source of properties to be checked.

Finally, we put these pieces together in a way that supports modeling real-world
clinical use cases at a sufficient level of detail to support useful safety properties and

support this with two detailed case studies.

Limitations, Gaps, and Future Work. Each chapter of this thesis ends with a section
on limitations, gaps, and future work. These sections explain some of the constraints and
assumptions under which the work described in the chapter was produced.

The limitations section adds more context around the work to explain simplifications

and assumptions that were used. In some cases, work was constrained to one aspect of a

10

problem to keep the scope manageable. We have identified what we consider some of the
most important limitations and considerations for anyone thinking of following parts of
this approach. Clinical applications we did not consider, different hardware and software
architectures, and the use of different middlewares, among other factors, will impose
additional constraints on system design and safety properties. Careful consideration of
the limitations documented here and analysis to identify other limitations that may apply
to novel systems, is necessary before applying any of these techniques to another system.

Gaps are areas where more needs to be solved; either areas that were considered out of
scope for this work but relevant for future exploration, or where there was a gap between
what we addressed and the way these systems would be built and deployed for clinical
use.

The future work section explores promising areas for future examination. Future
work items may involve the straightforward application of known techniques or more
fundamental theoretical work that needs to be done to address the problem.

In this Chapter, we have introduced the problem of medical device interoperability.
This Section discusses some of the limitations, gaps, and future work related to interoper-
ability in general. Later Chapters, particularly Chapter 2 will discuss specific standards
and implementations of interoperable medical systems and more specific limitations, gaps,
and future work.

Medical interoperability is a rich problem space and no one thesis can address all
the problems. This work is focused on acute care and bedside networks, especially on
systems for real-time decision support, smart alarms, safety interlocks, and physiologic

closed-loop control of devices. The term interoperability is also used in the medical space

11

to talk about systems for connecting devices and other data sources to electronic medical
records. These systems, as well as health and wellness systems for home use, are generally
not built under the same kinds of quality systems as acute care devices, involve different
analyses of hazards and risks, and are out of scope for this work.

In this thesis, we model the information that needs to be exchanged in the form of
device models and requirements, application, clinician, and patient models and system
safety properties and do not explicitly model the network components or network re-
quirements. The focus is on what information needs to move and not the mechanisms
for moving it, although network considerations are of course important in a networked
real-time system.

Two other limitations will reappear and be described in multiple chapters, as they
have aspects relevant to modeling, the architecture for proving safety properties, the
techniques chosen to prove properties, and the case studies. This thesis discusses mod-
eling and verifying properties of a single clinical process at a time. Although it is likely
that clinicians will want to run multiple applications simultaneously on a single patient,
composing applications and safety properties is left as future work.

Second, the system described here does not allow directly modeling or proving safety
properties about continuous dynamics. Many important safety properties can be mod-
eled without continuous dynamics, and abstracting away from them makes analyzing
properties more tractable. However, some aspects of device and patient models, such as
pharmacokinetics and pharmacodynamics, require continuous dynamics. Hybrid model-
ing of interoperable systems, whether in healthcare or not, is a promising direction for

future work. This limitation is addressed in more detail in Chapter 3, with respect to

12

code generation, and Chapter 6, with respect to the case studies.
Finally, we use English-language terms in place of a technical terminology set or
ontology. Much good work has been done in formalizing medical, medical device, and

system component terminology but much still remains to be done.

13

Chapter 2

Medical Device Interoperability

Installing a new mouse on a computer used to be a painful experience. First, you had
to buy the right one for your computer. Once you had a mouse with the right physical
connector, you could plug it in and start to configure the software. On a DOS or Windows
machine, you would edit config.sys to tell the operating system that there was a mouse
attached, and which serial port it was on (COM1, COM2, PS/2, etc.). Things were
a bit easier on Macintosh and other manufacturers that produced both the operating
system and hardware, but only because their computers would only work with a mouse
you bought from them. Today, it’s much easier — you can get a USB mouse from any
manufacturer, plug it into your computer, whether it’s a mac, any variant of Windows,

or running Linux, and it just works.

Plug-and-Play. A “plug-and-play” (PnP) system is one where you can connect a de-
vice and have it work automatically. This is in contrast to systems where you might

have to load a driver, change network settings, or otherwise customize the configuration.

14

Most PnP systems are designed to work with devices from multiple vendors and thus are
based on standards. Standardization allows manufacturers to implement well-documented
interfaces with confidence that their implementation will be compatible with others.

It’s not usually feasible to test every possible combination of devices in a PnP system.
Instead, devices are tested to make sure that their interface conforms to the standard
and the system is designed in such a way that any conforming device will work correctly.
Testing conformance to the standard is frequently done by a third party (i.e., not the
manufacturer or user), which can be an independent test house or a consortium that
certifies conformance to one particular standard.

USB devices are a common example of a plug-and-play system. When you buy a USB
memory stick, you don’t have to buy one specific to a particular computer manufacturer,
and the memory stick manufacturer doesn’t have to test it with each operating system
variant, motherboard, or even each USB chipset. When a manufacturer creates a new
USB device, they build it according to published specs and then send it to one of a number
of independent test houses. If the device passes testing, the manufacturer can put a USB
logo on it and sell it as a compatible device.

Plug and play is widespread in consumer electronics, where general design princi-
ples and best practices have been developed that can be reused in the medical domain.
Although data communication protocols and the specific purpose of connectivity are dif-
ferent in different domains, PnP systems go through a similar sequence of events as devices
are connected, used, and disconnected. Such systems also need to handle similar failure
modes, such as the unexpected disconnection of a device. In this description, we use

the term ‘device’, but the description applies to software applications as well as physical

15

devices.

Plug-and-Play Lifecycle. The first phase of the use of a device in a PnP system is
connection. The device must be connected to the network before it can be used. It may
be connected with a wire, in which case connection means physically plugging in the wire,
or it may be connected wirelessly. The connection phase also includes discovery, where
the system becomes aware that a device capable of communication has been attached.
Discovery may be followed by authentication and authorization. Authentication checks
that a device is what it claims to be. This can be done by reference to a third-party
authority, for instance if a device sends an identifying message that is signed by a cer-
tificate authority. Authentication may also include functional testing, where the system
tries to use some functions of the connected device and checks that the expected response
is returned — this is analogous to a power-on self test (POST). Authorization may be an-
other component of connection. Authorization is another check, usually done to enforce
security policies, that checks whether the device is allowed to participate in the system.
After the device is physically connected, discovered, authenticated, and authorized, it
can be used. In the use phase, the system communicates with the device to accomplish
some task. For a USB keyboard, use involves sending keystroke data. For a web service,
use means receiving some data or a request, doing processing, and returning a result.
The final generic lifecycle phase for a PnP device is disconnection. Some devices can
just be unplugged, others require a shutdown sequence before physical disconnection;
perhaps the most familiar example of this is the warning message shown when a USB

storage device is removed without shutting it down first. Most medical devices will require

16

a shutdown sequence. If the proper sequence is not followed, they will go into a ‘safe’
or ‘fallback’ mode designed to protect the patient if the device is accidentally connected
from a controller.

Safety-critical systems like airplanes, power plants, or automobiles have tradition-
ally been designed as monolithic, closed systems by a single manufacturer or systems
integrator. Centralized development of the architecture and all components enables the
manufacturer, at least in theory, to exercise complete control over all aspects of the design
and implementation. There is a widely held belief that the ability of a single systems inte-
grator to carefully document and test each component at each stage of integration makes
it much easier to obtain regulatory approval [72]. Almost all medical devices are devel-
oped in this manner, with manufacturers citing safety and ease of regulatory clearance as
reasons. It is also generally not seen as a drawback that this approach closes the system to
third-party developers. Some manufacturers are beginning to add end-to-end encryption
with the explicit aim of making it impossible for any other devices to acquire data from
their systems. Despite being designed as closed ecosystems, these safety-critical systems
still have very well specified interfaces between components. The central premise we are
exploring here is whether these interfaces can be specified well enough that a system can

be assembled in a plug-and-play manner and be proven to be safe.

Medical Device Interoperability. Medical device interoperability has the potential
to reduce healthcare costs, improve patient outcomes and improve patient safety. Achiev-
ing interoperability requires that medical devices (including software applications) and

other equipment share the same information model and communication protocol. This

17

enables applications to work with any source of compatible data regardless of the manu-
facturer or specific device type.

A system using standalone medical devices and computers is a distributed system.
There is a long and rich history of work in the field of distributed systems that can
directly inform the development of interoperable medical cyber-physical systems (MCPS)
[51]. One broadly accepted tenet of this work is that network architecture can be broken
down into a number of layers; this is perhaps most commonly illustrated by the Open
Systems Interconnection (OSI) Seven Layer Model [25]. Breaking network architecture
into these layers allows designing and reasoning about them independently — a transport
layer can operate on many different network and data link layers that in turn can work
with a multitude of physical layers. Middleware is software that implements some of these
middle layers between an application and networking hardware. There are a great number
of middleware implementations with widely varying capabilities that implement various
subsets of the seven layers. Choosing an appropriate middleware for a particular domain
is thus a complex undertaking that requires an understanding of what applications need
and expect from the network.

Systems Engineering similarly has a long history with many lessons that can inform
MCPS development. The most important lesson here is that user needs must be used to
validate system designs. Broadly stated, technical requirements are used for verification
(that “the system was built right”) and user requirements are used for validation (that
“you built the right system”). A technically flawless and provably safe system that does
not satisfy user needs will not be used.

Design Pillars and Clinical Requirements are intended to give metrics by which com-

18

peting interoperability options can be judged. Design pillars set out high-level non-
functional goals that we found to be useful in building the OpenlCE implementation
and that we argue are necessary for building safe and adoptable interoperability. These
design pillars emerged from over ten years of collaboration with a large team building
MCPS implementations. Clinical requirements aim to capture the needs of the clinical

community.

2.1 Medical Interoperability Design Pillars

We have given the name Design Pillars to the set of non-functional requirements that sum-
marize the approach that we believe is necessary to achieve safe, adoptable medical device
interoperability. Other standards, including ISO 14971, IEC 60601, and FDA Guidance
Documents on Risk Management [75] also include important guidance for interoperable
systems. This list has a different focus, aiming to capture the normally unwritten goals
and philosophy needed to achieve successful interoperability.

In developing OpenlCE and other MCPS implementations, we have worked to gather
input from as many experts and stakeholders as possible. Community engagement and
outreach remain a priority. Community input and feedback on prior work inspired the
design pillars that guided our middleware selection. Clinical focus groups helped us to
select a set of clinical scenarios, from which we developed clinical requirements that cap-
tured the needs and wants of the clinical community. The clinical requirements and input
from the engineering community also informed the middleware choice and helped in for-

mulating the technical requirements we used in implementing OpenlCE. Using OpenlCE

19

to build demos that we present at conferences and meetings provides a measure of clinical
validation that our requirements were appropriate and feedback from users of OpenlCE in
clinical settings provides additional input on requested features and further requirements.

Over the years, we have gathered input on OpenlICE from many stakeholders besides
clinicians including industry partners, academic collaborators, and regulators including
the US FDA. OpenlICE has been particularly informed by input from the OR.net commu-
nity [40] [41] [43] [42] and the developers of the Medical Device Coordination Framework,
MDCEF [45]. Inspiration has also come from work on medical device communication pat-
terns [70], on ecosphere [44] and architectural principles for platforms, and on component-
based app design [52].

The guiding element of our philosophy in developing OpenlCE is that the system
should be as simple as possible to meet requirements (but no simpler). As an example,
when we began using the 11073-10101 terminology set, we started by adding only the
elements of the data structure that were necessary to support our use cases. If there
was not a specific reason to include a data element, we did not include it. We have
added additional elements as needed, but our data structure is significantly smaller and
less complex than the full 11073-10101 data structure. We have found OpenICE to be
sufficiently expressive for building a variety of use cases even without the omitted parts.

Another way of stating this is that additions or modifications to the system should be
driven directly by their necessity to meet specific requirements. A related aspect of our
philosophy is that nothing should be created in the system without a strong understanding
of how it will be used. Testability is also very important, and additions to the system

should be amenable to testing. This has led to various diagnostic screens and software

20

simulators, as well as unit tests built into the build process.

We developed a set of design pillars [11] to guide the development of OpenlCE. These
pillars are categorized as design goals, development process, or system attributes. Design
goals highlight some of the high-level aims behind the design. They attempt to capture
the principles behind the design choices. Development process pillars focus on the way
that the system is built, and system attributes describe system-level requirements for

what we want to build.

2.1.1 Design Pillars About Interoperability Goals

One ICE: The ASTM ICE (Integrated Clinical Environment) standard establishes a
common set of terminology for parts of the system, but it does not specify technical details
of the functionality or require a particular communication protocol. Since publication of
the standard, there have been a wide variety of opinions about how the ICE architecture
should be realized. We realized early on that efforts would be diluted without reaching a
consensus on the design. We felt that the selection of a single middleware standard would
allow these dispersed teams to build components that could coexist on the ICE platform
and that will successfully interoperate when assembled. This design pillar points out that
for ICE to be a viable standard, it must be internally interoperable. That is, it must
be possible to demonstrate interoperability between components built at different sites.
Using a common middleware and data model means that components can be written in
different programming languages and run on different operating systems while still being
interoperable. Silos of interoperability work that cannot successfully interoperate are

self-defeating.

21

Visibility of runtime configuration: ICE implementations must surface the state
of the system. The connection state of devices should be readily available to a user.
When the system is in an undesirable state, for example lacking connectivity to a critical
medical device, it is important that information be made available. A system operating
with hidden states will never earn the confidence of clinicians, but neither will a system
cluttered with unnecessary information. The platform must also allow for the plug-and-
play assembly of medical devices and because of this the configuration at runtime is the
only source of information about how the system is configured. In any system of systems,
variability accrues with the addition of components which must be reflected to clinicians
so they know exactly the configuration of the system they are using.

External Connectivity: ICE implementations must interface with external sys-
tems. Some examples of external systems include an EMR system, an eHealth eXchange
(NwHIN), departmental systems (such as pharmacy), or network time protocol (NTP)
servers inside or outside of the hospital or home.

Novel Applications: ICE implementations must enable the development of novel
applications that run within their frameworks. The point of ICE is to enable new clinical
applications to improve patient outcomes and safety.

Plug and Play: Components can be added to and removed from the system at any
time. The system must dynamically determine and monitor the presence of components.
In the interests of security, scalability, and performance components may be refused by
the system for various reasons but this refusal must be surfaced per 2.1.3. Applications
must handle the disappearance of required data and control sources or sinks and the

appearance of new sources and sinks gracefully.

22

Industry Adoptability: The goal of ICE to achieve dramatic improvements in
patient outcomes and safety can only be met if such systems are commercially available.
To this end, ICE implementations (particularly open source implementations) should
facilitate commercial reuse. At the same time, common networking pieces such as data
representations must be shared and developed in common.

Human Factors: The user interface and other human factors issues need to be care-
fully designed and tested in realistic environments so that new hazards that are introduced
are adequately controlled. For instance, when a device is operating as a component of a

larger system, its front panel must display an indicator that it’s under remote control.

2.1.2 Design Pillars About Development Process

Open Source: There must be an open source reference implementation. This should
include the necessary tools to adapt and utilize the software, including commercial reuse.
Prototype or reference implementations of a standard demonstrate the feasibility of pro-
posed solutions and point out gaps in the standard. This does not preclude closed-source
implementations and commercialization once the conceptual use of a middleware to build
a platform for ICE apps has been proven. An open source reference implementation per-
mits other implementers to perform testing of individual components without requiring
developers to implement the whole standard — for instance, an aspiring application devel-
oper can test against a reference Supervisor. OpenlCE is released under a BSD 2-clause
license allowing commercial reuse.

Existing Standards: Interoperability must be built on standards, utilizing existing

software standards to the greatest possible extent. Where existing standards must be

23

corrected, completed, or extended, the rationale must be documented.

There are many facets of an ICE system that are identical to systems in other domains.
For instance the reliable maintenance of distributed state information in a timely manner
has been addressed by standards and implementations in other domains. When the
uniqueness of the medical domain is asserted it must be proven before new standards
should be created that parallel work in other domains.

Community Involvement: Developers of ICE implementations must maintain aware-
ness of developments in other large-scale initiatives and relevant standards bodies. The
linkages between external developments and implementation design decisions must be
explicitly documented. Findings should be shared back with Standard Development Or-
ganizations where possible.

Clinical Scenarios: Requirements for OpenlCE should be derived from publicly
available clinical scenarios so that traceability of technical requirements can be main-
tained. Technical requirements must be linked to clinical requirements which are derived
from clinical scenarios. Technical design will also be informed by those scenarios and link-
ages between design decisions and high-level clinical requirements must be documented.

Regulatory Pathway: ICE implementations operate in a regulated space. The reg-
ulators vary geographically, but the need to demonstrate the safety and essential perfor-
mance of ICE systems and components is universal. To achieve this, [CE implementations

should be designed and implemented in such a way as to facilitate regulatory clearance.

24

2.1.3 Design Pillars About System Attributes

Security: Medical systems inherently touch human lives and private information. ICE
implementations must be secure to the greatest extent possible. Security in this domain
encompasses a tremendous range. The most relevant technical requirements focus on the
needs for identification, authentication, and authorization of connected devices, clinical
users, and patients. Information in transit and at rest must be secured with appropriate
use of encryption.

The vexing problem of security is constantly evolving as new threats emerge. It is
therefore futile to postpone other design and implementation work until security issues
have been entirely solved. The great importance of security means our platform must not
prevent it. For instance the platform architecture must be layered to allow the passage
of opaque payloads by lower infrastructure layers. A platform that could not disseminate
opaque data would clearly be more difficult to secure.

There is an apparent tradeoff between security and usability. Security features must
not slow down or prevent urgent clinical use.

Scalability: ICE implementations must scale gracefully. A platform that enables a
revolution in bedside devices must scale to support the next generation of devices. Even
while building concrete prototypes with the current generation of medical devices, we
must anticipate a newer generation of devices that we expect will furnish higher resolu-
tion data streams. Software simulation should be used for stress testing because adequate
numbers of physical devices are unlikely to ever be available, and software simulation

allows exploring the impact of next-generation devices that are not yet available. The

25

platform, supporting current generation devices, should exhibit a great deal of underuti-
lized capacity.

The platform also encompasses the federation of bedside ICE systems and must con-
sider scalable approaches to that federation.

High Availability: Medical infrastructure must guarantee high availability. ICE
supports the integration of multiple sources of patient data. Components that fail should
be seamlessly replaced by redundant data sources or other components if they are avail-
able. Put another way, risk control measures need to take into account component mal-
functions. ICE should support achieving single fault tolerance for applications.

The ICE platform must ultimately become a trusted participant in the overall clinical
environment. Doing so will require the anticipation of scenarios for seamless failover,
graceful degradation, etc. Implementations must prove trustworthy to find acceptance
among clinicians.

Performance: Performance is another key to acceptance by the clinical commu-
nity. Sluggish performance may be inconsequential in the laboratory setting but a poorly
performing system in the clinic consumes a critical resource; the clinician’s time. Poor
performance can also encourage clinicians to marginalize the system in order to isolate
the threat to their workflow. ICE implementations must support dynamic detection and
reporting of performance degradation.

Generic Interface: Fach component will share its data representation in common.
Software shared in common among components will mediate all communication. In the
ICE diagram, Equipment Interfaces, Applications, Data Logger, and External Interfaces

should all share the same interface and data representation.

26

Forensic Data Logging: ICE implementations must create a credible log of all ac-
tivity so that adverse events can be investigated in order to surface and trace root causes
of faults in the distributed system. Every aspect of implementations must avoid any data
pathways that may “sidestep” this logging (while balancing this with our need for scala-
bility and security). Information known to bypass the data logger must be documented

with a rationale.

2.2 Clinical Requirements

Our requirements process starts with clinical scenarios that are suggested by our clinical
user community. These lead to clinical use cases and requirements, which in turn suggest
technical requirements. One of our core design pillars is to include only technical require-
ments that are related to necessary clinical end-user requirements. We aim to support
clinical application in the near-term, so non-functional requirements such as reliability
and safety are key.

Figure 2.1, illustrates the general approach. Clinical focus groups [28] suggest clinical
scenarios, which are captured either in person or through our prototype clinical scenario
repository [1]. These scenarios then suggest clinical requirements, such as the samples
shown in Figure 2.2. These clinical requirements imply technical requirements which are
implemented to build a concrete system such as OpenlICE [69]. We use the technical
requirements to verify the implementation, the clinical requirements and design pillars
to validate the implementation, document gaps, and iterate. This waterfall development

style description is overly linear, and it’s important to realize that design and implemen-

27

tation are likely to iterate rapidly.

< @

! inical cenarlos

eslgn !l ars

Validation

Figure 2.1: Requirements and Middleware Selection Process

Clinical scenarios may document a situation where patient outcomes or safety could
be improved by the use of interoperable devices. It is vital that the set of scenarios also
include situations where a technical integration failure or lack of interoperability leads to
patient harm, as well as situations where interoperability leads to new hazardous situa-
tions. Scenarios can be reflect an actual or imagined sequence of events that happened, or
they can be constructed from an imaginable sequence of events derived from what policies
and guidelines exist to prevent. Any such scenario will suggest approaches to a solution
designed to address problems illuminated by the scenario. Any one solution will by nature
impose requirements on the actions taken to implement them and the tools with which

the actions are taken. In this work, we concentrate on the use of clinical requirements and

28

their influence on middleware selection, rather than the process of moving from clinical
scenarios to clinical requirements or from clinical to technical requirements.

The clinical requirements primarily represent the interactions of the system, including
constituent devices, with users including clinicians and the patient. Our clinical require-
ments have come from elicitation sessions, clinicians, hospital policies, existing documen-
tation, ASTM F2761 Annex B, clinical care guidelines, nursing documentation, clinical

specialists, incident reports, and other groups.

X-Ray / Ventilator and PCA Requirements. Consider two of the scenario sets
which we have studied and implemented, X-ray / Ventilator interactions and PCA safety:

For the former, the initiating problem was shooting an X-ray of an organ during
mechanical ventilation of the lungs, which introduced motion artifact into the images.
Among the solutions to this single sentence scenario was to temporarily cease ventilation
to take the image. An obvious clinical safety requirement for such a solution is to restart
ventilation as soon as possible after acquiring the image, literally within seconds. This is
generally a safe process, but if clinicians are interrupted by a situation competing for their
attention, there is the possibility of forgetting to restart ventilation. This has happened,
and as such represents a scenario posed by an unintended consequence of addressing a
prior clinical requirement (image without motion artifact). The requirement that venti-
lation resume as soon as possible after the image is required can be supplemented with a
requirement that the system not to anything else until ventilation resumes. Informed by
a history of attention-related accidents, a requirement can be envisioned that the system

do so without human intervention.

29

For the second, the initiating clinical problem was managing the pain experienced
post-operative patients. Clinical studies had demonstrated many benefits associable with
giving pain medication in smaller, more frequent doses as needed by the patient. For var-
ious reasons, providing the patient with the means to do so was more effective, suggesting
the requirement that a pump capable of delivering the medication to the patient was of
value. A risk to such a solution was patient overdose, and a solution was devised to limit
the amount of medication a patient could self-administer. Implementation of this solution
placed requirements on devices, limiting the amount of drug that can be delivered in any
one hour. However, it also placed requirements on the practices of caregivers, and that
once again provides the context for attention-related accidents, e.g., PCA-by-proxy [31]
or misprogramming [29] [73] [54]. Fairly complex rule-based clinical practices have devel-
oped to address these situations, see for instance [21]. Again this suggests a requirement
that diminishes the risk posed by human interaction with a complex system.

These scenarios illustrate the importance of clinical involvement in the requirements
process. Starting from the conceptual level for both of these scenarios, other clinical
questions arise driven by a sequence of events presented by a type of system that has
never existed before. How do I know if and when the system is meeting its requirements,
and how do I know when it is not, especially those that affect patient safety? What do I do
when that happens? Does this introduce any fundamental changes to any of my practices?
What about the system gives me the confidence to do so? And while it is reasonable for an
engineer to propose a solution and establish requirements that addresses these and other
concerns, ultimately only the end user can determine if the discerned requirements can

fully address the problem in its full context. For that reason, a key aspect of our process

30

is clinician validation of each requirement and any changes to it throughout development.

Figure 2.2 contains a selection of clinical requirements that have direct implications
for middleware selection. For instance, consider SCR6 “The ICE System shall notify users
when it loses connectivity with any of its components.” These clinical requirements are
written from the perspective of the clinical user, who may have little or no knowledge of
how the system works; they are a form of black box requirements. This requirement could
be implemented in a wide variety of ways. There are no requirements stated for timing,
for how the notification should happen, or for which component should do the notification.
These specializations of the requirement follow from specific use cases and specific imple-
mentations. The specialization of SCR6 will be very different for an ICE implementation
intended to run only an application that sends data to an offline documentation archive
versus an implementation intended to support running an application controlling a closed-
loop infusion of a fast-acting drug. SCR1 and SCR2 may also raise the eyebrows of those
experienced in real-time systems. The closest possible match may not be a very good
match at all, which is why review is required, and any deviation may throw off carefully
engineered timings. It is important to remember that these requirements capture clinical
needs as voiced by clinicians. They are not technical engineering requirements, and they
are subject to interpretation and change in building implementations. Validation that a
given implementation satisfies the clinical requirement is inherently subjective. It is our
intention in compiling these that they be unambiguous and reflect clinical consensus. The
clinical requirements shown in the examples are generic in the sense that they are meant

to apply to all ICE systems.

31

10.

11.

12.

13.

. The ICE system shall identify and display a list of external interfaces connected

to it - PACS, EHR/EMR, bed-management system, third-party integrators, RTLS
(Real Time Locating System) for equipment and staff etc.

. The ICE system shall be aware of the required frequency / accuracy / reliability of

the incoming data for each parameter based on clinical significance, and shall choose
the closest available frequency / accuracy / reliability on the device and provide this
information to the clinician for review.

. If the device connected to the ICE system is not capable of providing the required

frequency / accuracy / reliability of the incoming data for each parameter based on
clinical significance, the ICE system shall choose the closest available frequency /
accuracy / reliability on the device and provide this information to the clinician for
review.

. The ICE system shall PUSH alerts/alarms to the Alert Management System.

. In the event of incorrect patient information/data going into the system, the ICE

system shall provide the ability to tag the incorrect data until the issue gets resolved.

. The ICE System shall not allow the clinician to interact with the ICE System until

s/he is authenticated and authorized, unless it is an emergency situation or the new
clinician identifies himself or herself.

The ICE System shall notify users when it loses connectivity with any of its com-
ponents.

. When the ICE system is down, local data shall be available and displayed locally

on each individual device without any interruptions.

. The ICE system shall display a compatibility error message when Device software

version is incompatible.

The ICE system shall relate and verify the patient ID and patient location (through
ADT or manually or other sources) and tag the medical device data from that
location using this data.

When Patient A has been discharged/ moved to a different department/floor in
the hospital (known through other apps/sources using ADT), the ICE system shall
display a notification such as “Patient A has moved” or “Patient ID mismatch”.

The ICE system shall provide capability to verify if the Patient information (Patient
ID/MRN, Bed Location, Patient Last Name, DoB, etc.) is the same from ALL
connected devices. If there is a mismatch, the ICE system shall provide a mechanism
to correct it.

The ICE system shall be able to display the patient’s medical record number (MRN)
as it is stored in the ICE app, any connected medical devices, the patient’s wrist-
band, and any available medication label such as a barcode.

Figure 2.2: Sample Clinical Requirements

ICE System of Systems Scope

ICE System Scope i

Clinicians
ICE Manager Sc

ICE Applications 1...n

-

Medical Device or
other equipment

M@W

Patient

Medical Device or
other equipment

Figure 2.3: OpenlCE Functional Architecture

2.3 ASTM ICE Standard

The ICE standard [16] defines an architecture for building a safe patient-centric Integrated
Clinical Environment. OpenlCE is the MD PnP lab’s open-source implementation of the

ICE standard.

2.3.1 ICE Architecture

ICE defines roles for device adapters, a network controller that mediates traffic, a su-
pervisor capable of hosting applications, a data logger for troubleshooting and forensic
analysis, and external interfaces to hospital resources such as an EHR, ADT, or pharmacy
system. This architecture is illustrated in Figure 2.3.

The ICE architecture as described in ASTM F2761 was designed as a patient-centric
architecture. We envisioned a typical deployment as a bedside network connecting medical
devices in, for instance, an intensive care unit or operating room. This bedside network

would then connect to hospital IT resources like an electronic medical record (EMR) or

33

admit / discharge / transfer (ADT) system through the ICE External Interface. Synchro-
nization between multiple ICE systems is achieved through an ICE Coordination for use
cases such as transferring patients from an operating room to an ICU room.

Within an ICE system there is an ICE Manager and a set of Equipment Interfaces.
The Equipment Interfaces connect medical devices and other equipment to the ICE sys-
tem. Figure 2.3 depicts three types of ICE Equipment Interfaces: those built into medical
devices where the ICE network is their native interface, those that require only a software
interface, for devices that use standard network connections like Ethernet but commu-
nicate using a proprietary non-ICE protocol, and Equipment Interfaces for devices that
require both hardware and software interfaces, such as devices with only a serial port
connection. This last category is the most common for legacy devices. Devices connected
via the ICE Equipment Interface may be medical devices or non-medical equipment, such
as environmental sensors.

The ICE Manager consists of four components: the Network Controller, Data Log-
ger, Supervisor, and set of Applications. The ICE Network Controller is responsible for
connecting components together, handling discovery and message history for late-joining
participants, and maintaining status information. In most ICE implementations to date,
including OpenlCE, some or all of these duties are assumed by a middleware. The Data
Logger records low-level information about communications through the Network Con-
troller. It is intended for debugging of ICE components (including applications running
on the ICE supervisor) and forensic analysis of network errors. The ICE Supervisor pro-
vides some services required by all applications, such as patient identity management and

provides a common user interface. ICE Applications implement behaviors that make use

34

of the connected devices.

The applications are the purpose of ICE - the rest of the components exist to enable
developers to create applications without having to be concerned with device commu-
nication or reimplement common services like patient identity management or logging.
Applications may read and display data from devices, like a dashboard or implement
physiologic closed-loop control like titrating a drug infusion from a pump based on blood

pressure readings from a patient monitor.

2.4 OpenlCE Implementation

Over the last 10 years we have built in our lab numerous prototype medical distributed
systems [27] utilizing a variety of connectivity solutions. We started by using approaches
built on web services such as SOAP and industrial systems like MODBUS to synchro-
nize an X-Ray exposure with an anesthesia machine ventilator [5] [6]. This was followed
by an infusion pump safety interlock built on a deterministic, hard real-time network
implemented on custom FPGA hardware [4]. We have done extensive work on patient-
controlled analgesia pumps including formal analysis of pumps [8], formal analysis of
systems [7] [45] and infusion pump hazards and requirements [14] [8]. Clinical require-
ments and fundamental design principles have also come from our work on smart alarm
systems [46], medical security analysis [12] and closed-loop control [2] [80]. In addition to
publications, these systems were presented at medical conferences including HIMSS, the
American Society of Anesthesiologists annual conference, the Society for Technology in

Anesthesiology annual meeting, and other venues. Feedback gathered from clinicians at

35

these venues has gone into each iteration and been included in the clinical requirements
and design pillars. This body of work forms the basis for claiming the validity of the
design pillars in Section 2.1.

Medical devices in hospitals and other clinical settings are not yet networked with each
other. This leads to compartmentalization and siloing of information and the inability to
access and use time-aligned contextually rich data for to prototype, develop, and deploy
novel, life-saving algorithms. Consequently, the development of innovative solutions to
improve patient safety and the quality of healthcare delivery are stifled, and the incidence

of preventable adverse clinical events remains unacceptable high.

OpenICE. In response to these needs, we have developed OpenICE [69] [67], an open
source implementation of the Integrated Clinical Environment (ICE) standard (ASTM
2761-09(2013)), and made it freely available on GitHub. The platform consists of soft-
ware device adapters for medical devices, standards-based publish/subscribe middleware,
and demonstration applications. Supported medical devices include anesthesia machines,
ventilators, and patient monitors from vendors including Philips, Drager, and GE. Appli-
cations can be built on this platform to implement smart alarms, physiologic closed-loop
control algorithms, data visualization, and clinical research data collection.

OpenlCE is an open-source software project from the Medical Device Plug-and-Play
Interoperability Program (MD PnP) at Massachusetts General Hospital. It leverages
much of the program’s work over the last decade to support four distinct sets of users:
use case demonstrations, clinical adoption, regulatory science, and commercial adoption.

OpenlCE is a collection of software that implements the ICE standard. Written

36

primarily in Java, OpenICE is capable of running on many different kinds of hardware.
In the MD PnP lab, equipment interfaces usually run on small, single-board computers
that are physically attached to the back of the medical devices. These interfaces can run
equally well on the same laptop running the supervisor and applications or on a server
in another room. The only hardware and operating system requirements are support for
Java and a physical interface, in most cases a serial port, that matches the device being
interfaced.

OpenlCE started as a demonstration platform that was first presented in November
of 2012. It became an open source project in 2013 and was first publicly presented at
a conference at the Society for Technology in Anesthesia meeting in Orlando, Florida
in January of 2014. OpenICE benefitted from the involvement of a large team of col-
laborators through our NIH funded Quantum project and from input from developers
of MDCF, Continua, and the OR net project. It has also led to the development of
OpenlCE-lite[37], a lightweight implementation of the architecture, as well as a related

dongle-based approach[15].

DDS Middleware. Safe interoperability requires that participants on the network all
play by the same rules. We use the Data Distribution Service (DDS) publish/subscribe
middleware, an OMG standard [30]. DDS was chosen as the middleware for this prototype
because it supports the expression of a wide range of quality of service parameters, allow-
ing us to support a variety of clinical scenarios suggested by our user community. DDS is
a publish/subscribe middleware, where applications and devices can announce that they

can provide or are interested in receiving particular pieces of data. Network participants

37

publish updates to data as it becomes available and the middleware matches publishers
to subscribers. Data from apps can be indistinguishable from data from physical medical
devices, enabling the development and sharing of sophisticated data processing apps that
may generate data for use by other system components. OpenlCE uses a community
licensed version of the RTI implementation of DDS.

Matching publishers to subscribers requires that all of the participants use a common
set of terms. For this work, a subset of the ISO/IEEE 11073-10101 nomenclature was used.
This allows for components (applications or devices) to be semantically interoperable.
Using this approach, it is our intent that a device manufacturer will be able to produce a
device with an electronic interface that will work with any ICE application and any ICE
application will work with any device that provides the data elements that the application
requires.

The data distribution service is not a message-oriented middleware. Instead, it serves
as a delegate for the task of managing the distributed state of a system composed of loosely
coupled, heterogeneous components around a shared data model representing the broader
system state. DDS serves to synchronize system state between the nodes of a distributed
system. Working at this level of abstraction allows us to concentrate on defining the
data and quality of service (QoS) requirements on the data rather than the mechanisms
for transferring the data and ensuring that QoS parameters are met. Applications are
provided with Readers and Writers that maintain, on behalf of the application, a coherent
view of the current state of homogeneous collections of state information. This allows the
associated system data model, represented in IDL, to be inherently normalized.

DDS allows data sources, whether medical equipment interfaces or other data providers,

38

to clearly define their mechanism for sharing updated state information with other par-
ticipants. The source program’s sole responsibility is to write the updated sample of
a particular facet of system state to a Writer. The Writer delegate then takes on re-
sponsibility for communicating that new sample to other participants under a system of
constraints described in a robust set of quality of service parameters.

A Reader’s responsibilities include maintaining a coherent view of the state com-
municated by Writers under the terms of its own Quality of Service settings as well as
reconciling Reader QoS with Writer QoS to ensure compatibility. Applications can create
a Reader delegate with a specified topic and type then access the current state of that
facet of the system by reading samples from its own Reader delegate whenever it wants
to examine state. Readers also provides a variety of highly granular semaphores for com-
municating events in its own duty cycle with other threads outside of the DDS pool. For
instance condition variables can be configured to awaken an external (to DDS) thread
when new unread samples are available or when a writer has failed to pair with the reader

because of incompatible Quality of Service parameters.

Demo Applications. Initially, we wrote demo applications that included dedicated de-
vice interfaces running on a linux pc with multiple serial ports or USB to serial adapters.
We found that this was difficult to scale, code reuse was challenging, and we experienced
many problems with unexpected timing jitter when using multiple USB to serial adapters.
Still, we were able to build successful implementations of X-Ray and ventilator synchro-
nization [7] [6] [5] and PCA [8] [65] use cases. The next generation of demos was built as

a reaction to the timing challenges and incorporated a dynamic, real-time ethernet inter-

39

face using custom hardware including FPGAs to ensure real-time synchronization of state
information. We used this as the basis for another implementation of the PCA system [4]
. The custom boards were expensive and susceptible to static damage, and many of our
use cases did not require hard real-time. Our third generation system, the basis for our
current OpenlCE platform, uses readily available, low cost, single-board computers such
as Raspberry Pi or BeagleBone. To synchronize data across nodes of the system, we use
Data Distribution Service (DDS), an OMG standard [30].

Higher level entities in OpenlCE are built using the DDS primitives described above.
When a user downloads OpenlCE and runs it, they see a screen showing currently con-
nected devices and available applications. We chose to present the user with devices and
applications because we have found through collaborating on use case implementation
with a variety of clinical users that these are the components that most users care about.
All of the other components in the ICE standard are present. Because they exist to enable
applications and device connectivity and are meant to be used by application developers
rather than end users, these components are not visible in the user interface.

Figure 2.4 shows how the ICE architecture maps onto an OpenlICE installation in the
MD PnP lab. The Supervisor screen shows a list of available applications and devices, a
variety of medical devices are connected using BeagleBone single board computers (shown
in Figure 2.5) as ICE Equipment Interfaces, and the patient is represented by a cart loaded
with an electronic patient simulator, mechanical lung simulator, and, because this is a
spontaneously breathing patient with a nasal cannula for monitoring end-tidal COq, a
mannikin head.

In this implementation, device adapter hardware and applications are cleanly sepa-

40

ICE System Scope i

Clinicians.
ICE Manager Scope /

ICE Applications 1...n

ICE Network Controller

Medical Device or
other equipment

Patient

Medical Device or
other equipment

Figure 2.4: Mapping ICE Architecture to OpenlCE Demo Implementation

rated. This installation is typical in that it include severals BeagleBones running device
interfaces and a supervisor computer running applications that use device data and issue
commands to the devices. The role of the Network Coordinator is subsumed by DDS
and the OpenlCE functionality that enables discovery and other parts of device lifecycle
management.

ICE Equipment Interfaces in this installation take two forms. Most of the equipment
interfaces involve OpenlCE device adapter code running on a BeagleBone. We use Beagle-
Bones because they are a convenient size that can easily be attached to the back of many
medical devices, the ARM architecture is well supported, and can be easily expanded
with a serial port. Most medical devices use a serial port for data communications; even
patient monitors that have ethernet ports often require that ethernet is used to communi-
cate with a central station leaving the serial port as the only means of connecting them to
an OpenlCE system. OpenlCE also supports sophisticated device simulation with many

built in device simulators that can be used to emulate patient monitors, ventilators, infu-

41

Figure 2.5: A BeagleBone single board computer in a custom 3D printed case

sion pumps, and other devices along with simulated patient variability for users who wish
to test scenarios with many devices and for application development when real medical
devices are unavailable.

Other applications bundled with OpenlCE include a PCA safety application based
on our work on infusion safety and several data visualization applications that illustrate
the advantages of decoupling data analysis and display from the proprietary protocols
and terminology of current devices. Once data is represented in a standardized way,
applications can be written to use it independent of what particular device it comes from.
Of course, if an application developer feels they need to know the specific origins of a data

element that information is always available in the metadata.

Data Logger. The system shown here does not include a forensic data logger that
logs all network traffic. We feel that in most cases third party tools such as tcpdump or
wireshark adequately fill this role. It does, however, include several tools for recording

selected data sets. This is the most often request feature from our clinical users, who

42

OpenlCE Data Flow

Ivy Vital- Dréger Evita XL
Guard 450C -
,.—

AAAAA

<» DDS
<» Websocket

Cisce e == Proprietary
Figure 2.6: OpenlICE Data Flow

struggle to find tools for recording normalized, time-synchronized data simultaneously
from multiple devices. The Data Recorder tool can send data, represented using the
IEEE 11073 terminology, to SQL and MongoDB databases as well as recording locally
as a simple set of text files. Data elements in the OpenICE system are time stamped
by device interfaces when the interface translates the data elements from the device’s
proprietary terminology to our standards-based terminology. These timestamps are based
on a common timebase that is synchronized across devices using NTP. Device adapters
also pass along the device’s timestamps on data elements, though in practice we find that
timestamps from devices are not always reliable as the device clocks are not set accurately
in clinical use. For ICE External Interfaces, OpenlCE also includes an HL7 export tool
that can stream data using the HL7 standard, and our demos have included streaming
data using HL7 FHIR.

We have performed several experiments with sharing OpenlCE data through the web.

Shown in Figure 2.6, these require running an application on the OpenlCE network that

43

subscribes to the relevant information and passes it along to a node application running
on a server, which in turn uses websockets to send it to the client. This allows the clients
to be any web browser that supports javascript and websockets. These experiments have
been useful for illustrating the kinds of applications we want interoperability to enable.
They serve as inspiration for developing the interoperability protocols that will allow for
privacy preserving and secure exchange of real-time healthcare data.

The current OpenlCE implementation is not secure. There is no encryption of data
in transit or at rest, and no attempt is made to authenticate or authorize applications,
devices, or users. We have left OpenlCE insecure partly to ease installation and use of it
as a research platform, and partly because best practices for security in this space are still
being defined. Platform level security requirements focus on user and device authentica-
tion and authorization and encryption of data in transmission. Platform level security
is necessary but not sufficient. Application level security will need to be defined and
built on a per-application basis because in the OpenlICE architecture only the application

developers know the intended use and use environment of the assembled system [12].

2.5 Other Relevant Interoperability Standards

Plug and play is a familiar concept from such common standards as USB and web services.
PnP systems share may concepts, though details vary across implementations. Universal
Plug and Play combines many of the best parts of these systems, and is described here to
illustrate the state of the art in the consumer device realm. Two PnP systems specific to

medical devices are also described: the Integrated Clinical Environment (ICE), Medical

44

Device Coordination Framework (MDCF). Related standards work from Continua, HL7,

and IEEE 11073 is introduced in the context of these PnP systems.

2.5.1 IEEE 11073

IEEE 11073 is a family of medical device interface standards that have been under de-
velopment for almost 30 years. These standards are intended to address every layer of
the ISO OSI 7-layer model for communication between a pair of compliant devices. IEEE
11073 grew out of ANSI/TEEE 1073, which in turn grew out of the Medical Information
Bus (MIB).

11073 was originally intended for use with high-acuity point-of-care devices like ven-
tilators, infusion pumps, and multi-parameter monitors. This classic version of 11073 is
referred to as 11073-PoC for point of care.

In this work, we use one part of the 11073 family of standards, 11073-10101, as a
common set of terminology. We translate from proprietary data representations into this
terminology set and use these terms for writing specifications and safety properties. More
specifically, we use the 11073 nomenclature and some of the domain information model
(DIM). We have tried to decouple the medical data representation from the data needed
for other purposes at lower levels of the protocol stack. 11073 is intended for point to
point links and the data representation includes information which is captured elsewhere
in this implementation. For instance, a full 11073 representation of heart rate would
include the the frequency at which heart rate is being updated. In this system, that
information is part of the quality of service parameters for the channel conveying heart

rate. The information is still there, but is not part of the data representation.

45

2.5.2 Medical Device Coordination Framework

The Medical Device Coordination Framework is designed to be an open platform for med-
ical device integration. It is architected around a messaging-oriented-middleware, using
Java Messaging Service (JMS) to implement a publish-subscribe framework. Programing
in MDCF is model-based, with an abstract system design being used to automatically
generate a set of channel descriptions.

The MDCF developers identified these requirements for middleware [45]:

Flexible, dynamic information flow (frequently needing privacy)

Heterogeneous systems, mechanisms, and needs

Many listeners and many sources

Time-critical, scalable performance

On top of JMS, MDCF adds a device connection manager, maintenance console, mon-
itoring console, clinician console, and a scenario manager.

The device connection manager “verifies that the connecting device is in a database of
approved devices and associated drivers (which provide API descriptions for interacting
with each device”.

The scenario manager “manages the life-cycle of scenario script executions including
acquisition of devices needed in the script, creation of components and JMS channels to
realize inter-component communication, and tear-down of components and channels after

script execution.”

46

Supervisor

r """"""""""""""""" |
1
: App App App I
1 A A, A, Clinician H
1 T Service 1
1 | l 1
: App Virtual Machine - :
1 Admin i
: Service 1
1| App Manager App Database !
I
[ompmpeepemeegemgemgeepeepeepiepeepeepespenpegeeyegeyey S J
1
1
Network Controller ,
oo ————————————————————————— =1
| |
I Device Device I
1 1
: Manager Database 1
1
I I
: 1
) Message Bus 1
I kY 1
L F R iy ————————— H
hY
A Y
LY
AY
N\
A Y
o P e o g
V' |CE Interface | KEY
ICE Arch
Medical § ... [Medical CN:S’CPF
Device 1 Device n Implementation

Figure 2.7: MDCF ICE

MDCF Supervisor
PCA closed loop control
coordination specification

MDCF Services / Data routing MDCF Enabled Data Display

e / Virtual PCA Command

S Channel
‘\
Legacy Interfaces AR .
-~
-
‘ Key
MDCF Adapter < >
Legacy (RS-232,

Respiratory) ; ‘ 4,/—‘3 [

Rate [
Monitor <>_/->D

MDCF Adapters PCA Trigger

Opiate IV etc)
- --p

L]

1]

1

1 1]

' 1

1 1

1 1

1 1

' 1

1 1

1 1
1

' ' (RS-232, etc) AN
1

: [

' [

' '

1 [

N]

' .

1

1

L]

J MDCF via TCP/IP

LI
/

Figure 2.8: MDCF PCA

47

Programming is done in Cadena, using a component interface editor and a system
scenario editor. Experiments were done with three types of messages: event notification,
HL7, and DICOM. Experiments with varying numbers of data producers and consumers
found that latencies we “within allowable bounds”. Persistent messaging was turned off
due to unacceptable delays in the message database.

MDCF demonstrates the usefulness of middleware in medical device interoperability.
illustrates role of tool support for model-based programming code generation conceptual
framework

MDCEF has also led to related work on separation architectures for combining high and
low criticality devices, including internet of things devices [19], and virtual integration of

devices [49].

2.5.3 ICEMAN

ICEMAN is a system for medical device interoperability developed at Draper Laboratories
following their early work on what became the ICE standard. ICEMAN is best described
in Hofmann’s masters thesis [34]. ICEMAN is a high-level architecture very much in line
with UPnP and other PnP systems.

ICEMAN components are:

o Workflow scripts, rules, and models. Rules are safety and best practices measures
constraining ICEMAN actions. Device models represent functionality of the device

and physiological models capture relations between devices and the patient.

e Device interfaces specify the format and ordering of messages, not low-level imple-

48

mentation. RS-232, CAN, USB, Ethernet, etc. are all feasible.

e Semantic libraries: ICEMAN says that devices should support several and specify

which one they use.

e Human interface

e Data logger

Discovery is done by broadcast to a fixed, globally known address. An interesting
feature of ICEMAN is that legacy device protocols are described using ANTLR and
TAP to describe the context-free grammar of the language. System components that
wish to communicate with legacy devices synthesize a parser on-the-fly following these
descriptions. The authors intended future work to support transfer functions that would

relate Actions to Metrics, allowing patient models and richer descriptions of devices.

2.5.4 Universal Plug and Play

Universal Plug and Play (UPnP) is a system built of common protocols that allows
networked devices to discover one another’s presence, exchange descriptions of capabilities,
and make use of offered services. It is most used in the home entertainment industry,
with implementations included in devices such as home routers, televisions, and stereo
receivers. UPnP is developed and promoted by the UPnP forum and standardized as
ISO/TEC 29341.

UPnP uses existing open communication standards implemented by most devices con-
nected to the internet. This means that little or no special driver software is necessary.

User interfaces are provided through a web browser. UPnP provides an excellent example

49

of a plug and play system and a good introduction to the set of services necessary for any

PnP system. These services are:

Addressing

Discovery

Description

Control

Event Notification

Presentation

Other PnP systems will group and name these services differently, but they are com-

mon necessary components that will recur in the other systems described in this Chapter.

Addressing. Addressing is the means by which devices receive a network address when
they are connected to the system. UPnP uses IP addressing with addresses provided

using DHCP.

Discovery. Once a device has an address, it needs to know what other devices are
on the network. This process of exploring the local network is called discovery. UPnP
uses Simple Service Discovery Protocol (SSDP). SSDP basically uses UDP multicast to a

well-known address to announce the presence of devices and the availability of services.

Description. The description consists of the steps necessary for a device to announce

and describe its capabilities to other devices in the system. These capabilities include

50

data that the device could provide to other devices or actions that the device could take
at the command of other components. In UPnP, devices send a URL during discovery

that points to an XML document listing device capabilities.

Control. In most PnP systems, control is just another kind of data exchange. In UPnP,
control is done using SOAP, a web-services protocol for information exchange commonly

used for remote procedure call style interactions.

Event Notification. In general, event notification does not require a separate commu-
nication technology. Because most communication in a UPnP network is initiated by the
party wishing to receive information, a separate pathway is set up for pushing events.
This follows the publish/subscribe paradigm; UPnP implements this following the Gen-
eral Event Notification Architecture (GENA). Devices that wish to receive updates listed
as available in another device’s Description can subscribe to updates from the other device

using GENA.

Presentation. UPnP calls the provision of a user interface presentation. Uls are done
through a web browser, which means that devices must implement a web server through
which they make available an interface for external configuration and presentation of
information. This is familiar to many from home network configuration, where routers
publish a webpage through which the end user can configure their network.

Figure 2.9 shows an example UPnP Message Sequence.

As a combination of DHCP, SSDP, HTTP, SOAP, GENA and others, UPnP is a

melange of useful internet protocols. By reusing existing communication standards, the

o1

Caregiver Supervisor Network Controller Device

Select use case scenario

Connect supervisor to network
S broadcasts search for

compatable devices

Connect device to network

Device broadcasts
name, type, pointer to more info

request full description

send full description

inform user scenario is ready

start scenario

control device

send data

stop scenario

close connection

Figure 2.9: Sample UPnP Message Sequence

framers of UPnP needed only to specify how to use the existing protocols and to specify
the data format for Description. Each device’s description then specifies the data format
for the elements that device supports.

UPnP has several shortcomings limiting its applicability to the medical domain. Most
critically, there is no notion of authentication or authorization. Essentially, there is no
notion of security; UPnP is intended for use within a small home network consisting of
a few trusted devices. Unfortunately, this has not been how UPnP devices have been
deployed. Many real-world vulnerabilities have been found because UPnP devices are

commonly attached to the Internet without a protective firewall blocking UPnP services.

2.6 Discussion

In this chapter, we have surveyed related systems (Section 2.5), laid out clinical require-

ments (Section 2.2) and design pillars for interoperable systems (Section 2.1), and dis-

52

cussed the OpenlICE implementation of the ASTM 2761-09 standard that will be used for
some of the case study work in later chapters (Section 2.4).

This Chapter discusses some general principles and design pillars for interoperable
medical device systems and examines five plug-and play systems: UPnP, ASTM 2761-09
ICE, 11073, MDCF, and ICEMAN. These share some common attributes, components
and lifecycle stages but have important differences in scope and intended use. UPnP is
intended for consumer applications like audio-visual equipment, not safety-critical appli-
cations. ICEMAN has a larger scope, and was a precursor to what became the ASTM
ICE standard, which is discussed in detail in Section 2.3. The ASTM ICE standard,
ISO 11073, and MDCEF overlap in scope; they are all intended as platforms for connect-
ing medical devices, but have important differences in implementation and middleware

choices.

Limitations. This Section discusses limitations, gaps, and future work related to the
standards and reference implementations of interoperability platforms related to and used
in this work. The OpenlCE platform is covered in detail in Section 2.4. OpenlCE is used
as an example system throughout, and in the case studies in Chapter 6. OpenlCE is
intended to address clinical needs as captured in the clinical requirements covered in
Section 2.2. The architecture described in Chapter 4 and the case studies in Chapter 6
are based on the ASTM ICE standard and the OpenlCE implementation. Limitations of
the standard and implementation carry through to the case studies.

One important limitation of the systems we have discussed is that they have all been

developed as prototype or research systems, not as part of a regulated medical device. In

53

order to build implementations that can be used as part of medical devices, substantial
effort will be needed to reimplement these platforms under a quality system. Quality
systems [74] are used in medical device manufacturing to track development efforts and
give traceability from hazards through to the final implementation. Device manufacturers
often build prototypes as research activities or as proofs of concept and then reimplement
them under a quality system if they will become part of a device. OpenICE is built in the
spirit of these research prototypes with the assumption that it will be reimplemented by
manufacturers before incorporation into a regulated device. FDA guidance on interoper-
ability [77] points to a direction for designing devices intended to be used a component
of an interoperable system, and the standards and systems discussed point to means of
implementing such systems but much regulatory and implementation work remains to be
done before commercial implementations will be available.

Another limitation of the discussed systems is that, with the exception of 11073, they
do not offer a comprehensive way to manage patient identity. Device identity is generally
considered to be solved using unique device identifiers, and the pairing of devices to control
systems and association with patients is left as a manual, and often labor-intensive, step.
Manual association is sufficient for prototypes or demonstration systems, but it is time-
consuming to manually associate individual devices with patients and applications. In
the future, we will need more automated ways of making these associations and verifying

them once they are made.

Gap Analysis. We have discussed five systems for interoperability, but even in the

medical domain there are other systems and standards we have left out of this discussion.

54

There are a multitude of medical device standards from ISO, AAMI, and other standards
development organizations that could be relevant to aspects of this problem space. Most
major medical device manufacturers have in-house programs to connect their devices,
and in some cases devices from other manufacturers. Some of these are interoperable, but

most have not been described in detail in publications.

Future Work. The ASTM ICE standard specifies that devices should send a device
model that describes the device’s capabilities. In OpenlCE, we implemented this require-
ment using an Interface Definition Language (IDL) description of the data types and
terms chosen from the ISO 11073-10101 [36] terminology set. OpenIlCE does not include
the systems for checking device models against device requirements or the system safety
properties against the whole system as described in Chapters 4 and 5.

Medical systems rarely operate in isolation, and this is also true of the bedside patient
care networks considered here. These bedside networks will need to interact with other
hospital information systems including pharmacy, medical records, billing, imaging, and
others. At present, standardized ways of interacting with these hospital systems are still
nascent. As they mature, bedside systems will need to interact with them to provide

patient care.

95

Chapter 3

Clinical Application Modeling

Language

3.1 Clinical Application Modeling Language

Medical applications and workflows inherently involve many devices and clinicians sharing
information. In trying to model these workflows, we face the challenge of creating a model
that is detailed enough to capture the behavior of interest and allow checking properties
while also being small enough to allow for checking the properties in a reasonable amount
of time. Choosing a modeling system requires balancing these constraints. For this
work, we have developed the Clinical Application Modeling Language to describe systems
of communicating extended finite state machines. Our toolset allows building models,
translating them into the systems used by several model checking tools, and generating
Java code.

We have developed the Clinical Application Modeling Language (CAML) as a way

56

of representing Clinical Application Scripts (CAS). CAML is built on our previous work
on extended finite state machines (EFSMs) including our EFSMtool toolset for manip-
ulating, checking, and translating EFSMs into the input languages of several popular
model checking tools. In this work, we use the UPPAAL model checker and describe the
translation into this tool’s input language in Section 3.4.

The EFSM language is designed to be a simple way of representing state machines.
State machines consist of states and transitions and these are also the core of the EFSM
language. The grammar for EFSMs is presented in figure 3.3. A sample EFSM appears in
figure 3.7 and the same system is shown graphically in figure 3.2. An EFSM consists of a
set of states connected by transitions. Transitions must have a guard condition and may
also be tagged with an action which is performed when the transition is taken. Guards and
actions are conditions and assignments on a set of variables. Variables may be declared
as input, local, or output, and boolean and bounded integer types are supported.

The design of EFSMs and the CAML language is influenced by Communicating Se-
quential Processes [33] and timed autonoma [3], heritage it shares with the UPPAAL tool

and the Java communication libraries used for code generation.

3.2 CAML’s semantics

3.2.1 Extended Finite State Machine (EFSM)

Definition 3.2.1. An EFSM (Extended Finite State Machine) E is a tuple (D, F') where
D is the global declaration and F' is the finite state machine associated with E. The finite

state machine F' is a tuple of the form (Ng,no,n¢,Tr, Vr,IF), where

o7

CFR{

States:
TestDonationWithApprovedTest,
HaveRecordOfPreviousTest,
TestWithSupplementalTest,
DoNotShipOrUseRejectDonor,
UseDonation;

InitialState: TestDonationWithApprovedTest;

Final:
UseDonation,
DoNotShipOrUseRejectDonor;

InputVars:
bint[0 .. 2] ScreeningOutcome=0,
boolean Previous=False,
bint[0 .. 2] SuppOutcome=0,
bint[0 .. 2] PrevSuppOutcome=0;

OutputVars:
boolean sample_uses_all=False,
boolean donor_uses=false,
bint[0 .. 5] label=0;

Transition: From TestDonationWithApprovedTest to HaveRecordOfPreviousTest
when ScreeningOutcome==2;

Transition: From TestDonationWithApprovedTest to UseDonation
when ScreeningOutcome==1 do sample_uses_all=True;

Transition: From HaveRecordOfPreviousTest to UseDonation
when Previous==True and PrevSuppOutcome == 1 do sample_uses_all=True;

Transition: From HaveRecordOfPreviousTest to TestWithSupplementalTest
when Previous==False or PrevSuppOutcome == 2;

Transition: From TestWithSupplementalTest to UseDonation
when SuppOutcome==1 do sample_uses_all=true;

Transition: From TestWithSupplementalTest to DoNotShipOrUseRejectDonor
when SuppOutcome==2 do label = 4, donor_uses=false;

}

Figure 3.1: CFR: An Example EFSM

58

TestDonationWithApprovedTest

ScreeningOutcome == 2

TTaveRecordOfPreviousTest

ScreeningOutcome == 1 ->

Supplemental == True sample_uses_all = True

Previous == True and PrevSuppOutcome == 1 ->
sample_uses_all = True

SuppQutcome == 2 ->
label = 4,
donor_uses = false

DoNotShipOrUseRejectDonor

SuppOutcome == 1 ->
sample_uses_all = true

UseDonation

Figure 3.2: Graph of CFR

System = (“System” ID (LBRKT) DECLARATIONS CEFSM (RBRKT))+
Declarations ::= (Channels)?
(GlobalVars)?
CEFSM == (States)?
(InitialState)?
(Final)?
(InputVars)?
(LocalVars)?
(OutputVars)?
(Transition)
Transition == FROM>
(TO) ID
(WHEN) Condition
((DO) (Assignment (¢ Assignment)* ¢)+)? «;”
States == (STATES) ID (¢, ID)* “”
Final 5= (FINAL) ID (D ¥ 7
InitialState = (INITSTATE) ID ;"
Channels := (CHANNELS) ID ¢ “SYNC” | “ASYNC” ‘R’ | ‘W’ | ‘B’
(5 ID 7 “SYNC” | “ASYNC” ¢, ‘R | “W" | B’)*
InputVars = (INPUTVARS) VarDef (¢, VarDef)45y
OutputVars == (OUTPUTVARS) VarDef (¢, VarDef)*)
LocalVars ::= (LOCALVARS) VarDef (¢, VarDef)45y
GlobalVars = (GLOBALVARS) VarDef ¢ R’ | ‘B’ (' VarDef ‘R’ | ‘B’)* 7
VarDef := ((BOOLEAN) ID | Ass1gnment)
| (<BINT> ‘' (NUM) (DOTDOT) (NUM)]’ (ID | Assignment))
| ID
Assignment = (ID (EQ) (ID | (NUM)) ((OP) (ID | (NUM)))*) |
((C OMMOP> (ID | (NUM) | (BOOLEAN)))
Condition == ID (((OP) ID (OP) (NUM))+ | ((OP) ID)+)*
ID = (“¢7 (SimpleID) “’>7”)| (“ “” (SimpleID) ((SimpleID))+ “” 7)

Figure 3.3: EFSM Grammar

99

e Ny is a set of locations,

e ng € Np is the initial location,

e ny C Np is the set of final locations,
e T is a set of transitions,

o Vp =V, U Vc’f is a set of typed finite domain variables where V7, is the set of local
variables, Vg C Vg is the set of global variables used by F' where Vg is the set of
all the global variables in this system of EFSMs. Each global variable has exactly
one EFSM which can write data to it, but it may have many EFSMs reading data

from it.
e [is a set of initial constraints over the variable set Vp.
All the above mentioned sets are assumed to be finite.

The global declaration D is a tuple of the form <Gg>. An EFSM may either read a
variable or both read and write it. The set G is defined as G = {(v, X)|(Vv € V) s.t.
(X = R|B)}. X = R indicates that F' is a reader for v and X = B indicates that F is

both a reader and a writer for v.

We now define a valuation function for the variable set Vp. Let, dom(z) denote the
domain of the variable z, Vx € Vp. Further let, Val be a valuation function defined over
the variable set Vg such that Vo € Vg, Val(x) € dom(z). We let Val(Vr) denote the set
which has one element for each variable in Vr and that element is equal to the valuation

of the corresponding variable in V.

60

Given a valuation V; = Val(VF) and a location n € Np we define a state s of the
EFSM as a tuple (n,V;). Therefore, the set of initial states Sy for the EFSM F' can be
defined as a set of tuples of the form (ng, Val(Vr)) such that Val(Vr) satisfies the initial
constraints set Ip.

Let £(VF) be the set of general expressions on the variable set Vg and B(VF) be the
subset of boolean expressions over the variable set Vr. An expression £(Vr) consists of
general expressions using a set of operators and the variable set V. The set of boolean
expressions B(Vr) is a subset of general expressions such that evaluation of this expression
will result in a boolean value. An assignment over the variable set Vp is a statement of
the form x = £(Vp) where x € Vp.

A transition ¢ € Ty is of the form (n,g,a,n’), where n € Np is the source location,
g € B(VE) is the guard condition over the variable set Vg, a is a set of assignments over
variables in Vg, and n’ € Ny is the target location. « has exactly one assignment of the
form x = o® for each variable x € Vg, where o € £(Vr). For readability any variable
which remains unchanged through the assignment set a (i.e. a* =) is not listed in «.

Ir € B(Vp) is the set of initial constraints. There is one constraint per local and
output variable. Input variables are not give initial values.

An EFSM F is represented graphically as follows :

e Every location n € Ny is represented by a circle. The initial location ng is repre-

sented by an incoming transition with no source location.

e Every transition ¢ € T such that ¢t = (n, g, a,n’) is represented by a directed edge

from the source location n to the destination location n’. The guard conditions

61

in g are written within braces alongside the directed edge and the actions in «
are written without any braces alongside the directed edge. For example a guard
condition a > 5 will be written as “(a > 5)” alongside the edge and an action a = 2
will be written as “a = 2”7 alongside the edge. g is a set of guards all of which are
checked simultaneously. Hence all the conditions in g are separated with a A. « is
a list of action groups which are executed sequentially. Each action group consists
of a set of actions and they are assumed to be simultaneous. Action groups are
separated by ‘;’, whereas actions within a group are separated by ‘,’. Further there

will be a = sign between the guard and the action of a transition.

)

(X>2 A Q=2)==>

Y=1:P=1

(Z>1)==> (Z<=1)==

B =true B =false

©

Figure 3.4: Extended Finite State Machine

3.2.2 Communicating Extended Finite State Machine (CEFSM)

Definition 3.2.2. A CEFSM (Communicating Extended Finite State Machine) is an
extension of EFSM with communication channels. CEFSM E is a tuple (D, F') where D

is the global declaration and F' is the finite state machine associated with E. The finite

62

state machine F' is a tuple of the form (Ng,ng,n¢,Tr,Cr,VF, IF), where
e Np,ng,ny,Tr,Vr and I are defined as before and
e Cr is a finite set of input/output communication channels used in this CEFSM.

The global declaration D is a tuple of the form (Cf, GL). The set GL) is as defined
for EFSMs. Channels are defined with a name and a designation of synchronous or
asynchronous. Let C denote the set {(name, SYNC|ASYNC)| for all the channels in
the system } where name is the global name of the communication channel and SYNC
indicates the channel is synchronous and ASYNC indicates it is asynchronous.

There can be more than one use of the same communication channel in an CEFSM at
different transitions. Each use of a communication channel ¢ € C identified as ¢y € Cr

can be represented by a tuple of the form (name,t,v, IO) where

e name refers to the name of the channel,

t € Tk refers to the transition linked to this use of the channel,

v refers to the variable € Ve whose value will either be output or input through this
channel, depending on whether it is a reader or writer. v can be empty in which

case the channel is used for signalling and

e /O indicates whether this channel is an input or an output channel. 70O will contain

the value “input” or “output” accordingly.

The set C’g is a set of channels associated with F'. C’g can be defined as C’g =

{{c, X)|(Vu € CF) s.t. ((c € C)A (II1(c) = 1(u)) A (X = R|W|B))} where II;(z) is

63

the projection of the first element of the tuple z. X = R and X = B have the same
interpretation as the one for global variables. X = W indicates that c is a writer but not
a reader for this channel. A synchronous channel can be either written to or read from
by a CEFSM but not both. Hence a synchronous channel can never have the property
X = B. The use u of the channel must be consistent with the properties of the channel
declared in D.

Further, each communication channel has certain global properties which can be de-

scribed as follows

e Synchronous actions: SYNC|ASY NC indicates whether the channel is a syn-
chronous channel or an asynchronous one. This property is specified in the dec-
laration section of every CEFSM F' where this channel is used, and they must be

declared the same in each CEFSM definition they appear in.

e Consumability: This is a property associated with the buffers of the asynchronous
channel. We assume that all buffers are consumable. This means that writers can
overwrite data in the buffer and readers will empty the buffer on reading data from

it. Further readers will block if the buffer is empty,

e Buffer Location: All buffers are assumed to be located on the reader side of a

communication channel,

e Buffer Size: All buffers are assumed to be of size 1 and

e Multiple readers: We further assume that each channel is a one to many com-

munication channel in correspondence with a broadcast. Each channel has exactly

64

one writer but can have one or many readers.

We can now define properties that would determine whether a given CEFSM is a
reader, writer or both for a global variable/communication channel. Let 2 be a global
variable and F' be a CEFSM. If any action set « of any transition ¢ € Tr in F' has an
assignment of the form z = o” then F is a writer for this global variable. If an expression
of the form £(V') such that € V is used in either the guard or action of any transition
of F' then F' is a reader for this variable. Similarly, if there is a channel usage ¢y € Cr
such that it is an input channel, then F' becomes a reader for this channel and if it is an

output channel then F' is a writer for this channel.

Graphical Representation. A CEFSM F is represented graphically as follows:

e Every location n € N is represented by a circle. The initial location ng is repre-

sented by an incoming transition with no source location.

e Every transition ¢ € T such that ¢t = (n, g, a,n’) is represented by a directed edge
from the source location n to the destination location n’. Other properties are

similar to EFSMs.

e Every use of the communication channel ¢y € Cr in the CEFSM such that c; =
(name, t,v,10) is represented by the following notations depending on the proper-

ties of the communication channel

— The channel is asynchronous, consuming, reader side buffer with single

writer and single or multiple readers : If this use of the channel is as a

65

writer then the transition ¢ will have the action “cn!!v” appended to its action

list. Otherwise it will have the action “cn??v” appended,

— The channel is synchronous with single writer and single or multiple
readers : If this use of the channel is as a writer then the transition ¢ will
have the action “cn!v” appended to its action list else it will have the action

“cn?v” appended,

*) ©)
X>2) ==> (X>2) ==>

Y = 1.T=0 :C I(NWS) Y P=1:C2ANWS)M

Z>1)==> (Z<=1)==> M>1)==> M<=1) ==>
B =true B =false N =true N = false

Figure 3.5: Communicating Extended Finite State Machine

3.3 EFSM and CEFSM Execution

In modeling the execution of an EFSM or a CEFSM, a state is represented by a pair
(n,Val(VF)), where n is a location, Val(Vr) is the valuation of the variables in Vp. The
execution of an EFSM/ CEFSM starts at a state (ng, Vp), where ng is the initial location
and Vj is consistent with Ir (i.e. Ir(Vp) = true). Ir(Vp) is an evaluation of I for the
valuation V[of the variables.

A transition (n, g, @, n’) can be taken from the current state (n, V;) only if the current

66

valuation V; = Val(VF) satisfies the guard condition (g(V;) = true). The effect of
taking the transition (n, g, &, n’) from a state (n, V;) is a state (n’, V}), where Vj is the new
valuation resulting from the execution of the assignment statements specified in the set «.
Vi = a(Vi), a(V;) is an execution of all the assignment statements in « for the valuation V;
of the variables. This execution must satisfy the sequentiality and simultaneity constraints

of the assignment statements.

3.3.1 EFSM execution

Definition 3.3.1. An execution of an EFSM E = (N, ng,ns, Tr, Vr, Ir) is a finite or

infinite sequence of the form

t t t
80#81$82%83...

where

each t; € Tp and s; = (n;, V;) satisfies the following conditions :

1. Initial condition:

so = (no, Vo) where Vo = Val(VF) such that Ir(Vy) = true.
2. Succession Constraint:
(n1, V1) F (ng, Vo) iff I(nq, g1, a, ne) € Tr such that g1(V1) is true and Vo = (V).
3.3.2 CEFSM execution

We define two types of communications channels for CEFSMs:

Definition 3.3.2. Let F be an CEFSM = (Np,ng,ns, Tr,Cr, Vi, Ir) and let it contain

some communication channels which are asynchronous, consuming, reader side buffer with

67

1 writer and > 1 readers.

An execution of F is a finite or infinite sequence of the form

t t t
80451482483...

where

each t; € Tp and s; = (n;, V;) satisfies the following conditions :

1. Initial condition:

so = (no, Vo) where Vo = Val(VF) such that Ir(Vy) = true.

2. Succession Constraint:
The succession constraint is a specification of the form (n;, Vi) - (n;, V;). This con-
straint is determined depending on whether the actions of that particular transition
have any I/O commands to be executed (asynchronous I/O commands are specified

either with a “II” or with a “??” in the graphical representation).

e Actions do not have any I/O commands: (n;, V;) - (n;, V;) iff 3(n;, g1, a,n5) €
T such that g1 (V) is true and V; = o(V;).

e Actions have I/O commands: (n;,V;) F (n;,V;) iff 3(ns, g1,,n5) € Tr
such that g1(V;) is true and V; = «(V;) and the following conditions must be
satisfied.

Since the transition between n; and n; has I/O commands in its actions, let
¢y = (name,t,v, 10) be the corresponding use. Now, ¢ will have action “cn!lv”

or “cn??v” depending on whether the channel use is for input or output. Fur-

68

ther let cn.buffer be the name of the channel buffer(s) for this reader/writer.

— Succession Constraint for Writer:
The guard for the transition is enabled whenever g;(V;) is true. Its traver-
sal will result in the assignment cn.buffer = v and the value of v remains
unchanged.

— Succession Constraint for Readers:
The guard for the transition is enabled when the buffer associated with this
reader has data in it. Its traversal results in the assignment v = cn.buffer
and since the channel is consuming the buffer cn.buffer is emptied. Non-

determinism is introduced if multiple readers are enabled simultaneously.

Definition 3.3.3. Let F be an CEFSM = (Np,ng,ns, Tr,Cr, Vi, Ir) and let it contain
some communication channels which are synchronous with 1 writer and > 1 readers.

Let e, be the single writer CEFSM and er = {ey,, €r,, ..., €, } be the set of CEFSM
readers associated with this channel.

An execution of F is a finite or infinite sequence of the form

tq t1 t
S0~ 51— S59—353...

where

each t; € Tp and s; = (n;, V;) satisfies the following conditions :

1. Initial condition:

so = (ng, Vo) where Vy = Val(Vp) such that Ir(Vy) = true.

69

2. Succession Constraint:
The succession constraint is a specification of the form (n;, V;) - (n;, V;). This con-
straint is determined depending on whether the actions of that particular transition
have any I/O commands to be executed (I/O commands are specified either with a

“y»

or with a “?” in the graphical representation).

e Actions do not have any I/O commands: (n;, V;) - (n;, V;) iff 3(n;, g1, a,nj) €

Tr such that g1(V;) is true and V; = o(V).

e Actions have I/O commands: (n;,V;) = (n;,V;) iff I(ni, g1,0,n5) € Tp
such that g1(V;) is true and V; = o(V;) and the following conditions must be
satisfied.

Since the transition between n; and n; has I/O commands in its actions, let
¢y = (name,t,v,10) be the corresponding use. Now, ¢ will have action “cn!v”
or “cn?v” depending on whether the channel use is for input or output. The
following conditions are required to be met depending on whether the current

CEFSM is a reader or writer.

— Succession Constraint for Writer:
The guard for the transition is enabled when
Ve,, € ep, the current state of e, is (ng, Vi) and 3(ng, gk, ok, n) € Te,,
such that gx(Vy) is true, and «aj, contains a read “cn?v;” on channel cn.
— Succession Constraint for Readers:
The guard for the transition is enabled when

Ve,, € er, the current state of e,, is (ng, V) and 3(ng, gi, ag, n) € T,, such

70

/19

that gx (V%) is true, and oy contains a read “cn?v’” on channel cn and the

current state of ey, is (ng, Vi) and I(n,, gz, az,n') € T, st g (Vy) is

i

true, and oy contains a write “cnlv;” on channel cn.

3.3.3 Parallel Composition of CEFSMs

The parallel composition of CEFSMs allows the concurrent simulation of multiple CEF-

SMs.

Definition 3.3.4. Given two CEFSMs, FE; = (Dq, F}) and Ey = (D9, F5) where F} =
<NF1,n01,TLf1,TF1,CF1, VF1,1F1> and Iy = <NF2,n02,nf2,Tp2,C'F2, VF27IF2>7 the parallel
composition F||Ey is a CEFSM E = (D, F), such that F' = (Np,no,ns, Tr,Cr, Vi, IF),

where

® NF ZNpl X NF2,

e 19 = (no,, no,),

& Ny ="MNgp XN,

e T is given as follows : for every pair of tuples (n1, g1, a1,n}) € Tp, and (na, g2, ag, nb) €
T, such that these transitions do not have any use of communication channels, T

includes the transition ((n1,n2),91 A g2, a1 U e, (n, nh)).

o Vp = VF1 U VF2

o Ip=1Ip Ul

e The parallel composition for communication channels is given as follows :

71

Synchronous communication channels. For every pair of transitions such
that one of them writes on a channel of the form ¢ = (en,t,v, “output”) where
¢ € Cp or Cf, and the other has a set of reads on the same channel ¢; =
(en, t1,v1, “input”), - - - ¢y = (cn, t1,vm, “input”) where c1,--- ¢, € Cp, (resp Cr,)
such that the source and destination locations for ¢ are t1 and ¢ and for ¢1 are t1; and
tla, we append the simultaneous assignments vl = v,---vm = v to the action list
of the transition between locations (t1,¢11) and (t2,t12) in the composed CEFSM.
This action list will also contain the channel write command ¢ = (¢n, t', v, “output”).
The assignments have to be simultaneous to reflect the synchronous nature of the

channel.

For every pair of transitions such that one of them has a set of reads on the channel
of the form ¢ = (en, t1,v1, “input”),- - - ¢y = (en, t1,vm, “input”) where ¢y - - - ¢, €

Cr, and the other has a set of reads of the form ¢| = (cn, t2,v'1, “input”),

oocp, = (en, 12,0'k, “input”) where ¢} --- ¢}, € Cp, such that the source and desti-
nation locations for ¢1 are t1; and t1y and for ¢2 are t2; and ¢29, we append the
channel read commands ¢; = (cn, t,v1, “input”), - - ¢y = (cn, t,om, “input”), c} =
(en, t,v'1, “input”), - - - ¢), = (cn, t,v'k, “input”) to the action list of the transition

between locations (t11,¢21) and (tl2,?22) in the composed CEFSM. These reads

must be simultaneous actions.

If only one of the CEFSMs is a writer or a reader to the channel then we do not
change the channel command in any way. But if one of the CEFSMs is a reader

and the other a writer or if both are readers then any composition must conform to

72

the above listed rules. Further all transitions with synchronous channel commands
in these CEFSMs cannot be composed with transitions which do not have those

commands.

Asynchronous communication channels. For every pair of transitions such
that one of them has a write on a channel of the form ¢ = (cn, t, v, “output”) where
¢ € Cp, or CR, and the other has a set of reads on the same channel of the form
c1 = (en,tl,vl, “input”), - - - ¢, = (cn, tl,vm, “input”) where ¢y, - - - ¢, € Cp, (resp.
CF,) such that the source and destination locations for ¢ are t; and t2 and for ¢1
are t1; and tls, we append the simultaneous assignments vl = v, ---vm = v to the
action list of the transition between locations (t1,¢1;) and (t2,t12) in the composed
CEFSM. Further this action list will also contain the channel write command ¢ =
{en,t', v, “output”). The assignments have to be simultaneous because this case

reflects the synchronous use of an asynchronous channel.

For every pair of transitions such that one of them has a set of reads on the
channel of the form ¢; = (cn,tl,v1, “input”),--- ¢y = {(cn,tl,vm, “input”) where
1+ ¢m € Cr, and the other has a set of reads of the form ¢} = (cn, t2,v'1, “input”),
¢ = (en, 12,0k, “input”) where ¢} --- ¢, € Cp, such that the source and desti-
nation locations for ¢t1 are t1; and t1y and for ¢2 are 27 and ¢29, we append the
channel read commands ¢; = {(cn, t,v1, “input”), - - ¢y = {cn, t,om, “input”), ¢} =
(en, t,v'1, “input”), - - - ¢), = (cen, t,v'k, “input”) to the action list of the transition

between locations (¢11,¢21) and (tlg,t22) in the composed CEFSM.
For every pair of transitions where one has a use of the channel of the form ¢; =

73

(en, tl,v1, “input”) or ¢y = (cn,t2,v2, “output”) and the other does not have any
use of this channel, we append the channel command c; or ¢y respectively to the
action list of the combined transition. This reflects the asynchronous nature of the

channel.

If only one of the CEFSMs is a writer or a reader to the channel then we do not
change the channel command in any way. But if one of the CEFSMs is a reader and
the other a writer or if both are readers then any composition must conform to the

above listed rules.

The new declaration D for the CEFSM E will be defined based on D; and Ds. Let

Dy = (Cy,G1) and Dy = (C,G2). Now D = (C,G) can be defined as follows :

e Let v =1II;(g) where g € G1 U Gy be the first projection of g. This projection will
give the name of the associated global variable. Now Vv s.t. v = II;(g) where g €
GiNv #111(g Vg € Go or Vv s.t. v =111 (g) where g € GoAv # 111 (¢")Vg' € Gy, we
add the tuple g to G. Further, Vg1, go where g1 € G1, g2 € Gy and I11(g1) = I11(g2)

the following cases occur

— If II5(g1) = B or II3(g2) = B then we add a tuple (II;1(¢1), B) to G

— If II5(g1) = R and TI3(g2) = R then we add a tuple (IT;1(¢1), R) to G

e Let cn = II;(¢) where ¢ € C7 U Cy be the first projection of ¢. This projection will
give the name of the channel along with its properties. Also the second projection
IIz(c) will give information as to whether this channel is used for input or output.

Two cases arise depending on whether the channel is synchronous or asynchronous

74

— Channel is synchronous : Ven s.t. en = I (¢) where ¢ € C1 Aen # 11 ()Vd €
Cy or Ven s.t. en = I (c) where ¢ € Cy A c # 111 ()W € Ch, we add the tuple
¢ to C. Further, Ve, cy where ¢; € C1,c9 € Cy if II1(e1) = I1(c2) then the

following cases occur

« If IIa(c1) = R and IIz(c2) = R then we add a tuple (II;(¢1), R) to C
« If TIx(c;) = W and Ia(c2) = R or IIa(c1) = R and Ilz(c2) = W then we

add a tuple (II1(c1), W) to C

— Channel is asynchronous : Since in an asynchronous channel we just form the
cross product of the states, the channel declaration section is formed using
rules similar to the global variable declaration section with an additional rule
for X = W. Now Ven s.t. en = i (c) where ¢ € Cy A ¢ # Piy(d)Ve € Cy or
Ven s.t. en = IIi(c) where ¢ € Co A ¢ # Piy(d)V € Cp, we add the tuple ¢
to C. Further, Vep, co where ¢y € C1,c2 € Co if TI1(c1) = 1 (c2) the following

cases occur
« If IIa(c1) = B or Ilx(c2) = B then we add a tuple (II1(¢1), B) to C
« If IIs(c1) = R and I3(c2) = R then we add a tuple (II1(c1), R) to C

« If TIa(c1) = W and Ia(c2) = R or IIa(c1) = R and Ia(c2) = W then we

add a tuple (Il (c1), B) to C

EFSMtool supports CAML models using channels following the above semantics. A
channel ¢ € C is of the form ({writers}, {writerpriorities},
{buffnames}, name, sync, buffsize, consumable, bufflocwriter, { readers},

{readerpriorities}) where,

75

e {writers} is the set of writers for the channel. There must be at least one writer

for any channel.

o {writerpriorities} is used to assign priority to the writers. This is used only when
there are multiple writers and a single buffer is on the reader side. Here the writer
with the highest priority will always be able to overwrite data written to the buffer
by lower priority writers whereas a lower priority writer will not be able to overwrite

data written to the buffer by a higher priority writer.

e {buffnames} is a set of names of the buffers used by the channel. These are variable
names for the FSMs and each buffname is of the form (Vi, V) where Vi, Vo € V; and

V1 is the output variable from the writer and V5 is the input variable for the reader.

e name is the name of the channel

e sync is true if the channel is synchronous and false otherwise

e buffsize contains the value of the size of each buffer used in the channel

o consumable is true if the buffer is consumable and false otherwise

e bufflocwriter is true if the buffer is located at the writer side of the channel and

false otherwise

e {readers} is the set of readers for the channel. There must be atleast one reader

for any channel .

e {readerpriorities} is used to assign priority to the readers. This is used only when

there are multiple readers and the buffer is on the writer side. Here the reader with

76

a higher priority will always be able to consume data written to the buffer incase

more than one readers are ready to read buffer data at the same time.

EFSMtool supports these types of communications patterns:

e Asynchronous, non-consuming, writer side buffer with single writer and
single or multiple readers : This channel can be used for clock signals or timers.
The clock keeps writing or updating time into the buffer. Any process which needs
the current time can read from the buffer and move ahead. The writer in this case is
the clock and readers are all processes in the system which use the timer. There is no
need for synchronization between these processes and the buffer is non-consuming
because all reader processes must be able to read the timer value from the buffer

independent of other processes.

e Asynchronous, consuming, reader side buffer with single writer and single
or multiple readers : This channel will be used when there is a single FSM which
is a procedure whose output is being used by one or more other processes. In this
case, the single writer writes its output into the individual buffers of all the readers
and goes ahead with its processing. The readers read the procedure output as and
when they arrive at that state independent of other readers in the system. There
is no need for synchronization but the buffer is required to be consuming to avoid
overwriting of procedure output in the case of loops. The procedure would now be
blocked if the buffer is not empty for any of the readers and it can proceed only

after all the readers have consumed the buffer data.

e Synchronous with single writer and single or multiple readers : Syn-

7

crhonous communication channels are required when we want to force synchroniza-

tion across different independent state machines.

Asynchronous, consuming, reader side buffer with multiple writers, writer
priorities and a single reader : This channel is required for systems where more
than one potential writers can write to a single channel with a single buffer which
is read by a single reader. We assign priorities to the writers so that in case of a
conflict only the highest priority writer is able to write to the buffer. Further, if the
buffer is full then only a writer whose priority is higher than the one whose data is
there in the buffer can overwrite the buffer. The reader can then asynchronously
read data from the buffer. If a lower priority writer wants to write data to the buffer
and the buffer is full then it cannot overwrite the data and will be forced to ignore
its data. This communication channel can thus result in loss of data and hence must

be used only when loss of data is acceptable in the system.

Asynchronous, consuming, writer side buffer with single writer and mul-
tiple readers with reader priorities : This channel is similar to the one above
but with readers and writers swapped. Now, we have a single writer but there are
more than one readers. Further readers are assigned priorities and they are used
to resolve conflicts in the case of multiple readers reading the channel at the same
time. The writer blocks if the buffer is full and any single reader (either the one
that reaches the channel first or the one with highest priority among all waiting for

input from the channel) can consume the buffer data.

78

Semantic preprocessing. Let E be an CEFSM = (Ng,no, Tg,Cg, Vg, Ig). Every use
of the communication channel ¢; € Cg such that ¢; = (cn,t,v,10, PTY) is represented
by two dummy locations n; and no and a set of transitions ¢t between them as indicated
in previous section. This is a semantic preprocessing step where we convert the commu-
nication channel use associated with a particular location n into its corresponding set of
dummy locations and the set of transitions between them. Further, different properties of
the communication channel will entail different transitions between the dummy locations

with specific guards and actions as listed below :

e The channel is asynchronous, non-consuming, writer side buffer with single
writer and single or multiple readers : For each use of this communication
channel there will be a single transition between the two dummy locations n; and ng
for both the reader as well as the writer. If the channel is used for output then the
action associated with the single transition ct will be “cn!(NW S)v”. If it is used for

input then the guard associated with the single transition ct will be “cn?(NW S)v”,

e The channel is asynchronous, consuming, reader side buffer with single
writer and single or multiple readers : For each use of this communication
channel as well both the reader and the writer have a single transition between
the dummy locations. If the channel is used for output then the guard associated
with ¢t will be “all buffers empty check” and the action for the transition will be
“en!(NRS)v”. 1If it is used for input then the guard associated with ct will be

“en?(NRS)v”,

e The channel is synchronous with single writer and single or multiple readers

79

: For each use of this communication channel again there will be a single transition
between the dummy locations for both readers and writers. If the channel is used
for output then the guard associated with ¢t will be “cnlv”. If it is used for input
then the guard associated with ct will be “cn?v”. This is required to ensure that

the writer and all the readers of the channel synchronize before using the channel,

The channel is asynchronous, consuming, reader side buffer with multiple
writers, writer priorities and a single reader : For each use of this communi-
cation system, there will be two transitions ct; and cty for the writers and a single

transition ct for the reader. If the channel is used for output then

— Transition ct; will have a guard “PTY lower than the one in buffer” and an
empty action. This will be required to skip the output if the priority of the

writer is lower.

— Transition cto will have a guard “PTY higher than the one in buffer or empty

buffer” and the action associated with this transition would be “cn!(CRM S)v”.

If it is used for input then the guard associated with ct will be “en?(CRM S)v”,

The channel is asynchronous, consuming, writer side buffer with single
writer and multiple readers with reader priorities : For each use of this
communication channel there will be a single transition for the writer and 2 transi-
tions for all the readers. If the channel is used for output then the guard associated
with ct will be “buffer empty check” and the action for the transition would be

“enl(CWSM)v” . If it is used for input then

80

— Transition ct; will have a guard “PTY lower than other ready readers” and

the action associated will be empty

— Transition cte will have a guard “PTY highest among all ready readers” and

en?(CWSM)v”

3.4 Translating from CAML to UPPAAL

The EFSM toolset contains a translator which can convert a CAML model into the input
language for UPPAAL. This translation imposes some restrictions on the CAML system;
in particular, probabilistic transitions are not allowed and the translator supports only
synchronous channels, so any value passing must take place through shared variables.

EFSMs and communicating sets of EFSMs in a CAML system, as described in section
3.3, and when limited to eliminate probabilistic transitions and only use synchronous
channels, map onto structures in the language of UPPAAL [47], [17]. Translating models
is thus a fairly straightforward rewriting into the correct input format for the tool.

The full translation of an example EFSM into UPPAAL is included in Appendix B.

UPPAAL uses an XML representation of the automata which we can create directly
from the EFSM. This representation begins with a boilerplate block which states the
XML version used and points to the online document type definition.

Any channels used in the system are defined in the first block.

This is followed by a section containing a definition of an automata in a “template”
block. An UPPAAL system may contain many automata, which are specified one after

the other in this section. Each automata contains the following parts:

81

First come the variable definitions. Variables in the UPPAAL model are bounded
integers. Boolean variables from the EFSM model are translated to integers with a range
from 0 (False) to 1 (True). All variables must have initial values defined.

Location definitions come next. There is a location definition for each state of the
EFSM. This assigns a unique ID to each state. State names in UPPAAL may contain
only letters and numbers, so other characters are replaced. For instance, “&” becomes
“And”.

Transitions are given in the next block. Each transition has a source and target field
(using the IDs given in the previous section). Transitions may also have guards and
actions. Synchronization actions are included in this section, though none appear in this
example. The translator supports only synchronization channels, not channels which pass
values. This is because UPPAAL only supports synchronization channels.

The definition of this automata ends with </template>. If there was another au-
tomata in this system, another template block would follow.

Finally, the system is given a name, and the document is closed.

3.5 Java code generation from CAML

Code generation is used to create an executable computer program from a CAML model.
Generated code forms a key piece of the X-Ray / Ventilator synchronization application
discussed in Section 6.1 and several other system implementations. Code generation
makes creating a program from the model faster and easier because it reduces the amount

of code the implementor needs to write. It also helps to increase confidence that the code

82

correctly mirrors the logic of the model.

The job of code generation from a model including communicating processes into the
Java programming language makes use of the Java Communicating Sequential Processes
(JCSP) library [81]. This library implements a combination of Hoare’s Communicating
Sequential Processes (CSP) [33] and Milner’s 7-calculus [60]. JCSP implements these com-
munication types on top of the Java language’s processes and interprocess communication.
The EFSMtool code generator creates processes for each EFSM and uses communication
patterns corresponding to CEFSM communication channels.

EFSMtool includes a code generator for single EFSMs that creates an interactive
application that prompts the user for input, as well as a code generator that will create
a standalone Java program for single EFSMs or a set of communicating EFSMs in a
CAML model. The simulator created from an EFSM model simulates walking through
the model. At each step of the state machine, the user is prompted to pick values for
the input variables required to make the next step. If a step does not require any input
variables, that is, if all transitions out of the current state have guards which use only
local variables, then the step is taken automatically.

When the simulator is started, the screen in Figure 3.6 appears. The user can press
the buttons on this screen to set the values of the system’s input variables, then use the
“step” button to cause the simulator to step forward to the next place where it reads
an input variable. This interactive simulation continues until the system reaches a stuck
state.

Alternatively, the user can press the probabilistic button at any time. This causes

the simulator to pick a transition randomly, set the input variables associated with that

83

Simulator 1
Current State: (1) Off / Cold

Choose values for these variables:
) 0On

) Off

' Set Dose #

) Stop Delivery

) Set dose +

r Start Delivery

[C] Probabalistic
| Step |

Figure 3.6: Simulator User Interface

transition to values which make the guard true, and step once. In order to find values
for the input variables which enable the transition to be taken, the simulator translates
the guard into a satisfiability problem and uses the built in SAT solver to find a satisfy-
ing assignment. If no satisfying assignment can be found, the simulator shows an error
message to the user and stays in the current state.

Transitions are picked randomly for the probabilistic simulation unless probabilities
are provided as part of the input. The CSV parser of the EFSM toolset supports tagging

transitions with probabilities. If these are provided, they will be used in the probabilistic

simulator.

reset ? —> counter := (0
counter >= 10 —> full !

full ? —=> reset ! C

counter < 10 —> counter ++

Figure 3.7: Codegeneration Example

EFSMtool’s “JCSP Codegeneration” tool is a method for generating Java code from

84

an CAML model. The model may contain one or more state machines, which can com-
municate using one-to-one synchronization channels.

The code generator has the additional constraint that writes to a synchronization
channel may occur only in the action of a transition and reads may occur only in the
guard of a transition.

This technique generates a Java thread for each state machine and adds a new main

thread to initialize and start the system.

import jesp.lang.*;

import jcsp.plugNplay.Printer;

class CGtop {

public static void main (String[] args) {

final One20neChannel full = new One20neChannel ();
final One20neChannel reset = new One20neChannel ();

final One20neChannel out = new One20neChannel ();

new Parallel (
new CSProcess[] {
new CounterThread(full, reset, out),
new ResetThread(full, reset, out),

new Printer (out, "CGtop ==> ", "\n")

).run ();

85

10

86

20

import jcsp.lang.*;

public class ResetThread implements CSProcess {

private final AltingChannel full;

private final AltingChannel reset;

private final ChannelOutput out;

private final String name = "ResetThread";
private String initialState = "one";

private String currentState = initialState;

public ResetThread (final AltingChannel full, final AltingChannel reset,
final ChannelOutput out) {
this.full = full;
this.reset = reset;

this.out = out;

public void run() {

final Skip skip = new Skip ();
final Guard[] guards = {full, reset, skip};

final Alternative alt = new Alternative (guards);

while (true) {
switch (alt.priSelect ()) {

case 0: // full

87

10

20

if (currentState == "one"){
full.read();
reset.write(1);
out.write(name + " full ? > reset !");
}
break;
case 1: // reset
break;
case 2:
try {Thread.sleep (400);} catch (InterruptedException e) {}

out.write ("\t" + name + " sleeping");

break;

88

30

40

import jcsp.lang.*;

public class CounterThread implements CSProcess {
private final AltingChannel full;
private final AltingChannel reset;

private final ChannelOutput out;

private final String name = "CounterThread";
private String initialState = "one";
private String currentState = "one";

private int counter = 0;

public CounterThread (final AltingChannel full, final AltingChannel reset,
final ChannelOutput out) {
this.full = full;
this.reset = reset;

this.out = out;

public void run() {
final Skip skip = new Skip ();
final Guard[] guards = {full, reset, skip};

final Alternative alt = new Alternative (guards);

while (true) {
switch (alt.priSelect ()) {
case 0: // full ?

break;

89

10

20

case 1: // reset ?
if (currentState == "one"){
reset.read();

counter = 0;

currentState = "one";
out.write(name + "reset ? -> counter := 0");
}
break;
case 2:
if ((currentState == "one") & (counter < 10)) {
counter ++;
currentState = "one";

out.write(name + "counter < 10 > counter++");

// break;

} else if ((currentState == "one") & (counter >= 10)){
full.write(1);
currentState = "one";

out.write(name + "counter >= 10 > full !");

try {Thread.sleep (400);} catch (InterruptedException e) {}
out.write ("\t" + name + " sleeping ");

break;

90

3.6 Discussion

In this Chapter, we present the clinical application modeling language (CAML). We
describe the language at a high level in Section 3.1, describe the semantics of extended
finite state machines (EFSMs) and sets of communicating EFSMs in Section 3.2, and
describe the execution and parallel composition of communicating EFSMs in Section
3.3. We have modeled the clinical systems as sets of communicating extended finite
state machines in CAML. From the CAML model, we translate into the language of the
UPPAAL tool (Section 3.4) to check properties and we generate Java code (Section 3.5)
that uses the JCSP library for communications and threading. The CAML models will
be used to create models of system components as described in Chapter 4, the creation
of system safety properties and checking these properties against the models is covered in
Chapter 5, and the generated Java code forms the basis of the case studies presented in

Chapter 6.

Limitations. In this Section, we discuss limitations, gaps, and future work related to
the CAML language, the UPPAAL translator, and the Java code generator. Limitations
of the modeling language will affect the systems we model using the language and the
properties we can check against the models. Limitations of the UPPAAL translator and
Java code generator will affect our ability to guarantee system safety properties for the
implementations we build for the case studies in Chapter 6.

It is important that the semantics of the UPPAAL model match those of the CAML
system and, if code is generated, those of the generated code. If the semantics do not

match, then each of these three systems will behave differently under the same sets of

91

inputs. This means that properties we prove about the UPPAAL system may not hold
in the code or CAML system. We want to argue that we can model a system in CAML,
prove properties about it using UPPAAL and ultimately have those properties hold in
the generated code. For this argument to be sound, the semantics of the three systems
must match.

We have not provided rigorous proofs that the translations into UPPAAL and Java
code, described in Sections 3.4 and 3.5, preserve the semantics of the CAML system. For
code generation, the details of this proof will vary depending on the exact configuration of
the target platform. Matching semantics and meeting timing properties with Java is par-
ticularly challenging because of the need to deal with multiple levels of scheduling (threads
within a Java Virtual Machine process versus operating system process threading) and
the need for garbage collection, which can be difficult to predict.

An overall limitation of this work is the inability to model continuous dynamics
or check properties about continuous dynamics. In this Chapter, these dynamics were
handled by abstracting to a higher level in the models using terms like the boolean
‘breath_is_done’ in lieu of integrating flow rates to calculate breath volume, and by re-

placing the high-level terms with manually written code sections during code generation.

Gap Analysis. There is a tradeoff between the expressiveness of the modeling language
and the computational cost of verifying properties. CAML is kept toward the inexpressive
end of the spectrum to make model checking at the point of care more tractable. It
would be useful to have more options for communication patterns, parallel operations, and

the other language features discussed in Section 4.7, but careful evaluation of additional

92

features is needed to assess the trade-off of language expressiveness versus model checking
cost.

CAML allows for synchronous and asynchronous communication channels. Distributed
systems of medical devices such as OpenIlCE and MDCF are built on middlewares that
support a wide variety of communication patterns and are usually deployed on TCP/IP
networks that may be lossy, reorder packets, and otherwise change the communication
semantics. Modeling language support for these networks and middlewares is needed to

realistically model clinical deployments.

Future Work. There is much future work to be done on evaluating this tradeoff between
the precision of the models and the scalability of checking the modeled systems. Some
properties could be statically checked before systems are assembled in a pre-deployment
environment where more time and computational resources are available. This could allow
whitelisting devices for particular applications in advance of system assembly.

Another promising direction for future work is the incorporation of CAML models,
and particularly CAML device models, directly into the OpenlCE platform along with

the translation and model checking tools.

93

Chapter 4

Architecture for Provably Safe

Interoperability

In order to prove properties of interoperable medical systems, we need to know something
about how the systems are built and where they will be used. These systems are made
out of many components including medical devices and communications infrastructure
like network switches and may include other non-medical devices. Medical devices that
are built with the intention of being part of an interoperable system will have well defined,
standardized data outputs and may accept commands over their network interfaces. This
Chapter describes the additional data needed from interoperable devices to enable safety
analysis of the systems that use them as components.

The architecture used here closely follows the ICE architecture described in Section
2.3.1.

Figure 4.1 shows the components of the system. Medical devices are connected to-

94

gether through a network controller in a hub-and-spoke topology. Data from connected
devices is made available to applications, which may send control signals back to some
devices. Each component of the architecture has a specific purpose and is necessary to
achieve the goal of proving safety properties over the whole system. Components come

from different sources and the system is assembled by users at the point of care.

Two Use Scenarios. The most dramatic example of system assembly by end users
would be putting together devices that have never been used together at the patient’s
bedside. A more likely scenario is for a hospital biomedical engineering department to
assemble and test systems using the specific brands and models of devices available at
that hospital before the system would be used for patient care. The hospital would
be assembling the system, including software applications, out of components that are
separately approved by the FDA. The MD PnP Program has been working with FDA
to develop a regulatory pathway for component-wise approval of such systems. A key
part of this is the notion that devices could include connectivity as part of their intended
use. A device’s intended use could include sending data to other devices and accepting
commands over a well-defined interface. The manufacturer would need to be able to argue
that their device is safe without knowing in advance what other devices might be receiving
the data or sending the commands. This work provides a framework and some examples
of an approach that enables such argument.

Medical devices in the system come from medical device manufacturers. This includes
traditional medical devices like infusion pumps or ventilators as well as software-only

devices such as the ICE Applications. It is expected that most ICE applications will

95

themselves be regulated medical devices. Device manufacturers provide the device model,
either as part of the communication protocol for devices capable of transferring their
model during discovery or as a separate file that is pre-loaded onto the ICE Supervisor
for devices that are only, to use the ASTM 2761-09(2013) ICE standard terminology,
model-compliant. The app writer provides the app itself, along with the patient model,

caregiver model and set of safety properties.

ICE Manager

Network Supervisor

A
Controller . N RV,
Clinical Scenario

Compatibility

Checker

Clinician

Interpreter

Patient

Figure 4.1: Components of the System

The architecture described here supports two distinct kinds of tests of the plug and
play system. The first test is done when devices are connected or disconnected, and
checks whether the set of connected devices at that time satisfies the needs of the clinical
application as captured in the clinical application’s device requirements. The second test
is done after a sufficient set of devices is connected, and tests whether the entire assembled
system satisfies safety properties provided by the clinical application developer. These
tests, of device requirements and system safety properties, are the reason for creating

device models, application models, and the other system components described here.

96

This Chapter describes the parts of the system and discusses how these components
are created. Some components can be provided in multiple ways. For instance, device
models can be a simple list of variables or a more complex state machine capturing device
behaviors. For these components, we discuss the different forms they can take and the
tradeoffs that are made by choosing one form or another. Chapter 5 shows how the pieces
come together and are used to test whether the assembled system meets the application

developer’s requirements and safety properties. Chapter 6 provides detailed case studies.

4.1 Device Models

When a medical device is connected to a plug and play network, it must identify itself
and describe its capabilities. This description is called a device model. Device models
contain identifying information about the device, essential information about device func-
tionality accessible over the network, and may also contain meta-data about the accessible
functions. We describe two distinct kinds of device models here: static models made up
primarily of variable lists, and state machine models that capture some behavioral aspects
of the device.

Static device models list the data that the device can provide and the commands it
can accept through its network interface. For example, a pulse oximeter could provide
SpO2 and Pulse Rate as output variables. Metadata, like the averaging time of a pulse
oximeter, is simply listed as another variable. If the averaging time can be set through
the device’s interface then it is also listed as an input.

It is up to the device manufacturer to decide which functionality to expose over the

97

network interface. Device manufacturers may choose to limit the functionality accessible
via the network or impose restrictions on how it is used in order to support their own
FDA filings and safety arguments. This is challenging because the device does not know
the context in which it is being used; this is why safety checks are left to the clinical
application in this work. If manufacturers limit their devices’ functionality in order to

reduce the potential for misuse, then they also reduce the possibility for beneficial use.

Network Supervisor
Controller

Device
Model

Figure 4.2: Device Models are provided by devices at connection time

The manufacturer can not anticipate all possible ways in which the data from the
device may be used.

Applications that run on the Supervisor and use the connected devices to accomplish a
clinical goal are called Clinical Application Scripts (CAS’s). Developers of a CAS bundle

it with a set of Device Requirements and a set of System Safety Properties. The bundle

98

of three documents is called a Clinical Scenario Package.

When a device is connected to the network, it sends its device model to the Supervisor
via the Network Controller. The Supervisor checks whether the set of connected devices
fulfills the Device Requirements of a Clinical Scenario Package by comparing the capa-
bilities described in the models with the needs represented in the requirements. Once a
set of devices fulfill the Device Requirements, the Supervisor checks whether the System
Safety Properties hold for the system resulting from composing the devices with the CAS.
If all of these checks are met, then the Supervisor can start running the CAS. In some
implementations, such as OpenlCE, some of these checks are performed by the application
itself; this facilitates (re-)checking properties while the application is running.

A device model includes a header containing information about the device, such as its
serial number, information about what data the device can supply (e.g., blood pressure
or heart rate), and information about the data, or meta-data (e.g., sample rate and
processing time). Device models may also include a state machine that encodes some of
the device’s behavior.

Device models are divided into a header and a body. The header contains a high-level
description of the device- its manufacturer, model number, software revision, and device
type- and a description of the format of the body.

The body of the device model describes the capabilities of the device. We define two
types of device models with different amounts of information about the device. These
device models all use the same header format, but represent device capabilities using
static variable lists or behavioral models.

This section describes the header format and both types of device models using a

99

simplified X-Ray Machine and Ventilator as running examples.

4.1.1 Header

The header contains the following items:
e FDA Unique Device Identifier (UDI)

Manufacturer Name

Device Name

Software Version

Patient ID

Device Model Body Type

Device Model Body Language

struct DeviceIdentity {
UniqueDeviceIdentifier unique_device_identifier; //Qkey
LongString manufacturer;
LongString model;
LongString serial_number;
Image icon;
string<128> build;

Figure 4.3: Device Model Header IDL

The FDA Unique Device Identifier (UDI) is a work in process based on FDA guidance
that requires UDIs to be printed on device packaging. This guidance does not specify an
electronic format for UDI, but this is under development by FDA and related standards
groups. Until the electronic format is released, we simply use a numeric version of the
printed barcode. The next three items are strings of free text defined by the device
manufacturer. Patient ID is a complicated issue in its own right. Here, patient 1D

is a Medical Record Number unique to a particular patient that is used by all of the

100

communicating devices. Propagating, validating, and managing patient identity is outside
the scope of this work. The device model body type is one of two types: variable list or

behavioral model.

4.1.2 Body definition for Variable List

A device model body entry contains the following fields:
1. Type
2. Encoding
3. Name
4. Direction
5. Value

6. Associated Variable (for Type:Metadata only)

Type. The Type field specifies what kind of information is contained in this record. It

can be one of two values: Data or Metadata.

Data. The Data type is used for variables of the device. Device variables include infor-

mation such as “heart rate”, “temperature”, “infusion rate” and so on.

Metadata. Metadata is information about data. Metadata is always associated with
a single Data type element in the Device Model. This association is done using the
“Associated Variable” field. Metadata includes information like sample rate, accuracy,

units, and so on that is associated with a data element.

Encoding. The Encoding field calls out the specific data taxonomy or ontology that the

entry Name is taken from. Examples of Encodings include “11073”. “HL7”, “SNOMED?”,

101

etc. It is expected that creators of device models will use variables chosen from common,
well-known taxonomies such as those and that creators of Clinical Application Scripts for

Supervisors will accept devices using the same encodings.

Name. Names are the name of the variable in the specified Encoding.

Direction. The Direction field can be “Input”, “Output”, or “Both”.

Value. The Value is the numeric or other type of value for the variable. The type, units,

and so on are defined by the Encoding.

Associated Variable. Metadata must always have an Associated Variable. This is the
other variable in the Device Model that the Metadata is about. For instance, a Metadata

entry for “Sample Interval” could be associated with a Data entry “Temperature”.

4.1.3 Body definition for Functional Models

The format for encoding a functional model in a device model is CEFSM as described in

Section 3.1.

4.1.4 Example: X-Ray and Ventilator Device Models

Variable Lists

X-Ray:

e Provides:
1. exposure time

2. image

102

3. external trigger latency

e Accepts:

1. external trigger

Ventilator:

e Provides:
. instantaneous flow rate
. age of flow rate sample

. respiratory rate

. respiratory rate change notification

1
2
3
4. local clock time
5
6. inspiratory time
7

. inspiratory hold time

Functional Models. When a device is plugged in, it sends a model representing its
functionality including input and output variables. The supervisor analyses this model to-
gether with the Device Requirements to decide whether a device is suitable for a particular
CAS.

There are advantages to having the Supervisor calculate meta-data from a model. In
particular, the device manufacturer doesn’t have to anticipate what the CAS designer will
need and the Supervisor can calculate exactly the data it requires. On the other hand,
if the device provides the meta-data, then no calculations necessary in Supervisor and
there is no duplication of effort. Relaying enough information to allow the calculation of
meta-data may run the risk of exposing algorithms that the device manufacturer considers
trade secrets. For this reason, many device manufacturers will prefer to transmit meta-

data rather than a detailed accounting of how their systems work internally.

103

X-Ray Functional Model Example. Figure 4.4 illustrates a functional model for an

x-ray machine.

C) setting

exposure_time := Gexposure_time

jet_xray_exposure
Gexposure_time := exposure_time

trigger_xray?
ocal_clock >= exposure_time 9

local_clock := 0

exposing

local_clock <= exposure_time

Figure 4.4: X-ray / Ventilator Example: X-Ray Device Model

Ventilator Functional Model Example. Figure 4.5 illustrates a functional model

for a ventilator.

4.2 Device Requirements

Clinical applications are created to solve a clinical problem. While patient treatment
can seem (and sometimes is) very dynamic, non-linear and even chaotic, doctors and
nurses frequently follow well-defined workflows for specific pieces of patient care. These
pieces are sometimes short procedures like placing an IV line, intubation, or checking vital
signs. Some procedures may be much larger in scope, for instance weaning a patient from

a ventilator or some of the more routine surgeries. Automating these workflows with a

104

t_vent_times ?
Ginsp_time := insp_time, Ghold_time := hol

flow := Gflow

and flow > (

ck_clo vent_clock <= insp_time and tick_clock <=1
tick_clock := 0, flow := flow / 2 !

(D)aflate

vent_rr_updated
e :‘u;~

Gflow\ + flow et_vent_rr ?
7 Grro=r

Ginsp_time := insp_time, Ghold_time := hold_time

ck == 1 and flow <= 0
tick_clock := 0

Figure 4.5: X-ray / Ventilator Example: Ventilator Device Model

clinical application can relieve caregivers from performing some repetitive tasks, such as
documentation or responding to unnecessary alarms, allowing them to spend more time on
aspects of patient care that can’t be done by a computer algorithm. Automating surgical
workflows here does not mean developing surgical robots but rather building systems
and algorithms to support the clinical staff and improve patient safety during surgery.
This could include smart alarms, automating checklists, software to coordinate between
the OR and the ICU, etc. Automation of tasks in medicine has proceeded more slowly
than automation in other domains like manufacturing because of technical and cultural
barriers, regulatory concerns, and the difficulty of handling patient variability.

The technical barriers to building applications around the practice of medicine are
largely around getting data out of medical devices and control signals back into those de-
vices. It would be easier to design clinical applications if medical devices operated as basic

sensors and actuators with well-defined characteristics like latency, averaging time, and

105

Figure 4.6: Checking Device Requirements against Device Model

so on. This is how sensors and actuators for industrial control systems are often designed.
Currently available medical devices are very limited in the data they make available, and
generally do not allow any external control. This is because device manufacturers do not
see a business advantage to opening their devices’ interfaces, but do perceive an increase
in liability. They commonly claim that they would be liable if their device did something
to injure a patient based on a command received from another medical device in a way
that they would not be liable if the same command was manually entered by a caregiver.
While there are clearly new patient hazards introduced by assembling stand-along devices
into interconnected systems, some device manufacturers seem to be using this as an ex-
cuse to build proprietary interfaces that will only work between their devices and that

require healthcare providers to buy all of their equipment from a single vendor if they

106

want the equipment to exchange data.

The creators of a clinical application have requirements about the medical device
capabilities needed to support the application. These requirements are formalized as
a set of Device Requirements, which become part of the Clinical Application Package.
Requirements elicitation is a complex topic closely tied to the hazard analysis and safety
analysis of the devices and overall system [48], [78], [63]. Device Requirements may be
written in two ways: as a set of constraints on variables, or as a set of CTL formulas over

variables.

4.2.1 Variable Constraint Device Requirements

Variable Constraints, as the name suggests, are simple bounds on the values of variables
contained in the device model. A single constraint takes the form of a triple { VARNAME
OPERATOR VALUE), where VARNAME is the name of the variable, OPERATOR is one of
=, #, >, <, >, or <, and VALUE is a fixed value of the type represented by VARNAME
in the nomenclature. So, a valid constraint on the value SPO2_AVG_TIME, defined as an
integer number of seconds, could be SPO2_AVG_TIME < 5. A special kind of variable
constraint with null OPERATOR and VALUE (i.e., just the VARNAME) is used to specify
that a variable must be available but has no other constraints. This is useful for patient
physiological values (such as heart rate, SpOag, or Blood Pressure) that may be available
but not yet populated by a device that is attached to the system before being connected to
the patient. When we say that SPO2_AVG_TIME is defined as an integer number of seconds,
this is simply the English language definition of the term. While progress is being made in

the development of terminologies and ontologies for medical device data, there is not yet a

107

standardized set of terms sufficient for writing device requirements. Variable constraints
can be written using any set of terms understood by both the constraint writers and
developers of the other models in the system.

Variables from a device may be either static or dynamic. Static variables are those
that do not change while the device is connected to the system. These include things like
the unique device identifier, serial number, and firmware version. Medical devices have
frequent updates to their firmware, but must be placed in a special mode to install updates.
We do not expect that they will be able to communicate with external devices while in this
mode, so firmware versions are unlikely to change during use. Static variables also encode
parameters that are fixed for a particular model of device, like maximum or minimum
settings. Dynamic variables encode values that are expected to change — the time since
the last update to a reading, or the value of a patient’s physiological parameter. Device
constraints on static variables can serve to disqualify or admit a device for an application.
When dynamic variables are checked against device constraints, it serves only as a ‘spot
check’ that may disqualify a device, but can not ensure that the variable checked will
not violate the constraint in the future. If it is necessary to check, for instance, that the
variable ‘averaging time’ will always stay between 2 and 16, it is not enough to see that
the current value of the variable is 4. Better constraints can be written if the encoding
of the variable includes bounds, as many 11073 data encodings do. Then it is possible
to check that the lower bound of ‘averaging time’ is > 2 and the upper bound is < 16.
Because we do not have bounds on many variables and they can and do change during
use, in OpenlCE we check some key constraints on every update to the value.

Many constraints will be enforced by applications as part of their normal running.

108

For instance, the Xray / Ventilator Synchronization app [7], [5], [6] requires that the
patient’s lungs remain stationary for longer than the X-ray exposure time. The amount
of time the lungs are stationary is dependent on several ventilator settings, and the X-ray
exposure time is likely to be programmed after the system is assembled, possibly with
the assistance of the synchronization app. Properties like these, that are dependent on
settings or patient data that are dynamic, should be checked by the app at run-time.
Some properties, particularly meta-data like averaging time, are likely to change while
the device is in use. Applications will need to monitor relevant metadata while they are
using the associated data and reject new data samples when the meta-data goes out of
bounds. Some of these properties are also amenable to run-time monitoring by a separate

process, but that is beyond the scope of this work.

4.2.2 CTL Device Requirements

Most variables in an ICE system are not static, and there are many interesting properties
that can not be checked by looking at a snapshot of their values.

Medical device behavior is usually described in terms of modes. Training materials,
documentation, and the users of devices describe them as having modes such as ‘program-
ming’, ‘running’, ‘stopped’, ‘paused’, ‘alarming’, and so on. This way of talking about
device behavior lends itself quite well to state machine modeling. These models can be
black boxes that capture the device’s behavior from the point of view of a user or another
device on the network, or they can be more detailed models that describe its internal
operations. Combining the models of various devices allows us to build composite models

that will mirror some aspects of the behavior of the real system. These composite models

109

allow us to check properties about the system’s behavior that go beyond what we can
check with the simpler constraint checks.

For instance, consider an infusion pump that allows remote control of its rate, but
only after a fallback infusion rate is set. If the pump loses its network connection while it
is being remotely controlled, it will revert to the fallback rate. Using constraint checking,
we can set constraints that the pump must support external rate control and that the
application must support setting a fallback rate. This kind of basic compatibility check
is valuable. Using model checking, we can additionally ensure that the app must always
set the pump’s fallback rate before the app can remotely control the pump.

Device requirements may also be written in a temporal logic to facilitate testing more
complicated properties with a model checker. In this work, we use the UPPAAL model

checker, and write device requirements in the subset of CTL it supports.

4.2.3 Example: Device Requirements for X-Ray and Ventilator

Variable List Device Requirements.

X-Ray:
e Must Provide:

1. exposure time

2. image

e Must Accept:

1. external trigger

e May Accept:

1. exposure time

110

Ventilator:
e Must Provide:
1. instantaneous flow rate
respiratory rate
local clock time
respiratory rate change notification

inspiratory time

A e

inspiratory hold time

4.3 System Safety Properties

System Safety Properties (SSPs) capture essential aspects of the system that the system
designer requires must hold for the system to be safe. SSPs are distinct from device re-
quirements; rather than placing constraints on individual devices, SSPs specify behaviors
of the complete assembled system. These behaviors necessarily include behaviors of indi-
vidual devices, so SSPs include safety properties of individual devices. If an application
requires that a component devices incorporates or prevents certain behavior, the applica-
tion developer can include one or more SSPs capturing the intended behavior. SSPs thus
help to address novel hazards created by assembling the system and to mitigate device
level hazards. Device manufacturers and app developers do not know the specifics of the
assembled system in advance. It is critical that they specify all necessary aspects in the
device requirements and SSPs.

The goal of SSPs is to help to mitigate known hazards. It is possible that they will also
help to mitigate unanticipated hazards, but this is a lucky side effect not the main intent.

To achieve this goal, application developers need to provide SSPs such that all known

111

hazards are mitigated if SSPs are satisfied. Application developers are thus ultimately
responsible for ensuring the safety of the system.

Safety Properties are expressed as temporal logic formulas. Because we use the UP-
PA AL model checker in this work, system safety properties here are written in the subset

of CTL supported by that tool.

4.3.1 Device and System Level Safety Properties

The main source of system safety properties is the system hazard analysis. This is distinct
from the device hazard analysis in that the system hazard analysis contains only the new
hazards created by assembling the devices into a system and the device level hazards that
are mitigated at the system level. Consider a system where an infusion pump communi-
cates with a safety interlock application that may stop the infusion based on vital signs
from a patient monitor. This system introduces hazards that are not present when a
clinician uses a pump and monitor to treat a patient without a safety application. The
application may stop the pump inappropriately, patient information may be intercepted
or forged on the network by malicious actors, or the system may fail to stop the pump
when it should. These are new hazards that are introduced by connecting the devices to
a network and running a safety interlock application that interacts with them. If these
hazards are not mitigated properly, there is increased risk to the patient. However, the
system can also do a better job of mitigating device hazards than is possible when the
devices are not connected. Overinfusion is a common and serious hazard that is possible
whenever an infusion happens. Infusion pumps do not have any means of monitoring the

patient and typically do not directly measure the flow rate of medication. They can take

112

measures to ensure that the programmed dose is faithfully delivered but they have no
feedback to indicate whether that dose is appropriate for the patient. Thus many causes
of overinfusion cannot be mitigated at the pump level; the pump simply does not have
the necessary information. The patient monitor has the patient’s vital signs, so when
the system makes the pump and patient monitor information available to the interlock

application then the hazard of overinfusion can be better addressed.

4.3.2 Relation of System Safety Properties to Hazard Analysis

A hazard analysis enumerates ways that the patient may be harmed. For each of these
ways, it lists means of mitigating the harm and it may include a measure of the likelihood
and severity of the harm. System safety properties tend to be associated with specific
vectors of harm and their mitigations. Overinfusion is a hazard, but it is difficult at
best to write a single SSP for it because it is too high level, that is, there are too many
ways that an overinfusion can happen. Rather, SSPs are tied to particular means by
which an overinfusion can happen. These could include a pump failing to stop when it
is commanded to either through its user interface or remotely, a pump being loaded with
the wrong concentration of drug or the wrong drug, freeflow of medication through a
pump, misprogramming of a pump, programming based on an incorrect measurement of
the patient’s weight, and so on. In many cases the SSP will involve data from multiple
devices. SSPs can and should be written for particular ways that an overinfusion could
happen. Some of these could be written at a global level, for instance that the pump
should never infuse more than x milligrams of a medication in an hour. Parameterized

safety properties like this also have regulatory advantages; the platform can be approved

113

based on its ability to monitor and enforce the parameter while leaving the responsibility
of choosing a value for a the parameter to the clinician or health delivery organization
where the device is used.

Some safety properties are too complex to be modeled in this framework, especially
properties involving continuous dynamics. These can be written into the application, and
a simpler SSP can be written around the behavior of the application. For example, we
may wish to write a safety property that says that if a patient is receiving an infusion
of medication and the vital signs of the patient significantly diverge from the predicted
values from a patient model that incorporates a model of the patient’s reaction to the
drug (personalized pharmacokinetics for that drug) then an alarm must be triggered and
the infusion pump must stop. This essentially says that if the patient reacts to treatment
in a way that we don’t expect, then alarm and stop treatment. Because it involves
a sophisticated patient model that incorporates pharmacokinetic / pharmacodynamic
(PK/PD) modeling, it would not be amenable to modeling in finite state machines or
encoding as CTL properties, though it could be modeled as a hybrid system or approached
through a combination of modeling methods as in [9]. These complex behaviors can
be written into the safety application, which can generate an externally visible event
when they occur, and the SSPs and application model can be written to use this event.
This simplifies the model, makes the properties tractable to analysis, and still allows
the application to incorporate sophisticated behaviors. This approach was used in [7]
where code that was automatically generated from the application model was merged

with handwritten stubs implementing the complex behavior.

114

4.4 Patient Model

A patient model is a model of the parts of a patient’s response to treatment that are
relevant to a particular application. Patient models are closely tied to a particular use
case and a specific patient population. Generic patient models that attempt to model
all of a patient’s physiology and response to a general set of stimuli exist but are not
well suited to model checking because of their size, complexity, inherent mathematics
that are not well suited for formal analysis and the difficulty of matching the model
physiological semantics to the other components of the system. Our intention is not to
create general models of human physiology, but rather tailored models of the limited
aspects of a patient’s response to treatment that are relevant for a specific application.
Patient models in this system are created by application developers and meant to be used
in conjunction with a particular app. Human physiology is complex, poorly understood,
and highly variable from one person to the next and the intended use of apps covers the
full spectrum of medicine. Medical treatment is generally done ‘to effect’- treatment is
rendered, and stepped up until the desired outcome is reached, rather than being entirely
determined in advance. Patient variability is part of this, and gaps in medical knowledge
is another part. Patient models are specialized models of the patient as a black box based
on inputs to the patient, the outputs of devices and other workflow processes and outputs
from patient, which provides input to devices and other processes. App safety is closely
tied to the patient model. An application intended for use on adults will likely be unsafe
for use on small children. Generally, an assembled system that is safe for one patient

may be unsafe for another patient who is sicker, or more sensitive to treatment because

115

of physiological differences.

Patient models can be useful if they simply indicate the potential directions the patient
may go rather than specifics of how they get there. The point is not to mathematically
simulate the detailed behavior of the patient in reaction to treatment, but simply to
broadly indicate the spectrum of outcomes. Patient models should include only enough
detail to support analysis of the System Safety Properties of interest to the developer.

Patient models can represent a specific individual, a population of patients, or any
possible patient. These types of patient models go from specific to general. Within the
state space of possible patient reactions, the specific individual model will be the most
constrained, the patient population will be broader, and the model aiming to represent
every possible reaction will be the broadest.

Creating a mathematical model that faithfully represents the reactions of a specific
patient or even a patient population is difficult and may not be necessary to assess the
safety of a system. The modeling systems we use often do not support all of the mathe-
matical constructs used in the analysis of clinical data sets. Sets of differential equations
are commonly used and these are incompatible with many model checking tools. The level
of detail and specificity provided by these models is not needed for checking most safety
properties. Instead of trying to capture all of the mathematical detail, models should
be written at the proper level of abstraction to support checking the desired properties.
Most safety properties are written about the boundaries of the system; the edges of the
state space where the patient’s condition is seen as undergoing a transition. A model at
a higher level of abstraction that captures only the pieces of patient status essential for

decision making is more efficient for model checking and easier to produce and validate

116

while still allowing checking of the critical transitions.

In developing the Computer-Assisted Resuscitation Algorithm (CARA) [2], a system
for managing fluid resuscitation, we wanted a patient model that would capture how a
patient’s blood pressure would vary with blood loss and the rapid infusion of fluid. We
started out thinking that we could create a simple model of the cardiovascular system
where blood pressure would drop as volume decreased. The human body is not that
simple. There is a complex web of compensatory systems that react to blood loss. These
reactions involve many body systems as heart rate and breathing rate change, peripheral
vasculature closes down, and the patient goes into shock. Mathematically modeling these
reactions quickly becomes very complex and requires choosing values for variables like the
rate of change of particular vital signs makes the model specific to a particular patient. We
found in the CARA project that it was much more useful to model the patient at a high
level of abstraction where the model remained applicable to a broader set of patients and
more tractable to analysis. This general principle has held for many varied applications.

Patient models are specific to an app, patient population, and use environment —
that’s why they’re bundled with the app. An app may have more than one patient model,
in which case it’s up to the clinician to pick an appropriate one when the app is started.
Some automatic configuration based on patient attributes like age, height, weight, etc.
may be possible. The patient model’s terminology and semantics are expected to be

aligned with the other pieces from the application developer.

117

4.4.1 Interaction Between Patient Model and Safety Properties

There is a close relationship between patient models and system safety properties. System
safety properties are written about aspects of the system that are safety related. Ulti-
mately, this means they are related to patient safety, and patient safety is tied to specific
patient populations. Patient models and safety properties need to be written at a similar
level of abstraction and using the same terminology.

We present some safety properties from the case studies and discuss how they interact
with the patient models. A basic assumption of both the x-ray / ventilator synchronization
and PCA safety interlock case studies is that patients need to breathe. This is a broadly
applicable requirement, but would not be true, for instance, of a patient model for a
cardiac bypass use case where the patient would not be breathing and their heart would
not be beating during portions of the surgery. We could write an even more abstract
model, something like ‘patients need oxygen’ that could cover more use cases, but the
act of breathing is important for both PCA and X-Ray synchronization and writing the
safety property directly about breathing avoids the need to introduce model components
tying breathing to oxygenation.

There is considerable variability in the details of patients’ physiology. One approach to
managing this variability is to group patients into populations then create models for each
of the relevant populations. For PCA, these models could capture patient populations
covering different age or weight ranges, or tied to specific comorbidities like COPD that
would affect the treatment plan.

The patient model is not intended to be comprehensive. It is also not intended to

118

reflect the actual response to treatment of any particular person — no individual patient
is expected to respond exactly like the patient model. Patient models radically simplify
physiology and the response to treatment. They may reflect an ‘average’ or ‘typical’
patient response, but in many cases it is more useful to model a patient whose response
to treatment makes it difficult to keep them safe.

For instance, in our PCA safety interlock app, the patient model is written to respond
much more quickly and much more negatively to a drug dose than any real patient. Where
a real patient might need to be overdosed by 10 units of medication and then take 30
minutes to absorb enough drug to have a harmful result, the patient model needs only
1 unit of drug to cause an overdose and reacts in less than a minute. For the X-Ray
synchronization app, a particularly challenging model is a patient who takes a very long
time to exhale (leaving little time for the x-ray exposure) or whose SpOg drops very quickly
when ventilation is paused. With these patient models, we make the argument that if the
system can respond quickly enough to prevent adverse events for the unrealistically bad
patient model then it will be able to prevent these events for any real patient.

These patient models are specifically designed to challenge particular safety properties.
They are designed in an antagonistic way to see if we can create a patient model that will

break the property, and so we term them adversarial patient models.

4.5 Clinical Application Script

The point of building an interoperable medical device platform is to enable novel clinical

applications. These could include better alarms, integrated displays of data from multiple

119

devices, clinical decision support, physiologic closed-loop control, and other applications
we haven’t yet invented.

Clinical Application Scripts define the behavior of the applications. An ideal clinical
application script (CAS) would include sufficient detail to allow the core application code
to be automatically generated from the script. An example of this is shown in [7] and
described in detail in Chapter 6.

Clinical Application Scripts need to be written in a form that is sufficiently formal
to allow analysis of the device requirements and safety properties, sufficiently rich to
allow for many types of complex behavior, and yet not too difficult to understand and
create because the CAS for an application will be provided by the application developer.
Balancing the expressive power, difficulty of model checking, and ease of use of a language
is a difficult task. In this work, we use communicating extended finite state machines
(CEFSMs). Tool support for this language includes code generation and translators into
the input languages of several model checking tools, as described in Sections 3.4 and 3.5.

A CAS is not essentially different from a behavioral device model. This is because
from the point of view of the interoperability platform there is no fundamental difference
between a physical medical device and a software application. Physical medical devices
act directly on patients, and this is of course an important distinction from software, but
both implement ICE interfaces and incorporate behaviors that are important to under-
standing the overall behavior of the system as a whole. Behavioral device models and
Clinical Application Scripts are given different names in this system because the appli-
cation developer who creates the CAS is assumed to also supply the device requirements

and system safety properties necessary to ensure that the system behaves as they expect.

120

A CAS expressed as a CEFSM is a set of state machines. Each state machine consists
of a set of states connected by transitions. Transitions have guards that can include
expressions over variables and communication actions and actions that are performed
when the transition is taken. Transitions are enabled when the guard conditions evaluate
to true and the communication action can happen. The full semantics of CEFSMs are

described in Chapter 3.

4.6 Caregiver Workflow Model

Plug-and-play is not end end unto itself. Rather, it is an enabling technology that makes
it easier to build versatile systems. In the medical domain, the context of use of a system
and the specific intended use to which is is put are important from both safety and
regulatory perspectives. We bring in the use context and some aspects of the intended
use by modeling caregiver workflows. There is a rich history of workflow modeling and a
wide variety of modeling languages are available.

Why such a proliferation of workflow modeling languages? A “perfect” model that
doesn’t abstract any details of the real system and could be used for any purpose is not
possible, and probably not desirable. Some amount of abstraction is necessary, and in
picking a workflow modeling language and a toolset, we pick the aspects of the system
that are most important and model those. Dropping the other aspects allows us to have

models that are a manageable level of complexity and a useable size.

Medical Protocols. Some medical workflows are inherently procedural or regulated

and defined as linear sets of operations. These tend to be standardized responses to

121

emergency conditions or common practices where a consistent methodology is important.
Emergency response procedures include ACLS protocols and documents like the Stanford
Emergency Manual. Common practices include procedures like starting an IV, program-
ming an infusion pump, or weaning a patient from a ventilator. Protocols are sometimes
instantiated as checklists, which can be paper-based or electronic in various forms.

As Computer Scientists and Engineers looking at written protocols like ACLS or
the Stanford Emergency Manual, it’s easy to get the misconception that patient care is
systematic, even algorithmic. While some aspects of care can be quite procedural, it is
important to realize that in practice workflows are almost never as clean, straightforward,
and linear as they look in these diagrams and protocols.

Medical workflows include multiple activities occurring in parallel, often with strict
timing requirements, ‘just in time’ resource allocation, communication and coordination
between activities, usually without benefit of a central scheduler. Exceptions are the
norm. These workflows are usually fairly small, perhaps a dozen steps. The exception
handling around them, because it includes everything that might go awry during the
procedure, is usually substantially larger than the core algorithm.

This combination of attributes makes medical workflow extremely challenging to
model. Modeling always requires abstraction. The art of modeling lies in making the
necessary tradeoffs and decisions about what to include in the model in order to allow
reasoning about the desired properties. Models that include extraneous information in-
crease the complexity of checking the safety properties without adding any value. The
trick here is that the modeler does not know everything about the system. Workflow

models are provided with the Clinical Application Script by the application developer

122

and are meant to be used with that model, but the application developer does not know
what other devices will be part of the system. An application developer who creates,
for instance, an app to support ventilator programming can use the device requirements
to require that a ventilator is in use and that it supports all of the interactions in the
caregiver workflow.

In this work, we are faced with creating workflow models without knowing the desired
properties to be tested. We know that these workflow models will be combined with
device, application, and patient models to form a system and that the end user will want
to prove safety properties about this combined system. The challenge in creating these
models is to include enough detail that the proofs of safety properties are possible and
‘meaningful enough’.

In modeling medical workflows, it’s important to remember that clinicians are usually
caring for more than one patient at a time. Even routine, linear, well-documented, simple
procedures like starting an IV can be and often are interrupted by alarms, nurse calls, or
even emergencies in other rooms.

Workflow Model Types Fixed workflows are those with a single path through the
process. Although almost no real clinical practices are so straightforward, it may be
useful to model them this way. Fixed workflows may be a set number of steps or a loop
but do not contain branches.

“Daisy” workflow models are so named because their state machine models have a
single central state surrounded by many petal-like self-loops. These workflows represent a
process where any of a number of things can happen in any order, at any time. It can be

useful to model a clinician or device in this way when we don’t know the details of their

123

behavior, under the assumption that properties that hold in a system where a participant
may do anything also hold when the participant is more constrained.

Behavioral workflow models attempt to capture a set of possible behaviors that ade-
quately represent the behavior of the participant. This does not mean that they model
all possible behaviors; in most cases this would be impossible. Instead, the model repre-
sents likely patterns of behavior as sequences of actions. Unlike Fixed and Daisy models,
behavioral models include branches. Behavioral models are expressed as CEFSMs us-
ing CAML. Behavioral models allow for communication and coordination of action when
multiple caregivers are involved in a patient’s environment.

Workflow models are created by the application developer to represent the environ-
ment where they expect their application will be used. As the workflow model becomes
more detailed and prescriptive, it captures more assumptions about how the caregivers
will behave. The system model is checked as a whole. If safety properties are checked
using a Clinician model that stipulates step 2 is always done after step 1, the results
may not be sound if the clinician ever does things in the opposite order. Because clinical
practice is so fluid and variable, daisy models are preferred unless there are very strong

constraints on ordering.

4.7 Workflow Modeling Example: Coronary Artery Bypass

Graft Post-surgical Care

Coronary artery bypass graft (CABG) surgery is a procedure where a patient’s blocked

coronary arteries are routed around, or bypassed, using arterial grafts. Around 427,000

124

of these procedures are done annually in the United States [24]. CABG surgery can have
a number of severe complications including cardiac dysrhythmia, pulmonary problems,
and infection [62]. The nursing staff is responsible for stabilizing the patient immediately
after surgery and then safeguarding them against these complications until they are ready

to be discharged from the hospital[61].

Phases of Care for the CABG Patient. A CABG patient goes through four phases
in their hospital stay. These are the pre-operative, operation, SICU, and discharge phases.

The pre-operative phase includes hospital admission through the move to the operating
room, including getting the patient ready for surgery.

The operation phase includes the actual surgery, as well as preparing the staff and
room before surgery.

A SICU, or Surgical Intensive Care Unit, is a specialized ICU for care of post-operative
patients. The SICU phase includes preparing a room in the SICU for the patient, moving
the patient from the OR to the SICU room, stabilization of the patient, and monitored
care for the patient after they are stabilized including a regular ongoing assessment.

The final phase is transfer of the patient from the SICU to a step-down unit or spe-
cialized cardiac surgery floor. This usually occurs within 24 to 48 hours after surgery and
is followed by discharge from the hospital.

This process has been described as very linear, and in normal operation it is. In some
cases, however, a patient may go back and forth between phases. For example, a patient
may be prepped for surgery and then have to wait for an OR or surgeon to become

available, possibly being delayed until the next day, or a patient may develop excessive

125

bleeding from the surgical site after the operation and have to go back to the OR to have
sutures replaced.

The focus here is on the stabilization phase. This phase is especially interesting in
the context of medical workflows because it is highly parallel, there are many operators,
many tasks, and few rigid task assignments, and treatment is very adaptive to the patient’s
condition. Though the treatment is adapted to a particular patient’s circumstances, the
overall course of treatment is fairly standardized- most CABG patients go through the

same process. This facilitates studying and mapping the treatment plan.

Stabilization of CABG Patients. The SICU phase proceeds through four steps:

1. Initial Setup
2. Ongoing Assessment
3. Ventilator Weaning

4. Discharge to ICU or home

We'll focus on the first step, since this has the most people and parallel tasks. The
initial setup happens as the patient is brought from the OR to the ICU by two people —
the anesthesiologist or PA and another nurse from the OR. The anesthesiologist ventilates
the patient with a bag-valve-mask (BVM).

The ICU nurses get a report from the anesthesia provider roughly 30 minutes before
the end of the surgery with details of the procedure and patient status so they can finish
preparing the room. This includes gathering and checking all the equipment, setting up
the monitors and pumps, and preparing paperwork. Getting the patient set up in the

room takes 10 or 15 minutes and includes the following tasks:

126

Ty | Move Patient into ICU bed

T5 | Program and Connect the Ventilator

T3 | Attach Patient Monitor

T4 | Connect ABP transducer

Ts | Initial Patient Assessment

T | Draw Blood for analysis

T7 | Connect and Program External Pacemaker
Ts | Connect and Program CO Monitor

Ty | Adjust Programming and Start Pumps

T1o | Apply Warming Blanket

T11 | Connect suction

Ti2 | Secure and Label all Wires and Tubes

Ti3 | Obtain 12 lead EKG

T14 | Check that all tasks are properly completed

Table 4.1: Tasks in CABG Workflow

When the tasks in Figure 4.1 are complete, the primary nurse takes over and checks
that all tasks are done and the patient is stable. They then start regular ongoing assess-

ments and deal with any complications that arise.

Actors and Devices in the Stabilization of CABG Patients. A large number
of people are involved in the initial stabilization of the post-operative CABG patient.
The patient in their bed is wheeled over to the SICU by two members of the operating
team. These are usually the anesthesiologist or physician’s assistant (PA) and a nurse
from the OR. The patient is still sedated from the surgery, so the anesthesiologist or PA
is breathing for them with a bag valve mask (BVM).

When the patient arrives in the SICU room, they are met by the nurse who will assume
care for them (the primary nurse), two or three other nurses from the unit as available,
and a respiratory therapist. The respiratory therapist will work with the anesthesiologist
or PA to get the patient started on the ventilator, then the members of the surgical team

leave. The unit nurses assist with getting the patient stabilized, then the primary nurse

127

takes over care. Once the patient is stabilized, the EKG technician arrives and obtains a

12 lead EKG.
Appn Primary Nurse
Apn1...Ans3 | 2 or 3 other Nurses from Unit
Aan Anesthesiologist or PA from OR
Aon Nurse from OR
ARt Respiratory Therapist
AET EKG Tech

Table 4.2: Actors in CABG Workflow

The patient is connected to several devices in the SICU. The most visible of these is
the patient monitor, which measures the patient’s heart rate and rhythm, invasive and
non-invasive blood pressure, oxygen saturation, temperature, and respiratory rate. They
may also be connected to a cardiac output monitor and an external pacemaker. The
patient’s temperature is lowered during surgery, so a forced air warming blanket is used
to raise their temperature back to normal. Patients usually receive IV fluids and several
drugs, which are administered with infusion pumps. Patients are typically connected to

three infusion pumps, each capable of controlling four channels of fluids.

Dpy Philips MP70 integrated patient monitor
Dco Cardiac Output Monitor

Dgp External Pacemaker

D BED ICU Bed

Dwp Warming blanket

Dipy...Drps | 3 Alaris Medley infusion pumps

DEKG 12 lead EKG

DyvenTt Ventilator

Dsyc Suction

Table 4.3: Devices in CABG Workflow

Workflow for CABG patient stabilization. Each nurse is capable of doing multiple

tasks from the list. They choose one based on what they see as the most immediate need

128

and where they can physically fit in around the patient. Some actors have a specialty (e.g.,
the Respiratory Therapist and EKG tech) and focus on that single task. Some tasks need
to be done before others, and the actors know this ordering from previous experience. For
example, the warming blanket can’t be put on before the external pacemaker is attached,
or it will just need to be removed again. The high level scheduler captures this implicit
ordering.

Draw blood for ABG, complete blood cell count (CBC) and other blood work as

ordered.

Resources, Resource Contention, and Scheduling. Devices, personnel, access to
the patient, and the physical space around the patient are all considered resources. Con-
tention for these resources is a major factor in scheduling and cause of delays or deadlocks.
For example, an x-ray can only be taken when everyone except the x-ray technician has
left the patient’s room. While this is happening, no one else can access the patient or any

devices in the room.

ID Patient Part

Prigur | The patient’s right side
Pygap | The patient’s head
Parr The entire patient
Parr The arterial line
Pecrrpst | The patient’s chest

Table 4.4: Patient Parts

Workflow Modeling. The CABG workflow described above looks complicated, but
is actually vastly oversimplified when compared to what happens in the SICU. This is

primarily because it leaves out the numerous exceptions, interruptions, and higher priority

129

Task | Required Resources | Can be done by Required Precursors
T1 PALL Two or more Of APN AN17 ANQ, ANg

Ty Dvent, PHEAD ART T

T3 Dpn, PrigHT Apn An1, ANz, Ans T

Ty Dpnr, PrigaT Apn An1, ANz, AN3 T

T5 Parp Apn An1, ANz, Ans Ty...Ty

Ts PaARr Apn An1, ANz, AN3 Ty...T5

T7 Dpn, Pougst Apn An1, ANz, ANs Ty...Ts

T3 Dco, PocugsT Apn An1, ANz, ANn3 Ty...Ts

Ty Dipy... Drps3 Apn An1, ANz, ANs Ty...Ts

Tio | Dws, PaLL Apn An1, ANz, AN3 Ti...Ty, Ty, Th2
Ti1 | Dsuc, PricuT ApNn Apn1, ANz, ANz Ti...T5

Tio | Parr Apn An1, ANz, AN3 Ty...Tg, T

Tis | Deka, PoHEST Apr Ti...Th2

Tis | Parr ApN Ty...T13

Table 4.5: Tasks, Resources, and People

events that call nurses away from the room. In listing the personnel, we noted that it
includes several additional nurses ‘as available’. This availability is contingent on what
else is happening on the floor — any of the actors may be called away at any time. When
nurses are juggling the resource allocation and prioritization of activities for this patient,
they’re also thinking of who else on the floor they’re responsible for and what else needs
to be done. A nurse might, for instance, help for a minute or two when the most help is
needed even through they know one of their patients is waiting for something, then leave
to help that patient as soon as the incoming patient is settled.

In some ways, post-CABG care is the best case for workflow modeling. Many CABG
surgeries are done per year and the course of the surgery, post-surgical care, and recovery
trajectory are all well documented and well understood. A patient going for a CABG has
a good idea of what to expect and a SICU nurse receiving a patient after the surgery has

likely seen similar patients many times.

130

4.8 Discussion

This chapter describes an architecture for interoperable medical devices that allows prov-
ing safety properties about the composed system. Device capabilities are represented in
device models (Section 4.1). These will be checked against device requirements (Section
4.2) using the process described in Section 5.3, just as system safety properties (Section
4.3) will be checked against the composed system using the procedure in Section 5.4.
Patient models are discussed (Section 4.4) along with the model for the clinical applica-
tion (Section 4.5) and the caregiver workflow (Section 4.6). Finally, some difficulties in
workflow modeling are discussed using the example of caring for a patient after coronary

artery bypass graft surgery (Section 4.7).

Limitations. This Section discusses limitations related to the architecture used for
modeling interoperable systems. System components are modeled using the CAML lan-
guage described in Chapter 3, and they are assembled following the ASTM ICE architec-
ture described in Section 2.3. Architectural limitations and gaps discussed here will affect
checking device models and system safety properties in Chapter 5 and the case studies in
Chapter 6.

Section 4.7 describes some of the challenges of modeling workflows. It includes several
attributes that are difficult to model in CAML. In particular, CAML does not have built-
in components that support resource allocation, dynamic prioritization, or scheduling. In
the case studies, these issues are mitigated by modeling a single caregiver who does all of
the caregiver actions or by creating a ‘daisy’ caregiver model that can perform actions in

any sequence. Resource allocation and scheduling will be important for modeling multi-

131

ple simultaneous applications, because applications will share devices and other system
components, be operated by the same clinicians, and act on the same patient.

CAML is used here to model a single clinical application and its use environment.
In many cases, it will be desirable to use multiple application simultaneously to care
for a patient; for instance one application to manage ventilator setting and another to
monitor or control a drug infusion. Simply composing the two applications is unlikely
to be successful. Applications can interact with each other through the patient, for
example when one application takes an action to lower the patient’s blood pressure while
another is acting to raise it. Applications may compete for shared resources such as
network capacity, caregiver attention, or physical locations on the patient. Identifying
when resource contention exists, defining rules for composing application, patient, and
caregiver models, and checking the compatibility of system safety properties are all open
questions.

Patient models are challenging to create and validate. We have not attempted to
create general models of human physiology, but instead to model the limited aspects of
a patient’s response to treatment that are relevant for a specific application. The patient
models shown here are sufficient for checking the safety properties of interest, but still very
abstract. We discuss creating patient models tied to individual properties (‘adversarial
models’), as well as models that capture a typical response to treatment. It is difficult to
know what to include in a patient model, and better theoretical frameworks for creating

sufficient but not overly detailed patient models are needed.

132

Gap Analysis. We touch on unique device identifiers (UDI) in Section 4.2.1. Unique de-
vice identifiers are necessary for correctly associating devices to patients, tracking devices,
and managing multiple copies of a particular device that might be used simultaneously on
a patient. UDIs have some complications, especially for composite (or in ISO 11073 terms
‘hybrid’) devices that are made up of a collection of individual devices. Patient monitors
are usually hybrid devices that are made up of a display computer that implements signal
processing and event detection algorithms, a patient interface box that connects to the
EKG leads, blood pressure cuff, and other devices that touch the patient, and finally the
devices that touch the patient including complex sensors and actuators like pulse oxime-
ters. Ideally, unique device identifiers would be structured as a tree so that when a patient
monitor connects to a network it would transmit not only the UDI for the monitor display
computer but also those for all of the other devices involved. Prototyping, standardizing,
implementing, and deploying such unique device identifiers remains as future work.
System safety properties are derived from the application hazard analysis. Performing
a hazard analysis is still a very manual process, where an expert examines the system
and uses their experience and knowledge of historical failures of similar systems to list the
ways in which the system might fail and what mitigations might be used to reduce the
likelihood of harm from failures. This can be done systematically, but a hazard analysis
is never complete; ongoing maintenance is necessary as new failure modes are discovered.
As hazards and mitigations are documented, we try to create system safety properties
that will assure that the mitigations are effective. Some device hazards are simply out of
scope from the perspective of the application developer; most physical devices document

hazards around size, weight, and shape to reduce the risk of the users injuring themselves.

133

Checking some safety properties requires special features in the device models, for instance
a behavioral model may need a special variable to indicate that a particular state has been
reached. We have had the benefit in the case studies of creating device models along with
the other system component models and with advance knowledge of the system safety
properties we want to check. In an interoperable system with device models created by
the device manufacturer and the other components, including safety properties, created
by the application developer, matching the level of abstraction of the models, terminology,

and including all of the necessary device behaviors will be a challenge.

Future Work. The system described here does not include network modeling, though
a network model could in principle be added to represent a particular middleware or net-
work architecture. Network components capable of distributing a device model describing
network properties or Supervisors with integrated and well-characterized networks would
allow application developers to write device requirements around network performance
that could be tested like other device requirements. It also has limitations around patient
modeling, particularly in the inability to model continuous dynamics. Future work is
also needed in modeling multiple applications and their interactions, and in combining
multiple CAML systems that might be used simultaneously on a single patient.
Creating a complete system with a set of models, device requirements, and system
safety properties requires application developers familiar with formal modeling, the clin-
ical use environment, and the particular clinical application. Tool support for model
creation could help to make this more accessible, particularly for allowing clinicians with-

out modeling expertise to give feedback. Feedback from clinicians is essential for building

134

safe and effective treatment systems, and existing modeling tools are often opaque to
users who are not deeply familiar with modeling systems.

We expect that patient models will be increasingly derived from large data sets, and
tools and methodology for creating and maintaining patient models from growing and
evolving data sets will be needed. Static patient models that are created to simulate
patient behavior that is documented in large data sets can be treated like the manually
written patient models in Section 4.4. Patient models that change their behavior over
time as they receive new input could also be modeling in this way, at least at a high level
of abstraction and perhaps omitting the details of the learning algorithm. Such learning
or evolving patient models benefit from the modeling and property checking approach
presented here and in Chapter 5 in that safety properties will need to be checked against
these patient models at the time of use. Because the model’s behavior changes over
time, safety properties checked against an old version of the model may not hold with
the newer one. Model checking with learning models and the regulatory science around
safety-critical systems such as medical devices using such models are rich areas for future
work.

A lot of responsibility is put on the application developer, who is expected to provide
application, clinician, and patient models as well as device requirements and system safety
properties. This follows current regulatory structures, which require the device manufac-
turer to define the intended use of the device and to defend the safety of the device against

that intended use by systematically examining and mitigating known hazards.

135

Chapter 5

Proving Safety Properties of

Interoperable Systems

In order for systems built of interoperable components, as described in Chapter 4, to be
usable in a clinical setting, we need to be able to test safety properties. We need to be
able to prove that these safety properties hold or do not hold for various combinations
of applications, device models, workflow models, and patient models. A particular com-
bination of devices may never be assembled until it is about to be used on a patient, so
we may need to be able to prove these properties right at the point of care, though in
most healthcare settings the systems will be assembled and tested well in advance of their
use on patients. Still, device properties change, calibrations expire, and other aspects of
the environment change. Testing at the time of system assembly and throughout use, for
instance by re-sending a device model whenever a device attribute changes, is necessary

to assure that the assumptions of the system designer actually hold at the time of use in

136

the actual use environment.

Our goal is to prove that an application is adequately safe for its intended use in its
intended use environment. The use environment for an application includes the patient
model, caregiver workflow, other medical devices used in the system, and the applica-
tion itself. If the application is used simultaneously with other applications, then the
use environment includes these other applications, though we assume that applications
will not usually include other applications in their intended use environment. We rely
on the application developers to write a set of safety properties and device requirements
that encode the assumptions and requirements that they are placing on the rest of the
system. Intended use and risk are inherently coupled. The intended use of the applica-
tion is captured by the safety properties defined by the application developer. Safety is
defined as freedom from unnecessary risk. Risk is tied directly to the application hazard
analysis, which is the source of the safety properties we are testing. The application
developers, as the participants in the system who are defining the specific intended use
of the entire system - including the application - must categorize the risks tied to the
intended use of their application, decide which can be mitigated within the application,
implement such mitigations, and define the assumptions they place on the rest of the
system. These assumptions are captured as safety properties and device requirements.
The safety properties are invariants that must hold in order for the application to be

adequately safe.

System Implementation and Risk Management. There are usually many ways to

implement a system, and it is up to the application developers to determine how to best

137

mitigate the risks associated with their application and how to express the application’s
safety properties and device requirements. Some risks can be mitigated either with a safety
property or with a set of device requirements. For instance, consider a control algorithm
that takes heart rate as an input. Heart rate measurements represent a moment in time
and old measurements may persist. If the measurement device is disconnected, the latest
measurement may be very old. There is a risk that the heart rate used for calculation
may be too old, so the application developers need to place constraints on the system
to make sure that it only uses acceptably recent measurements. This could be written
as a safety property l1 + lo + I3 < 0.5 where ;.3 are the latencies of the heart rate
monitor, network transmission of the measurement, and a signal processing application
used for pre-processing. Alternatively, a similar end result could be achieved with the
device requirements [y < 0.2, Is < 0.1, and I3 < 0.2. Though they have a similar effect
of keeping the total latency less than a half second, the system property and the set of
device requirements given here are not identical and some systems that satisfy one will
not satisfy the other. It is up to the application developer to design appropriate sets of
system properties and device requirements to adequately mitigate the specific hazards
associated with their application. Many aspects of this approach are subjective — when
is a risk ‘necessary’? Clinicians may choose to use applications that are objectively very
risky when a patient has an otherwise untreatable condition that is immediately life
threatening. The safety and correctness of the system ultimately rest on the ability of
system designers to appropriately formulate these properties.

Constraining the latencies of the system components is one way to ensure that mea-

surements received by the application are not too old. Another approach, if synchronized

138

clocks are available, is to have each measurement device add a a timestamp when the mea-
surement is taken so that the application can calculate the age of each measurement and
ignore those measurements that are too old. This approach ensures that the application
will not use data that is too old, but if the system is slow the application may never receive
any usable data. In OpenlCE, we combined these approaches. Data is timestamped by
(most) medical devices, again when it is processed by the ICE Equipment Interface, and
again when it is received at the Supervisor. This allows the system to detect inaccurate
device clocks when the device timestamp varies significantly from the Equipment Inter-
face timestamp and document network latency for every piece of data by comparing the
Equipment Interface and Supervisor timestamps. In OpenlCE, we tag data as old and
put a visual marker over the device icon when the network latency is more than a few

milliseconds.

Mitigating System-Level Hazards. Application developers can mitigate some system-
level hazards within their application, and device manufacturers can similarly reduce some
system-level hazards within their devices. An application that detects that required vital
signs data is not present, or is too old to be used, or lacks some necessary meta-data can
automatically switch to a failover algorithm that does not need that input, or switch to an
alternate source for the data if one is available, or ask a caregiver to replace or reconnect a
device. For instance, an infusion pump that allows applications to externally control the
dose and rate of an infusion may require that the application first set a failover rate to be
used in case of accidental disconnection. This will cover not just accidental disconnection,

but disconnection for any reason including malicious action.

139

The key argument here is that an application developer can encode a set of safety
properties for their application such that if these safety properties hold then all known

hazards whose mitigation relies upon components external to the app can be mitigated.

Hazard Analysis. Our core claim is that if the application’s system safety properties
hold for the composed system, then the system is adequately safe for the application’s
intended use in that use environment. Because the system safety properties come from
the application hazard analysis, it is important that the hazard analysis is sufficiently
complete. Measuring the completeness of the hazard analysis, like completeness of any
set of requirements, is difficult. You know a hazard analysis is incomplete when it does
not contain a known hazard. However, there are always unknown hazards. Over time,
previously unknown hazards become known when they actually occur in use of the device.
At that point, the hazard should ideally be documented, added to the hazard analysis,
and mitigated in a new iteration of the application. This is one reason why reporting
mechanisms for accidents and near misses are important. The ICE data logger is a key
part of the system and an important tool for improving patient safety.

The hazard analyses for the case studies here are listed in Appendix A. These hazards
were compiled by a process of reviewing related literature, examining similar devices, and
most importantly, through long, detailed discussions with experienced clinical engineers,
device users including doctors and nurses, and engineers experienced in the development
of the involved medical devices.

Hazard Analysis of the application program includes application-specific hazards, the

new hazards introduced by the assembly of the system, and device-level hazards that are

140

mitigated at the application level. Hazards that are internal to the individual devices are
assumed to be handled by those devices. For example, failures of ventilator valves are
assumed to be handled by the ventilator, but the hazard of overinfusion by an infusion
pump can not be handled entirely at the device level because the device has no way to
monitor the patient. Overinfusion can be better mitigated at the system level, where an
application can be aware of the infusion pump settings, the patient’s vital signs, and the
treatment plan simultaneously. Generalizing this example, some device-level hazards may
be mitigated by features of the app. This is likely to be part of the effectiveness of the
application.

Similarly, some system-level hazards may be mitigated by the devices. For example,
consider a x-ray / ventilator synchronization system where the ventilator implements
a pause feature. Rather than taking the x-ray by synchronizing with the motion of a
running ventilator, the system sends a pause command to the ventilator and then triggers
the x-ray while the ventilator is paused. This system introduces the system level hazard
that the app might send repeated pause commands to the ventilator, which could cause
the ventilator to never resume ventilation. This hazard could be mitigated by a feature
of the ventilator that causes the ventilator to lock out repeated pause commands for a
period of time. So the ventilator will execute the first pause command but then refuse
any additional pause commands for a preset time interval, say 2 minutes. In this way,
the ventilator manufacturer could allow limited external control of their device, while still
mitigating much of the additional risk introduced by it. Hazards here function similarly
to exceptions in a traditional programming language. Hazards can be mitigated locally

or passed to a higher level where they are mitigated by another part of the system.

141

Deriving System Safety Properties. Our approach is to start with the hazard analy-
sis for the application and derive a set of safety properties from it. These safety properties
can be checked against the parallel composition of the application, clinical workflow, pa-
tient, and device models. This process is shown in Figure 5.1, where the models feed into
the checker. The checker will find that either all of the safety properties hold, or that
some properties do not hold. For properties that do not hold, the checker will provide a
counterexample. The checker provides this result to the Supervisor, which can tell the
user the outcome and, if some safety properties do not hold, give them the option of
overriding the failed safety check. Medical devices are used in a wide variety of unpre-
dictable environments, and it generally safer for the patient if the system assumes that
the clinician knows best and allow them to override the automatic checks after informing
them of any failures. If a user does override the safety check, this should be logged, and
ideally the logs should be reviewed periodically to detect any unnecessary overrides and
to discourage any users from overriding safety checks anytime other than in an emergency.
Some clinical systems that do automatic checks, like drug libraries for infusion pumps,
have some settings that can be overridden and some that can not. It may be desirable
to set up multiple categories of safety properties such that some could be overridden by
anyone, some can only be overridden by a specific subset of users, and some safety prop-
erties are considered so essential that the application can never run in an environment
where they do not hold. It is important to note that more detailed analysis is also more
specific and won’t match as many real environments.

Figure 5 shows the overall approach to checking device requirements and safety prop-

erties. The caregiver starts the process by launching the app they want to use. The app

142

Choose a
Different App

Connect
Another
Device

Figure 5.1: Workflow for Device Model and Safety Property Checks

may include multiple patient models. If this is the case, then the caregiver picks the one
that best matches the patient. A PCA safety app may include models for opioid-naive pa-
tients, opioid-tolerant patients, pediatric patients, hospice patients and so on. As devices
are connected to the system, they provide their device models. The supervisor checks the
set of available device models against the app’s device requirements and returns a pass/-
fail result. If all of the device requirements are satisfied by the current set of connected

devices, then the device requirements pass until the set of connected devices changes and

they must be re-evaluated.

Hazards are divided into two categories depending on whether the App designer wishes

to allow the clinician at the point of care to override warnings based on the hazard. These

143

categories are ‘hard’ hazards, which may not be overridden, and ‘soft’ hazards which may
be overridden. They are analogous to hard and soft limits on infusion pump programming
or warnings versus alarms in many domains. Safety properties based on soft hazards are
desirable, but the system will be needed in some contexts where they may not hold. The
caregiver is given the option to override soft safety properties if they are not proven to
hold. Hard safety properties must be proven or the app will not be permitted to run.
Once the device requirements are satisfied, the supervisor checks the app’s safety
properties. If all of the safety properties pass, then the supervisor clears the app to run.
If some safety properties are not satisfied, then the next steps depend on whether a hard
safety property has been violated or whether only soft safety properties are not met. Hard
safety properties, by definition, must hold for the application to run. Thus, if one does not
hold the caregiver must change some aspect of the system to proceed. They can choose
a different app, connect another device (or, conceivably disconnect a currently connected
device), or select a different patient model. In the case where only soft safety properties
are violated, the supervisor gives the caregiver the option to allow the app to run even
though some of the safety properties do not hold. The caregiver may choose to run the
app knowing that the system is not optimal, or to make a change, for instance connecting

a different device or choosing another app.

5.1 Creating Safety Properties

Creating a list of system safety properties starts with a hazard analysis. Hazard analyses

are done as an early part of the creation of most medical devices and are an expected

144

part of a device’s regulatory package. They list known hazards associated with the use of
the device, where a hazard is something that may lead to harm to the patient or another
person. It is vital that hazard analyses are updated as new hazards are discovered.

Many hazards are generic, in the sense that they will apply to many different medical
devices. At a high enough level of abstraction, most hazards are generic, and there are thus
common categories that hazard analyses share. Devices that have user interfaces, power
supplies, leads that connect to patients, physical cases, and other common components
will share hazards associated with those components. Classes of medical devices such
as infusion pumps, ventilators, or patient montors share additional hazards specific to
a particular device type. Within those broad classes, subsets of devices, for instance
syringe infusion pumps, large volume infusion pumps, or elastomeric pumps will share
more specific hazards and the same applies for particular applications. A syringe infusion
pump or a large volume infusion pump could in principle be used for patient-controlled
analgesia (PCA). A network-connected syringe infusion pump intended for PCA use would
inherit hazards from at least five distinct categories: those that are general to medical
devices, to infusion pumps, to syringe pumps, to network communication, and to the PCA
use case. We have published a hazard analysis for such a pump as part of the Generic
Infusion Pump project, developed in conjunction with the FDA.

Medical device manufacturers do not generally share hazard analyses or specific haz-
ards. It has been very difficult for academic researchers or medical device manufacturers
starting a new product design to find out about hazards and their mitigation. The
common argument is that this information is proprietary to the companies that have

documented it and that sharing such documents could expose a company to recalls or

145

litigation if it was believed that they had not sufficiently addressed some hazard. This
has had two unfortunate results. First, the time and expense of learning about hazards
and their proper mitigation is a real barrier to the development of novel medical devices,
particularly by startup companies. Second, it is likely that this attitude of secrecy has
held back the industry as a whole, been a contributing factor to many device recalls, and

a cause of unnecessary patient harm.

Generic Hazard Analysis. The lack of available example hazard analyses lead us to
create the GIP hazard analysis as an open document that could be freely shared and
collaboratively edited. The GIP hazard analysis has been used by many groups including
several startup pump manufacturers and the AdvaMed industry consortium as a reference
document for the creation of their infusion pump assurance case.

In the past, hazard analyses focused on harm that could follow from the physical design
of the device (such as sharp corners), from electrical malfunctions (especially shock), or
from component failure (such as free-flow of drug resulting from a broken infusion pump
part). As software has become a more important part of medical devices, and especially
with medical devices that consist only of software, hazards relating to software errors
or unintended interactions between system components are becoming a larger part of
the hazard analysis. Appendix A contains two hazard analyses that are largely about
software and system level hazards. These analyses — one for a Generic Infusion Pump
and the other for an X-Ray / Ventilator Synchronization system — focus on software and
system-level hazards.

Ideally, the system should maintain traceability from the hazard analysis through

146

safety properties and device requirements in order to present the user with justifications
for not allowing an application to start or taking other actions. Error messages from
such a system could look like “The averaging time from XYZCorp Pulse Oximeter is
too high to allow SafetyApp to run. The safety property ‘Total processing time > 3
seconds’ can not be verified. Please reduce the averaging time manually or connect a
different pulse oximeter”. This message points to a device requirement violation - the
pulse oximeter averaging time is too high, and a safety property violation resulting from
this - the end-to-end processing time is too long. The message also suggests several actions
the user could take to correct the problem, namely changing the averaging time on the
pulse oximeter manually or simply connecting a different pulse oximeter (with, hopefully,
a shorter averaging time).

The next Section will address the process of going from a hazard analysis to a set of

safety properties and device requirements.

5.1.1 Hazard Analysis and the Generation of Safety Properties

Creation of a hazard analysis is a common step in the development of any safety critical
system. There are many specialized formats and elicitation processes [71] in various do-
mains, but at its most basic the hazard analysis simply lists the things that can go wrong,
their perceived likelihood, and what can be done about them. The process described here
is not the only way to perform a hazard analysis, but it is customized and oriented toward
producing useful safety properties and device requirements for later analysis.

When a device manufacturer does a hazard analysis for a stand-alone medical device,

it is important to carefully limit the scope to exactly the intended use of the device,

147

or even to just a portion of the device. For instance, multi-parameter patient monitors
usually include an EKG and an analysis algorithm to detect arrhythmias in the waveform
produced by the EKG. The simplest arrhythmia is asystole, a cessation of cardiac electrical
activity. Asystole will be familiar from the many TV shows where patients “flatline” and
the monitor emits a long beeping sound. Multi-parameter patient monitors, as the name
suggests, are capable of simultaneously measuring and displaying several different things
about a patient. Cardiac electrical activity is measured with an EKG at the same time
that blood pressure is monitored with an invasive line and pressure transducer (IBP) and
blood flow and oxygenation can be measured at an extremity such as a finger tip with a
pulse oximeter that reports heart rate, SpOs, and a photoplethysmograph waveform.

The various monitoring modalities of multi-parameter monitors are designed to be
capable of working alone. This ensures that if the patient is only being monitored with
a pulse oximeter, or only monitored with EKG, that the alarms will function correctly.
There is a significant hazard in not sounding an alarm for a patient in asystole. If an
alarm is heard and acted upon quickly, caregivers may be able to help the patient. The
longer a patient is asystolic, the lower their chances of survival become; longer than a few
minutes is almost uniformly fatal.

EKGs work by measuring the electrical potential difference between several electrodes
on the patient’s chest. The electrodes are small, sticky pads with a button snap on the
back where a lead wire from the monitor connects. EKGs use between three and ten
electrodes; more electrodes allow monitoring and displaying cardiac activity in greater
detail. The connection between the patient and the monitor can be broken if the lead wire

detaches from the electrode or if the electrode peels off from the patient. This happens

148

when the patient moves around and is especially common at night as the patients are
trying to sleep. If enough leads are disconnected, and in some systems this may take
only a single disconnection, then the monitor is no longer able to monitor the patient or
produce an EKG. Because monitoring is no longer possible, and because the potential
risk of unexpectedly stopping monitoring is so high (the patient’s heart might have just
stopped), the monitor will immediately alarm. This makes sense in a stand-alone system
being used to monitor a high-risk patient, but leads to a great number of false positive
alarms, which are themselves a risk to patient safety.

This thought process leads to a hazard analysis where false negatives are considered
critical failures that must be avoided at all costs, while false positives are considered a
minimal risk and largely externalized. Systems designed on this basis can be expected to
produce large numbers of false positive alarms, and this is indeed what we see in hospitals
today.

Hazards that can not be controlled in an single device system, and may not even be
considered to be part of the system at all, may be mitigated in a multiple device system.
This is why connected systems and interoperability as an enabler of connectivity have
such promise to improve patient safety and outcomes.

There are two novel aspects to creating hazard analyses for devices that are intended
to be used as components of interoperable systems. First, designers must consider the
inputs that their device can accept, the hazards introduced by accepting those inputs, and
how those hazards may be mitigated. Second, designers must consider the failure modes
of the complete system. This is more properly the purview of the application designer,

but the component device designer should include hazards they know about.

149

5.1.2 Creating Safety Properties from Hazards

Creating safety properties from hazards is a bit of an art form, but there are aspects that
can be approached systematically. Safety properties in this context are intended to be
used in model checking. The models they will be checked against come from a variety
of sources. The most common expected used case is where a designer creates a new
medical device. This designer will make a device model, a patient model representing the
intended patient population for the device, a workflow model capturing the intended use
and foreseeable misuse of the device and sets of device requirements and safety properties.
These requirements and properties will then be checked against the composition of the
designer’s models with the models of the other devices in the system and the network
model.

Since the models come from multiple sources, it is perhaps questionable whether they
would use the same terminology or the same semantics for terms. This has been a long-
standing problem in medical informatics. In this work, we make the simplifying assump-
tion that a common terminology set with well-understood semantics has been used by
all of the model creators. This is a necessary assumption to enable combining models
from multiple sources, and a reasonable one. Without such a shared terminology, inter-
operability is not possible and thus the safety properties of interoperable systems would
not be testable. There has been promising work on the creation of shared terminologies,
notably the Rosetta harmonization project and the adoption of HL7 FHIR. In this work,
as in the development of OpenICE [10], we use as much as possible of the terminology

from the ISO 11073-10101 standard [36].

150

There are published best practices for performing hazard analysis; the best starting
points are FDA guidance documents [76] [75] and the ISO 14971 standard [35]. Most
manufacturers consider their hazard analysis proprietary, but some open examples are

available [68] [14].

5.1.3 PCA pump example

An infusion pump is a stand-alone device that will be a component of many interoperable
systems. The following example works through portions of two related hazard analyses
- the first for an infusion pump and the second for an infusion safety application that
makes use of the pump and other devices.

The core function of an infusion pump is to reliably deliver fluids at a programmed
rate. Most infusion-related adverse events originate with an incorrect program. Designing
infusion pump user interfaces to reduce programming errors is an important step toward
reducing these adverse events, but pumps fundamentally do not have the contextual
information to know when their programming is incorrect. Infusion pumps are designed
as actuators that move fluid. They have sensors and alarms, but only related to the core
functionality of moving fluid. They will alarm if the tubing is blocked and pressures rise
too high, but not if the patient is getting an overdose or even, in most cases, if they
are just pumping fluid onto the floor. The ICE architecture addresses this problem by
allowing applications to communicate with pumps and with other components that can
provide context. These include the computerized physician order entry system (CPOE),
the pharmacy system, and electronic medical record (EMR) as well as other medical

devices in the patient’s room such as the patient monitor or ventilator. Information

151

from these disparate sources can be combined and analyzed by an application in order to
address root causes of over infusion such as patient identity, drug, and dose errors and to
catch overinfusions that happen despite these additional safeguards.

In hazard analysis terms, the connected system can reduce the incidence or likelihood
of some classes of hazards, thus reducing their overall risk, and allows for mitigation of
other hazards. Connecting devices into a network introduces new hazards, such as a
whole class of network security hazards that do not exist for standalone devices. As with
most engineering, there are tradeoffs between different choices. The hazard analysis pro-
vides a framework for identifying the risks associated with the choices and their potential
mitigations.

Many medical devices seem overly complicated or hard to use to novice users. The
safety features that may seem to interfere with use have evolved over time in response
to years of adverse event reports and clinician feedback. As one small example, syringe
pumps including PCA pumps have mechanisms to firmly hold the top of the syringe
plunger. Manufacturers of syringe pumps have devised various clever mechanisms to ease
loading the pumps, but this mechanism inevitably makes it harder to load the syringe into
the pump and adds additional parts and failure modes. So why include this extra part that
adds complexity and makes the pump harder to load? The accuracy of a syringe pump is
limited by the leadscrew and halfnut that push on the plunger and by the stiction of the
syringe. It takes more force to get the plunger started moving than to keep it moving.
The force needed to get the plunger moving is enough to cause it to keep moving a little
once it starts, so syringes with less stiction are capable of delivering smaller doses and

more accurate flow rates, especially at low rates. This has driven the development of

152

lower stiction syringes. When a pump is loaded with a low-stiction syringe and placed
higher than the patient, the weight of the fluid column in the infusion line can be enough
to pull the syringe plunger. Effectively, the medication siphons out of the syringe and into
the patient at an uncontrolled rate; this is called free-flow. Free-flow of medication is a
hazard that syringe pumps mitigate by adding a mechanism to hold the end of the syringe
plunger. Adding this mechanism makes loading the pump more difficult and introduces
new failure modes and hazards; pump designers must balance these risks against each
other.

The first step in performing a hazard analysis is to list the hazards. Hazards are events
that may lead to an unsafe situation. The events often have multiple potential causes
and these causes can be enumerated in the analysis. Compiling the hazards starts with
any available sources of known hazards and never really ends. The hazard list needs to
be updated as part of the ongoing lifecycle of the device as novel hazards are identified
in use.

Sources of hazard documentation include the FDA’s MAUDE database, academic
publications, interviews with clinicians (particularly including those involved in adverse
event analysis), FDA recall notices, manufacturer’s records and experience with previous
versions, and the designer’s imagination.

A common approach is to look at individual subsystems and consider how failures
of components impact use of the system. This works for both hardware and software.
Often, components can fail off (not signaling when they should), on (constantly signaling
a condition), or intermittently. Consider timing — a sensor that registers early (because

it’s in the wrong place) or a valve that takes longer than expected to close could affect

153

the system, as could software that delivers the correct result too late or a sensor value

that arrives later than expected due to network congestion.

Use Errors versus User Errors. Many adverse events are ultimately blamed on
caregivers. Caregivers do indeed make mistakes. In designing equipment intended to be
operated by people, it is essential to consider how the devices might be used incorrectly,
what might happen if a distracted and untrained user attempts to use it, and how it might
be creatively put to work in ways the device designers might not have intended. Much
of this falls under what the FDA terms “reasonably foreseeable misuse’. It is generally
more useful to think about use errors than user errors. That is, to think about how the
user interface and implied workflow of the device design might encourage or discourage
particular kinds of errors, for instance in programming a pump. Caregivers and patients
are part of the care system, and explicitly included as such in this analysis. Systems need
to be built in ways that encourage people to use them correctly. Getting this right requires
testing with actual users during development and, most importantly, robust mechanisms
to accept feedback from the field after a device is deployed. Data logging that includes
key presses from devices is an essential mechanism to improve the usability of devices.
The hazard analysis is the source of system safety properties, and also suggests many
device requirements. Creating these properties and requirements from a hazard analysis is
not an algorithmic task; it requires understanding of the system, the intent of the system
designers and assumptions of the component device designers, and the environment in
which the system will be used. Formulating properties that will enforce the usually

unwritten safety goals of the application designers is challenging. One intent of this work

154

is to begin breaking down some of these unwritten and informal goals and processes with

the aim of allowing more formal analysis and enforcement of the safety properties.

C4.5.2 | “GIP user types wrong number while programming pump”
C4.5.3 | “GIP user enters value using wrong units.

E.g., milliliters instead of microliters.”

C4.5.4 | “GIP user selects wrong drug from drug list.”

C4.5.7 | “Use on inappropriate patient”

C4.5.9 | “Infusion Order is incorrect”

C8.2.7 | “Limited ability to link specific alerts to individual drugs”
C8.2.8 | “Upper and Lower hard and soft limits are not sufficient
to address all administration errors”

Figure 5.2: Hazards and Causes

These causes shown in Figure 5.2 are all drawn from the hazard analysis included in
full as Appendix A. They are all related to pump programming, and they drive the same
device requirement — the need for the pump program.

Device requirements and safety properties are related. If a value is needed to evaluate
a safety property, then there will be a device requirement that the variable be available.

Pumps look deceptively simple. There are a surprising number of different settings
and variables in even a basic pump. Table 5.1.3 lists the pump variables that could be
required by a PCA application.

Once hazards are identified, mitigation strategies must be created for each hazard.
The mitigation strategies inspire safety properties, and these safety properties dictate
what information will be needed. Information can be provided from devices or from the

application, which may require caregivers to provide input not otherwise available.

PCA Pump Data and Hazard Mitigation. In the following section, we will look at

a key safety property for a PCA infusion safety interlock and how checking this property

155

is affected by the data made available by the infusion pump. The property states that
when vital signs are abnormal then the pump will eventually stop. Eventually in this case

shouldn’t be too long or the property will be trivially true because the pump will run out

of fluid.

Generic Infusion Pump Data

Group ID #

‘ Data Element Name

Patient Demographics

NN NN DN

Name

Medical Record Number (MRN)
Age

Height

Weight

Pump Information

1

Unique Device Identifier (UDI)
Manufacturer
Model

Firmware Version

Pump Program

—~ W

for each channel)

W W wWwwwwr

Number of Channels

Drug Name

Drug Concentration

Volume to be Infused (VTBI)
Infusion Rate

Bolus VTBI

Bolus Rate

Bolus Lockout Interval

)ﬁ
=
=
S
%)
=
&
—+
@

N N L

Time remaining for each infusion

Alarm status

Warning status

Bolus locked out? If so, time until next bolus enabled
Pump Data (Event) Log

—
=

T
==
-+
»n

(G100

ot

Pump Stop
Set Patient Demographics
Set Program

Figure 5.3: Generic Infusion Pump Data Elements

156

The group ID numbers are convenient groupings for discussion, and not meant to
imply levels of functionality or distinct sets. Alarms, for instance, are only mentioned in

the fourth group but would be useful for most apps and essential for many.

Group 1: Minimum for PCA interlock. The minimum interface to enable a PCA
safety interlock application are the Pump UDI, Drug Name, and Pump Stop command.
With these, an app could stop opioid drug infusions when the patient’s vital signs (as
reported by other devices) indicated a problem. The app would not know whether the
pump was running or the dose of the drug and would not be able to confirm that the
pump had stopped, but the basic functionality of stopping the pump would be possible.
An interlock app can not stop a pump unless it supports a pump stop command. This
command should completely stop the infusion (no KVO) and put the pump into an alarm
state where the pump clearly indicates that it has been stopped by a remote command
and name the source of the command. For multichannel pumps, other channels of the
pump may continue running.

The pump UDI is needed to distinguish between devices. There may be several pumps
of the same type connected to a patient. The drug name allows the application to stop
the correct pump or channel. Patients may receive other infusions at the same time as
PCA, and it may be unsafe, even life threatening, to stop these infusions. It would be
possible to build a PCA safety interlock with a pump that does not supply UDI or the
drug name, for instance by having the caregiver manually pair the application with the
specific pump, but this introduces significant hazards. The added effort of providing UDI

and drug name to a pump that has an electronic interface is minimal and the patient

157

safety benefits are quite substantial.

A fourth data element, the current flow rate for the channel, would provide positive
feedback that the pump had acted upon the stop command. The stop command will
trigger an alarm on the pump, and the app may also sound an alarm or send an alarm
signal to the nurses’ central station. If the application learned that the pump had not
stopped as commanded, all it could do would be to sound an alarm — which it will have
already done anyway. It would be useful for the application to be able to warn the
caregiver that the pump had not stopped, but this is not essential to enable the basic

performance of the PCA safety interlock app.

Group 2: Patient Identity. Most existing pumps do not track patient demographic
data. Some have limited capability to enter a patient name or MRN through the user
interface, but do not typically output this electronically. If this information was available,
apps could confirm that they were communicating with a pump on the patient they expect.
Newer pumps with barcode readers may soon have the capability to read patient ID
barcodes, but it remains to be seen how common this will be. Reading patient barcodes
is not always easy, especially if the patient is asleep or otherwise unable to cooperate.
The most useful electronic interface for infusion pump patient information would likely
be the ability to push patient ID to the pump, including a photograph of the patient that

could be displayed on the pump’s UL

Group 3: Pump Program. The pump program includes the data elements that spec-
ify the medication and how the pump should deliver it. Multi-channel pumps are very

common and may be user-configurable. For instance Alaris Medley pumps are modular,

158

and clinicians can assemble modules for large-volume infusion, syringe infusion, or PCA
at the point of care. The only visible differences between the syringe and PCA modules
are the addition of a patient button and a locking cover on the PCA module. The Alaris
controller supports up to four modules. The pump’s network interface is housed in the
controller and communicates data from all of the connected modules. The clinician must
ensure not only that the pump is programmed correctly, but also that the correct channel
is programmed. When the patient has a dozen or more channels of infusion feeding into
several ports, ensuring that the correct drug container is on the correct physical channel,
programmed correctly, and attached to the right place on the patient is challenging.

Drug Name, Drug Concentration, Volume to be Infused (VTBI), and Infusion Rate are
all self-explanatory, but there are some subtleties. Drug names should be chosen from a
standardized set and displayed using a format like TALLman, which reduces reading and
entry errors. TALLman uses mixed capitalization to emphasize differences in drug names;
for instance DOBUTamine instead of DOPamine. Drug concentration errors have been
caused by the inability of pumps to accept entries in the appropriate units. For example,
some chemotherapy drugs may have concentrations measured in nanograms/liter. If the
pump only accepts programs in milli- or micrograms, caregivers will work around this by
entering it deliberately using the wrong units and then trying to remember the conversion
factor.

Drugs may be delivered continuously or pushed at a high rate for a short time in what
is called a bolus. PCA is based on the idea of infusing a bolus when the patient presses
a button. The relevant pump settings are the Bolus VTBI, the volume to be infused;

the Bolus Rate, the rate to infuse the drug; and how long to wait after finishing a bolus

159

before the next one can start, the Bolus Lockout Interval.

Group 4: Pump Status. Pump status includes measurements of the current state of
the pump including where it is in each program. Key data elements here include the time
remaining for each infusion, alarm status, warning or alert status, bolus state (delivering,
locked out, time remaining until bolus is unlocked), and a pump data log including internal

status events like button presses.

Group 5: Programmability. The final group, programmability, adds the ability to
remotely control the pump. There are two categories of data elements we want to be
able to set remotely: patient information and the pump program. Patient demographics
include the patient’s identity, and vital statistics such as height, weight, and drug allergies
that are essential for programming the pump. The pump program includes the elements
in Group 3; the difference here is that these elements are externally set rather than just

being reported.

5.2 Consistency and Completeness Checks for Device Mod-

els

Consistency for static models means that the models agree on assignments. More formally,
we define consistency to mean that the models have compatible assignments: e.g., x == 3
and z < 5. There must be at least one possible set of values for all variables that satisfies
all constraints.

We say that a set of static device models is sufficiently complete for a given set of

160

device requirements if it contains assignments for all variables used in the requirements.

5.3 Checking an Application’s Device Requirements

An application’s device requirements will be checked multiple times during the lifecycle of
the application. Checks are triggered when an application starts, when a device is added
or removed, when a (relevant) device attribute changes, and even, for some applications,
every time a data value is updated.

Device requirements are checked when the application starts. This initial check deter-
mines whether the set of connected devices at run time is sufficient for the application. If
the requirements are not met, this may indicate that necessary devices are not present or
that the patient is in a state that the application can not handle. The check at start time
allows the application to inform the caregiver that there is a problem and will prevent
the application from starting. If the problem can be resolved, for instance by connecting
another device, then the application can be restarted and may pass the check the second
time.

Device requirements that hold under a particular set of devices may no longer hold if
a device is added or removed. Thus, a check is triggered when devices join or leave the
network, possibly with a short delay to prevent problems with a device that fails in a way
that causes it to join and leave many times per second.

A device’s settings can significantly change the data outputs even if the patient’s status
is unchanged. When settings like EKG filter selection are important to the operation of

the application, application developers can specify particular settings that are explicitly

161

allowed or blocked. If a device starts with an allowed setting but a caregiver changes
the setting to one that is blocked while the application is running, this check will inform
the application that the setting is no longer acceptable. The application may continue
running, perhaps with degraded capabilities, alert the caregiver to change the setting back
to one that is acceptable, or halt with an alarm.

Similarly, applications may incorporate algorithms that are only valid for particular
ranges of vital signs. An arrhythmia detection algorithm might only work if the heart
rate is between 30 and 300. If the monitoring device reports a value outside of this range,
whether it’s a valid reading or an error, then the device requirement check will fail and
the application will receive a notification that the vital sign is outside of the acceptable

range.

Checking Device Requirements. Device requirements can be checked at several
points in a workflow: at application start time, whenever a device is added or removed,
when a device attribute changes — including setting changes or addition or removal of de-
vice modules, or every time any data value is updated. These options are listed roughly
in order of increasing computational cost. Checking device requirements, especially be-
havioral requirements, every time a data value is updated may not be possible. Data
values can be updated many times per second and checking the requirements may take
several seconds. In OpenlCE, we leave it up to the application to determine which de-
vice requirements must be checked when. As an example, the infusion safety interlock
requires heart rate, oxygen saturation, and respiratory rate and requires fresh data ele-

ments at least every five seconds. The application subscribes to these data elements for

162

the relevant patient and maintains a timer that will trigger an alert if no updates are
seen for five seconds. In this example, the device requirements are checked continually as
the application runs. This accommodates devices that do not specify their data update
frequency and also works correctly with unreliable networks — the safety interlock works
when the network is working well enough and fails safely when the network performance
is not adequate.

There are two types of device requirements and two types of device models. Device
requirements can be a set of arithmetic constraints or a set of CTL constraints. Arithmetic
constraints operate on variables and numeric constants, evaluate to a boolean, and are
assumed to be side-effect free. The four combinations of device requirement and device

model types are shown in Figure 5.3.

Static DM Behavioral DM
Constraint DR | arithmetic make CTL, model check
CTL DR make automata, model check | model check

Figure 5.4: Combinations of Device Model and Device Requirements Types

When checking a set of constraint device requirements against a set of static device
models (with no behavioral device models), it is sufficient to replace the variables in
the requirements with the corresponding static assignments from the device models and
then evaluate the resulting expressions. If the device model asserts that = 2 then the
requirement x < 3 is replaced with 2 < 3 and evaluates to true.

To check CTL device requirements against the same set of static device models requires
first generating a set of automata from the device models and then checking the device
requirements against the generated models.

Checking Arithmetic Constraint device requirements against behavioral device models

163

requires making CTL formulas from the device requirements. These CTL formulas assert
that the expression in the arithmetic constraint always holds in the model. These formulas
are then checked using model checking.

Finally, CTL device requirements are checked against behavioral models using model

checking, specifically the UPPAAL model checker.

5.4 Proving System Safety Properties

Much of this work has been setting up the process of checking system safety properties.
Our end goal is to enable the production of safe and secure interoperable systems of med-
ical devices. The system safety properties encode the constraints that the application
developers believe must hold in order for the application to be safe and secure. Previ-
ous sections describe the architecture and components necessary to facilitate writing and
checking these properties. With these pieces in place, we can now discuss how the prop-
erties will be checked. The system architecture and development process are designed to
make it as easy as possible to check the system safety properties. If the checking process
seems simple and straightforward, then the enabling steps that have gotten us to this
point have been successful.

Checking system safety properties requires four models. These are the device models,
which are provided by the device manufacturers, and the clinician, patient, and appli-
cation models, which all come from the application developer. We also need the system
safety properties, which also come from the application developer. This is a lot of work

for the application developer. Applications in this framework are very likely to be regu-

164

lated medical devices, and as such the application developers must shoulder the burden of
demonstrating that they are safe and secure. This framework provides means for structur-
ing and formalizing their argument, and a methodology for run-time checking of critical
safety properties in an interoperable environment. Safety properties for applications may
hold or fail depending on the configuration of the connected devices - configurations change
as the devices are used in normal practice. Checking these properties as the system is
assembled and used allows us to prove that the critical properties hold in the actual use
environment. This allows us to make safety arguments about the devices that rely on
conditional configuration details that are not known in advance of use, allowing for the
mitigation of hazards that are otherwise uncontrolled. This process is shown graphically

in Figure 5.5.

ICE Manager
Device
Network LA
Controller

Figure 5.5: Checking System Safety Properties

165

The application developer is responsible for most of the key pieces, including the
System Safety Properties, the Clinician Workflow Model, the Patient Model, and the
App Model. Device Models are provided by the devices. Some of the models may be
provided in multiple forms. We transform them into EFSMs if they are provided in
another form, and later convert the EFSMs into the input format of the model checker.
Clinician Workflow Models and App Models are all provided as EFSMs. Device Models
may be either behavioral, which are provided as EFSMs, or constraint, which are used
to generate a simple EFSM containing the constraints. System Safety Properties are
provided as a set of CTL formulas. The patient model used here is a state machine
model. Models with continuous dynamics may be used in conjunction with a discrete
model as shown in [65], which also includes modeling the effect of network components.

When generating EFSMs from constraints, there’s a coverage problem. A constraint
can be of a form like ‘x is greater than three’. When an EFSM is generated, a value must
be assigned to x. We can’t pick all possible values unless x has a very limited range, so
we have to pick one or run a few trials with a few choices. We might, for instance, choose
four, as the first integer that meets the constraint, but we can’t ensure that there is not
a value of x where the constraint does not hold.

We could generate an EFSM where x is assigned a value from its range nondetermin-
istically, then use model checking to see whether the system properties hold under any
possible assignment of x. This would work, but would dramatically increase the state
space of the model, increasing the time necessary to check the properties. This is also
not a good match for how constraints are intended to be used, and how they are used in

current medical devices, where they are not randomly assigned. Constraints, rather, are

166

single numbers reflecting a particular setting and change only rarely in use. They must be
communicated by the device because they are changeable, but the value at any particular
time can be communicated by the device. If a device has more complex behavior around

a constraint, the device should send a behavioral model.

5.5 Discussion

This chapter focuses on proving properties about a system written using the CAML
language described in Chapter 3 and the architecture described in Chapter 4. We start
by describing system safety properties and the process of creating safety properties from
a hazard analysis of the application in Section 5.1. This discussion includes examples
drawn from the patient-controlled analgesia use case described in more detail in Section
6.2. Section 5.2 talks about checking the consistency and completeness of device models

Device requirements capture assumptions and requirements that the application de-
veloper has about the medical devices that the application will interact with. Section 5.3
includes discussion of how and when device requirements are checked, pointing out that
device settings and capabilities can change while they are in use. Device requirements
can be given as either sets of arithmetic constraints or as CTL formulas. Device models
can be static or behavioral, and we handle all of these combinations, as shown in Figure
5.3.

Finally, we prove system safety properties over the assembled system by creating an
UPPAAL model, as discussed in Section 5.4.

Currently, device manufacturers create and maintain hazard analyses for their devices

167

and do not share them publicly. There is potential for improvements to device and
patient safety through the creation and maintenance of open, shared hazard analyses
along the same lines as our Generic Infusion Pump hazard analysis [14]. Safe interoperable
systems will require applications and other devices to share information about their hazard
analysis and hazard mitigations. This thesis suggests one specific technique of checking
device requirements and system safety properties for applications, devices, workflow, and
patient models that can be captured in CAML. Building application and system hazard
analyses and safety properties should be generalizable beyond this to other systems that

use medical devices as interoperable components.

Limitations. This Chapter is about checking device requirements and system safety
properties against the components of the architecture described in Chapter 4. The kinds
of properties we can prove about the system and the ways we can prove them inherit
some of the limitations of the language and the architecture. These limitations also affect
the process of checking the system safety properties. Some of the implications of these
limitations will affect the case studies in Chapter 6. Limitations around timing, network
modeling, and matching semantics between the model and implementation are discussed
in more detail in that Chapter.

In this work, we only consider single applications. It is likely that clinicians would
want to use multiple applications simultaneously on a patient. As discussed in Chapter 4,
this requires work to define the composition of multiple patient models and resolution of
contention for shared resources before we can prove properties against a system created

by composing multiple CAML systems.

168

We check properties against the UPPAAL model and want them to hold in the gener-
ated Java code. As discussed in Chapter 3, this requires that the UPPAAL model shares
the same semantics as the Java code running in its execution environment, typically a
Java virtual machine running under an operating system. Preserving properties in differ-
ent execution environments will require careful construction of translations, configuration
of target environments, and validation, likely through both formal proofs of correctness

and extensive testing of implementations, before being used for patient care.

Gap Analysis. In addition to the problem of composing CAML models of multiple ap-
plications, there are also the problems of merging device requirements and system safety
properties. Device requirements might be identical (both systems require heart rate mea-
surements once per second), compatible (one system requires measurements at least once
per second, another at least once every two seconds), or incompatible (one system requires
a pulse oximeter averaging time of 3 seconds, another requires an averaging time more
than 5 seconds). Safety properties are particularly tricky because applications may inter-
act in unintended ways through the patient. For instance, an application managing blood
pressure may affect heart rate, which might be an input to another control application.
If the patient model for the blood pressure application does not include heart rate, the
interaction would be difficult to detect automatically. More work is required to provide a
theoretical basis for composing device requirements and system safety properties.

The hazard analyses and safety properties from the CAML systems being composed
may also be incompatible in various ways. For example, consider a patient who is receiving

pain medication while also on a ventilator. It would be reasonable to have one application

169

manage the infusion of pain medication and another application that optimizes ventila-
tor settings for the patient. The pain medication application would be concerned with
preventing overdoses leading to respiratory depression. One common way to do this is by
monitoring their SpOs using a pulse oximeter and stopping the pump when the patient’s
SpOs drops below a threshold. A safety property for this application would be “if SpOs
is less than 85, the pump must be stopped”. The application managing ventilator set-
tings would be responsible for adjusting the rate and volume of breaths and many other
ventilator settings, likely within some clinician-specified upper and lower bounds. One
of the settings, FiOo, specifies the fraction of inspired air that must be oxygen. Venti-
lators can adjust the percentage of oxygen delivered to the patient between 21% (what
is found in room air) and 100%. The ventilator application will adjust these settings
(within bounds) to keep the patient oxygenated without injuring them. A safety prop-
erty for the ventilator application could be “increase FiOg (up to configured maximum)
to keep SpO2 above 90”. If the pain management and ventilator applications are used
together, we have the possibility of the ventilator application masking the onset of an
overdose by increasing the FiOs so that the pain management application doesn’t stop
the pump. The patient could receive too much medication, start to deteriorate, and have
their condition hidden by the automatic adjustments by the ventilator application. If the
patient received a severe enough overdose, they would decompensate to the point where
even the maximally elevated FiOq9 could not keep their SpOo above the pain management
application’s threshold and it would alarm, but this alarm would come much later than
if the two applications had not been working at cross purposes.

We need a theoretical framework for composing and checking the compatibility of

170

safety requirements. In the short term, applications could be evaluated for compatibility
manually, but this kind of pairwise evaluation does not scale and leaves open the possibility

of unexpected emergent behavior as the third, fourth, or further applications are added.

Future Work. In Section 5.4, we suggest that devices could resend their variable, and
perhaps behavioral, device models when settings or other metadata change. More work
could be done to refine this notion to send only changes that are necessary for verifying
the system safety properties of interest. This would reduce network traffic and load
on the supervisor, but would require the devices to know something about the system
safety properties and be capable of determining which data elements needed to be sent.
Supervisors could send devices a list of variables of interest, but mechanisms for creating
these lists from the safety properties and device requirements and updating them through
the application lifecycle would need to be developed.

We make an assumption that a single terminology is used for all of the models and
properties and that terms are used in the same way by application developers, creators of
hazard analyses and system properties, and all of the other contributors to the system.
Terminology and ontology development remains an active area of ongoing work.

Integrating the CAML models and verification process described here into OpenlCE
would require extensions to both. OpenICE uses a publish / subscribe middleware to
communicate between processes. This middleware can be configured to have semantics like
the communication channels in CAML, but it would also be useful to add communications

channels to CAML that match the semantics of the channels used in OpenlICE.

171

Chapter 6

Case Studies

We have implemented several workflows to show the value of medical interoperability, to
gather and record safety-related hazards, and to demonstrate the need for and benefit
of checking device requirements and system safety properties in interoperable medical
systems. In this Chapter, we present two of these case studies. The first, synchronizing
an x-ray with an anesthesia machine ventilator, includes a tight real-time control loop
including device control. The second case study of patient-controlled analgesia (PCA)
brings together the pieces described in previous chapters to show a safe way of integrating
a patient monitor with an infusion pump to create smarter alarm systems and a safety
interlock.

Each of these case studies includes a description of the medical workflow because it
is important to understand the workflow in order to model it, generate safety properties,
and understand the capabilities of the devices that are used. Without this detailed under-
standing, it is not possible to prove the safety of these systems. Fortunately, not everyone

involved in building the system has to understand every part. The application developers

172

need to know the workflow they intend to operate within, the patient model, and what
they intend their application to do. The device manufacturers need to understand the
capabilities of their devices, but do not need to know the clinical workflow or patient
model details, though of course it is helpful for device manufacturers to understand how
their devices will be used so they can construct a better hazard analysis and, ultimately,
devices that better fit their users’ needs.

The case studies presented here are complementary. Both systems were built to il-
lustrate the possibilities of interoperable medical devices and to exercise the architecture
presented here, but they emphasize different parts of the problem. The Xray/Ventilator
synchronization case study is an open-loop control problem with safety properties focused
on triggering the Xray at the correct time. Code generation from the CAML model is used
to create the executable program. Model checking was used to understand the system dy-
namics and safety properties, but the code for the implementation was manually written
rather than being generated. There was still great value in modeling the system before
implementing it, and an implementation with better-defined communications semantics

would allow for more confidence in generated code.

System Component | X-Ray / Vent Sync ‘ PCA ‘

Device Models v
Device Requirements v
SSPs v v
Caregiver Model v

Patient Model v v
CAS v v
UPPAAL Translation v v
Java Code Generation v

Table 6.1: System Component Use in the Case Studies

173

Table 6 shows a breakdown of architectural component usage in the two case studies.
This gives a good overview of what was used in each of the studies and how the studies
complement each other. The PCA interlock system builds on the techniques developed
for the Xray/Ventilator study. The PCA system is designed to be interoperable, and is
an example of a physiologic closed-loop system with safety properties dependent on the
timing characteristics of each component.

The X-Ray / Ventilator case study consists of a CAS, caregiver model, and patient
model and uses the UPPAAL translator and the UPPAAL tool to check some SSPs. Java
code generation is used to create an executable that can be used with real hardware
devices. The system includes fixed models of the key devices and a discussion of some
variable-list type device requirements, but it was designed and built as an interconnected
but not interoperable system.

The PCA case study does include behavioral device models and device requirements,
but does not use a caregiver model or Java code generation. As a closed-loop safety inter-
lock, operator intervention is not intended and so the caregiver model is not useful. The
implementation of the system was hand-written as part of the OpenlCE implementation,

and so code generation was not used.

6.1 Synchronizing an X-Ray with an Anesthesia Machine

Ventilator

This use case was inspired by a real event documented by the Anesthesia Patient Safety

Foundation[55]. It illustrates a potential problem with the way x-ray images are usually

174

taken during surgery.

A 32-year-old woman had a laparoscopic cholecystectomy performed under
general anesthesia. At the surgeon’s request, a plane film x-ray was shot during
a cholangiogram. The anesthesiologist stopped the ventilator for the film. The
x-ray technician was unable to remove the film because of its position beneath
the table. The anesthesiologist attempted to help her, but found it difficult
because the gears on the table had jammed. Finally, the x-ray was removed,
and the surgical procedure recommenced. At some point, the anesthesiologist
glanced at the EKG and noticed severe bradycardia. He realized he had never

restarted the ventilator. This patient ultimately expired.

It is common practice to stop the anesthesia machine ventilator for a short time when
an x-ray is required during surgery. This ensures that the patient’s chest is not moving
when the exposure is made and does not harm the patient provided that the ventilator
is restarted promptly. Difficulties arise only if the ventilator is not restarted for some
reason. This kind of problem can be mitigated by using interoperable devices and a
synchronization application. If the anesthesia machine ventilator can synchronize with
the x-ray, then it is no longer necessary to stop the ventilator to make the exposure.

Medical devices generally have proprietary interfaces which are only documented in
technical manuals or other material not openly available. We were fortunate to have the
cooperation of Drager, the manufacturer of the ventilator we used. The interface of the
ventilator was designed to be used for diagnosis of machine faults and to send data to the

electronic medical record, not as a source of real-time status information. Thus, it runs

175

at a relatively slow rate, and the low maximum sample rate (5 - 10 samples per second)
was the limiting factor in designing our control algorithm.

Our risk assessment process started with a hazards analysis. We documented potential
hazards and their mitigations, and used them in writing device requirements and safety
properties. The risk analysis process and how we used hazards to derive safety properties
with which to verify the system is described in Section 6.1.2.

Software development for this case study started with informal system requirements
which were used to build a state machine model of the desired system behavior. We
checked this model for safety properties using model checking software and then generated

code from the model to produce the supervisor.

6.1.1 Xray / Ventilator Synchronization System

This architecture of this system follows closely that of the ICE standard [16]. The major
components are a set of medical devices, a network controller, a supervisor, the patient,
and a caregiver. Medical devices connect to each other and the supervisor through the
network controller. The devices’ connections to the network controller may go through
physical adapters and data format converters if their connectors and formats are not
directly compatible. The network controller may also connect to an external network
such as a hospital information system. The supervisor runs the control software for the
system.

Our initial system implementation, which follows the conceptual architecture, is shown
in Figure 6.1. The devices we used were a Drager anesthesia machine ventilator and a

simulated x-ray machine. The role of network controller and equipment interface to the

176

simulator is filled by the LiveData RTT software program. LiveData Inc. is a company
which produces software to integrate medical devices for common display data. For this
implementation, we worked with LiveData to connect the ventilator and simulated x-ray.

The supervisor program implementing the synchronization algorithm runs on the same
computer as the LiveData RTI software. Finally, the patient was represented with a
physical lung simulator consisting of a bellows and spring. While a simple lung simulator
does not capture all the nuances of a real patient, it is sufficient for this application. Lung
movement is the factor we can control in taking a clear x-ray, and a supervisor which can
synchronize with a simulated lung can be expected to do the same with a real patient.

This initial implementation was an interconnected medical device system rather than
a fully interoperable system. An interconnected system is one in which devices are func-
tionally connected through an interface. It differs from an interoperable system in that the
devices are hard-coded. The system is built around specific devices and will not operate
with other, similar devices. This initial project was useful for identifying functional and
non-functional requirements for the standards in progress and illustrating the benefits of
the interoperability work.

We later reimplemented this algorithm on the OpenlICE platform as an interoperable
system. This system still used a simulated X-Ray machine, which is safer in a lab envi-
ronment than a real one, and was able to synchronize with any source of respiratory flow
information for the patient. We tested this implementation with a variety of ventilators
and anesthesia machines. This application is included as one of the standard demonstra-
tion apps in the OpenlCE repository. Work in this Section was developed over a long

period of time with several sets of collaborators as documented in [7], [5], [6].

177

Supervisor

Ventilator

SOAP/ MediBus /
Ethernet Serial
LiveData
Srver
Logitech IF / ModBus /
USB Ethernet

Simulated X—Ray

Figure 6.1: Overview of the System

Synchronization Algorithms. The supervisor uses information from the ventilator to
decide when to trigger the x-ray. The synchronization algorithm defines exactly how this
decision is made. Figure 6.2 shows the respiratory cycle graphed as pressure over time.
The pressure increases until the end of inspiration (at time Tinsp after start of breath),
at which point it drops off quickly through expiration. There is usually a pause between
the end of exhalation and the start of the next breath. For this case study, we want to
support taking an x-ray when the ‘lung’ was not moving significantly. This occurs when
the patient is relatively still at the peak of inspiration or between the end of expiration
and the start of the next breath. An exposure is possible if the time the patient is still
exceeds the time needed for the exposure plus the latency between triggering the x-ray

and the actual exposure.

Synchronization Method 1: Dead Reckoning. The first method used to determine
when to trigger the x-ray is simple dead reckoning using the time of last breath, time of

inspiration, and frequency. The variables used for this method are shown in Figure 6.3.

178

Pressure

T
A Start of Breath

e

Tinsp

A Start of Breath

L
"1/ Frequency

All times are in seconds.

Figure 6.2: Respiratory Cycle

name

description

Thow
T

Tnb

Ts
,Ttrigger
Texp
freq
flow

current time

time of last breath

time of next breath

a small offset time to accommodate jitter
time to send trigger signal to the X-ray
time of X-ray exposure

frequency, breaths / minute
instantaneous flow rate

Figure 6.3: Variables for dead reckoning

If we know the time of the start of the last breath and the frequency of breathing,

then it is trivial to calculate the time of the start of the next breath.

There is likely to be time to trigger the x-ray just before start of the next breath, as

long as the patient has finished exhaling before the start of the next inhalation.

We can check whether the patient has actually finished exhaling by sampling the

Ty = Ty + 60/ freq

Ttm’g = Tnb - Temp - Tdelta

179

— Time—>

instantaneous flow rate just before the start of the next breath. If it is close to zero, then

the patient is not inhaling or exhaling and is still enough to allow taking the x-ray.

1. Get values of the variables T},0w, 115, freq

2. Calculate T}

3. Sleep for Tirig — Thow seconds

4. Wake up and sample flow

5. If flow = 0, trigger X-ray

else, start over

This method of synchronization makes many assumptions. The most critical assump-
tion is that the respiratory frequency is not going to change between the last breath and
the next one. If it does, or if the system setup changes in other ways, this method of
synchronization will not work. The check of instantaneous flow rate should prevent the
system from triggering the x-ray when the patient is moving, but the system may not be
able to take an image in situations where a different synchronization method would allow

aln exposure.

Synchronization Method 2: Dynamic. Another way to calculate the trigger time
is to sample the real-time flow rate rapidly enough to build a picture of the flow graph.
We experimented with two techniques for doing this. The variables used in the following
descriptions are listed in Table 6.4.

We originally envisioned sampling at a high enough rate to be able to integrate the

total flow volume by multiplying the sampled flow rate by the time interval of the samples.

180

name description

flow instantaneous flow rate
Tfiow time of last flow sample
Seurrent value of current flow sample
Tewrrent time of current flow sample
Slast value of last flow sample
Tiast time of last flow sample
slope calculated slope value
Threshold | slope threshold

Figure 6.4: Variables for dynamic synchronization

This would allow the supervisor to trigger the x-ray at the right time no matter what
changes were made to the ventilator’s programming or how the patient reacted. It would
also allow synchronization with spontaneously breathing patients, and enable detection
of coughing, which would allow the algorithm to wait to synchronize until the breathing
pattern stabilized. However, the ventilator was not able to provide samples at a high
enough rate to enable this method to be used. The SOAP server and interface introduced
additional latency and jitter into the samples, which further reduced their usefulness for
this purpose. Using OpenlCE reduced the latency and jitter of the data transmission but
could not improve the sample rate of the ventilator. We hope to revisit this application
with higher resolution devices when they become available.

Our second idea was to use the slope of the flow signal to find when inspiration is
about to end. This meant taking two or more samples, calculating the rate of change of
the flow rate between them, and triggering when this rate of change was low enough. The
problem we ran into here is that the flow graph tails off very rapidly, making it unlikely
that we would get even a pair of samples in the short time when the breath is about to

end. The low sample rate made this problem worse.

181

1. prime Sigst, Tiasts Scurrent, Lewrrent With two consecutive samples
2. Slast = Scurrent
3. Tlast = Teurrent

4. Scurrent = flO’lU

5. Tewrrent = Tflow

6. Slope = Scurrent - Slast/Tcurrent - ﬂast

7. if slope < Threshold and flow is near 0, trigger x-ray

else loop back to 2.

In the end, we found that dynamic synchronization is possible only at relatively low
respiratory rates — under about 8 to 10 breaths per minute. The dead reckoning method
functions at much higher rates, up to approximately 25 to 30 bpm depending on the other
ventilator settings. The supervisor program for our demo checks the respiratory rate and

chooses whether to use the dynamic or dead reckoning method accordingly.

Alarms. The system should not trigger the x-ray if the ventilator has active alarms. The
ventilator will take care of displaying the alarm condition to the caregiver and sounding
alarms, so the supervisor just has to detect that the ventilator has active alarms and not
trigger the x-ray on that respiratory cycle. It does this by getting a summary of all active
alarms and warnings from the ventilator. If the list of active alarms is not empty, then
the supervisor will not trigger the x-ray.

This technique is easy to implement and covers the most common situation where the
alarm sounds sometime before the supervisor decides to trigger the x-ray. This is sufficient
for the demo, but an implementation with a real x-ray machine and a real patient would

have to take into account factors such as the alarm being raised after the supervisor checks

182

the alarm status but before the exposure is made.

In the case where this happens, many conditions which would cause a ventilator alarm
will not affect the synchronization algorithm. These include alarms like low gas levels,
overpressure, some sensor failures, etc. Any alarm that does not indicate an unexpected
change in ventilator settings will not stop the supervisor from being able to synchronize.
Alarms for major mechanical malfunctions are very rare, but would indicate conditions
where we would not want an exposure to be made — though any failure which stopped
the ventilator from operating would mean that the patient’s chest was not moving.

The biggest problem with triggering an x-ray exposure during an alarm is not that
the image would be blurred, but that the safety of any caregivers responding to the alarm
could be compromised. Caregivers are also protected by the use of a ‘dead man switch’
that the x-ray technician holds during the exposure. If the switch is released, the x-ray
will not be taken. The time interval where there was an active alarm and the exposure
was being made would be a fraction of a second, but this should be taken into account in
the risk management process. Any system using a real x-ray machine would also need to
take into account alarms from the x-ray, and any system using medical devices which are
capable of pushing alarms rather than having them polled (as we did with this ventilator)
would also need to consider possible race conditions between the alarm handling and

synchronization parts of the supervisor.

6.1.2 Modeling, Verification, and Code Generation

The software for the synchronization app is the key element of the system. The app’s

role in this demo is to gather data from the ventilator, decide when to trigger the x-ray,

183

and send the signal to the x-ray machine at the correct time. The app interacts with
the caregiver to get input such as whether to make the exposure during inspiration or
expiration and to provide the caregiver with status information and, ultimately, with the
xX-ray image.

The functioning of the synchronization app is critical to the safety of the system, so
we devoted a significant amount of time and effort to ensuring its correctness.

The app software development process started with gathering informal requirements.
These requirements were collected during discussions with caregivers and biomedical en-
gineers and included functional requirements such as “when the exposure is made, the
red light on the x-ray box should light up” and safety requirements like “the caregiver’s
x-ray trigger button must be held down for the x-ray exposure to be made”. These re-
quirements were refined and expanded upon throughout the development process. For
instance, when we started development we did not know that we would need a dead-
reckoning synchronization algorithm in addition to the dynamic method and thus did not
initially include any requirements about when the supervisor should use one or the other
of these techniques.

We built and verified a state machine model of the app that meet essential safety
properties. We used the model to generate Java code which then ran the demo. This

development process is described in more detail in the following sections.

Verification. We began by modeling the app as an extended finite state machine
(EFSM). Once the system was modeled as a state machine, we used a tool to trans-

late it into the input format for the model checker UPPAAL. The model checker was used

184

to simulate the system, to test the system for general properties like deadlock, and to
test more specific properties. These activities suggested changes to the EFSM specifica-
tion, and the process went though several iterations. Eventually, we produced an EFSM
specification which satisfied all the safety requirements.

The safety requirements for the system were gathered by talking with clinicians and
working though an informal hazard analysis process.

The primary hazard introduced by this system is triggering the x-ray at the wrong
time. This could potentially endanger the x-ray technician or other clinicians. Triggering
the x-ray when the patient is moving will result in a blurred x-ray and the need to take
another exposure, meaning additional radiation exposure for the patient.

Another hazard is that an image might not be taken even though it is possible. This is
less serious, since the system will inform the clinician that the exposure was not possible
and try again on the next breath. The exposure is delayed slightly, but this is a small
cost compared to that of a failed exposure.

The EFSM model of the system was checked for structural properties like deadlock
(that the system can’t get ‘stuck’) and for specific safety properties. These focused on
when the x-ray is triggered, since this is the single safety-critical action the system takes.
We checked that the trigger signal was sent only at the correct time and that the system

would not trigger unless the flow rate reported by the ventilator was near zero.

AG xray = exposing implies Th,op = Tpp — Texp — Ty (6.1.3)

Formula 6.1.3 is used for checking the system when it is being used to make an exposure

185

at the peak of expiration (the lung is empty) in dead reckoning mode. This specification
says that whenever the x-ray machine is in a state where it is exposing (AG xray =
exposing) the current time must be the time of the next breath minus the exposure time
minus a small offset (Ty,00 = Ty —Texp—Ts). This means that if there is any possible way
that the EFSM could have the x-ray in the state ‘exposing’ when it is not that time, the
model checker will show it as a counterexample. Similar formulas are used for checking

exposure times for inspiration.

AG xray=exposing implies flow <= flow_threshold (6.1.4)

Formula 6.1.4 states that when the x-ray is exposing, the instantaneous flow rate must
be less than the flow threshold. This threshold is defined to be low enough that the lung
will not be moving enough to blur the image, but also high enough to allow an exposure

when there are very small movements.

Code Generation. The final EFSM specification was used to automatically generate
Java code which was used in the demo implementation. The demo includes a handwritten
GUI frontend which is the user interface and the supervisor application, which is largely
generated code. The generated code interacts with some handwritten functions which
perform low-level actions. For instance, the model simply uses values like flow, while
the generated code replaces references to such variables with calls to handwritten library

functions which actually provide the values.

186

Implementations. The application starts with a screen describing the clinical use case.
This is followed by giving the user a choice of taking an image at the peak of inspiration
(when the lungs are full) or the peak of expiration (when the lungs are empty). The
user is asked to confirm their choice and taken to a screen describing the image-taking
process. The user is asked to play the role of an x-ray technician and to pick up a physical
button which they will hold while the exposure is made. In a non-synchronized x-ray, this
button would trigger the x-ray directly. In our system, the button is held down to give
the system permission to make the exposure. The clinician holds the button for several
seconds while the system waits for the lung to reach the proper phase of respiration and
the system checks to make sure the button is held before taking an image. If the clinician
decides that it is not safe to make an exposure (e.g., if someone walks into the room),
they can simply release the button and no exposure will occur. This allows us to keep a
human in the loop as an additional safety precaution. Assuming the button is held down,
when the lung reaches the proper phase the exposure is made and the webcam image is

displayed on the screen.

6.1.3 X-Ray / Ventilator in CAML

The X-Ray / Ventilator use case includes seven state machines that run in parallel. These
are the models for the top-level application, the four synchronization modes, the caregiver,
and the patient. Four of these models are shown below. The figures are the result of

visualizing the translated CEFSM in the UPPAAL tool.

187

insp_or_exp

1.R @ E_dyn

running_|_DR .

Figure 6.5: X-ray / Ventilator Example: Top Level Application Model

6.1.4 System Properties for X-Ray / Ventilator

The X-Ray machine and the Ventilator are both critical devices in that the failure of
either may injure or kill the patient and harm bystanders. Failure to ventilate has obvious
potential for harm, as does an excessive dose of x-rays. A subtler problem common to
many diagnostic devices is that the failure to take an x-ray, or taking an x-ray at the
wrong time in the respiratory cycle may lead to improper diagnosis or treatment of the
patient.

Basic Safety Properties:

1. The ventilator must never stop ventilating for more than 30 seconds.

2. The patient must not receive more than one x-ray exposure per activation.

Basic Effectiveness Properties:

188

ope_threshold

d || flow < 0

flow - old_flow > flo
|| flow > max_flow_t

old_flow := flow, local_clock := 0

flow_updated Q
vent_flow_updated ?
flow := Gflow
w<= flow_slope_threshold
ax_flow_threshold

trigger_xray !
. successful
1age !

done

Figure 6.6: X-ray / Ventilator Example: Supervisor Inspiratory Dynamic Model

1. X-ray must be triggered at the proper time in the respiratory cycle

2. X-ray must be taken with the proper beam strength and exposure time

These basic properties lead to a more detailed list of properties specific to the system
used for the case study:
The system should not deadlock: VO(!deadlock)

The system should have enough time to take an image:

Trigger send latency + xray trigger time -+ xray trigger latency + exposure time <
dwell time where expiratory dwell time = (60/ respiratory rate — inhale time — exhale time)

&& inspiratory dwell time = xray insp hold time

Correctness of ventilator and patient models; the patient can not be exhaling while
the ventilator is inflating: VO!(ventilator.inflate && patient.exhale)

Correctness of E Dyn algorithm, which should only trigger when flow is positive

189

time!

osure_time
ime := exposure_time

set expostL
Gexposure

xray_programmed

Figure 6.7: X-ray / Ventilator Example: Caregiver Model

and under the max flow threshold: VO(supervisor.running E_dyn && xray.exposing =
Expiration_Dyn.flow < Expiration_Dyn.max_flow_threshold && Expiration_Dyn.flow >
0)

Correctness of I Dyn algorithm, which should only trigger when flow is positive
and under the max flow threshold: VO(supervisor.running I dyn && xray.exposing =
Inspiration_Dyn.flow < Inspiration_Dyn.max_flow_threshold && Expiration_Dyn.flow >
0)

Inspiration DR method is possible (success state is reachable): 3 (Inspiration DR.successful)

Inspiration Dynamic method is possible: 3¢ (Inspiration_Dyn.successful)

Expiration DR method is possible: 3¢ (Expiration_DR.successful)

E Dyn algorithm is possible: 3O (Expiration_Dyn.successful)

E DR algorithm must only allow exposure when the flow is zero:

VO(supervisor.running E_DR && xray.exposing = Gflow = 0)

190

© inhale

1hale done ?
Gflow := -8
ocal_clock >= exnhale_time

Gflow := 0 Q waiting_to_exhale

vent_flow

set
local_clock := 0

local_clock <= exhale_time

Figure 6.8: X-ray / Ventilator Example: Patient Model

Correctness of I Dyn algorithm, which should only trigger when flow slope is under

the threshold:

VO(supervisor.running I dyn && xray.exposing = Inspiration_Dyn.flow —

Inspiration_Dyn.old flow < Inspiration_Dyn.flow _slope_threshold)

Patient will always eventually exhale: V< (patient.exhale)
Patient will always eventually inhale: V< (patient.inhale)
I DR algorithm must only allow exposure when the flow is zero:

VO(supervisor.running I DR && xray.exposing = Gflow = 0)

6.1.5 Device Requirements for X-Ray and Ventilator

These are the application’s requirements on the devices, listing the inputs and outputs
that the application needs. Any device that provides these data elements should work

with the application.

X-Ray:
e Must Provide:

191

1. exposure time

2. image

e Must Accept:

1.

external trigger

e May Accept:

1.

exposure time

Ventilator:

e Must Provide:

1.

A

instantaneous flow rate

respiratory rate

local clock time

respiratory rate change notification
inspiratory time

inspiratory hold time

6.1.6 X-Ray and Ventilator Device Models

Variable Device Model

X-Ray:

e Provides:

1.
2.
3.

exposure time
image

external trigger latency (optional)

e Accepts:

1.

external trigger

192

Ventilator:
e Provides:

1. instantaneous flow rate
instantaneous flow rate (optional)
respiratory rate
local clock time
respiratory rate change notification

inspiratory time

A T et

inspiratory hold time

6.1.7 X-Ray / Ventilator Synchronization Summary

We successfully built a system which was able to synchronize an anesthesia machine
ventilator with a simulated x-ray machine, demonstrating that the approach is feasible.
In the process, we learned lessons for building more general systems. These include the
importance of recognizing the limitations of device interfaces in the application algorithm
design and the need to have applications that can respond to the changing settings of
the devices. We had two synchronization algorithms, one which was more accurate but
only usable at low breath rates and a less accurate but faster algorithm for high breath
rates. We used formal methods in the development of the application and have presented
a methodology for ensuring that the integrated device systems meet their specified safety
properties.

This case study started with an unfortunate use case, resulting from the lack of a
respiratory pause feature on the ventilator and the ventilator’s inability to synchronize
with the x-ray machine. The exposure that our demos brought to this problem has led

to a proposed change to the international anesthesia workstation standard. Hopefully in

193

the future such changes and the introduction of safe, inter-connected systems will help to

improve patient safety.

6.2 Patient-Controlled Analgesia Smart Alarms and Safety

Interlocks

Patient-Controlled Analgesia (PCA) infusion pumps are commonly used for pain man-
agement in hospitals. These infusion pumps are loaded with an analgesic drug such as
morphine, fentanyl, or hydromorphone and can be programmed with a background, or
basal, infusion rate as well as a bolus dose. The basal infusion rate is delivered constantly
and is selected to be sufficient to control the patient’s normal pain level. The bolus dose
is an additional quantity of drug that is delivered only when the patient requests it by
pressing a button. PCA pumps are also often configured with no basal rate so they only
deliver medication when a bolus is requested. The pumps are also programmed with dose
limits that are set for the specific patient.

PCA pumps are commonly used because they are an effective means of controlling
the patient’s pain level and they enable the patient to take some control over their level
of medication [56]. They allow the patient to adjust their drug dose to match the level of

pain they are feeling at a particular moment in time.

PCA-related Adverse Events. PCA pumps are also associated with a large number
of adverse events [32] [23]. The most common type of adverse event is oversedation[56].
An excessive dose of the analgesic can cause neurologic depression which may lead to

respiratory depression and eventually respiratory distress. In extreme cases the patient

194

may not be able to breathe adequately, leading to death. Overdoses may have many
causes including programming errors [29], the use of the wrong concentration of drug,
drug interactions, and PCA-by-proxy.

Programming errors may be caused by confusing drug names, e.g., hydromorphone
and morphine or morphine and meperidine [32], by making a mistake in dose or drug con-
centration calculations [79] [32] or entering the wrong values for bolus dose size, infusion
rate, or lockout interval. A common source of error is entering a value that is off by a
power of 10 or using the wrong units. For example, entering 5 mL / minute instead of 5
mG / minute or programming a pump with a drug concentration of 1 mG/mL when it
is actually 10 mG/mL [32]. [79] discusses a number of cases where patients were fatally
overdosed because of an improperly programmed drug concentration.

When someone other than the patient presses the button to request a bolus dose, it
is called PCA-by-proxy. Normally if the patient is oversedated they are unable to press
the button to get another bolus dose. If someone else presses the button, this safeguard
is bypassed and an overdose may occur. In 2004 the Joint Commission recognized the
importance of this problem by making PCA-by-proxy their 33rd sentinel-event. Sentinel
events are occurrences that must be reported and investigated to their root cause or the
facility risks losing their accreditation [22]. Healthcare facilities that have completed staff
education programs and incoroprated warning about PCA-by-proxy into their patient
education have seen lower overall rates of oversedation [23].

Oversedation from PCA may result from multiple causes. [73] enumerates 17 potential
errors that may occur in PCA administration and relates a case in which six of them

occured during one patient’s PCA use.

195

An analysis of reports to the MAUDE database maintained by the Food and Drug
Administration (FDA)’s Center for Devices and Radiological Health (CDRH) from 1984
to 1989 found that 67% of problems associated with PCA pumps were caused by operator
error [18]. This early study took place before the 1990 change in Federal Reporting
Guidelines that requires reporting of incidents involving “device malfunctions and serious
injuries or deaths” to FDA. A later study [31] found that nearly 80% of the 2009 reported
incidents in 2002 and 2003 were blamed on device malfunctions and that nearly 65% of
these suspected device malfunctions were confirmed by the device manufacturers. The
human factors of pump interface design are an important means of reducing use errors
[53] [54]

Respiratory depression associated with PCA varies between 0.3% and 6% depending
on the patient population and how respiratory depression is defined [66]. Most cases
of respiratory depression do not lead to permanent harm to the patient, but these still
represent serious incidents with the potential to harm or kill patients.

The Institute for Safe Medicine maintains a voluntary database of medication errors.
This MedMarx database contains 9500 PCA related errors in the span 2000 - 2004 [32].
These account for only 1% of the medication errors submitted to the database, but this
1% accounts for 6.5% of harmful outcomes. This almost certainly under-reports the actual
number of occurrences, since the voluntary database can only track the rate of reporting,
not the rates of errors or adverse events [50].

Adequate pain control provides benefits including improved patient satisfaction, lower
rates of complication, reduced length of hospital stays, and lower rates of litigation [32].

Some biomedical engineers take the attitude that “the only safe medical device is one

196

that’s never taken out of the box”, but discontinuing use of PCA pumps is simply not an
option. While providing inadequate levels of medication would indeed reduce the chance

of overdose, pain management is an essential part of the care of these patients.

Monitoring of Patients on PCA. Patients receiving PCA therapy are usually also
connected to a patient monitor that records their vital signs. These monitors typically
measure at least heart rate, blood pressure, respiratory rate, and oxygen saturation (SpO,
). The monitor has simple alarms which sound when the vital signs go outside of some
preset limits. If the patient receives an overdose, their vital signs will eventually go outside
of the limits and the alarms will sound, summoning a caregiver to the bedside. However,
by the time their vital signs drop far enough to cause the alarm to sound, damage may
have already been done. Caregivers are desensitized by frequent false positive alarms, and
they may not respond as quickly as would be optimal. Furthermore, the infusion pump
continues running until it is manually stopped by a caregiver, which may not happen
immediately on their arrival at the bedside.

An automatic system that could detect oversedation and the onset of respiratory
depression could add an additional safeguard to the system and would help to protect
the many patients who are not adequately protected by existing systems and procedures.
Such a system would require minimal changes to nursing workflows and could reduce the
number of false positive alarms that require an immediate nursing response.

PCA systems have undergone extensive scrutiny from HDOs, regulators, and man-
ufacturers. A strategy for structuring safety arguments for PCA was laid out in [26].

Model-based UI developement for PCA IS covered in [58] and [57] gives a methodology

197

for verifying interactive software and caregiver workflows.

6.2.1 PCA System Implementation

We created several implementations of an application that monitors patient data for the
early signs of respiratory failure and can stop the PCA infusion and sound an alarm if
the patient experiences an adverse event. These implementations all use a pulse oximeter
device that measures physiological signals from a clip on the patient’s finger and pro-
cesses them to calculate heart rate and SpOs outputs, where SpOs is the measure of
blood oxygenation. Some implementations incorporate other vital signs from a patient
monitor in addition to heart rate and SpOs from the pulse oximeter. Because there are no
commercially available PCA pumps capable of being remotely controlled, we use modified
commercial pumps and prototype pumps based on our Generic Infusion Pump project [8].
Figure 6.9 is a photograph of a demo system implementing the PCA Safety Interlock with
the Generic Infusion Pump. Figure 6.11 shows an OpenlCE app implementing an infusion
safety interlock, configured to monitor heart rate, oxygen saturation, and respiratory rate
and to send a stop command to the pump if the vital signs deteriorate past configurable
limits.

We have published implementations and analysis of PCA systems with several set of
collaborators [9] [65] [46] [4] [8]. This Section presents and summarizes that work and
extends it by mapping early work onto the ICE framework and applying the analysis

techniques presented in Chapter 5.

198

6.2.2 System Architecture

Figure 6.10 shows the components of the PCA safety system. Figure 6.12 shows the
devices and essential data flow in this control loop. The variables in the system are
listed in Table 6.2. The pulse oximeter receives physiological signals from the patient
and processes them to produce heart rate and SpOs outputs. The Supervisor gets these
outputs and makes a control decision, possibly sending a stop signal to the PCA Pump.
The PCA pump delivers a drug to the patient at its programmed rate unless it is stopped
by the Supervisor. The patient model gets the drug rate as an input and calculates the
level of drug in the patient’s body. This in turn influences the physiological output signals

through a drug absorption function.

PCA Infusion Pump. Patients using a PCA pump are usually also attached to patient
monitors that record the patient’s EKG, blood pressure, respiratory rate, and SpOs .
These monitors sound alarms if the values they measure are outside thresholds set by the
caregivers, but they do not stop the infusion. Thus, the patients continue to receive more

of an overdose while the caregiver responds, assesses the patient, decides whether there

PCA System Controller”

Figure 6.9: PCA Demo System

199

PCA Pump
(With patient button)

Nurse call

T ADAPTER
<> Network
. Controller

Supervisor
TADAPTER

Monitoring system

=l

Patient

Figure 6.10: Hardware for PCA Demo System

source description ‘ name
pulse oximeter | signal processing time tpo
output HR and SpOs values | hr, SpO,
patient model | drug level dl
drug absorption function f(di)
output physiological signals | wfi, wf
supervisor algorithm processing time tsup
pca pump pump stop delay Lstop
infusion rate rate

Table 6.2: Variables for critical timing loop

is a real problem, and finally stops the pump manually.

The pump in our case study operates in the following way. Before operation, the pump
is programmed by the caregiver, who sets the normal rate of infusion, the increased rate
of a bolus, and bolus duration. Some PCA pumps also can be programmed to limit the
total amount of drug to be infused. Once programmed and started, the pump delivers the
drug at the normal, or background, rate until it is stopped or the bolus button is pressed.

From that moment, it delivers drug at the bolus rate for the specified duration and then

returns to the normal rate.

The pump is equipped with a number of built-in sensors that detect internal malfunc-

200

tions such as the presence of air in the tubes that deliver the drug. When a problem is
detected, the pump is stopped. We do not consider such malfunctions in this case study
and do not represent the built-in alarm mechanism.

Finally, the pump is equipped with a network interface, which allows the pump to
transmit its status across the network to other devices such as the logger. For the purpose
of our scenario, we assume that the network interface allows the pump to accept control
signals. A stop control signal will set the current infusion rate to zero, while the start
signal will set the normal infusion rate (regardless of the state of the pump before it was

stopped).

Pulse Oximeter. In this study, we look at using SpO2 and heart rate measurements as
the basis for a physiologic closed-loop control system that can stop the PCA pump and
halt the dose of opioid while sounding an alarm if respiratory distress is detected. Both of
these measurements can be produced by a pulse oximeter. This device is equipped with
a finger clip sensor that shines two wavelengths of light through the patient’s finger. The
measured light intensity indicates the heart rate and blood oxygen content, which can
change rapidly.

The pulse oximeter measures the patient’s SpOs at regular intervals, processes them,

and outputs an averaged result [20]. It calculates the average using a variable-sized sliding

last output value | new window size
97 - 100 10

94 - 96 8

90 - 93 7

85 - 89 6

< 85 4

Table 6.3: Sliding Window Size for Pulse Oximeter

201

window. The window size varies with the last output value. The reason for changing the
window size is that smaller sample size gives faster, but potentially less accurate results.
When SpO; values are low, quick response is more important than filtering out transient
noise. When SpOs is high, increasing the window size helps to filter out transient low
values at the expense of less frequent updates. Since the samples are at regular intervals
and a varying number of samples are used to calculate the output, the output is updated
irregularly. The size of the sliding window that we used in the case study is determined
using a simple table shown in Table 6.2.2. Note that this table does not reflect the details
of any real implementation but rather attempts to capture the essential behavior of a

typical pulse oximeter.

Patient Model. We use a simple patient model, where the patient state is characterized
by the current drug level. The state space is partitioned into regions. The patient can be
in pain (under-medicated), pain-controlled (adequate medication), or over-medicated. If
the patient is over-medicated to the point that he or she starts experiencing respiratory
distress, we consider it an overdose. We refer to the overdose condition as the Critical
region. Any treatment needs to make sure that the patient stays out of the critical region,
and we use this requirement as the main safety property of the system that needs to be
ensured. In this case study, we defined the boundary of the Critical region in terms of the
patient SpO2 and heart rate and set it to Hy = 70% for SpOs (and Hy = 11.5 beats/min
for heart rate), a clear indication of respiratory failure.

Our model represents the instantaneous level of medication in the patient’s body as a

single variable. This variable is linked to the patient’s heart rate and SpOs by the drug

202

absorption function, which represents how the patient reacts to the dose received over
time. Some patients react very quickly to a dose of drug, while others react more slowly.

By adjusting this function, we can tune the model to different patient types.

Caregiver Workflow Model. The caregiver in this system programs the PCA pump
and reacts to alarms. The control system is closed loop, so no intervention by the caregiver
is necessary to stop the infusion when a problem is detected. The caregiver can react to
restart the system if it has stopped in reaction to a false alarm, or when a problem such

as a slipped patient sensor is fixed.

Clinical Application Script for PCA Safety. The clinical application in this case
study is to control the loop shown in Figure 6.12. The app receives the patient’s heart
rate and SpO2 measurements from the pulse oximeter and uses this information to decide
whether the PCA infusion pump should be allowed to run or immediately stopped.

The goal of this CAS is to detect when the patient’s SpOs drops below a lower limit
for longer than a threshold time and to stop the pump before the pump delivers more
than a limited amount of drug. If the SpOs drops below t; for longer then t;, then the
pump must be stopped before it delivers more than t4; quantity of drug d.

In order to accomplish this goal, it is necessary to know accurately when the SpOq
drops. This requires a model of the pulse oximeter since pulse oximeters have a processing
time which varies according to the current input values.

It is also necessary to have a model of the pump. The controller needs to know how
long it will take to stop the pump and how much drug the pump will deliver before it is

stopped. This is not always possible in practice since the control algorithm does not have

203

all the necessary information.

In the case study, we designed a simple control algorithm for the supervisor, in which
the decision to stop the pump is made as soon as the patient heart rate or SpO2 readings
fall below a fixed threshold. The choice of threshold needs to ensure that the patient does
not enter the Critical region despite the delay in detecting the problem and delivering the
control signal to the pump. For the case study, we defined the threshold as H; = 90%
for the SpO2 and Hy = 57 beats/min for heart rate. Values below these thresholds
typically indicate “a clinical concern” ([39], p. 45), meaning that a caregiver needs to
be notified. The supervisor notifies the caregiver when the threshold is crossed, as it
sends the message to stop the pump. Values between H;, and H are thus referred as the
Alarming region. The width of the alarming region is denoted AH =| Hy — Hy |. The
OpenlCE implementation shown in Figure 6.11 extends this with similar thresholds for

heart rate and respiratory rate.

6.2.3 Verification and Validation of Components and System in UP-

PAAL

The structure of the UPPAAL model follows the architecture of the system. For each
component in Figure 6.10, the model includes a separate automaton. The automata com-
municate using synchronization channels and shared variables. Figure 6.13 shows network
of automata and communication between them. Solid arrows represent communication
channels and dashed arrows represent shared variables.

The PCA automaton, which represents the pump, is shown in Figure 6.14. When the

pump is operational, it is either in the state running, with the shared variable pca_rate

204

set to default rate, or in the state bolusing, when pca_rate is increased by the bolus
rate. Both rates are specified as parameters of the model. The pump can be bolusing for a
fixed duration given by the value of the bolus_time parameter. The pump transitions to
the bolusing state upon the signal received from the patient only if it is in the running
state; in all other states, the signal is ignored. From either running or bolusing state, the
pump can move to a stopped state (Rstopped or Bstopped, respectively) upon a signal

from the network.

UPPAAL Component Models. The PO automaton, which represents the pulse
oximeter, is shown in Figure 6.15. The operation of the automaton proceeds in rounds.
Each round begins by setting the window size for the round based on the last sampled
value. Then, the automaton collects the number of samples to fill the window. Samples
are obtained periodically with the interval of 1 time unit, which corresponds to 100 ms.
Finally, the result is stored in the po_result variable and delivered to the supervisor
using the resultready channel.

The application automaton, shown in Figure 6.16, implements the simple control
algorithm. Upon receiving a SpOs reading from the pulse oximeter, the app compares it
with the pre-defined threshold value and, if the result is too low, sends the stop message
to the pump across the network. The model also incorporates a delay, which represents
the worst-case execution time of the app algorithm. Then, once the caregiver resolves
the problem, the app sends another message to restart the pump. For simplicity of the
presentation, the app automaton only deals with SpOs , not heart rate or respiratory

rate.

205

The Patient automaton, shown in Figure 6.17, periodically updates the drug level
based on the flow rate of the pump and drug absorption rate. At any time, it can deliver

a sample as the function of the current drug level.

Verifying PCA System Safety Properties. The main safety property that needs to
be verified on the UPPAAL model is whether or not the patient can enter the Critical
region, where SpO2 and heart rate are low enough to indicate a respiratory arrest. Before
verifying safety, however, we perform several auxiliary checks to ensure sanity of the
model.

We express properties we verify in the subset of the Computational Tree Logic (CTL)
used by UPPAAL.

The first sanity check is the absence of deadlocks in the model. Another sanity check
is that once the SpOs level goes below the pain threshold, it eventually goes up. This

property is captured by the temporal logic formula

AO(samplebuffer < pain_thresh =

A o samplebuffer > pain_thresh).

Note that the property is defined in terms of the true SpO, level as defined by the patient
model, not the sensor reading obtained by the supervisor. Intuitively, this property should
hold, because the normal infusion rate is lower than the drug absorption rate and, once
the patient stops requesting new boluses and the last bolus infusion is over, drug level

will start decreasing and thus SpOy and heart rate levels should increase, until they reach

206

pain threshold again. Finally, we check that the pump is stopped if the patient ever enters

the alarming region. Formally,

AO(samplebuffer < alarm_thresh =

Ao (PCA.Rstopped V PC A.Bstopped)).

We consider this property to be a sanity check rather than a safety requirement, because
wrong parameters of the model — for example, too short bolus duration or too high drug
absorption rate — can make the system appear safe (that is, SpOg level never goes too low),
but it would be safe for the wrong reason. All sanity checks were passed by the UPPAAL
model described above when no dropped messages are allowed. Clearly, property (6.2.1)
does not hold if messages can be dropped.

Finally, we turn to checking the main safety property. With the threshold for the
Critical region set to 70%, the property AO(samplebuffer > critical) is satisfied if the
stop message cannot be dropped. However, if losing messages is enabled in the network

automaton, the property is not satisfied.

6.2.4 PCA Safety Interlock Summary

PCA infusions are responsible for numerous injuries and deaths. Many of these adverse
events would be preventable if PCA was delivered within a system that monitored the pa-
tient continuously and could stop the infusion when a problem was detected. Such systems
need to incorporate multiple vital signs monitors to reduce the number of false alarms

and to avoid stopping the infusion unnecessarily when, for instance, the pulse oximeter

207

finger clip comes off the patient’s finger. Building these systems requires interoperability
and the ability to reason about the system’s safety.
We have shown how our work on PCA systems [9] [65] [46] [4] [8] fits into the safety

analysis framework described in Chapter 5.

6.3 Discussion

We present two case studies using the modeling language described in Chapter 3 together
with the system architecture from Chapter 4 and the property checking techniques from
Chapter 5. Many medical applications fit into the broad categories of smart alarms, safety
interlocks, and closed-loop control. Smart alarms receive information from patient care
devices and create alerts for clinicians. Clinical decision support algorithms fit into this
category, often creating less time-sensitive alerts. Safety interlocks are a type of smart
alarm that also includes a component of device control. A safety interlock will lock a
device into a particular mode when a set of conditions are met. The PCA case study
described in Section 6.2 is an example of a safety interlock where the pump is stopped
when the algorithm detects the onset of respiratory depression. The X-Ray / Ventilator
synchronization case study described in Section 6.1 can also be categorized as a safety
interlock that restricts the x-ray machine to exposing only when the patient’s lungs are in
the correct state. Closed-loop control applications use a physiologic measurement as an
input to an algorithm controlling one of the devices. In this sense, the x-ray / ventilator
application is a closed-loop system that uses a measurement of lung inflation to control

the timing of the x-ray exposure, but closed-loop control algorithms usually repeat the

208

measurement and actuation cycle rather than running through the loop once.

Limitations. This Chapter covers two use cases built using the system described in
Chapters 3, 4, and 5 and following the ASTM ICE architecture described in Section 2.3.
The OpenlCE platform (Section 2.4) was used for parts of the case studies, particularly
the PCA safety interlock. The limitations, gaps, and future work described in this Section
apply to the process of building implementations of clinical applications using this system.

Some of the limitations of these case studies follow from limitations of the available
devices. We weren’t always able to implement the algorithms we wanted because the
available devices did not support the necessary functionality. This is the reality of build-
ing systems on top of legacy devices. These implementations were done in non-clinical
spaces and were not used on patients. This allowed for rapid prototyping and change
but means that they were tested against simulated patients that do not exhibit the same
variability as populations of real patients. The validity of the model checking results is
limited to patients who are accurately represented by the patient model. If the patients
have unexpected or unknown co-morbidities that change the way they react to treatment
relative to the patient model, the system safety properties may not hold.

Limitations discussed in previous chapters affected the case studies. We did not model
the network, and real networks have latency, loss, jitter, and other attributes that are
not included in CAML communications channels but do affect implementations. In our
implementations, we over-provisioned the network so that the bandwidth used was a small
fraction of what was available and network latency and jitter were kept low, but this does

not guarantee performance.

209

Timing requirements for these case studies are realistic for medical use cases, where
most changes occur over seconds or minutes. The exceptions are electrical activity, pri-
marily brain and cardiac functions, where waveform data can be collected and analyzed at
higher rates, typically 200 - 512 Hz for electrocardiograms. For the PCA use case, timing
was on the order of seconds, while the X-Ray / Ventilator synchronization case had some
faster timing requirements, triggering a 10ms exposure within a 50 - 200ms window. The
generated Java code was run in a non-real-time Java virtual machine on a non-real-time
operating system with enough extra capacity to minimize interruptions from garbage col-
lection or other operating system processes and functioned well through a wide range
of respiratory rates. This is a limitation of these use case implementations that means
that we can not guarantee that the safety properties hold for the implementations. To
guarantee the properties, we would need a platform that guarantees preservation of the
model semantics; one possibility would be a real-time Java virtual machine running on
a real-time operating system, with careful proofs that the model semantics are preserved
through code generation and in the execution environment.

The PCA and X-Ray / Ventilator Synchronization applications included in the OpenICE
1.0 distribution do not include the generated code; instead these applications were written

to demonstrate the applications and potential of interoperability in a portable way.

Gap Analysis. Many safety properties about closed-loop systems involve the mathe-
matics used in the control algorithm. For instance, showing that the algorithm will not
change the rate of an infusion too quickly, that the algorithm will converge on a steady

state rather than causing oscillations between safe and unsafe conditions, and that the

210

algorithm will be able to effectively control the condition of patients as modeled in the
patient model are all typical control theory problems that would have to be modeled at a
very high level of abstraction in CAML. In some cases, the resulting models may be too
abstract to be useful in validating the system design. Modeling physiologic closed-loop
control systems where the mathematical details of the control algorithm are critical to
assuring the safety properties, is better done using hybrid modeling techniques. In gen-
eral, the approach presented here seems most useful for smart alarm and safety interlock

systems rather than closed-loop control.

Future Work. These use cases were chosen to exercise several design patterns that
are common in clinical decision support and treatment algorithms. These include safety
interlocks, smart alarm systems, and physiologic closed-loop control. However, two use
cases - however carefully chosen - cannot cover the whole space of medical treatment. The
architecture described in this thesis and used for these case studies works well for these
use cases and for others like them, but there are likely to be other use cases that would
inspire changes to the architecture, modeling language, and toolset.

More work is needed to further develop the modeling language, particularly to support
multiple simultaneous applications. We believe the best way to identify gaps in the
capabilities of CAML and the model checking system described here is to continue to use
the system to build and test and ultimately deploy clinical applications in conjunction

with clinicians and other domain experts.

211

Select Infusion Pump

Drug: Morphine

Infusion Safety
Interlock Status

Infusion Status

Informational Messages

ACTIVE

Hospira Symbiq

15:62:43 1

15

Multiparameter MDC.TTHOR..
(Simulated)

15:52:43

15

Multiparameter MPC.CO2RE
(Simulated)

—)
0 25 40

Respiration Rate

16:52:43

60

Multiparameter MDC ECO_HEAR..
(Simulated)

16:52:43

Eas 00

Multiparameter MDC_PULS OXIM...
(Simulated)

Heart Rat

0 25 50 75 100 125 150 175 200 225 250

15:52:43

Sp02

) 0.
50 75 100
Multiparameter MPC_PULS.OXM... | |
Configuration Mode
Exit App Select a patient: Randall Jones ~ ~ Create an ICE Device Adapter... 15:52:43

Figure 6.11: OpenICE Infusion Safety App

Supervisor
HR & SpO,
> output values Alg

Processing time

Pulse Oximeter

Signal Processing
time

Outpu

Physiological Pump Stop

Signals

Command

Pump stop dela

PCA Pump

Drug Absorption
Function

Drug level

Patient Model

Drug infused
atrate

Figure 6.12: PCA System Control Loop

CG2PCA_program
PCA Caregiver
CG2PCA_start
; NW2PCA_clear
! NW2PCA _stop
pea_rate ! \——
! | P2PCA_bolus Network
Patient SZNW_s(opT T S2NW._clear
Supervisor|
samplebuffer ! sampleready p CG2S_clear
v
Pulse resultready //,/
oximeter ------------ ’
po_result

Figure 6.13: Communication structure of the UPPAAL model

212

CG2PCA_programmed ?

rogrammes Q)

CG2PCA _start ?
pea_rate := default_rate

CA_clear ?

efault_rate

Rstopped

running

pea_rate := pca_rate + bolus_rate,

bolus_clock =
PCA_clear ?

pea_rate := default_rate

bolus_clock >= bolus_time
pea_rate := default_rate

P2PCA_bolus 7

NW2PCA_clear 2

bolusing
O Bstopped

bolus_clock <= bolus_time NW2PCA_stop ?
pea_rate := 0

P2PCA_bolus ?

P2PCA_bolus ?

Figure 6.14: Timed automaton for the PCA pump

Figure 6.15: Timed automaton for the pulse oximeter

po_result >= spo2_threshold

local_spo2 := po_result

waiting_for_result
resultready?

po_result < spo2_threshold

s_clock =0

po_choice

s_clock >= s_delay
S2NW_stop!

W clear!
SZNW_clear s_clock <= s_delay

pump_stopped

CG2S_clear ?

pump_cleared

Figure 6.16: Timed automaton for the supervisor

sampleready !
samplebuffer := 100 - drug_level
start
®

7" clock <=1

p_clock >=1
P2PCA_bolus !

drug_level >f pain_thresh drug_level < pain_thresh
drug_level = drug_level +pca_rate >= ab_rate ?

drug_level + pca_rate - ab_rate : 0,
p_clock =0

drug_level := drug_level
+ pda_rate - ab_rate,

p_clock :=0

N4

Figure 6.17: Timed automaton for the patient

213

Chapter 7

Conclusion

Medical device interoperability has the potential to vastly improve patient safety, add
to medical knowledge, and even reduce healthcare costs while also improving patient
outcomes.

Some of the significant barriers to device interoperability have been a lack of interface
standardization, lack of common nomenclature, and a lack of a regulatory pathway for
components of connected systems. These gaps have lead to an inability to reason about the
safety of interoperable systems because of the fragmentary and heterogeneous information
available about different components of the system.

In this work, we have tried to address these issues by presenting an architecture for
modeling the interfaces and components necessary to allow building an interoperable
system of medical devices that supports proving safety properties. We have addressed
significant problems around modeling clinical environments, workflows, patients, and de-
vices including software applications. Gathering and documenting a comprehensive set of

hazards associated with devices and applications is a challenge all device manufacturers

214

face. We discuss this process and how to go from a list of hazards to formally testable de-
vice requirements and system safety properties. We explain how to check an application’s
device requirements against these models and finally how system safety properties can be
tested against a system composed of a clinical application, a workflow model representing
caregiver actions, a patient model and a set of devices.

In the future, we hope that devices will be able to communicate normalized, time-
synchronized data over standards-based communications networks. This will allow record-
ing and analysis of data from devices, even when the devices come from different manufac-
turers. Extending these abilities with metadata about the measurements allows checking
some simple device requirements and system safety properties, and enabling devices and
applications to communicate models of their behavior opens up additional possibilities.
Most important safety properties about treatments are closely tied to the intended use
of the treatment application, which necessarily includes assumptions about the patient
population being treated and the clinical environment within which the treatment is hap-
pening. Our goal is to be able to reason about safety properties for treatment applications

and, ultimately, to make the practice of medicine safer and to improve patient outcomes.

215

Appendix A

Hazard Analyses

This section defines terms used in assessing the probability and severity of hazards and
lists sources used in the Hazard Table. The definitions of probability and severity, the
format of the Hazard Table, and about 25 of the hazards listed in the table, are taken
directly from [59].

The accompanying Hazard Tables attempt to identify potential hazards and assess
their severity and probability to define a resultant risk. Identified hazards are then ad-
dressed with a mitigation action that should reduce this risk. Device verification testing
is still required to ensure that firstly, the required mitigation has been met and secondly
that the proposed mitigation has the desired outcome. For full details see ISO 14971 [35]
with which this analysis is designed to comply.

Mitigation - This field will contain a brief description of the control mechanism(s)
required to reduce the risk of the hazard event, if required.

Verification - This field is used to specify the verification activity required to verify

the mitigation implementation.

216

Severity - The initial and final field on the chart indicates the seriousness of the hazard
event before and after mitigation, respectively.

The severity is defined as:

NEGLIGIBLE will not result in injury or illness to the patient or system operator. No

damage to the user environment (e.g. physical, contamination, EMC).

MINOR could result in minor injury to the patient or user. Little or no damage to the

environment.

MODERATE could result in moderate injury or illness to the patient or user. May cause

moderate damage to the environment.

MAJOR could result in death or serious injury or illness to the patient or user without

intervention. May cause significant damage to the user environment.

CATASTROPHIC could result in death to more than one patient or user. May cause

severe damage to the user environment.

Probability - The initial and final field on the chart also indicates the probability of
the hazard event occurring.

The probability is defined as:

IMPROBABLE So unlikely to occur, it can be assumed that this hazard will not occur.

REMOTE Unlikely to occur but possible.

OCCASIONAL Likely to occur sometime in the life of the product.

PROBABLE likely to occur more than once in the life of the product.

217

FREQUENT likely to occur several times in the life of the product.

Risk - The initial and final field on the chart also indicates the risk associated with a
hazard event.

Given the severity of the outcome and the probability of failure, the table below is
used to identify the risk level of each identified hazard. Adjustments up or down may

be warranted in the case of hazards with unclear failure modes or an unusually severe

hazard.
Risk Severity
Probability of Failure | I Negligible | IT Minor | IIT Moderate | IV Major | V Catastrophic
A. Improbable Minimum Minimum | Minimum Minimum | Low
B. Remote Minimum Low Low Low Medium
C. Occasional Minimum Low Medium Medium High
D. Probable Minimum Low Medium High High
E. Frequent Low Medium High High High

Hazards are listed in one of the following categories:

H1 Energy Hazards

e H2 Biological Hazards

e H3 Environmental Hazards

e H4 Hazards Relating to Use

e Hb5 Functional Failure, Maintenance, and Aging Hazards

e H6 PCA Hazards: Additional hazards introduced by the addition of a PCA module.

e H7 Network Hazards: Additional Hazards introduced by the addition of network

connectivity.

218

e HS8 Drug Library Hazards

Future work could include adding additional hazards for:
e H9 Insulin Pump Hazards

e H10 Home Use Environment Hazards

Sources: 1. PRS Level 1 Hazard Analysis, accessed 09 November, 2010 2. The Generic
Patient Controlled Analgesia Pump Hazard Analysis from the Generic PCA (GPCA)
Model ver 0.9 3. Hazard review by GIP team, 11/2010 4. First, Do No Harm: Making
Infusion Pumps Safer BI&T Set/Oct 2010 Vol 44 No 5. 5. Notes from AAMI / FDA
Infusion Device Summit 10/5 - 6 Silver Spring, MD 6. AAMI / FDA Infusion Device

Summit Pre-Summit Survey Summary 10/1/2010

A.1 Generic Infusion Pump Hazard Analysis

219

"D puR sIojruouw
juarjed se yons sadIAdp
1970 YIIM OOURIDIIY
-ur 10j 9s9J, '3uIysey
UOT)ROYLIOA

Kyoges

[eotrjoa[e jo gqred se

ojesNyUT

S9ATJONPUOD SIA JUSIY

1597 pue po[[y[nj juour *sotuoIjdafe Iayjo ‘A1d STy Ul 23e STy mory -ed o9 astou dwund jo

z -oambox udsep AJlIop -dns 1emod ‘10jow dwnd proryg -19poJN o[qeqoxduy 93RISPOIN 9j0wey Burdnoo earjonpuy A91011909[H spaiezel ASiouyg STID

‘Suiysey e}

-uswIuoIAUe jo jaed se pesn aq 0% ST 31 YoIym ‘sse18ul pmyg
1593 pue po[[y[nj jusaur Ul jULWUOIIAUS 9Yj 10 Suljel NSTY WNIPaN 9%e MSIY WNIPaJy 93e 10 se8 o3 enp 3Jur

1 -oxmmbax uJisep AJlIop dI ejerrdoadde o3 JI5H uliseq -19poJN oqeqoaduwy -I9POJ\ [BRUOISEBID() -310ys jo A3[iqissog A910119001H spiezel ASieuy] 7ITID
‘syred porjdde usemy
JS1Y Mo STy Mo -9q Inod50 p[nod a8e

1 1-T0909NH 03 uSiseq 9)eIOPOIN 2j0waYy 91eISPOIN 230wy -3eo] a8ejjoa A1ddng Kq10119001H spIeze}] AS1ounyy ST ID

‘8urysay

UOT)ROYLIDA Kyoyes [prepuess] *S9OIASD Pojoau
[eorijoo[e jo jred se 0} I9}0 YO®S UL9M}9(UOI}R[OST -uod AqreotsAyd
1893 pue po[[Y[nj jusur [eor13o9e eptaoad JroH ul sjrod NSIY WNIPaN 9%e MSIY WNIPaN 9% uoomjiaq ofexes] ade

T -oambax uSisep Ajrrap UOI300UUO0D [BDLIFOD[S [[B 2INSUH -1opoJN o[qeqoaduy -I9POJ\ [BUOISEBID() -}[0A jo Ajiqissoq A910119001H spiezel ASiouyg TTID
'S9DIASP Paj0oUUO0D ‘ura9sAs 09
Jo Teaoxdde wiyuod 09 1-10909 OSI Ppojoouuod A[snoaue)
poau sosiseydwo uorg 199Ul S9OTADP PoajIouu0d A[[est -[nwts Temod surewr
-eUOWNIO(I9S() JID) -sAyd [re jeyy pue [piepuejs] pue JueljeJ ULYM
aansuj Cpo[[Y[n} jueur Surpeowr Ajddns 1emod poaoad qsry urN Sy wnipajn o8eyea] o8eloa A[d

1 -oambox u8sep AJrIop -de yym peny Jro oeansuy 1olelN o[qeqoaduy 1o(eN [RUOISRID() -dns jo Ajiqissoq A91011909[H spiezel ASiouyg TT1D

A310113091H spiezel ASioujy 10

spiezely ASiouyg TH

201nog UOI}eOYLIDA uoryeSIyIA peojorpaid Terjruy uorydriosa(g K10899eOQNng K10899e) |IoqUUNN

220

MITADI / UOIJROYLIIA

uorjejuewWINOOp I9s)

(uornes
-JII9A UOIRIUSTUNIOP

1os) ‘yndino ulso(g,,

‘UOT)ROYIIoA

UOIRIUSWNIOP I9S[)

“UOIIRDYLIOA uStso(J
Burysey
‘UOT)ROYLIDA uSrsa(]

1oA9] 23errdordde ue je jos oq
0} swre[e orpne Ioj peau JySIy

-ySI1y 01 uoIpRIULWNDO(] IBS[)

‘uory
-RJULTNOOP I9SN Ul K}2Jes jualy
-ed 03 uoljUejlje MeI(UL
-UOIIAUS PpopuUejuUIl 10 USISOpP
arerrdordde

Aq su1 eompoy

UOI}RIUSWNOOP I9S[)
oy ur juewruoiiaue Suryerado
9} UIY}IM 3IOM O PIau oY) 09
uornquejje mer ‘Suijood ojenb

-ope oinsue 07 wo)sAs uliseq

‘spaepuesls a[qedijdde

0} PIIMg "9[qRINP 9q jsnUW P10

MSTH UL o[q

-e3118aN o1qeqorduy

Asry Mo
IOUTIN [euorseod ()
Asry Mo
TourNy orqeqoxduy
sty Mo
9)RISPOJN 930WdY

sty WA
o1qesi[SoN er0owey
AsTy Mo

IOUTIN [euorseod ()
Asrd

MOT IOUIJN 930wy

SIY WNIpajy 93e

-I9POJA [eUOIsedD(

Poy

“1IYUepI pIezZeH ON
Aanfur 10 1103
-WODSIP S9SNBD W)

-sAs oY} WOIJ OSION

Jasn

10 juerjed o¥II}s 09

JIun S9sneD JUOW
-oAow [eJUapIODY
‘j01 s303

A131M0I10 we)sAg
pioo

Tomod wo)sAs poakery

wolj plezey Mooys

UOI)RUTWRIUOD)
uoryeIqrA

a2ans

-soI1J OI3Snody
aans

-s91g OIISNOdY

2010,
TesTuRYOSIN
2010,

TesTuRyYOa N

yeo

yeo

£31011900[5

spare
-zel [eoi8ojolg
spie

-zel] [eo18o[org

spieze}] ASiouny

spaezel ASiouyg

spiezely ASiouyg

spleze}] AS1ouny

spiezely ASiouyg

spiezel ASiouy

spieze}] AS1ouny

spiezely ASiouyg

'cd

CH

¢ 10

Ty 1D

v'10

€10

€10

21D

[qase)

911D

221

"UOI}BOYLIDA
UOTJRIUSWNIOP I9S[)

*UOT)ROYLIDA uSiso(q

spIepue)s

paymads 03 jrtun 9s9,

‘uorjeoyrraa usseq

‘uorjesyriea udrso(q

‘A1essodou
o Aew wLIR[R PU® I0SUSS AJIprut
- UOIjRIULWNIOP I9S[) 9YI
ur quewuoliaue Surjyerado oyj
UIY)Im JI0M O} Pasau o1} 0} uoly
-uojle meI(J -‘uolje[lIueA ajenb

-ope oinsus 03 woj)sAs ulisoq

umop Jnys ajes AIessodou
J1 pue uoljeoyrjou A[Ies aInsus

07 1omod 1091UOW 0 JI¥) USIsoq

‘u3isep osed

pue A193yeq ojerrdordde os)
*JUSUWIUOITAUD 9ST 9Y} I0J
A199enbope oseo dwind [eeg ‘[eLl
-9)eTW 9PISINO JO UOISINDUI }SIST

019 79s uotsnjur pue dund uSise

EE

ury 10Uty o[qeqold

ASTY UIN

TolejNy orqeqoxduy

ASTY UIN

a[qeqoxdwy 9jomway

sy

MO IOUTN d[qeqoig

STy

MO IOUTN 9[qeqolJ

SSTH WINPT

Tolejn

9)RISPOIN

[euorseod ()

STy Mo

2oy

SSTH WINPT

9)RISPOIN

o[qeqoidg

AYIprurny oAISSadXH

MO[SOUWI09(
Tomod woyYm IouURUX
[euorjuLjuUIUN We Ul

sjor WoISAS YT,

yeo] A19990g

SUIXO0} 09

asansodxs 10 a8e[idg

SUonIpuoH
(UL UOIIAUG]
poquIosarg

Jjo apIsino
uonpered
suonIpuon
[RIUSWIUOITAUG]
pequiosaig

jo apIsino

uoryered

Arddns 1emod

2renbapeuy

A1ddng 1emog

TorjRUTIIRIUOD)

uorjeurwejuo)

spIezer]
(€U UOIIAUL]
spiezey
(UL W UOIIAUG]
spIezer]

(UL UOIIAUL]
spiezer]
[BIUSWUOITAUS]
spiezey
[ejueWUOIIAUL]
spIe

-ze}] [eo18olorg
spre

-zel [eodi8ojorg

'ced

[ie]

T'T°ed

€D

€H

[4ol

T'Ted

222

ndnQ ulseq

‘spiepuejs

peymoads 03 jrun 4S9,

‘uoryeoyriaa usise(

“UOI}eOYLIDA
uorjRIUSWNIOP IBS[)
‘UOT)ROYLIDA udseq

‘syusweainbal HINH ¢-1-10909

DOHI %eew o0} jonpoad uSise

POPULIUI JO SOLIRUDIS [RJUSWUOT
-1auo o[qissod 07 Surje[aa sprep

-uejs oyroods 0} jun uSso(]

‘SpIRpUR)S UWLIR[R
JURAS[DI 0O ULIOJUOD) ‘spuawt
-uoitaua [edtdA3 ur piesay oq
0} ySnoua pnoj aq p[noys awn
-[OA WIR[® WNWIXE[\ OWN[OA
wre[e AJipowr 073 SI9SN MO[[Y
‘swlefe [ensia pue A10jipne asn

‘Aressedou
9q Aew WIR[R pUR IOSUSS 2INje
-todwo], ‘UWOIIRIUSWINDIOP IOS[)
oY) ur juewuoliaus Surjyerado
oY} UIyjlm yliom O} padu ayj o3

uorjualle mei(-Suijood ajrenb

-ope oinsus 01 wWelsAs uSIsa(]

IOUIIN

IoleN

AT WIN

a[qeqoaduy

qSTY Ut

a[qeqoxduy

ST

MO IOUTIN 9[qeqoIg

sy

urpy I0ury 9qrqoId

qsty

MO IOUTIN 9[qeqOIJ

I1oleN

S[STY WNIpaIN

[euo1sedd()

ST wnIpay

9)RIOPOJN O[qeqol]

Asry

MO IOULN 9[qeqoid

uoryeIpel
2130USeUW0I)D3[0
TRUISIXD jsureSe
pojoejord jou JIH
‘SWIo)SAS

ﬁﬂUmNuUDAQ %ﬂ.:mwau
Yim sadsgmoqut JIH

Spunos uwJaee syseuw

JUSWIUOIIAUS ASTON
sowraIy
-Xo aanjeradway,

Ariqryedwosuy
o19oudeworo9y
ALriqryeduroouy

o130uUSeWOI}09[

S921ADD
Iayjo qirm
a[qryeduwoouy
S901A9P

197j0

qsm

arqryeduroouy

suonIpuon
[e)UL W UOIIAUG]
paquiosaig

jo apIsino

uoryeradQ

suonIpuon
(UL UOIIAUG]
paquosarg

Jjo apIsino

uornyerad(

as) o3 Sur

-je[eYy spiezep]

spiezey
[ejULWUOIIAUL]
spaezep]

[T UOIIAUL

spiezel

[BIUSWIUOITAUL]

sprezep

(UL W UOIIAUG]

sprezey

[ejusmruoIrAUg

spiezel

[ejusWUOIIAU

VH

Tved

7'eD

1°€€dD

€'€D

€'C€D

[xase]

223

‘gndjno ulseq

‘UOI}eDOYLIDA

[000301d Sunnp AJrrop

‘paxmnbar se

aIe S[enuUBRW puUR SUOIY}

-ONIJsur Iosn AJII9A
‘poamb
-9I se oIe s[eRIIjRW

UOTIONIISUT TSN AJLIDA

roseyd udisep jo jred se paylie[d
2q 03 seorjorad sI030®] UBWNY
JUOIIND 07 SUOIIONIFSUl uSIsa(

‘A[8urpioooe AJjipowr pue
suorjonijsut Jo A3irenb ssosse 0y
s[erry aoue3dadde Iesn 4oNpuo))

A[8urpioode Ajipowr pue
suorjonijsur jo Ajirenb ssesse
03 sperry souerjydeoor Jtesn jonp
-uop) ‘S[eqe[[BNSIA JO 9ST et

pue opind jIeig oIy opnyouj

*SOOIADP POJD2UUO0D I10J
$991s 01 syUI] SuIpn[dUl ‘911s-qom
eiA j1oddns ejower pue s[eLI9}
-ewr SUIUIRI) DAT}ORIDIUT OPNOUT
09 9SN I0J SUOIIONIISU] "WOISAS
osn 03 Surydurejje uUo O[QISIA
Aorerpowriat opms 4aelg HOIMY

apN[ouUl 07 9sn I0J SUOTIIONIJSUT

Asrg uiN
TourNy orqeqoxduy
st UIN
aout]y 9[qeqoaduy
Asry wiN
TourNy orqeqoxduy

SSTY WNIPaIN oye

-1opoJN o[qeqoxduwy

Toury

IOUuTN

Toury

9)RISPOIN

sty Mo

[euorseod ()

MSIY MOT]

[euo1sedd()

sty Mo

[euorseod ()

SSTY YSTH

juanboig

Sursnjuod st
Burjoqe] we)sAs ayJ,
*aga1d
Sur[eq

-woour - ST

-e[weyshs ELA#

‘xordurod
009 st Surqeq

-e1 uo)sAs oYL,

A[3991100

-ur pesn sI J19 oy,

SOTI0SS900Y

SuoIpy seseyd
-Ing JIswojgsny
Surpeq

-er] ojenbapeur

Sureq

-er] ojenbepreuy

Surfeq
-er] ojenbapeur
Surfeq

-er] ojyenbapeuy

uoryeoryd
-dy j091100uy
uoryeord
-dy 199a100uy

s 03 Sur
-je[ey spiezey
as) o3 Sur
-je[ey spiezep]
as) o3 Sur

-ye[ey spiezeq

as) o3 Surt
-je[ey spiezep
as) o3 Sur

-je[ey spiezep]

as) o3 Sur
-je[ey spiezep]
as) o3 Sur

-je[9y splezeH

€TVO

[xaage]

224

I xage

[ge]

TTvd

TvD

“UOI}eDYLISA UOTYRIUST

-noop J19s() ‘3urysey
UOIjedyLIan wo)sAg
s901A

-Op MU JO 3893 [NJSSaD
-ons uodn uoljRULIO)
-ur AI0SS900® MOU IIM
931sqam ojepdn A[redo
-Ijewrojne 03 SAINPID
-oxd Ajriep ‘poamb
-oI se ole s[eRIIjRW
UOTIONIISUT I9SN AJLIDA

S90IA
-9p MU JO 3893 [NJSSaD
-ons uodn uorIjRULIO)
-ur AI0SS900® MOU YIIM
931sqom ojepdn A[redo
-Ijewrojne 03 SAINPID
-oxd Ajiiop ‘poamb
-oI se oIe

s[elI9}RW

UOI1ONIISUL I9SN AJIIDA

‘3dey oq 09 spiodex Jururery
Suro8u(‘ueard Sururery ojerad
-oadde edouo siesn ppe 0} A[uo
IojeIjSIUTWIPE WA}SAS ‘ureg
-sAs @Y} SN 0} SISSN Ppajedly

-usyjne mof[e A[uo 03 wolsAg

2918
-qom uo s91108s000® posoidde jo
9SI] 9)BINDODR UIRJUIR]N ‘WIDISAS
o[} TJIM PIOSN 9 UBD SIIIOSSID
-oe posoxdde A[uo eyl osn 10J

SUOT1ONIISUL OYJ UT 99RIS A[IBI[D)

2918
-qom uo s91108s000% posoidde jo
9SI] 9)BINDODE UIRJUIR]N ‘WIDISAS
o) TJIM PASN 9 UBD SIIIOSSID
-oe posoxdde A[uo eyl osn 10J

SUOT1ONIISUL OYJ Ul 99RIS A[IBI[D)

IOUTIA

Toleyy

Toury

ASTY UIN

a[qeqoaduwy

qSTY Ut

a1qeqoaduy

qSTY Ut

a[qeqoxduy

STy Mo

IouTN [euoIsEOD()

EE|

mor] Iolejy ajoway

MSIY MO

IOUTIN [euoisedd)

‘Surureay
orerrdoxdde pey
j0u aaey s1as)

syos

uorsnjur Kjred-paryg
8o ‘S911085900%

posoxddeun jo osn)

*SOLIOSSD0'
juoryed 10J suoryed

-yoads arenbepeuy

[ouuosIo g
poaurerju
10 porrs
-un Aq esn
[ouuosiog
poureijun)
10 porIs

-un £q esn

SO110SS900Y
Suoipy soseyd

-ing JIswojsny

SO110SS900Y
Suoipy seseyo

-ing Jowojsn)

-rePy

-yeroy

-yeroy

-1e[oy

as) o3 Surt

spaezep]

as) o3 Sur

spiezel

as) o3 Sur

spiezel

as) o3 Sur

sprezep]

Tvvd

4o

[7e]

T°evd

225

UOT)ROYLIDA USISO(]

UOT)ROYLIDA USISO(]

andinQ uSise(q

‘3u11so], weIsAg

‘UOT)ROYLIDA uSrsa(]

andur ooyo Ajrues,

01 Areiqi] 8nig osM) ‘K1guo
®jep [enuew 9jewWI[e 03 (SOPod
-1eq yjm ‘-39) Surmwrerdoxd
sjewrony ‘yojewr A8y} jeyy
sooyo pue dwind werloxd o3
SI9SN JUDISYIP OM]) 9DI0J ‘suolsny
-UT [BDI91ID 10 ‘SUIS9) 9sn YIrm
uSIsop 90®JI9JUI I9SN 9)ePI[eA
andur oeyo Kjrues,

01 Areiqi] 8nig osM) ‘A1yue
®jep [enuew 9jewWI[e 03 (SOPod
-1eq yjm ‘39) Surmwrerfoxd
ajewrony ‘yojewr Aoy} jeyy
sooyo pue dwind weiSoxd o3
SI9SN JUDISYIP OM]) 9DI0J ‘suolsny
-UT [BDI91ID 10 ‘SUIS9) 9sn Yirm
uSISop 90®JI9JUI 1SN 9)ePI[eA
uorjerado 3091100

10] Surpod-10[0d uo A[o[0s Ao

jou so0p uSIsop oYY 'Y} SINSUH

*SUOI10oU
-Uo0d pINy pue [BOII}D9] [[B I0J
Joroa urerys ogerrdordde ‘siog

-douuod I19yjo pue Itomod oino

-os AqeotsAyd ‘pedLsy no xoory

Toury

Toury

IOUTIN

MSIY wnIpagy

jquanbaig

MSIY wnipay

quanbaig

ST UIN

a[qeqoaduy

sy

MO IOUTN d[qeqoig

Tolein

Tolejn

NSty YSTH

juanboaig

NSty YSTH

juanbaig

ST

MO IOUIN 90U

Tolejy

SsTY YSIH

o[qeqoidg

*SI931[0I0TW

JO PeOISUT SIOII[[IU

“3'g symun Suoam
Suisn enfea sI199
-uo Iasn dID

duind Sutmrmureadoad

o[IyMm Ioqunu Suoim

sodAy Iasn dio
putrq 1o10o
StoJesn dID °UL
s[ewrue

1930 puUe ULIPIIYD

I01If uewWN]

I01If uewWN]

JOoII uewWIny

10115 ueWNH

[oUUOSIDJ
paurerjun
10 PoIIHs

-un £q esn

-yeroy

-yeoy

-yerey

-reey

-1e[oy

as) o3 Sur

spIezer]

as) o3 Sur

spIezer]

as) 03 Sur
spiezep]
s 03 Sur

sprezepy

as) o3 Sur

sprezep]

€'9vD

[l ge]

T°evd

7o)

[7o)

226

uoryesyrep uldiseq

‘3uryso], weIsAg
‘UOIJROYLIDA ugsa(q
‘onsst
Bl Y sassaippe Ten
-ueuW Josn jey)} AJIIOA
"UOTJROYTLIDA usise(
*ONSST 9Y) SISSAIPP®
[enuewr 1osn jeyy) KJr
-19/ -Suilse], wolsAg

‘UOT)ROYTIDA usiso(]

UOT)ROYLIDA USISO(]

‘Sururem e ‘sa Suruo

-1ea1yq 9JI] ST UOI}IPUOD € UM
sIaAISaIeD WIOJUl Ued suIe[e Jo
s[oas] Surdiep suIe[e odoues
-mnu 1o as[ej Suronpar £q andrye;
unre[e eziwiruiw prnoys sdwng
‘19A130100

a1} ydwoad 10 uoIjRULIOJUI JURU
-1ped yym jepeoriq I jueryed
Jo andur epooaeq jsurese }ooy)
‘Areiql] Snip pue siopio jsurede
‘030 ‘ySrem ‘e8e juerjed Noayp
‘1o8uep oY) Jnoqe SIsAlS

-oIed 9jeONPH 'SI9S AJ 2pOd
1010D) ‘sgrod jo sedAy jueisj

-JIp I0J SI0}09UUO0D JOUIJSIP 9S[)

‘SI9SN 93eONPY ‘[oUURYD
dwund uo sweu Snip Aedsiq

jndur oayo Ajrues,
01 Areiqi] Sniq osM) ‘K1gus
®jep [enuewW 9jewWI[e 0} (SOpPod
-req yjm ‘39) Surmruwrerfoxd
ojewrony ‘yojewr Aoty JeyY
spoyd> pue dwind weiSoxd o3
SI9SN JULISJTIP OM] 9DI0] ‘suolsny

-UT [BOI91ID 10, ‘Sursa) asn Yirm

uSIsop 90®JI9JUI I9SN 9)BPI[RA

ToleIN

MSIY wnipay

[euoIs®OD()

sy

mory 1oley ojouwray

qsTy

Mmor] 1o[eJN ojouwray

Toury

Tour N

NSIY wnipagy

juanbaig

ATy Wnipey

juanbaig

Tolein

IoleN

Tolein

Tolejn

Tolejy

sty USIH

jusnboig

st YSIH

orqeqoidg

SsTY YSTH

a[qeqoid

SsTY YSIH

juanbaig

SsTY YSIH

jusanbaig

paiouldr suiely

quarjed aje

-tzdoaddeur uo esn)

juoryed e

uo 310d 3uoim oy} o}
Ppojoouuod uolsnjuj
dwmnd

[PUURYD-T}[NW € JO

JouueRyDd © U0 pa[[e}s

-ut Snap Suoap
“3s1] Snap
woyy 3Snip Suoim

$309[08 I9sn d1o

I0115] ueWNH

I01IG] URWN]

011 ueWN

011G UeWN]

I01IG] UeWN]

-1erey

REICH

-yeroy

-yeroy

-1e[oy

s 03 Sur

sprezep

as) o3 Sur

spIlezey

as) o3 Sur

spaezer

as) o3 Sur

spiezel

as) o3 Sur

sprezep]

8°G¥VD

LSvD

9°¢'¥D

[0]

v'evD

227

*Sur)se) weysAg

‘UOI13eOYLIaA ugseq

‘3uryso) wolskg

‘UOI13edYLIDA usseq
‘8urysay

weysAg 8uryse], 9sn
‘UOTYEROYLIOA usiso(
‘onsst

ayg sossaIppe® Ten

-uew I9sn jey) AJLIDA
‘Surysa, reuorpoun,g
‘UOI}ROYLISA ugseq

UOI1RJUSWNIOP JO UOTY

-eoyrie ‘Suigse} osn)

Surysag, s

‘UO0I11eOYIIoOA usseq

uoryeoyrIoA udiso(q

suorjemored yym sdioy
qeys I ‘Surpod ieq ‘Aoeuwrreyd

ur sSeq jo Sul[eqe] dljyewWOINYy

Surwrwre18oxd gsnlpe o3
pesn uayj A[[esrjeuwrojne 3a9s Io

PoI9)Ue UOTIRULIOJUT 19§ UOTSNJUT

sfopow [ejusut
Iey) 03 suoljejussardal ejep

Yojeuw 0} SI9SN M J[NSUOD)

Surureiy roar8ared

‘wire[e pue IOSUdS UOISN[ID()

uory
-ejUOTNOOP pue Jururer) JIas()
“juew
-UOJIAUS POPUJUI Ul posn ST

dund moy yogew j3snw ulrso

Areaqrry Sni(jsurede }doyDH

Msty Mo
9)eIOPOJN 9j0ouAY
ST mO'T
91RIOPOJN 9joudy
Msty Mo
9)RIOPOJN 9j0oUAY
qsryg Mo
IOUIN [RUOISEID(O)

MSIY wnipay

To(eIN [RUOISBIO()

Z
sy

MO IOUTN d[qeqoig

MSIY wnipay

9)eIOPOJN 9[qeqoIJ

SSTH WINPT

9)RIOPOJN 9[qeqoiJ

s wWnipay

9)eIOPOJN O[qeqoIJ

st YSIH

IoleN juenbaig
sty UStH

1olein juenboig
A

SSIY YSIH

1oleN a[qeqoid

10J pajunodde

jou Seq 031 poppe
8nip jo aWIN[OA
Sur
-qnj 9y} Ul SWNoA
[enprsar Ioj JuUNOd
-oe juseop dumng
*A11991100

ejep jo (s)uwregr ue
juesaadar A[niy jou

SOOP 90RJIOJUI I9ST

398 uols

-njur oyl uo JI9[[ox
oYy Surdwepun j0N
8eq Arepuodes

oY) mofeq Seq Arewr
-tud Sutremo] JON
MOPIOM

I9S() Uojew 7 Usd0p
Moy IoM dun g

12991100

-ur St I9pI(uolsnjujy

eye

9rordwoouy

1o pordniio)

sjusweINS

-9\ }991100U]

SjpuawWaINs

-B9J\ 1991I00U]

sjusweINS
-9\ }991100U]
sjuouIaINs

-BOJN 1091I00U]

I01IG] URWN]

10115 ueWNH

I01If uewWN]

I01IG] UeWN]

as) o3 Sur
-je[ey spiezep]
s 03 Sur

-1e[y spiezel

as) o3 Sur

-je[ey spiezep]

s 03 Sur
-1e[ey spiezel
as) o3 Sur

-je[ey spiezep

s 01 Sur
-je[ey spiezey
s 03 Sur
-je[ey spiezey
as) o3 Sur
-je[ey spiezep]
as) o3 Sur

-je[9y splezeH

LvD

€97O

[4e]

97D

9¥D

cLevd

IT°¢vD

0T'¢vD

6°S¥D

228

uoryesyrIea usso(q

« uoryedyLIaA
weys£g ‘UOI}eDOYLIDA
UOI}RIUSWNDOOP IBS()

« UOT1eDYLIoA 20vJ

-I9JUI 9DIAd(] ‘UOI}ed

-yuea ndino uSso(g,,

«

‘uorjeoyrioa oouejded

-0® I9S[) UOIJRDYLIoA

Suryse] woysLg ‘uored

-grea ndyno ulise(y,,

‘opoossed jnejep uowr
-woo ' yim sdwund diys g, uoq
‘sSuryjes o8ueyd 03 opodssed

axmmbaxr ‘rn dwind 3Ino ooy

‘oenbape s1 uoljRIUSW

-NOOP jeYJ SINSUS ‘SISS() UIRI],
‘possed

SBY 9UIINOI UOI}ROYLISA UOTI}09U
-U0D 90BJISJUI DIASP O} DIdYM
SOOIADP POJOoUUO0D puR WISAS
o) Aq WIS 9(UBD IO PajdoU
-uod> AqreorsAyd are jeyj asoyl
9'1 SODIADP Payde)Ie UIMII]

9jeIjULIolIp O3 90RJIOJU] IOS()

"U013eD0] 10119 JO U0l
-eoIpul 1D Y3m jndno ao1j30u
pU® IOII® OAISU9)Xd [JIM UOIY
-BOILIOA SUOIJEDIUNWIWIOD puUe
ejep ‘SUn{ILYD 10115 }SNGOI YIIMm

pausisep aq 03 A3010do} weysAg

st Ui
1oleNy o[qeqorduy
sty Mo
9)RIOPOIN 9j0UWRY
Asrd uiN
Tout]y 9[qeqoaduy
sty Mo
9)RISPOIN 2}0WDY

ST

mor] 1ole]y 9r0UIdY

S[STY WNIpaIN

93eISPOIN o[qeqoid

EE|

MO IOUTN 9[qeqolg

SSTY WnIpaIy

9)RISPOIN o[qeqoid

s3uryjes
dwind se8ueyd uos

-1od pezlioyjneun)

*U0I}BJUSWNOOP
I9ST 10 @SN papuajur
ST [JIM 9OUBPIOD
-O® Ul pasn jou

s1 Alosseooe uy

*A13091100 WIDYSAS
oYy} 03} pPoeddUUO0D

jou st A10ss900® UY

‘Aerdsip
Iesn pue juerjed

ueamjaq poydniioo

10 PoATEDaT jou
‘pafelop SI 921A9pD
Tesrpaw e woay
'jRp JO Wej Uy

Surreduwrey,

Sutredureg,

osn

-SIJ\| A1088900y

asn
-S| K1088900y
asn

-SIJ| A1088000y

eye
9rordwoouy

1o pordniio)

s 03 Sur
-1e[ey spiezel
as) o3 Surt

-je[ey spiezepy

os) 01 Sur

-ye[ey spiezeq

as) o3 Sur
-je[ey spiezep]
as) 03 Sur

-ye[ey spiezeq

as) o3 Sur

-je[9y splezeH

67D

6'¥D

'8YD

T'8¥%D

8¥D

TLvD

229

‘Suryseg [RUOIIOUNT

‘Surysey [euorjouny

‘Surysey [RUOIIOUN

pmy jo

mopy Aem-auo 90I0JuUe puR j4snq
-01 9 09 (79S UOISNJUI) SOIIOSSOD
-oe pue aremprey dwund uSseq
‘93BI MO} JURISUOD IY/TWIT

© I9AI[Op 01 Aem pooS ® j0U SI
inoy ue 9duUO0 snjoq rqwy ' Jul
-dwuind “-8'5 -seny[iqedes orem
-prey dund yjim 9ouRpIOddR UL
99er mopg dwind wnuwruiw Ty
9rel

moy ping Suninsesw K[}0911p JO
SUBOUW 9710 IO IOSUDS MOJJ B 9ST
‘o[qIses) 31 pInY Jo Moyedyy 1oy
sorprunyioddo ozrwiuljy — ‘9snq

-01 2q 03 axempurey dund ulsaq

mor] IoleJN ojouray

Mmor] IoleN oj0UaY UOIJRIIRA OATSSOIXG]

powrwreigord yojrew

Mo 10BN SjowaY 10U SOOp 99'I MO[]

SO13ST
-1910RIRYD) pUe
9OURUIIOLID]

jo Aoenbepeur

SO13ST
-1910RIRY)) pUe
9ouRMWIOJID

jo Aoenbepeuy

sotgst
-IajdorIey) Ppue
2durWIOJIa
jo Aoenbepeur
So19ST
-1910RIRY)) pUe
90URWIIOJIDJ

jo Aoenbepeuy

spiezel 3ui8y

pue ‘oouruay
-urejy ‘ornyreq
[euonyoung

spaiezely Suidy

pue ‘oourua)
-urey ‘eanireq
[euorouN,g

spiezel Suidy

pue ‘odourUL)}
-ureN ‘eanyreq
[euorjoun,y

spiezey Suidy

pue ‘oourue)
-urejy ‘oanyre,q
[euonyoun,g

spaiezel Suidy
pue ‘oourua]
-urejy ‘oanyreq

[euorjoun g

€'T'¢D

T8O

T'T°ed

T¢D

SH

230

‘Suryseg [euorjouny

‘UOIYROYLIOA usiso(

‘Suryseg [RUOIIOUNT

‘UOT)ROYLIDA usiso(

‘Suryseg [euorjoung

“UOI1eDYIISA uSrsa(]

‘Suryseg RUOIIOUN

‘UOT)ROYLIDA uSiso(q

‘Suryseg [euorjoungy

“UOIeDYIISA uSrsa(]

‘Surysey [RUOIIOUN

‘UOI1eOYLIoA u8rsa(]

s1ojouwrered Surw
-wrer8oad jo A1juesiur Jo 9sed ul

Areiqi SnIp ‘1899 J[0S UO-IOMOJ

1899 J[os UO

-1omod ‘¥oo[o jo dnyorq L1913eg

‘wre(e pue A11A1109U

-u0d jo sso| pejoadxaun 30919(]
‘dund dogs pue sejqqnq

Ire 30999p O wWIeR[R Iy We)
-sAs YY) I9jud O} IIe IOJ SOIJIU
-njroddo eomnper 03 wsTURYDOUL
dwind pue jes uorsnjur uSiseq
‘ouop jou Jurwrid

UOYM [YDIeD 0} WiIe[R SUI[UI II'y
‘uorsnjur 3urjre)s a1ojyeq degs
Surwrad epnpour oy) uSise(
*A[3091100 suorjounj

1oxeads o13 JI 30oyd 03 auoyd
-omru e Sursn ‘*3'0 ‘9593 j[os
uo-romod FunINp orempiey 3s9J,
‘(fensia pue orpne) sarjeRpow
wrere ordiynuw esn ‘3snqoa

2q 03 alempiey wiele ulsa(

ST U

1oleNy o[qeqorduy

ASTY UIN

TolejNy orqeqoxduy

qSTY Ut

1oley o[qeqoxdury

STy Mo

IOUTIN [euorseod ()

ST

mor] Io[e]N 9j0uaY]

qSTY Ut

1olelN o[qeqoaduy

ST

mor] 1ole]y 9r0UIdY

ASTY

mor] IoleJN ojouray

qsTy

Mmor] Io[eN 90U

ST WNIPLT

1oleN [euorseod ()

ST wnIpay

I1o(e]N [eUOISEID(O)

Asry

mor] Iole]y 9r0WOY

sKoy pedunoqap

Arrodoadwr 10 onig

amrey (O1Y)
201D sweay
sjuauoduwod
dI5 uodmjlaq suory
-9Uuu0d

popo110d

10 ‘esoo] ‘g0e1100U]

oury ur a1y

swrad 09 aanyre;q

wIee Jo aanjrey

so1gst
-19j0RIRYD PUR
2ouURULIONID
jo Aoenbepeuy
SO13ST
-IojoRIRYD PUR
90URULIOJIDJ
jo Aoenbepeur
so1gst
-IojoRIRYD pUR
2ouURULIONID

jo Aoenbepeuy

SO13ST
-IojoRIRYD PUR
90URULIOJID J
jo Aoenbepeur
So19st
-IogoRIRYD pUR
2ouURUWLIONID

jo Aoenbepeur

SO13ST
-I9)oRIRY) PpUR
90URULIONIDJ

jo Aoenbepeur

spiezel 3uisy

pue ‘oourU)}
-urey ‘eanireq
[euorjounyg

spiezel 3ui8y

pue ‘oouruay
-urejy ‘ornyreq
[euonyoung

spiezel Suidy

pue ‘oourU)}
-urey ‘oanireq
reuorjoun,y

spiezel 3uiy

pue ‘oouruay
Surely ‘eanyreq
TeuorOUNJ

spiezel Suidy

pue ‘oourU)}
-urey ‘oanyreq
reuorjoun,y

spaiezel Suidy

pue ‘oourua]
-urejy ‘oanyreq
[euorjoung

6°1°¢D

8'T°¢D

L'T°SD

9'T°¢D

g'1'ed

¥1ed

231

Suryse) reuorjouny

‘uorjeoyrion u3seq

Surysay, asn

‘UOIYROYIIOA uSiso(q

‘Surysey [RUOIIOUN
‘UOTPROYLIDA uSiso(q
Surysey asn)

‘Surysay

reuorpoun,g

‘UOIPedYIIoA usrso(]

8urysey s

‘UoT11edyLIan u3seq

‘Surysey [RUOIIOUN

‘UOI1eOYLIoA u8rsa(]

a2ans

-soxd gndjno 9AISSEOX0 U0 WIe[e
puU® 10939p 0} SIOSUAS DINSSIIJ
JUSWUOIIAUS ST POPU}

-ur syt 10y yStey 1odoad oym
e pue o[qeisn(pe s[Sue ueaIdg

*gyS11q pue oSIe| U99IdS O RIA

‘o8® selr1ejjeq
se oJi AI199j)eq IurureRwWaI 93e]
-nofed Ajojeinosde jsnuwr sdwnJ

*s8o1 dwund jeadiejur pue
peojumop 073 aIemjjos apraoxd
4sSNW sI9INjovjNUBRW ‘jeurioy Soy
piepuesls

osn pnoys sdwung

SONB)STUW 091100

A[1sed 09 SI9SN MO[[e pPINoys M)

soanyrej Suryeadal pue
‘go-3onjs ‘uo-3yonjs I0j sonjea

I0sues 3s9], ‘1593 J[OS uo-iemod

Tolein

IOUTA

Toury

JIoUuTN

Toury

ToleN

ASTY UIN

a[qeqoxduy

qSTY MOT]

a[qeqoaduy

STy Mo

a[qeqoaduy

qSTY MO

a[qeqoaduy

Asry Mo

a[qeqoaduwy

qSTY Ut

a[qeqoxduy

ASTY

mor] IoleJN ojouray

qsTy

MO IOUTIN 9[qeqoI1g

ST

MO IOUTN 9[qeqolJ

qsry

MO IOUIN d[qeqord

ST

MO IOUTN 9[qeqolJ

Asry

mor] Iole]y 9r0WOY

uorsnjur

JO 9010 OAISSEOXH

a[qepeaI J0U USDIOG

o3

A1993eq 93enbopeul

dwind woay

erep So[peal j.ue)
odouonbes a1y

-U9 193U9-21 03} 9ARY
‘Burwrwrer8oad ur dn

Joeq A[ises g ue))

aanjre, Iosusg

‘oduURUIUIRIA
Todoaduy 1o
9yenbopeuy
SO13ST
-IojoRIRYD PUR
90URULIOJIDJ
jo Aoenbepeur
so1gst
-IojoRIRYD pUR
9oURUIIOJIDJ
jo Aoenbepeuy
SO13ST
-IojoRIRYD PUR
20URTIOJIDJ
jo Aoenbepeur
SO13ST
-I9joRIRYD pUR
9OURULIONIDJ
jo Aoenbepeur
So13st
-I9joRIRYD PUR
20URWIOJIDJ
jo Aoenbepeuy
SO13ST
-I9)oRIRY) PpUR
90URULIONIDJ

jo Aoenbepeur

spiezel 3uisy

pue ‘oourU)}
-urey ‘eanireq
[euorjounyg

spiezel 3ui8y

pue ‘oouruay
-urejy ‘ornyreq
[euonyoung

spiezel Suidy

pue ‘oourU)}
-urey ‘oanireq
reuorjoun,y

spiezey Sursy

pue ‘oourua)
-urejy ‘ornyre,q
[euonyoun,g

spiezel Suidy

pue ‘odourUL)}
-ureN ‘eanyreq
[euorjoun,y

spiezey Suidy

pue ‘oourua)
-urejy ‘oanyre,q
[euonyoun,g

spaiezel Suidy

pue ‘oourua]
-urejy ‘oanyreq
[euorjoung

¢'¢D

ST'T°6D

YL Ted

€T T°¢D

cL'T'¢D

IT'T°6D

0T’ 1°¢D

‘poambeul se axe suory
-ONIJSUl I9sn AJIIOA
-8urysey [euorjoun,j

*UOTJROYLIDA usiso(q

‘poambeul se axe suory
-ONIJSUl I9sn AJIIOA
« 'Peambax se are
suorjoniysur Iasn AJu

-19A Indino uSse(g,,

« 'Poambal se are
suorjonIjsur tesn AJr

-19A -indjno ulse(g,

« ‘pPeambar se axe

SuoIjONIJSUI Iosn KJT

-19A indino uSso(g,,

‘pa3093ep
uoym sioar8ered Ajrpou 09
sunre[e pue o8eoo[q oprs A[d
-dns 30e9ep 03 siosuss dwndg
‘dnjes ges uorsnjur Jodoad

ainsue 03 SJurureij JIoardere))

SOLI0SS90
-O® UOISNUl 9[LId)s ‘Ysaij Juisn
jo eouerjroduwr aziseydure jsnua
s[enuRW I9S) pue Jururelr) I9sM
‘oouelrodwut aziseydwo pinoys
sfenuewW I9S) ‘oyerzdordde
aroym 1os uolsnjul pue dwnd
Sur100JuUISIp 9dI0JUs SN ()
*aouelroduut

aziseydwe p[noys sfenuewt I9sn
‘ojerrdordde ereym jeos uolsnj
-ur 3urysnyg odIojue jsnur I
*SUOIIONIJSUT oSN Ul

uorjerado 1091100 I197) PUR SOIIT
-AT}O® 9DTAISS [[B JO S[IRJIP DAID)
‘JU9IXe UIRIIOD ® 0} O[qeIDIA

-198 Iosn oq 071 welsAs uSIso(]

mor] 1ole]N ojouray

mor] I0(eJy 9j0waYy

Mmor] 1o[eJN ojowrayg

MO IOULN 9[qeqoid

uors

-nooQ opis-A1ddng

syos

uorsnjur Jo asnayg

J09JUISIP 0% aianjieq

ysnyg o9 aanyreq

‘SUOTIO® DITAIDS DAT)
-001100 sjoedwr [ou
-uosiad oo1AI9S 10}

Sururery jo soey oy,

2an

-[re A10ss000y

2an

-[tey A1088900Y

9O URUJUTRIN
1odoxduuy 10

arenbapeuy

‘9dURUDJUTRI
1odoxduuy 10

a1enbapeuy

‘90 URUIIUTRIN
1adoxduy 10

9renbapeuy

‘9dURUDJUTRI
1odoxduuy 10

a1enbopeuy

spiezey Surdy

pue ‘oouruay
-urejy ‘eanyre,q
[euonyoun,g

spaiezel Suidy

pue ‘oourua]
-urenN ‘eanyreq
reuorjoung

spiezey Suidy

pue ‘oourua)
-urejy ‘eanre,q
[euornoung

spaiezel Suidy

pue ‘oourua]
-urely ‘eanpreq
[euorpoun,y

splezel 3uidy

pue ‘oourua)
-urey ‘eanreq
[euoroun,g

spaiezel Suidy

pue ‘oourua]
-urejy ‘oanyreq
[euorjoung

€8s

€¢D

¥'ceD

€S0

[axaaie]

1T ed

233

Surysa) reuoOUN]

‘UOT)ROYLIDA usiso(]

uoryesyrep uldiseq
SIOYISTA I97[30

10 sIoquew AJIurejy
pue sjuerjed Suryoeo)
soziseyduo

Sururery

IoA180100 eyl AJLIDA

‘paammbai se axe suorg

-OnIjsur I1esn AJII9A
‘3urysey reuorpoun,g
‘UOT)ROYLIDA uSrsa(]

‘3ur
-yoo[un Jnoyjm pasowal st Aid
-dns J1 wrey -uorsnjur Surjies)s
210Joq Paso[d 2q 0} }o0] aainbay

‘A1ddns 8nap oy }oo[A[[eoisdyd

‘s[ea
-I9JUI JNOD0] puR ‘DWN[OA [B)

-09 ‘ejea snjoq 10j Areiqi] Snig

Aqmurey pue juaijed jo Sururedy,

'Pe399949p ST uonIp
-uoo j1 wre[e pue juawederd jos
1odoxdur jo earjeorpur seSueyd
amssoixd jndjno 30939p 03 sios
-uos duwng ‘Sunimoes pue
quowede[d 9os uolsnjul todoxd
aansus

01 Sururery JIeardeie))

Toury

IOUIIN

ToleyN

Tour N

qSTY MO

[RUOISBID()

ASTH MO

[euoIs®OD()

sy YSIH

orqeqoid

ATy Wnipey

juanbaig

SSTH WINPT

Tolejy

[eUOISBID()

MSIY wnipay

Tolein

Tolejn

9)RIDPOIN

[euoIsEOD()

SsTY YSIH

juanbaig

SsTY YSIH

jusanbaig

Addns
Snip yym siodurey
1o soAOwWaI uos

-rod pezuoyjneun

UOISTJULISAO
09 spes[sysenbax sn|

-0q jo serres pider y

Axoid 49 VDI

uors

-npPoQ opIls-jusryed

11U

Surreduwre],

Surredurey,

uoyng jusrred

uoyng jusiyed

uoyng jusiyed

2an

-[rey A108s900y

spie

-ze PIRCYETNS
spie
-zel JI0mM3oN

spaezeH VOJ

spaezer] VOd

sprezeH VOd

spaezeH VOd
sprezeH vOdJ

spiezeH vDd

spaiezel Suidy

pue ‘oouruay
-urenN ‘eanyreq
[euorjoung

LD

LH

1290

29D

' T9D

19D

19D

9H

[acie]

234

Surysa], [euorpoung

‘uorje[eISUL
210J9q 921A0P oY} Aq pajedIjuayy

-ne aq jsnuw sorepdn oremuualg

‘o[qe[reArRUN
oI SsuLIR[R [RIJUSD IO POYIOM
-jou 9sed Ul A[[BDO] SULIR[R 91T
-unuue o3} a[qe oq jsnuw sdwnJ

(sentea urnsur
spoou jer) dund 9soon(s e '3-9)
aNUIjU0D 0} UorjRUWIOJUT JO AI1Ud
renuewr aamber Aoyy jr surrefe
Bursrex A[qrssod ‘uorjersdo jo
opowW PONIOMIDU-UOU ' 0} Mdeq

[Te] 03 °[qe °q JsSnuW $IdIAd(]

‘A18urpioooe [ourd quoiy ayj e
arqerreae suorpdo Jurwwreigoxd
S1[} 9O119S9I PUR SPOW PURUIUIOD
sjromgeu ' ut st dund uoym Keyd

-SIp AJI®S[D JSNW 9DRJISIUI I9S[)

*90UDIIDFIIUT
10] Terjuajod qruar] ‘sjusuodurod
ojeredas se 9DRJIOJUI NIOM)OU

pue 1o[jorguod dwnd uSise

sty WIN

1oleJN o[qeqoaduy

qsTy

MO IOUIN d1qeqolg

Asty

MO 10Uty jyuenbarg

ST UIN

1olely o[qeqoxdury

qSTY Ut

1olelN o[qeqoaduy

sty

mor] Iolejy ojoway

SSTY YSTH

Tolein alqeqoig

s[sty UStH

9jeIopoOJN juenbaig

ST

Mmor] Iol[eN 90U

Asry

mor] Iolejy ajoway

poysnd ajepdn
aremuIIY 9jewWIIISo]

-[I Io pazuoyjneun

surrefe

9re8odoad 03 a1qeu

JIomjou WOl evyep

oAdLIjeI 09 Oqeu[)

SpurwIwiod
eued quoay yYym
101 uod JIomiau
woay spuewwo))

(030 ‘paqrorjuod
aq j ued ‘doys)
Iogns suorjerado
uorsnjut ‘108800
-oad dwind sduwrems

uorjyedunuuod

yiomiou Surpuery

Surreduwe],

Surredurey,

saan

e {10m30N

saan
e {10m3eN

soan

e {10m3oN

PIgUD

1o1guo

-ze

-zel

-zeH

-zeH

-zeH

-zel

-ze

T°eLD

€LD

c'TLD

[xavie}

LD

¢ TLD

T'T°LD

235

*3urys9) welsAg

‘UOIYBOYLIOA usiso(

‘3uryso) weyskg
‘UOT)ROYTIDA uSisoq
*3urys9) welsAg

TUOTJeDY LIS udiso(y

JILN 3ursn s}o0[d 9ZIuoIydouig

JIomiou
a1} woay sejepdn pajedljuayIne
Aprodoad gdeooe prnoys sdwung

JI0mpau
a1} woay sajepdn pajedijuayine

Arredoad 3dedoe pnoys sdundg

(senpea urmsur
spoau jey) dund asoon[S e ‘*39)
aNUIIU0D 0} UOTjRUWIOJUT JO AIjUD
renuewr oambex Aoy J1 suiele
Sursrex A[qrssod ‘uorjeiedo jo
SpowW PayIOoM)dU-UOU © 0} Hoeq

e} 03 9[qe 9] JSnW $IDIA(]

‘perdALious aq

JSNUW SUOIFROTUNWIUIOD IOMION

SsTy

mor] 10le]N 9j0WOY

Asrg uiN

IOoUTN [euoISEOD()
Asrd uiiN

IOUTIN [euoIs®OO()
st

ULy J0uT\ o[qeqord

STy uiN
TourNy orqeqoxduy
sty Ui
Toury orqeqoxduy

jsty ySIH

I1oleIN juenbaig

AsTy Mo
IOUTIN [euorseod ()
sty Mo

IoutN [euOIsBOO ()

qsry

MO IOUIN d[qeqord

ST

MOT IOUIJN 930wy

Asry

MOT IOUIJN 930wy

5 oYe) o}
we)sAs 19Yyl0 woIj

stoyip oo dwng

sojepdn Areiqi] 3nip
ysnd 03 Ayiqeuy
sorepdn aremuriy

ysnd o3 ALyiqeuy

a[qe[IRARUIN YIOM

-jou saYRW ORIy

UOT)RUWIIOJUT
juotryed pejoejord
TeaAal suroyyed
ogeI) JI0MION

uorjewr

-1oyur quaryed pajoay
-oxd s[eaAa1 olygel)

jiomiou SULIOITUOIA

sjuswaans
~eoJN }991100U]
sjusweINS

-9\ }991100U]

9s() IoMIaN

os[) MI0M)aN

9s[) I0M)aN

Surredurey,

Sutredureg,

Surredwre],

-zel

-zZeH

-zeH

-zef

-ZeH

-ze

-zeH

-zZef[

spie

S10M)9N

spie

I0MIDN

spIe

SI0MIDN

spaie

S10M3ON

spie

S[10M30N

spaie

S10M3ON

spie

SI0MIDN

spaie

J10m3oN

T°e'LD

g'LD

VLD

v LD

VLD

veLD

€eLD

c'eLD

236

Surysay, os)
‘UoI11eOYIIOA ussoq
Surysag, asn
‘UO1)ROYLIBA ugsaq
BurysaJ, asn
‘uo1yedyrIan ugseq

UOT)ROYLIDA USISO

Surysag, 9sn
‘8urysay, reuorjoun,g

‘UOIYROYIIOA uSiso(q

Surysay, 9sn
‘Surysay, reuorjoun,y

‘UOIYROYIIOA uSiso(y

‘3urys9) welsAg

‘UOI1eOYLIoA u8rsa(]

*JUTRIISUOD
' J0U 9I' S9ZIS P[AY 1Y) 2INSUF
a[qe[reA’ aIoYM SUOTY
-eIjUEOUOD SNIp plepue)s as()
a[qelreae

219Uy M saweu SNIp pIepUR)S 9s()
sorreiqI] Snip o81e] 10y dund
uo o8ei109)s

ojenbope oainsuyg

sIasn

0} 9[qISIA UOIsIoA T OYRIN
31 (1ea4 10d oou0 ‘-§'9) Ao
-tporred 1esn oyj jdwoad ueo
sjyromjou uo jou sdwng 'ST
UOTSIOA JUDIIND Y} JeYM 99S
0} Aienb ued pejoouuod Iom
-jou oie jey) sdung Areiqr]
SNIp ay) JO UOISISA [DIYM dARY

sduind yorym Suryoery jroddns

jsnuwr s[oo} jusweSeuewr duwng

‘swaqsAs 19y10 yiim Sur

-3edIuNuWod Udym s3un 3joay)d

Toury

sty WIN

a1qeqoaduy

SsTy

U\ IOUIJN 9[qeqoid

Asty

U 10Uy 2[qeqoid

ST UTN
Tourjy o[qeqoxduy
MY UIN
TouwrNy o[qeqoxdury
sty UIN
ToutNy o[qeqoxdury
ATy Mo
9)RIOPOJN 9j0UWRY

EE |

MOT IOUIJN 230uWdY

qsTy

MO IOUIN d[qeqord

qsty

MO IOUTIN 9[qeqOIJ

ST

MOT] IOUIN 930wy

qsTy

MO IOUIN 90U

ST

MO IOUIN 90U

SIY WNIpajy 93e

-I9pPOIA [euoisedd()

sowreu Snip

JI0J [[ewrs 00} sp[arqg
SUOTJRIJUSOUOD

Snip piepuejs-uoN
sawreu

3nip piepueis-uoN
rews

ooy AKreiqip 8Snig

°1q

-ISIA 30U UOISIOA (]

UOISIOA (] 3991100U]

1091I00UT UOISIDA
-U0d ‘sjIun JULISPIP

osn YNH pue dund

sjyuejuoD)

sjuLjuU0D)

SyuLjuU0))

syuejuo))

sjyuejuoD)

Suppepdn

Suppepdn

Suryepdn

SjuawWaINs

-9\ }O9110duj

Areaqry

Arexqury

Areaqi

Arexqry

Krexqry

Arexqury

Areaqry

Arexqry

Arexqry

-zZef[

spIezer]
Snig
sprezep]
Sni
spiezey
Snig
spaezep]
Snig
spIezer]

Snig

spIlezey

sniq

sprezep
sniq
sprezep
Snaig
spiezely

Snig

spaie

J10m3oN

¥'¢'8D

€280

c'c'8D

128D

¢'8D

c'1°8D

18D

8D

S8H

c'9LD

Surysay, s
‘Burysay, [euorjoun,y
‘UOT)ROYLIDA u8soq
Burysag, asn
‘UOT)eOYIIDA usiso(
Surysag, s
‘UOI1)BOYIIOA u3seq
8urysag, asn

‘UoI11eOYIIOA usiso(q

jJuatIuoIrAua asn oy} ur dund
91} @SN 03 PULdIUI SIdSN MOT]
ojeu 07 ‘syIwl] JO Spury Iayjo

1deooe 09 Areiqr Snap puedxy

s8nap

0} podUul] 9q 0} S}Id[® MO[[Y

s3naip 10j sozis Seq pue

suoreIjuaduod o[dinur Moy

SOWRUNDIU 10 sowWeUu

odiynwut oa®Yy 07 S8NIp MOy

qsTy

MO IOUTN d[qeqoig

STy

U 10Uy 2[qeqoid

Rt

urpy Iour|y oqeqoid

sy

urpy I0ury 9qrqoId

SsTY YSIH

Tolejn a1qeqoid

ssry

MO IOUTIN 9[qeqOIJ

ST

MO IOUTN 9[qeqolJ

Asry

MO IOULN 9[qeqoid

SIOXI® UOIjeI)
-sTuImwpe [[e SSaIppe
01 juLIdIYnsS jou oIe
sl 3jos pue pley
1omor] pue taddn
s3nip [enpraiput

013 syaee oyroads yulp
03 Ayqiqe pejrwrg
UOTPRIJUSDUOD dUO
jo s8eq ozIs juaIay
-JIp 9S1] 03 AjI[Iqeut
awreu

pueiq + OrIoued

10} jroddns ON

sjuejuo))

SyuLjuU0))

syuejuoD)

SyuLjuOoD)

Areaqrry

Areaqi

Arexqry

Areaqrry

spIezer]

Snic

sprezep

Sniq

spaezer]

Snig

spiezel

Snic

8°C'8D

L'2'8D

9’80

G'c'8D

238

A.2 X-Ray Ventilator Synchronization Application Hazard

Analysis

239

spow

‘UOI}ROYLISA S[pI 03 saydlIMmMs
UOIjRIUSWNOOP I9SM) 3INDIIO 309UUO0DDT qsry mory JSIY Mmor 93e I09R[I}USA PUR }09U
‘UOIJROYLIDA ulsa 0} URIDIUYDD} }I9[R }SNW Wa)SAS 9)RISPOJN 930WdY -I9POJN [RUOISEID() -Uu0oSIp 3INOIID A310113001H spiezely ASiouy LT1D
Burysey Tomod STy mor] ST WINIPaJN oje
‘UOT)ROYLIDA usiso(q £19396q 03 YDIIMS SN wa)sAg 9)RIOPOJN 9jowY -I9POJN [RUOISEID() 1501 st ramod DY A9310133001 spieze}] ASiouy 911D
pioo
Surysay ‘spiepuejs a[qeoridde STy mor] 3[SIY WNIPaIN 93®' Tomod wogsAs pokeiy
g ‘UOT)ROYLIDA usiso(] 0} p[Ing ‘o[qeInp aq 3snu pIoy) 9)RISPOJN 30WdY -IOPOJN [RUOISEID() wolj piezey NOoyg A310119001H spreze}l] ASioury [S fo)
‘Suiysey e}
-uswIuoIAUe jo jaed se pesn aq 0% ST 31 YoIym ‘sse18ul pmyg
1593 pue po[[y[nj jusaur Ul JUSTUOIIAUS 8} 10§ Suljel JT NSTY WNIPaN 9%e MSIY WNIPaJy 93e 10 se8 o3 enp 3Jur
1 -oxmmbax uJisep AJlIop 9rerrdordde o3 welshs uliseq -19poJN oqeqoaduwy -I9POJ\ [BRUOISEBID() -310ys jo A3[iqissog A910119001H spiezel ASieuy] 7ITID
‘syred porjdde usemy
JS1Y Mo STy Mo -9q Inod50 p[nod a8e
1 1-T0909NH 03 uSiseq 9)eIOPOIN 2j0waYy 91eISPOIN 230wy -3eo] a8ejjoa A1ddng Kq10119001H spIeze}] AS1ounyy ST ID
‘8urysay
UOT)ROYLIDA Kyoyes [prepuess] og *S9OIASD Pojoau
[eorijoo[e jo jred se 1930 Yoes UseM}aq UOI}R[OSI [BD -uod AqreotsAyd
1893 pue po[[Y[nj jusur -1130970 apraoid wegsAs ut sjrod NSIY WNIPaN 9%e MSIY WNIPaN 9% uoomjiaq ofexes] ade
T -oambax uSisep Ajrrap UOI300UUO0D [BDLIFOD[S [[B 2INSUH -1opoJN o[qeqoaduy -I9POJ\ [BUOISEBID() -}[0A jo Ajiqissoq A910119001H spiezel ASiouyg TTID
'S9DIASP Paj0oUUO0D ‘ura9sAs 09
Jo Teaoxdde wiyuod 09 1-10909 OSI Ppojoouuod A[snoaue)
poau sosiseydwo uorg 199Ul S9OTADP PoajIouu0d A[[est -[nwts Temod surewr
-eUOWNIO(I9S() JID) -sAyd [re jeyy pue [piepuejs] pue JueljeJ ULYM
aansuj Cpo[[Y[n} jueur Surpeowr Ajddns 1emod poaoad qsry urN Sy wnipajn o8eyea] o8eloa A[d
1 -oambox u8sep AJrIop -de yjmm poe1y welsAs aansugy 1olelN o[qeqoaduy 1o(eN [RUOISRID() -dns jo Ajiqissoq A91011909[H spiezel ASiouyg TT1D
A310113091H spiezel ASioujy 10
spiezely ASiouyg TH
201nog UOI}eOYLIDA uoryeSIyIA peojorpaid Terjruy uorydriosa(g K10899eOQNng K10899e) |IoqUUNN

240

‘uoryeoyrroa ussaq

‘uoryeoyrIaa usseq

MBIADI / UOTJEIYLIoA

UOIjRIUSWNIOP I9S()

L uoryed
|GM.H®> EOm&ﬁ&EDEEUOU

Iesn yndino ulise(y,,

*UOI}eOYLIA
UoTjRIUSWNIOP IBS[)

‘UOT)ROYLIDA usiso(]

‘u3rsop osed

pue A1913eq ojerrdordde osn

ransodxe Ael-¥ [RUOIJULY
-urun proae 03 YojIms uruwW-peop

' UM Iom 03 welshks ulisoq

1oa9] 9rerrdoxdde ue e 19s oq
0} sure[e orpne I0j pesu JySI|

-ySIy 03 UOIpeRIUOWNOO(] I9S)

‘uory
-RJUOTINOOP I9SN Ul K)oJes jualy
-ed 03 uworjuelye merq UL
-UOIIAUS Ppopudjul 10 uIsop
9rerrdoadde

Aq su eonpeoy

UOTYRIUSWNIOP I9S[)
oy} ur juewuoliaus SJuijerado
oY} UIYM I0Mm O3 podu dYj 03
uornjuelje merq ‘Surood ajenb

-ope oInsus 01 wWoIsAs uSIso(q

ASTY UIN

a[qeqoxdwy ajoway

SIS Wnwuy oye

-1opoJN o[qeqoadw]

st Ul 019

-e8118oN o[qeqoiduy

qsryg Mo
IOUIN [RUOISEID(O)
sty mor
Journ DﬁﬂﬁﬂOhQEH

qSIY MO

9)RIOPOJN @j0WdY

SST WnIpay 2je1s

-POIN [RUOISS®IO()
sty Ut
a[qeSi[SoN oj0uaYy
sty Mo

IOUTIN [euoIs®OO ()
Asrd

MOT IOUIJN 230uWdY

yeo] A199)0gg

10yerado 10/pue
juarjed sesodxereno
auIyoRW Kei-y
pey
-1IJuepl plezeH ON
Anfur 10 3103
-WODSIP S9SNBO WA}

-sAs a3} woJj 9SION

Josn

10 jquoryed oyLIls 09

JIUn sesneD JUAW
-oAow [eIULPIOOY

‘01 s308
A131N0I10 wesAg

uorjeuIwIviuUO)

uorjRUIIRIUOD)

uotyRIPRY

uotyRIpRY

uoRIqIA

2ans

-sa1g O1JSNodYy

2ans

-SoIJ OI3Snody

9010,

GRS REY AN

2010,1

JCRILe I pEY AN

yeo

yeol

spIe
-ze}] [eor8ojorg
spre
-zel [eodi8ojorg
spie

-zel [eodr8ojoig

spieze}] ASiouny

spIeze}] AS1ouny

spaezel ASiouyg

spiezel ASiouyg

spiezel ASiouy

spiezely ASiouyg

spiezely ASiouyg

spiezel ASiouyg

spiezely ASiouyg

T'Ted

'cd

CH

T9 1D

91D

G110

TV 1D

T°e1D

€10

| xause;

[qate]

241

“UOI}eOYLIDA
uorjRIUSWNIOP IBS[)

‘UOT)ROYLIDA usiso(]

splepuejs

peymoads 03 jrun 4S9,

sprepue)s

paymads 03 jtun 94sa,

‘Kressedou
9 Arw ULIR[R pUR I0SUdS A}Iprur
-N{ UOIJRIULWNOOP IBS[) OYI
ur jquewuoliaue Surjyerado oY)
UIY)Im JI0M O} Pasu o1} 0} Uuolg
-usjle meI(] -uolje[ljuaA ajenb

-ope oInsus 01 wWoIsAs uSIso(

Aqrrerod osioa

-o1 JIojruow 09 wWeIsAs uSIsa(]

umMOp 9nyYs ofes AI1essodou JI
pue uoryedyIjou A[Ies 9INSuUd 09

Tomod 10jTUOW 0} WIdYsAs udrsoq

EEt

urpy I0uIN 9qrqoIg

st Ui
1ofelNy eorqeqoxduy
ASTY UIN
TolejNy orqeqoxduy

EE |

MO IOUTN 9[qeqolg

S[STY WNIpaIN

1o(e]N [eUOISEID(O)

ST WNIPLTy

ToleN [euorseod ()

AYIprurny 9AISS9dXH

POSIOADI ST
Ayrejod Kiejjeq [eu
-199X0 UAUYM IoUURWI
[euorjuLjuUIUN We Ul
sjoe weysAg Ay,

MO[SeWI0D9(
Temod usym IsuuURUL
[euoIjuUL)UITUN Ue UL

sjoe waIsAg AT,

suonpuon
(UL UOIIAUG]
paquIdsarg

Jjo apIsino
uonered
suonipuon
(UL W UOIIAU]
pequiosaig

jo apIsino

uoryerad(

JeEEREVRERS
Aqrrerod K199

-1eq [RUWIIXH

Addns 1emod

arenbapeur

A1ddng 1emog

spIezer]

[RIUSWUOIIAUL

sprezep

(UL UOIIAUL]

spiezel

[BIUSWUOITAUS]

sprezepy

[T UOIIAUL]

spIezer]

[e)ULWUOIIAUL]

spiezel

[ejusWUOIIAU

1'ced

(o]

c1Ted

T1Ted

T°ed

€H

‘UOI1eOYLIoA

ndnQ ulseq

‘spiepuejs

peymoads 03 jrun 4S9,

‘uoryeoyriaa usise(

“UOI}eOYLIDA

uorjejuewWINOOp I9s)

usiso(q

‘syusweainbal HINH ¢-1-10909

DHI %eew 03 jonpoxd ulise

POPULIUI JO SOLIRUDIS [RJUSWUOT
-1auo o[qissod 07 Surje[aa sprep

-uejs oyroods 0} jun uSso(]

‘SpIRpUR)S UWLIR[R
JURAS[DI 0O ULIOJUOD) ‘spuawt
-uoitaua [edtdA3 ur piesay oq
0} ySnoua pnoj aq p[noys awn
-[OA WIR[® WNWIXE[\ OWN[OA
wre[e AJipowr 073 SI9SN MO[[Y
‘swlefe [ensia pue A10jipne asn

‘Aressedou
9q Aew WIR[R pUR IOSUSS 2INje
-todwo], ‘UWOIIRIUSWINDIOP IOS[)
oY) ur juewuoliaus Surjyerado
oY} UIyjlm yliom O} padu ayj o3

uorjualle mei(-Suijood ajrenb

-ope oinsus 01 wWelsAs uSIsa(]

STy Ui

Toury e[qeqoxduwy
st WA

TofeNy erqeqoxduy
Asrd

MO IOUTIN 9[qeqoIg

sy

urpy I0ury 9qrqoId

qsty

MO IOUTIN 9[qeqOIJ

S[STY WNIpaIN

aoley [euoIseod ()

ST wnIpay

9)RIOPOJN O[qeqol]

Asry

MO IOULN 9[qeqoid

uorjeIpel drjeusewt

-01109[2 [euIa)xo
jsureSe JSEUREL
-oxd jou waysAg

‘sua)sAs [ed
-11909[0 AqIeau yjIim

soIejI03UL weysAg

Spunos uwJaee syseuw

JUSWIUOIIAUS ASTON
sowraIy
-Xo aanjeradway,

Ariqryedwosuy
o19oudeworo9y
ALriqryeduroouy

o130uUSeWOI}09[

S921ADD
Iayjo qirm
a[qryeduwoouy
S901A9P

wyjo s

arqryeduroouy

suonIpuon
[e)UL W UOIIAUG]
paquiosaig

jo apIsino

uoryeradQ

suonIpuon
(UL UOIIAUG]
paquosarg

Jjo apIsino

uornyerad(

as) o3 Sur

-je[ey spiezep]

spiezey
[ejULWUOIIAUL]
spaezep]

[T UOIIAUL

spiezel

[BIUSWIUOITAUL]

sprezep

(UL W UOIIAUG]

sprezey

[ejusmruoIrAUg

spiezel

[ejusWUOIIAU

VH

Tved

7'eD

1°€€dD

€'€D

€'C€D

[xase]

243

ndinQ uSiseq

‘3uryso], welsAg

‘UOT)ROYTIDA usiso(

‘UOI1eDYLISA UOTYRIUS

-noop I19s() *Surysoy
UOIYeOYLIsaA WYSAG

‘poamb
-9 Sse oJe s[eLIdjew

UOTIONIISUT TSN AJLIDA

uorjerado 3091100
10] 8uIpod-10[0D U0 A[o[0s Ao

jou seop uSIsap ayj jey) 2Insuy

'SUOT300U

-uo0d pINy pue [BOII}OS[4 [[B 10
jorea urerys ogerrdordde ‘sioy
-douuo0d I9Yjo pue romod aInd
-as AqreorsAyd ‘ped£ay jno ooy
‘3dey 2q 09 spiooax Sururery
Suro8u(Q ‘ueard Sururer) ojerad
-oadde edouo siesn ppe 0} AL[uo
IojeIjSIUTWIPE W}SAS ‘ureg

-sAs oY) oSN 0} SISSN Pajedly

-usyjne mof[e A[uo 03 wolsAg

*SOOIADP POJD2UUO0D I10J
$991s 01 syUI] SuIpn[dUl ‘911s-qom
eiA j1oddns ejower pue s[eLI9}
-ewr SUIUIRI) DAT}ORIDIUT OPNOUT
09 9SN I0J SUOIIONIISU] "WOISAS
osn 03 Surydurejje uUo O[QISIA
Aorerpowriat opms 4aelg HOIMY

apN[ouUl 07 9sn I0J SUOTIIONIJSUT

sty WIN

Toury orqeqoxduy

Rt

MO IOUIN 91qeqorg

ASTY UIN

Tourjy e[qeqoxduy

SSTY WNIPaIN oye

-1opoJN o[qeqoxduwy

sty

MOT IOUIJN 230uWdY

Toleiy

IouIIN

9)RISPOIN

SSTY YSTH

a[qeqord

qSIY MO

[euoIsEOD()

SSTY YSTH

juanboig

purlq 10[o>

SI Iosn we)sAs oy,

s[ewrue

IoYj0 pue ULIPIYD

‘Surureay
orerrdoadde pey
jou aary sIes)

A[3001100UT

posn s1 wa)sAs Oy,

I01If uewWN]

I0413 uewny

1o

10

1o

-un

-dy

[ouuOsIaJ
paurerjun
PoIIs

Aq esn

[euuosIag
pourerjun
pols

£q esn

TouuosioJ
pourelju)
oIS

Aq esn

uoryeoryd
1991100U]
uoryeord

3091100U]

as) o3 Sur
-je[ey spiezep]
s 01 Sur
-je[ey spiezey
as) o3 Sur
-je[ey spiezep]
s 03 Sur
-je[ey spiezey
as) o3 Sur
-je[ey spiezep]
as) o3 Sur
-je[ey spiezep]
as) o3 Sur
-je[9y splezeH

Tevd

€vD

[ge]

TevD

[ge]

TTvd

TvD

244

‘3uryso], welskg

‘UOT)ROYTIDA usiso(q
onsst
EL Y sassaIppe Ten

-uewr Iasn jey) AJLIaA

TUOTJeDY LIS udiso(y

UOT)ROYLIDA USISO(]

UOT)ROYLIDA USISO(]

‘10A1801RD
a1} jdwoad 10 UOTJRUILIOJUT UL
-131ed yym jepeoriq I jueryed
Jjo andur epooreq jsurede 3}doy)
‘Arelql] Snip pue siopio jsurede

‘070 ‘gySrem ‘e8e juerjed ooyD

soxmm pue syrod apood
1o10D ‘syaod jo sodAy jueis]
-JIP I0J $10709UU0D }DUI)SIP 9S[()

‘A1yue

®lep [enuew 9jewI[e 03 (SopPod

-1eq yjm ‘-39) Surmrwrerfoxd
ojewrony ‘yojewr Aoy JeyY
sooyd> pue dwind weiSoxd o3

SI9SN JULISYTIP OM]) 9DI0J ‘suolsny
-UT [BOI91ID 10, ‘Sursa) asn Yirm
uSIsop 90®JISJUI 1SN 2)BPI[eA

‘sjrun own
-[oa pue aunssexd A(juruITIOr]
‘A1jus ejep [RNUBW djeWI[d O}
(sepooreq yym ¢-8-9) Surmrmrerd
-oad eojewOINy ‘yojewr Aoty
Je1) Yooyd pue juea weiSord o
SI9SN JULISJTIP OM] 9DI0] ‘suolsny
-UT [BOI91ID 10, ‘Sursa) asn Yirm

uSIsop 90®JI9JUI I9SN 9)BPI[RA

qsTy

Mmor] Io[eJN ojouray

sy

mory 1oley ojouwray

Toury

Tour N

NSIY wnipagy

juanbaig

ATy Wnipey

juanbaig

Tolein

SSTY YSTH

a1qeqord

qsTy

Mo 10BN ejowaYy

Toury

Tolejy

SSTH WINPT

juanbaig

SsTY YSIH

jusanbaig

quarjed oje
-trdoaddeur uo esn)
I03e[IJUDA Y}

uo j1od Suoim ayj

03 pe3dauuod E@um%m

8T
opow wWOIj 9pow
I09R[1)USA Suoim
S109[9S URIDIUYDST,

‘sTeqIIW jo peajsut

OgHwWD> 8§ sjun
Buoam Sursn onpea
sIojua weIDIUYIDT,

1011 ueWN]

I01IG] URWN]

011G UeWN]

I01IG] UeWN]

-yeroy

REICH

-yeroy

-1e[oy

as) o3 Surt

spaezer]

as) o3 Sur

spIlezey

as) o3 Sur

spiezel

as) o3 Sur

sprezep]

[7e]

vevD

245

€e€vD

[7e]

*3urys9) welsAg

‘UOIYBOYLIOA usiso(
Surysey

weysAg '3uryse], osn
‘UOI1edYLIaA u3seq
‘3urysoy

wolsAg 8ulyse], osn
‘UOT)ROYLIDA usiso(]
‘onsst

a1} sassaippe Ten
-uew I9sn jey) AJLIDA
‘Surysa, reuorjoung
‘UOT)ROYTIDA uSiso(q

Surysay, 9sn
‘uoryeoyrion

usiso(

uoryeoyrIoA uSrso(q

uoryeoyrIoA udiso(q

Surwrwreagoad snlpe og
posn uayj} A[[esljewojne 19s I0

POIOjUS UOI}RUIIOUT UOIJRIIFUDA

‘wegsAs ajeiqI[eody ‘3uiqny

03 JIosues oaunssaid ®IIXO PPy

S[opouw [ejuaw
Iy} o3 suorjejussardal elep

yojewr 03 SIosn [Ym }[NSuUo))

Burure1) 1oa8ored ‘wrely

‘JUSUWIUOIIAUS POPUL)UL UL pasn

st AvI-X MOY yojew jsnuw udrso

310da1 19pi1(Q jsurede ooyD
‘Sururem ' sa Jurusjealyy 9|
SI UOI}IPUOD ® ULYM SIDAISOIRD
WLIOJUT Ued SUWIe[e JO S[OAd]
Suiiep ‘suwre[e eduesinu Io
as[e] Suronpaa Aq angrye] wree

ozIWIUIW P[NOYS SIOIR[IJUSA

MSTY MO
9)RISPOIN ?jomey
qSTY MO

9)RISPOJN 30wy

qSTY MO

93RIOPOIN ajowoy

STy Mo

IOUTIN [euorseod ()

i
STy

MO IOUTJN 9[qeqor]

ATy Wnipey

1oleN [RUOISBID()

ASTY WnIpay

9}RISPOIN o[qeqoid

SSIY WNIPLIN 0%

-I9POJN [RUOISEID()

SSTH WINPT

91RIOPOIN o[qeqoid

ST USTH

Tolein juanboig
P

ssty USIH

1olein alqeqoig
st YSIH

1oleN quenboaig

Surqny

Y} Ul PwWNn[oA [en
-pIsel I10J] JuUNOdd®
1,US90D I0)R[IIUDA\
aaryeraddouy juewr
-Inseajy 2Inssarg
‘13091100
®jep jo (s)wejr ue
quasaidear A[miy jou

SOOp 9oRJIojUI I9ST

ropowr dn-jes ut
SUrewWal I03e[I}UoA
‘S -uorje[IIULA JO
11e)s SUTWIGUOD JON
MmopIom

I9S[) ydjeuwr 3, Usaop
mopgIom Ker-y

1001

-100Ul ST I9pIo AeI-X

poaioudr swre[y

sjuswaINs

-3\ 3}081I00U]

sjuLUWeINS

-BOJN 1091100U]

sjuawWaINs

-B9J\ 1991I00U]

sjuoweIns

-3\ }001I00U]

011 UewWN]

I01IG] URWN]

I0115] uRWNH

I01IG] UeWN]

s 01 Sur
-1e[y spiezel
as) o3 Surt

-je[ey spiezepy

as) o3 Sur
-je[ey spiezepy
as) o3 Sur

-1e[y spiezel

as) o3 Sur
-je[ey spiezep]
s 01 Sur
-je[ey spiezey
s 03 Sur

-1e[y spiezel

as) o3 Sur

-je[9y splezeH

€V'vD

[aage]

TvvdD

v'vD

6°€vD

8°€ VYD

LE€VD

9°€¥D

246

UOT)ROYLIDA USISO(]

UOT)ROYLIDA USISO(]

«
‘uoryeoyriea edouejyded
-O® I9S[) UOI}BOYIISA

Suryse) we)sAg ‘uUoIjed

-yuroa jndjno ulrso(g,,

‘K1iyuo

®'IERp [enuRW 2jeUWI[® O} Awwmuoo

-1eq yjm ‘-39) Surmwrerdoxd
ojewrony ‘yojewr KoYy 9Jeyy
sooyo pue dwind werloxd o3

SI9SN JUDISYIP OM]) 9DI0J ‘suolsny
-UT [BDI91ID 10 ‘SUIS9) 9sn YIrm
uSIsop 90®JI9JUI I9SN 9)ePI[eA

‘sprun awmn
-[oa pue ainssexd A[juruUITIOlJ
‘A1jue ejep [ENUBW 9jeWI[d O}
(sepooreq yym ¢-39) Surmrwreld
-oxd ejewrony ‘yojewr Aoty
Jel) ooyo pue juea weiford oy
SI9SN JUDISYIP OM]) 9DI0J ‘suolsny

-UT [BDI91ID 10 ‘SUIS9) 9sn Yirm

uSISop 90®JI9JUI 1SN 9)ePI[eA

‘UOT)EDO[10119 JO UOIY}
-eoIpul 1ea[d Y3im jndno so1jou
puU® IOII® OAISU)XD [JIM UOI]
-BOYLIOA SUOIJERDIUNUWIWOD puU®

ejep ‘SUnR{I9TD 10119 }SNGOI YIIM

pouSisop oq 03 A8010do} wasLg

MSIY wnIpagy

IourN jquanbaig

MSIY wnipay

Iourn quanbaig
sty Mo
9)RIOPOJN 9j0omwYy

SSTH WINPT

IOUTIN juenbaig
NSty YSTH
Tolejn juanbaig

ST WINPT

9)RIOPOIN 9[qeqoIJ

I8t
opow wWOIj 9pow
I09R[1)USA Suoam
S109[9S URIDTUYDIT,

‘sTeqIIM jo peojsu

OgHwWD> S syun
Suoim Suisn onfea
sIoju UeIDTUYDIT,

‘Kerdsip
Iesn pue jueljed

uoomjaq pojydniiod

10 paAredal j0u
‘poke[op SI 9d1AOP
Teorpowt e woajy

®jRp JO WO Uy

I01If uewWN]

I01If uewWN]

ejye
ajerduwoouy

1o pojdniio)
eye
9rordwoouy

1o pordniio)

-yeroy

-yeoy

-yeroy

-1e[oy

as) o3 Sur

spIezer]

as) o3 Sur

spIezer]

as) o3 Sur

spIezer]

as) o3 Sur

sprezep]

€'9vD

[l ge]

TevD

YD

0

onsst
ELEY sossaIppe Ten
-uRW JI9SN JRYY) AJLIDA
‘Surysa, reuorjoun,y
‘UOTIeOYLIaA ugseq

Surysag, s
‘U011BOYIIOA u3seq

UOT)ROYLIDA USISO(]

uoI1edyrIo ussa(g

UOT)ROYLIDA USISO(]

‘3uryse], welskg

‘UOT)ROYTIDA uSise(q
onsst
EL Y sassaIppe Ten

-uewr Iasn jey) AJLIaA

‘UOIYROYLIOA usiso(q

Bururel) 1ear8ered ‘wrrey

*JUOUIUOIIAUS PIPUSIUT UT Pasn

ST AvI-X MOT yojew jsnur udrsoq

110doa 19pi(Q jsurede }ooyD

‘Suturem e "sa Suruejealyy 9|
SI UOI}IPUOD ® UM SIDAISaIRD
WIOJUT WD SUWIR[® JO S[OAd]
Suiiep ‘swIe[e eduesinu 10
os[e] Suronpea Aq ondryej wiee
9ZIWIUIW PINOYS SIOJR[IJUDA

‘10A1801RD
a9} 3dwoad 10 uorjeuwrIOjUl JURU
-1310d yjim jeredeaq (I jueryed
jo indur epooreq jsurede o9y D

‘Arelql] Snip pue siopio jsurede

‘030 ‘guStem ‘o3e juarjed ooypH

soxmm pue syrod apood
1010D ‘syaod jo sodAy jueis]

-JIP I0] $10709UU0D 1DUI)SIP 9S[()

ASTY MO

IOUTN [euoIs®OD()

P

st

MO IOUTN d[qeqoig
sty wnipsy

1olelN [eUOISEID(O)

MSIY wnipay

ToleN [euorseod ()

qsTy

Mmor] 1o[eJN ojowray

sy

mor] IoleJy 930wy

ASTH YSIH

aoleN juenboig
A

SSTY YSTH

Tolejn a[qeqoid
ssty ySIH

1oleN quenboaig
NSty YSTH

Tolejn juanbaig
STy YSTH

Tolein alqeqoig
sty

mor] Iolejy ajoway

‘opowr dn-19s ut
surewal I07e[I}UdA
‘S'f UOIJR[IIUSA JO
jIe)s SUTWIYUOD JON

MOP[IOM
I9S[) UYDjRW 3 USDOP
Moy IoM Kei-y

1001

-I00Ul ST I9pio Kei-y

o pouany wre[y

poioudr swre[y

juarjed oje

-tidoaddeur uo es()

I03e[IJUDA YD
uo j1od Suoim 9yl

09 Pa102uU0d WAISAS

SjpuowWaINs

-e9JN 1991I00U]

I0115] ueWNH

011 UewWN]

011G UewWN]

JOoIIy uewnpy

I01If uewWN]

011 ueWN]

I01IG] UeWN]

as) o3 Sur

-je[ey spiezep]

s 03 Sur
-je[ey spiezey
as) o3 Sur
-je[ey spiezep]
as) o3 Sur
-je[ey spiezepy
as) o3 Sur

-1e[y spiezel

as) o3 Sur

-je[ey spiezep]

as) 03 Sur

-je[ey spiezey

as) o3 Sur

-je[9y splezeH

9vD

0TS vO

697D

8¢ VD

L°SvD

9°¢¥D

[acn 7o}

v'evD

248

“«

‘uoIjedyLIoA @OE@&Q@O
-0®' I9s) ‘uorjedYIIaA

Buryse) woysLg ‘uored

-yuea jndjno ulise(J,,

*3uryso) weysAg

‘UOI3edYLIoA udsaq
Burgysey
weysAg '3urysey, osn
*UOTJROYLIDA uSise(q
‘Surysay
welsAg Surlse], 9sn

‘UOI1eOYLIoA u8rsa(]

*U0I9eD0] I01Id JO UOTrY}
-eoIpul 1ea[d yiim jndno adrjou
puU® IOIIS OAISUL)XSD [IIM UOIY
-ROYLI9A SUOI}ROIUNWIWIOD pU®R
ejep ‘SUINO9D 10119 }SNJOI UM

poudisep aq 03 A8ojodo} weysAg

Surwrerdoad gsnlpe oy
pesn ueyj A[[edijeuwrojne 39s Io

PoJejue uoljeUWLIOJUT UOI}R[IJUSA

‘uregsAs ajeiqI[eody ‘3uiqny

03 J1osues oaunssoid ®IIXO PPy

s[opouw [ejuaw
Ioy) 03 suoljejuasairdal ejep

Yojewr 09 SI9SN YIIM [NSuUo))

Msty Mo
9)eIOPOJN 9j0uY
STy Mo
9)RIOPOJN 9j0UWRY
Asry Mo
9JRIOPOJN 9jowdYy
dsry Mo
9)RIOPOJN 9j0UWRY

MSIY wnipay

9)eIOPOJN 9[qeqoI g

ST wnIpay

9)RIOPOJN O[qeqol]

MSTY WnIpaIy oye

-I9POJN [RUOISEID()

SSTY WnIpaIy

9)eIOPOIN d[qeqord

‘Aerdsip
Tesn pue jualyed

uoomiaq pordniiod

10 paAr@daI j0u
‘pokelap s1 9d1A9p
[edipowr ' wWOIj

'IRp JO Wyl Uy

Surqny
9y} Ul PwWNn[oA [en
-pIsel 10j jUNODO®
3,USS0Op I03BIIIUSA

aaryeraddouy juewx
-Imseajy 2Inssarg
*A13091100
®jep jo (s)wejr ue

queseadar A[nij jou

SOOp QdvjIojULI I9S[)

2sn

-SI]\| K10ss000y

ejye(
ojerdwoouy

1o peojydnuiio)
eye
ajerduwoouy

1o pojdniio)

sjuoweIns

-9\ 9091100U]

sjuLMWeINS

-BOJN 1091100U]

SjuawWaINs

-9\ }O9110duj

as) o3 Surt

-je[ey spiezep

s 03 Sur
-je[ey spiezey
as) o3 Sur

-je[ey spiezep]

as) 03 Sur
-je[ey spiezep
as) 03 Sur

-je[ey spiezey

as) o3 Sur

-je[9y splezeH

8¥D

TLvD

LD

€9vD

c9YD

T'9vD

249

uoryesyrIea usso(q

« UOIyedLIaA
weys£g ‘UOIJeOYLIDA
UOI}RIUSWNDOP IBS()

« UOT1BOYLIoA 20€J

-I9JUI 9DIAd(] ‘UOI}ed

-yueA ndino uSrso(g,,

‘opoossed j[nejep uow

-wod ' Yim swaysAs diys 9, uo(

‘sSuryjes o8ueyd 03 opoodssed

aambaux

‘In we3sAs no oo

‘ogenbope s1 uorjelULW

-NOOp jeY) SINSUS ‘SIOS() UIRL],

‘possed

SB[SUIINOI UOI}BOYLISA UOT}OU

-U0D 9DBJIDIUT 9DTADP OYY DIdYM

SOOIADP POJOoUUO0D puUR WAISAS

o) Aq WIS 9(UBD IO Pajdou

-uod AqreorsAyd ore jeyj asoyl

9'l S90IADD poyDdRIjR ULIMIOq

9)RIJUDISHIP O} 90RJISIUI ISS()

sty Ui
1oleNy o[qeqorduy
sty Mo
91RIOPOIN 90U
sty Ui
Tout]y 9[qeqoaduy

ST

mor] Iole]y 9r0UIdY

S[STY WNIpaIN

9}eISPOIN o[qeqoid

Asry

MO IOUTN 9[qeqoi

s8uryyes
wo)shs soSueyd uos

-1ed pezlioyjneun)

*U0I}BJUSWNOOP
I9ST 10 @SN papuajur
ST [JIM 9OUBPIOD

-de Ul pesn jou

ST A10ss900® uy

*A[3091100 WIDYSAS
2y} 03 pojdeuuo0d

jou st AI10Ss900® UY

So13st
-1990%IRY) pue
sourRMWIOJID

jo Aoenbepeuy

Surreduwre],

Sutredureg,

osn

-SIJ| A1088900y

osn

-SIJ\| A1088900y

spiezely 3uidy

pue ‘ooueusal
-urejy ‘eanire,q
reuorjoun,g

spiezey Suidy
pue ‘oouruay
‘ornyreg

-urejN

TeuoroUNg

s 03 Sur
-1e[ey spiezel
as) o3 Sur

-je[ey spiezep

s 01 Sur

-ye[ey spiezeq

as) o3 Sur

-je[9y splezeH

T°¢d

SH

67D

67D

c'8YD

T'8¥%D

250

‘Surysey [eUOIIOUN

*3urgse) [RUOIJOUN]

‘Surysey [euorjouny

‘Suryseg [RUOIIOUNT

‘Surysey [RUOIIOUN]

‘Surysey [RUOIIOUN

3893 J[os uo

-1omod ‘3o0[d jo dnyoreq L1911eg

‘uIe[e pue A31A1909U

-uo0d jo sso[pejdadxaun 30999(]
*A[9991100 suorjouny

aoyeads oYy JI 3o9yd o3 ouoyd
oo e Suisn ‘30 ‘1s9) J[Os
uo-romod Sunnp oarempiey 1s9J,
‘(rensia pue orpne) sorjepour
wrere odijynuw esn ‘ysnqol
2q 09 arempiey uwre[e ulise
pmp jo

MO ABM-2UO 9DIOJUD PUR }SNOI
9q 03 (39S UOISNJUI) SOLIOSSPOOR

pue arempiey Ioje[liuaa uSsa(]

se1j[iqeded arempaey 103
-R[IJUSA [[}IM 9OURBPIODDE UL 93l
MO[103B[IJUSA WNUWIIUTW JTUILIT

‘9jel mop ping 3ur
-Inseawr £[3091p JO SUBIW IdY}O0
IO IOSU9sS MO e 9sn ‘9[qIseay
JI Ire JO MOJedIJ I0J SoITu
-njroddo ezrwiruijy ‘Isnqol oq

01 arempiey Jloje[jusa uSisa(]

mor] Iolejy ajoway

mor] IoleJN ojouray

Mmor] 1ole]N ojouray

mor] Iolejy ojoway

Mmor] 1oleJN ojoway

mor] Iolejy ajoway

aanyrey (DY)
201D suesy
sjuau

-odwod I0je[IjuUeA
P EEYIVETe] SuOoI309U
-uU0d POPOIIOd IO

‘asoof ‘g091100U]

wIe[R JO IN[Ie]

201A0D UIIM

Xnpgal {oeq MOl

2jel mopyg ut

UOIJRIIRA OATSSOIXG]

ogelr
powrwreigord yojrew

Jou S90p 93BI MO[q

SO13ST
-I9joRIRYD) PpUR
90URULIOIDJ

jo Aoenbepeur

01981
-1910RIRY)) pUe
20URMWIOJIDJ

jo Aoenbepeuy

So13st
-19j0RIRYD PUR
20URUWLIONIDJ
jo Aoenbepeuy
SO13ST
-IojoRIRYD PpUR
90URULIOJID J
jo Aoenbepeuy
So13st
-19j0RIRYD PUR
2ouURUWIONIDJ

jo Aoenbepruy

SO13ST
-I9)oRIRY) PpUR
90URULIONIDJ

jo Aoenbepeur

spiezel Suldy

pue ‘oourua]
-urejy ‘oanyreq
[euorjoung

spiezey Surdy

pue ‘oouruay
-urejy ‘eanyre,q
[euonyoun,g

spaiezely Suidy

pue ‘oourua)
-urey ‘eanireq
[euorouN,g

spaiezey Suidy

pue ‘oourua)]
-urely ‘eanyreq
[euorjoun,g

spiezel 3uidy

pue ‘oourUL)}
-urey ‘oanire,q
[euoroun,g

spaiezel Suidy

pue ‘oourua]
-urejy ‘oanyreq
[euorjoung

251

Surysag, s

‘U011BOYIIOA u3seq

‘Suryseg [euorjoung
‘UOI}edYLIoA ugsaq
8urysey s

‘Burysey

reuorjoun,g

‘UOTPROYLIDA uSiso(q

Suryse) esn

‘UOTYeDYLIDN uSiso(y

*3urgseg [eRUOIJOUN]

*UOTJROYLIDA uSise(q

‘Surysey [RUOIIOUN

‘UOI1eOYLIoA u8rsa(]

*SYJBOIQ DATJNODSUOD
z serergrur jquoryed usym S39S

-0y ‘sSuryjes pue juaryed oayD

‘o8 sor1919eq
se 9J1] A1919eq Sururewal 9je[Nd
-[ed A[93RINDOR JSNUI SIOJR[IJUSA

‘s8o1 dwind jeidisjur pue
peojumop 03 aIemijos apraoxd
jsnur sreanjoejnuew ‘geurioj 8o

pIepuR)S 2SN PINOYS SIOJR[IJUIA

SO RISIW 3091100

A[I1ses 09 s19sn mo[[e p[noys [

soanyrej Suryeadar pue
‘go-3onjs ‘uo-3}onjs I0J sonjea

I0Suas 1S9, ‘4S99 J[OS UO-IaMOJ

s1ojowrered SurwrurerSoxd
Jo Arjuestwu Jo osed ul Areiqi|

umop-doip ‘}s9} j[os uo-1omog

SIS WPy oye

-I9POJN [RUOISEID()

Toury

IOUTA

Toury

JIoUuTN

ToleN

ToleN

STy Mo

a[qeqoxduy

qSTY MOT]

a[qeqoaduy

STy Mo

a[qeqoaduy

qSTY MO

a[qeqoaduy

ASTY UIN

a[qeqoaduwy

qSTY Ut

a[qeqoxduy

isty YSiH

1oleN a[qeqorq

ASTY

MO IOUTN 9[qeqolJ

qsTy

MO IOUTIN 9[qeqoI1g

ST

MO IOUTN 9[qeqolJ

qsry

MO IOUIN d[qeqord

ST

mor] IoleJN ojouray

Asry

mor] Iole]y 9r0WOY

«yrearq e Sur
-1088111 103e1ado 10
‘qguaryed ‘IojerIULA
oY1 Inoyym posders
sey [earojur weoude

jos oy, eoudy

a[qepeal j0U ULIIOG

S

A1999eq 9jenbepeur

I09R[IJUSA TWIOIJ
ejep Sol peal j.ue)

aouanbes ainy
-U9 I91U9-21 0} 9ARY
‘Surmwreagoad ur dn

soeq A[ises j.ue)

a2anjre, I0suag

sA£oy pedounoqap

A1redoadwir 10 Monjg

so1gst
-19j0RIRYD PUR
2ouURULIONID
jo Aoenbepeuy
SO13ST
-IojoRIRYD PUR
90URULIOJIDJ
jo Aoenbepeur
so1gst
-IojoRIRYD pUR
2ouURULIONID
jo Aoenbepeuy
SO13ST
-IojoRIRYD PUR
20URTIOJIDJ
jo Aoenbepeur
SO13ST
-I9joRIRYD pUR
9OURULIONIDJ
jo Aoenbepeur
So13st
-I9joRIRYD PUR
20URWIOJIDJ
jo Aoenbepeuy
SO13ST
-I9)oRIRY) PpUR
90URULIONIDJ

jo Aoenbepeur

spiezel 3uisy

pue ‘oourU)}
-urey ‘eanireq
[euorjounyg

spiezel 3ui8y

pue ‘oouruay
-urejy ‘ornyreq
[euonyoung

spiezel Suidy

pue ‘oourU)}
-urey ‘oanireq
reuorjoun,y

spiezey Sursy

pue ‘oourua)
-urejy ‘ornyre,q
[euonyoun,g

spiezel Suidy

pue ‘odourUL)}
-ureN ‘eanyreq
[euorjoun,y

spiezey Suidy

pue ‘oourua)
-urejy ‘oanyre,q
[euonyoun,g

spaiezel Suidy

pue ‘oourua]
-urejy ‘oanyreq
[euorjoung

eT'T°¢D

cL'1°¢D

TT°1°¢D

0T’ T°¢D

6°1°6D

8 1T°¢D

L'T°GD

252

uoryeoyrIoA usrso(g

UOT)ROYLIDA USISO(]

UOT)ROYLIDA USISO(]

‘D pue Y s juory

-ed ur seSueys ‘sSuryjes MooyYD

. I07e[IIUSA pue IozATeue

ZO ‘sedanos sed ‘quarjed ooy,

(odAy
7IMoa1d pue jualjed ooy 108

> oq Aew ownjoa poardsuy,

(ST WNIPIN o3e

-I9POJN [RUOISEID()

SIST WnIPa 23

-IOPOJN [RUOISEBID(Q)

sy

MOT IOUIJN 930WdY

1oleN

Tolejy

10Uty

isty YSiH

a1qeqorg

NSty YSTH

a[qeqoid

MSIY MO

[euoIsedd()

dINODd "2ul
«('8uryjes

%TO °Y) Ul 9sBaI09p
© SuImo[oj seojnurIw
¥ 10 %G Aq oseardour
soSejuoorad osoyT,)
‘SPU0DaS Qg 9ISeI[B
103 3uUI331es %gO Y3
anoqe arow 10 (UOI}
-erado jo anoy 9siy
oy} Sulnp %z1) %L
SI o[0Ad Tyjealq ®
jo oeseyd Aue Sur
-Inp painseaw %70
OUL %TO UL
«SyYeaiq

vooAsel euy jo ¢
I10j Ppemo[[e wnut
-XeW 9y} SPoddXd
Yyeaiq poa[[oIju0d

ownoAa e jJo AI9AI[

-op ojesuodwod 03

paambax awnjoa
soueriduwo)) 1pagt
-wr] eouerdwop

so13st
|.~®&U$HMJO ﬁuiﬁ
WUE‘NEH,HO.whwm

jo Aoenbepeuy

SO13ST
-IojoRIRYD PpUR
90URULIOJID J

jo Aoenbepeuy

SO13ST
-I9)oRIRY) PpUR
90URULIONIDJ

jo Aoenbepeur

spiezel 3uisy

pue ‘ooueusay
-urey ‘eanireq
reuorjoun,y

spaiezey Suidy

pue ‘oourua}
-urely ‘eanyreq
[euorjoun,g

spaiezel Suidy

pue ‘oouruay
-urenN ‘eanyreq
[euorjoung

9IT'1T°¢D

ST'T°¢D

YL Ted

253

SIST WnIpay 2%e

uorjesyrIoA uSrsoq ‘s8uryjes pue juaryed NoaYD -IOPOJN [BUOISBID(Q)

"D pue y suen (ST WNIPIN o3e

uoIyedyrIo ussa(J -I9POJN [BUOISEIO()

‘D pue Y sjuory

UOT)ROYLIDA USISO(

"D pue Y sJueTy

UOT)ROYLIDA USISO

‘D pue Y sjuery LSS WnIpay 2%

uoryeoyrIoA udiso(q -~IOPOJA [RUOIS®DD()

CHAILA 'oul wrere
jyuopuadap o[qIssoq
‘paje[noesaI s1 awn
-[0A @INUIW Pa[RYXD
ue JI9ADULYM PoIep
-dn warery ‘It
jo8 ; ~ewnjoa
oynurwr Arojertdxy

molg dxig -ouj,

«'Paje[noresar
ST own[oA [epl} pajey
-X9 IoAdUSYM Pajep
-dn wrely -ywai] jes
{ PUWN[OA Tepl} parey

XH ¢ HLA ouf

¢ LNHAJd "PulI
uoryereyxe

ur \Aﬂvﬂwk—ﬁ sso[un
[1eaIq JULLIND S9I'D
-unay I09R[19UDA

‘grwai] jes ; aanssoad

Kemare paanseaN
Mvddd UL
NVHN 2ur

01981
-1910RIRY)) pUe
9OURUIIONID]

jo Aoenbepeuy

So1yst
-1910RIRYD) PpUe
90URWLIOJIS J
jo Aoenbepruy
SO13ST
-I930®vIRYy) puw
90UBWIIOJID

jo Aoenbepeur

So13st
-I9joRIRYD PUR
20URWIOJIDJ
jo Aoenbepeuy
SO13St
-I9)oRIRY) PpUR
90URULIONIDJ

jo Aoenbepeur

spiezey Surdy

pue ‘oouruay
-urejy ‘eanyre,q
[euonyoun,g

spiezel 3uisy

pue ‘eourUL}
-urey ‘oanireq
[euorjounyg

spiezel 3uiy

pue ‘oouruay
Surely ‘eanyreq
TeuorOUNJ

spiezey Suidy

pue ‘oourue)
-urejy ‘oanyre,q
[euonyoun,g

spaiezel Suidy

pue ‘oouruay
-urenN ‘eanyreq
[euorjoung

254

‘paambar se axe

‘andyno uSso(g,,

uoTpedYII8A USISO(]

UOT)ROYLIDA USISO(]

« Y peseq-Mdl
mo[aq s[ej I, Uaym spasoy
‘syeay

103 speyp yueryed YD

g
uLIe[e 93} MO[oq S[[ej 9jel K109
-e1rdsol paINseaW ULYM JOSOY

‘sSuryjes pue jueijed Mooyp

' PojeINO[edaT ST

awnjoa 1epiy snosurjuods parery
-ur IeAduaym pojepdn wrey

‘s8uryyes pue juaryed Mooy

D pue Y s,juen

-ed ur seSueys ‘syeo 10] M2oUYD

SIS WnIpay 23

-I9POJN [RBUOISEIOQ) 9)RIOPOIN o[qeqolg

SISTH WnIpay o3

-~IOPOJA [RUOIS®DD()

«HAIS

“VANI st od&T, quop
uaym A[UO SAIDY
‘uoIje[RYXS 0} SUOI}
-1suery) I0YR[IIUDA
g poseq-MdIl
. yyeaiq snoau
-equods 10] owI}
K1oyertdsuy :8uory
oo, uoryextdsuy,,
« ‘uorjeaids

-ur yoes jo Suruurd
-oq 9y} je peojepdn
wrely iy 3es
9rer A1ojeridsea ey
oL :LOIJ UL«
« Ay

j19s j ownjoAa [epry
snosauejuods paeyuy
(LNOdS ILA "Puly
. Pore[noresar

ST awnoa epra
A1oyepurwr poaleyul
IoAduLYM pojepdn
wrery Iy 3es
P swmnpoa Tepn
A1oyepuewr pareyUT

'ANVIN ILA PUuly

SO13ST
-I990RIRY) PpUR
20UWeULIOJID J

jo Aoenbepeuy

SO13ST
-IojoRIRYD PUR
20URTIOJIDJ
jo Aoenbepeur
So1)st
-I9joRIRYD pUR
9OURULIONIDJ

jo Aoenbepeur

SO13ST
-I9)oRIRY) PpUR
90URULIONIDJ

jo Aoenbepeur

spiezely Suidy

pue ‘oourualy
Surely ‘eanpreq
[euorpoun,y

spiezey Sursy

pue ‘oourua)
-urejy ‘ornyre,q
[euonyoun,g

spiezel Suidy

pue ‘ooueual
-ureN ‘eanyreq
[euorjoun,y

spaiezel Suidy

pue ‘oouruay
-urenN ‘eanyreq
[euorjoung

255

uoryeoyrIoA usrso(g

UOT)ROYLIDA USISO(]

uoryesyrep uldiseq

uoryeoyrIoA udiso(q

« Patel
-NO[BOSI ST SWIN[OA 9jNUIW pa[ey
-Xo Joasuaym pojepdn wie[y

‘sSuryges pue juaiyed doyD

' Po3BINO[RIaT ST
awnjoa 1ep1y} snosurjuods parey
-Xo JIeaduaym Ppojrepdn uwrrely

‘sSuryjes pue juerjed Mooyp

' Poye[NO[edaT ST
awnjoa [epl} Alojepurwl parey
-Xo JIeaduaym Ppojepdn wre]y

O pu® Y susny

-ed ur se3uryo ‘syea] 10J N0

I07%[IJUSA pueR IozA[eUue

ZO ‘soounos se8 ‘quaryed 3ooypD

1oleN

ToleIn

To(eIN

1oleN

NS wnIpay

[euoiseod()

MSIY wnIpagy

[euorseod ()

MSIY wnipay

[euoIs®OD()

ATy Wnipey

[euoIsBOO ()

1oleN

Tolejn

1olein

IoleN

isty YSiH

a1qeqorg

NSty YSTH

a[qeqord

s[sty UStH

a1qeqorg

st YSIH

o[qeqoidg

(A 39S j ewun

-[oA ejnuIW [e0],
imol g dxof 09«
«

‘Il 39S j 9WIN[oA
Tepm snosurjuods
PareyxXy *LNOdS
HLA 090«
PR

jos j ewnjoAa [eprj
A1ogepuewt polRYXH
ANVIN ALA 220«

« @3 Ul aseaIour
ue SUIMo[[0J sajnuIux
¥ 10} %G Aq osearour
soSejuoorad osoyT,)
'9%8T MO[9q IO ‘spuo
-09s (g 3Ised[je 10§
Juryjes %z O oYy Mo[
-9q arow 10 (uorje
-1odo jo inoy 9siy
oYy Sulnp %z1) %L
SI o[0Ad Tyjealq w®
jo oseyd Aue Sur
-Inp painseaw %70

OUL %CO 990«

so1yst
-1990%IRY) pue
20URULION IS

jo Aoenbepeuy

SO13ST
-IojoRIRYD PpUR
20URULIOJID J

jo Aoenbepeur

SO13ST
-1910RIRY)) pUe
9ouRMWIOJID

jo Aoenbepeuy

SO13ST
-I9)oRIRY) PpUR
90URULIONIDJ

jo Aoenbepeur

spiezel 3uisy

pue ‘oourU)}
-urey ‘eanireq
reuorjoun,y

spiezey Suidy

pue ‘oouruay
Surely ‘eanyreq
TeuoroUNg

spaiezely Suidy

pue ‘oourua)
-urey ‘eanireq
[euorouN,g

spaiezel Suidy

pue ‘oourua]
-urejy ‘oanyreq
[euorjoung

6C°1°¢D

8T T'¢D

LT T°¢D

9T 1°¢D

256

uoryeoyrIoA usrso(g

UOT)ROYLIDA USISO

uoI1edyrIo ussa(g

UOT)ROYLIDA USISO

uoTpedYII8A USISO(]

UOT)ROYLIDA USISO

uoryeoyrIoA udiso(q

901A9p I9Yjou® YIIM
UOIIR[IJUSA SNUIJUOD pPUE I0e|

-1puea woay juaryed 309UUOISI(T

juory

-ed oY) jO UOIHIPUOD BY} HIOYD

juery

-ed 93 JO UOTHIPUOD O} O9YD

juory

-ed oY) JO UOIJIPUOD BY} HIOUYD

S3e9[I0J I0jR[IJULA 3() IO9(U)

S3BO[I0J I0JR[IJUDA B9 HOOYD

MO IOUTIN 9[qeqOIJ

MO IOUTJ\ 930wy,

MO IOUIN 930w,

9)RIOPOJN O[qeqolg

MO IOUTN 9[qeqolJ

MO IOUIN d[qeqord

MO IOUTJN 90wy,

Jpesnuiaao

XX qouy AIejoy

MO[91l as[nJ

Y81y 9gex asng

POYTWI] 2INSSAIJ

sg'T < -dsul-Sdd

sy < -dsul-gdd

paie

-AI[PQ 30N OWINOA

so1gst
-19j0RIRYD PUR
2ouURULIONID
jo Aoenbepeuy
SO13ST
-IojoRIRYD PUR
90URULIOJIDJ
jo Aoenbepeur
so1gst
-IojoRIRYD pUR
2ouURULIONID
jo Aoenbepeuy
SO13ST
-IojoRIRYD PUR
20URTIOJIDJ
jo Aoenbepeur
SO13ST
-I9joRIRYD pUR
9OURULIONIDJ
jo Aoenbepeur
So13st
-I9joRIRYD PUR
20URWIOJIDJ
jo Aoenbepeuy
SO13ST
-I9)oRIRY) PpUR
90URULIONIDJ

jo Aoenbepeur

spiezel 3uisy

pue ‘oourU)}
-urey ‘eanireq
reuorjoun,y

spiezel 3ui8y

pue ‘oouruay
-urejy ‘ornyreq
[euonyoung

spiezel Suidy

pue ‘oourU)}
-urey ‘oanireq
reuorjoun,y

spiezey Sursy

pue ‘oourua)
-urejy ‘ornyre,q
[euonyoun,g

spiezel Suidy

pue ‘odourUL)}
-ureN ‘eanyreq
[euorjoun,y

spiezey Suidy

pue ‘oourue)
-urejy ‘oanyre,q
[euonyoun,g

spaiezel Suidy

pue ‘oourua]
-urejy ‘oanyreq
[euorjoung

257

‘o1qeotidde J1 o197 gD wWiIojivd
‘Aressooou JI JIWIl] WIR[R 9091
-100 ‘uiegred UOII[RIJUDA MU
‘querjed jo

UOTYIPUOD IR

‘syyea]

I10J wo)SAS UOIPR[IJUSA 9S9,

‘syea|

10j wejsAs UOIR[IFUSA IS,
‘gruai] oanssaxd oseald

-ur pue ‘mopy Arogeirdsur aseard

-ur ‘ewrry Arojeardsur SuojoiJ

‘syea] 10}

SUOI}00UU0D W}sAs S0y ooy

juory

-ed oY) JO UOIHIPUOD BY} HI2YD

juoery

-ed oY) JO UOTHIPUOD BYY IBYD

sty Mo

Toury e[qeqoxduwy
Asry moT

TourNy orqeqoxduy
sty Mo

Toul]y o[qeqoaduwy
Asry Mo

TourNy orqeqoxduy
sty Mo

Toury e[qeqoxduwy
SISt

MO IOUTJN 90wy,

SISt

MO IOUIJN 230WY

isty YSiH

IouTN a1qeqorg

ASTY

MO IOUTN 9[qeqolJ

qsTy

MO IOUTIN 9[qeqoI1g

ST

MO IOUTN 9[qeqolJ

qsry

MO IOUIN d[qeqord

ST WNIPLTy

9)RIOPOIN 9[qeqoIJ

SSTY WnIpaIy

9)RISPOIN o[qeqoid

YSTH ¢ODIW

;dsurL<gsv

8 ¢ 1<dSsV

pojrur] aanssaad

‘QuUBISUOD J0U [OA

YSiy own[oA [epLL,

mor zodg

ysiy zods

so1gst
-19j0RIRYD PUR
2ouURULIONID
jo Aoenbepeuy
SO13ST
-IojoRIRYD PUR
90URULIOJIDJ
jo Aoenbepeur
so1gst
-IojoRIRYD pUR
2ouURULIONID
jo Aoenbepeuy
SO13ST
-IojoRIRYD PUR
20URTIOJIDJ
jo Aoenbepeur
SO13ST
-I9joRIRYD pUR
9OURULIONIDJ
jo Aoenbepeur
So13st
-I9joRIRYD PUR
20URWIOJIDJ
jo Aoenbepeuy
SO13ST
-I9)oRIRY) PpUR
90URULIONIDJ

jo Aoenbepeur

spiezel 3uisy

pue ‘oourU)}
-urey ‘eanireq
reuorjoun,y

spiezel 3ui8y

pue ‘oouruay
-urejy ‘ornyreq
[euonyoung

spiezel Suidy

pue ‘oourU)}
-urey ‘oanireq
reuorjoun,y

spiezey Sursy

pue ‘oourua)
-urejy ‘ornyre,q
[euonyoun,g

spiezel Suidy

pue ‘odourUL)}
-ureN ‘eanyreq
[euorjoun,y

spiezey Suidy

pue ‘oourue)
-urejy ‘oanyre,q
[euonyoun,g

spaiezel Suidy

pue ‘oourua]
-urejy ‘oanyreq
[euorjoung

eV 1T°¢D

[4E0)

V' 1°¢D

o7’ 1T°¢D

6€°T°¢D

8€'T°¢D

LET°6D

258

UOT)ROYLIDA USISo(

‘J000301d Koue8
-rowe sresn [Sur
-yoeay seziseyduwe [en

-uRN 19S() e} AJLIOA

«LSH
sossed I0JR[IJUSA UDYM SIS

*I09B[IIUSA 901ATDS pue 9oe[day

‘poaI1ols

=91 ST Tomod OV [0} uaym sjosoy
‘ooue)

-todwr eoziseydwe pnoys sren
-uew 19s() -ojeridoidde areym
SuoI309uUu0d 103311} [RDOIURIDLUL
JO UOI}BOYLIGA 9DI0JUS JSNW ()
“SUOT}ONIYSUT IS ur

uoryerado 3001100 11073 pue SOI3T
-AI}0® 9O1AISS [[® JO S[IRJOP OALN)
‘juelxXe UlelILd ® 03 I[qeadlia

-198 Iosn oq 073 woelsAs uSisa(]

-o1qeordde j1 o197 (O WIojidg
‘A1eSS909U JT JTWII] WIIR[R 09I
-100 ‘ursjjed UOI[RIIUSA NIOUD)

‘quaryed Jo UONIIPUOD 29D

MOT IOUIJN 930wy

MOT IOUIJN 930WdY

Mmor] 1o[eJN ojouwray

MO IOUIN d[qeqord

‘we[qoad e pejoajep

aA®RY S}ND9YD punoid

-oeg L[y 901A9(

‘Po suanyg
I09edIpUl Apeax
Iossaxdwo)) :oalje

-1odouy 1ossexdwop)

aurydRN Aei-x

JO UOJIMS [BOTURTDIW

1088113 03 aanjreq

‘SUOI]OR 9DIAIOS OAT)

-001100 sjoedwWl [oU
-uosiod 9d1A19s 10}

Sururery jo soe[oY,

Mo OO

90 URUJUTRIN
Tadoxduuy 10

9renbapeuy

*9dURUDJUTRI
1odoxduuy 10

arenbopeuy

9O URUJUTRIN
1odoxduuy 10

arenbapeuy

‘9dURURJUTRIA
1odoxduuy 10

ajenbopeuy

‘adURUJUTRIN
1odoxduuy 10
arenbapeur
SO13ST
-I9)oRIRY) PpUR
90URULIONIDJ

jo Aoenbepeur

spiezel 3uidy

pue ‘oourua)
-urey ‘eanreq
[euorjounyg

spiezely Suidy

pue ‘oourua]
Surely ‘eanpreq
[euorpoun,y

spiezey Suidy

pue ‘oourua)
-urejy ‘eanre,q
[euornoung

spiezel Suidy

pue ‘odourUL)}
-ureN ‘eanyreq
[euorjoun,y

spiezey Suidy

pue ‘oourue)
-urejy ‘oanyre,q
[euonyoun,g

spaiezel Suidy

pue ‘oourua]
-urejy ‘oanyreq
[euorjoung

¥'ceD

€TSD

[axaie]

1T ed

[aacie]

Yvred

259

« Poaowr

-o1 s1 o8eyoo[q ueym 10 J,8H
sossed I10jR[IJULA UM S39S9Y
*103e[IIULA

9DTAI9S IO UOIJONIISCO dAOWY
«97o1dwood st aanpoadoxd dnjie)s
J09e[IJUOA USYM SJ9S9Y UOIje]
-1quaa Aj19Jes suISoq JIOIRIJUSA
‘ssoooad dnjes a9ja1dwro)

‘UOIJR[IIUSA 9JRUIDY[® OPIAOI]

*90anos Ire pue juaiyed ooy
S Sururewar awry [RUOIJRID

-do jo sonurm g Aperewrxoidde
uer) aIow sey SJg Uaym s1959Y

o81eyDal MO[[e 10 aoe[day

‘A19390q 9oe[dar/ed1AI0g

S[STY WnIPa 2

-I9POJN [BUOISEIO()

ATy Wnipey

1olely [eUOISEID(O)

MSIY wnipagy

ToleN [euorseod ()

STy

MOT IOUIJN 90wy

sy

MOT IOUIJN 930WdY

9)eIoPOTAl

IoleN

Tolein

IOUTN

IOUuTN

ST WNIPLT

a1qeqorg

st YSIH

orqeqoidg

SSTY YSTH

a[qeqord

qSIY M7

[euoIs®OO ()

MSIY MO

[euoIsedd()

« e
ueaIds YOonoj} Io

ureaq pesoolq o[qIs

-S0q :oog UeaIdg

*aga1d
-wod dnjes aIojoq
pajoeuuod jualred
11011 aanpaoord

"%001 s[enbe %z0
jos -103ered(‘o[qe
-reae gO A[uQ "398

SB SANUIUOD UOIJe[I}

-uo :A1ddng ary oN

‘sojnuIut
7 > owr} [euoljeId
-dp :A1w19eg MmO

‘reuorpouny
ST Sdd Usym s3osay
‘3uruorjouny jou
mnq poqrejsur sdg
‘we)sAs K1999eq
TeuorjdUNyuUOU 10
o8reyd

arenboapeuy

:K£19170g 9a1eradous

90 URUJUTRIN
Tadoxduuy 10

9renbapeuy

‘9dURUDJUTRI
1odoxduuy 10

a1enbapeuy

‘9dURUJUTRIN
1odoxduuy 1o

arenbapeur

‘9dURURJUTRIA
1odoxduuy 10

ajenbopeuy

‘9dURUDJUTRI
1odoxduuy 10

a1enbopeuy

spiezel 3uidy

pue ‘oourua)
-urey ‘eanreq
[euorjounyg

spaiezel Suidy

pue ‘oourua]
-urenN ‘eanyreq
reuorjoung

spiezey Sursy

pue ‘oourua)
-urejy ‘ornyre,q
[euonyoun,g

spiezel Suidy

pue ‘odourUL)}
-ureN ‘eanyreq
[euorjoun,y

spaiezel Suidy

pue ‘oourua]
-urejy ‘oanyreq
[euorjoung

6°C°¢O

8'C'SD

260

LT8O

9°C°SD

§'ced

‘OATRA UOIY

-eardxa pue we)sAs 9soy o9yD

“Aderoyy gO PO Y2NMSg

‘1eq g ueysy ssof

st aansseixd Ajddns ains eI\

‘Ieq ¢ uRY) I93e2I3

st ainssoxd Ajddns oains oxeN

‘ureSe uo Suriojuow g Yd1Img

‘I0suds g 2reIqIe))

*}INOIID UTRIp {SUOIS
-N[0D0 IBJ[D UOIJR[IJUDA djeu

-1991e opraoig -jusljed Mooy

SISt

MO IOUIN 930w,

Asry moT

Touwry o[qeqoxduy
STy Mo

TouwrNy o[qeqoxdury
SISt

MO IOUTJN 930wy,

qSTY MO

Toury e[qeqoxduwy

SISTH

MO IOUTJN 90wy,

ATy Wnipey

1oleN [RUOISBID()

ST wnIpay

9)RIOPOIN O[qeqolg

ASTY

MO IOUTN 9[qeqolJ

qsTy

MO IOUTIN 9[qeqoI1g

ST WNIPLTy

9)RIOPOIN 9[qeqolJ

qsry

MO IOUIN d[qeqord

ST WNIPLTy

9)RIOPOIN 9[qeqoIJ

st YSIH

IoleN a1qeqoid

Sy JHHd

aAa130® Adeiayl gO

ys1y

aanssoxd Arddns gO

umop Arddns gO

po Suriojruowr g

~dout

JUOWDINSBIUL (e}
uory

-e[IJUaA ou/a73317]
1uoIsnPOQ EREYETS

*90URUDJUTRIA
Todoaduy 1o

9yenbopeuy

*90URUDJUTRIN
1odoxduuy 1o

arenbopeur

‘9dURURJUTRA
Tadoaduuy 1o

9yenbopreuy

‘9dURUJUTRIN
1odoxduuy 1o

arenbapeur

‘9dURURJUTRIA
1odoxduuy 10

ajenbopeuy

9O URUJUTRIN
1odoxduuy 10

arenbapeur

‘9dURUDJUTRI
1odoxduuy 10

a1enbopeuy

spiezel 3uisy

pue ‘oourU)}
-urey ‘eanireq
reuorjoun,y

spiezel 3ui8y

pue ‘oouruay
-urejy ‘ornyreq
[euonyoung

spiezel Suidy

pue ‘oourU)}
-urey ‘oanireq
reuorjoun,y

spiezey Sursy

pue ‘oourua)
-urejy ‘ornyre,q
[euonyoun,g

spiezel Suidy

pue ‘odourUL)}
-ureN ‘eanyreq
[euorjoun,y

spiezey Suidy

pue ‘oourue)
-urejy ‘oanyre,q
[euonyoun,g

spaiezel Suidy

pue ‘oourua]
-urejy ‘oanyreq
[euorjoung

91°2°¢D

S1°C°¢D

Y1'eed

€T°C¢D

[ANae]

T1°2°SD

01'c’¢dD

261

309UU0d

-o1 pu® 9339AND g O Y} Ued[)

11899 PUR IOSUDS 91} }00UU0DIY

10osues ainjersdwey oSueyD

11899 PUR IOSUDS O} }00UU0DIY

‘10sues afuey)

9D1A9D I9YjOoUE [IIM
UOIJR[IJUSA ONUIJUOD pUR IO0je[

-1yuea wogy juarjed 309UUOISIT

901ADP Iojoue [IIM
UOTJR[IJUSA ONUIIUOD pUe IOje|

-rpuea woxy juaryed 309UUOISI(T

SISt

MO IOUIN 930w,

SISt

MO IOUTJ\ 930wy,

SISt

MO IOUIN 930w,

SISt

MO IOUTJN 930wy,

SISt

M0 IOUI 230WSY

STy Mo

TourNy orqeqoxduy

SISt

MO IOUIJN 230WY

ST wnIpay

9)RIOPOIN O[qeqolg

ST WIS

9)RIOPOIN 9[qeqoiJ

ASTY WnIpey

9)RIOPOJN O[qeqolg

ST WNIPLTy

9)RIOPOIN 9[qeqolJ

S[STY WNIpaIN

9}eISPOIN o[qeqoid

ST

MO IOUTN 9[qeqolJ

SSTH WINPT

9)RISPOIN o[qeqoid

9939AN0 OO uwS[D

;108

-uos amnjeradwag,

‘dout

‘seaun ®h5adh®QE®H

j1osuss gOdS

‘dour ‘seew gOds

porre;

XX qouy Arejoy

‘dour earea JHHJ

*90URUDJUTRIA
Todoaduy 1o

9yenbopeuy

*90URUDJUTRIN
1odoxduuy 1o

arenbopeur

‘9dURURJUTRA
Tadoaduuy 1o

9yenbopreuy

‘9dURUJUTRIN
1odoxduuy 1o

arenbapeur

‘9dURURJUTRIA
1odoxduuy 10

ajenbopeuy

9O URUJUTRIN
1odoxduuy 10

arenbapeur

‘9dURUDJUTRI
1odoxduuy 10

ajenbepeur

spiezel 3uisy

pue ‘ooueusay
-urey ‘eanireq
reuorjoun,y

spiezel 3ui8y

pue ‘oouruay
-urejy ‘ornyreq
TeuoroUNJ

spiezel Suidy

pue ‘ooueusay
-urey ‘oanireq
reuorjoun,y

spiezey Sursy

pue ‘oourua)
-urejy ‘ornyre,q
[euonyoun,g

spiezel Suidy

pue ‘ooueual
-ureN ‘eanyreq
[euorjoun,y

spiezey Suidy

pue ‘oourue)
-urejy ‘oanyre,q
[euonyoun,g

spaiezel Suidy

pue ‘oouruay
-urenN ‘eanyreq
[euorjoung

€2°C°¢D

[4xaie)

12°2°SD

0T°c'¢D

61°C°¢D

8T°C°¢D

L1°2°SD

262

I0SUAS MO[,] dRIqI[e))

‘I0suas g 2reIqie))

I0sues g 23eliqIe))

*1991y are Surjooo aoerd

-91 IO ueL[D‘UOIOUNJ UeJ I

*1991y are Surjood soe[d

-91 10 UeS[O‘UOIOUNJ UR] NOIYD

‘systszod wajqoad j1 eoeidey

1899 pU® I0SULS g 109UU0DY

‘syststod werqoad 1 ooeideoy

‘1899 pue I0SUdS g }09UU0IY

SISt

MO IOUIN 930w,

SISt

MO IOUTJ\ 930wy,

SISt

MO IOUIN 930w,

SISt

MO IOUTJN 930wy,

SISt

M0 IOUI 230WSY

SISTH

MO IOUTJN 90wy,

SISt

MO IOUIJN 230WY

ST wnIpay

9)RIOPOIN O[qeqolg

ST WIS

9)RIOPOIN 9[qeqoiJ

ASTY WnIpey

9)RIOPOJN O[qeqolg

ST WNIPLTy

9)RIOPOIN 9[qeqolJ

S[STY WNIpaIN

9}eISPOIN o[qeqoid

ST WNIPLTy

9)RIOPOIN 9[qeqoIJ

SSTH WINPT

9)RISPOIN o[qeqoid

I0sUDg MO

MOT gOTd

ys1q zOtd

TOTJOUNJTRIN We]

aanre ueq

JREELEER foYe)

Teuorjeradour

juoweInNseIW 7OD

*90URUDJUTRIA
Todoaduy 1o

9yenbopeuy

*90URUDJUTRIN
1odoxduuy 1o

arenbopeur

‘9dURURJUTRA
Tadoaduuy 1o

9yenbopreuy

‘9dURUJUTRIN
1odoxduuy 1o

arenbapeur

‘9dURURJUTRIA
1odoxduuy 10

ajenbopeuy

9O URUJUTRIN
1odoxduuy 10

arenbapeur

‘9dURUDJUTRI
1odoxduuy 10

ajenbepeur

spiezel 3uisy

pue ‘ooueusay
-urey ‘eanireq
reuorjoun,y

spiezel 3ui8y

pue ‘oouruay
-urejy ‘ornyreq
TeuoroUNJ

spiezel Suidy

pue ‘ooueusay
-urey ‘oanireq
reuorjoun,y

spiezey Sursy

pue ‘oourua)
-urejy ‘ornyre,q
[euonyoun,g

spiezel Suidy

pue ‘ooueual
-ureN ‘eanyreq
[euorjoun,y

spiezey Suidy

pue ‘oourue)
-urejy ‘oanyre,q
[euonyoun,g

spaiezel Suidy

pue ‘oouruay
-urenN ‘eanyreq
[euorjoung

0€'Cc’¢'D

62°C°9'D

8C'C'¢'D

L2°C°SD

92°C’¢'D

[l aacye]

veTedD

263

‘peoorun
Uojims im uni st uorjeordde
JU wre[y -uorjeordde Surjre)s

210Joq PasO[d 9q 09 0] aanbayy

‘Alquiesse oy} 300] A[[edIsAyJ

‘Sur1e88119 jeader proae

03 seardxe 1wy 19jje uorjeord
-de sj10qe s ¢ JO Iawl], Wa)sAg
‘awres 9y} I0j 9OURISISSY [N
‘AoueBirowe ur uorjisimboe ofe

-w j10qe 03 Aei-¥X jo Jururedy,

*I0SuUds MO, @reIqIren)

Asry Mo

JOUTIN [RUOIS®IO()
sty UStH

1oleN a[qeqord
SISt

MO IOUTJN 930wy,

SISTH

MO IOUTJN 90wy,

SISt

MO IOUIJN 230WY

NS wnipay

1olein [RUOISBIO()
isty YSiH
1oleN quenboaig

ST WNIPLTy

9)RIOPOIN 9[qeqolJ

ST WNIPLTy

9)RIOPOIN 9[qeqoIJ

SSTH WINPT

9)RISPOIN o[qeqoid

‘Alquiesse 1033119

Aei-x TeoIuRYO
-owr yYjm szedurey
10 seAowWaI UOS

-1od peziioyjneun

uory

-eIpeI JO 98BSOPISAO

pue 09 aansod
-XoIoA0 0} Sspes[
sysonbax 1083119
jo sewmes pider vy

Adousd

-towry Sumnp Aex

-X 3I0qe 09 aInyreq

Teuorjeradouy

JUOWIDINSBIIN MOT

uory

-erodouy -oukg ATI

Sutredureg,

Sutredureg,

yoms
uey pea(/uoj
g 1088117,
goyimg
ueN pea(/uoj
-ng 10838117,
RERISS
ueN peo(/uol

-ng 1988117,

9O URUJUTRIN
1odoxduuy 10

arenbapeur

‘9dURUDJUTRI
1odoxduuy 10

ajenbepeur

-ze

spIe

J10m3oN

spleze}] walsAg

spaezel WolsAg

spiezel] walsAg

spaezel] wolsAg

sprezel] wolsAg

sprezel] wolsAg

spiezey Suidy

pue

-urey

‘ooueusay
‘oanyre,q

[euoounyg

spaiezel Suidy

pue

-urey

‘ooueual
‘eanyreq

[euorjoung

LH

T°¢9D

29D

19D

T'1°9D

19D

9H

ceTSD

1€°2C¢D

264

*8uryso) weysAg
‘UOTYEROYLIOA usiso(
‘3uryse) weysLg

‘UOTPROYLIDA uSiso(q

*3uryso) weysAg

“UOTYROYLIDA uSiso(y

Suryse) reuOIIOUN]

*UOT)ROYLIDA usiso(q

‘swogsAs 19940 yiim Sur

-1eDIUNUWIWIOD USYM SITUN DY)

AN 3uisn s)00[0 9zI1uoIyouiyg

Jiomjou
oy} woajy wwudTQE pejedrjuayine

Arrodoad 1dedoe pinoys sue)sig

‘uorje[RISUL
210J9q 90140p 273 Aq pajedIjuayy

-ne aq jsnw sajepdn SIeMULIL]

Msty Mo
91RISPOJN 9jOowWaY
ST

Mmor] 1o[eJN ojouwray

Asrd Ui
IOUIN [euoIseoo ()
Asrd wiN
TolejNy o[qeqoxduy

SSTY WNIPSJN 99e

-I9POJN [RUOISEID()
SSTY YSTH

Tolein juonboig
sty Mo

IoUlN [euoIseo0 ()
Asrd

mor] Iolejy ojoway

109.1100Ul UOISISAUOD
‘sjrun jueILIp osn
HINH Ppue ue)skg

S3[0[D

we)sAs I9Yjo WOy

SIOPTP D00 WalsAg

sojepdn sremuriy

ysnd 03 Aypiqeur

poysnd ajepdn
oIeMUIIY 9)ewWIIISo]

-[I Io pazuoyjneun

sjusweans

-9\ }991100U]

SjpuowWaINs

-BOJN 1991I00U]

sjuawaINs

-eaJ 1991I00U]

9s[) I0MIaN

os[) I0M)ON

Surredureg,

Surredwre],

-ZeH

-zeH

-zeH

-zel

-zeHq

-ze

-zZef[

spie

S[10M30N

spIe

SI0MIDN

spIe

J10m3oN

spae

S10M)9N

spie

SI0MIDN

spIe

SI0MIDN

spaie

J10m3oN

ceLD

T°¢LD

GLD

TV LD

VLD

T°eLD

€LD

265

Appendix B

UPPAAL Export Example

CFR is a small EFSM which is used as an example for the UPPAAL exporter. It is
shown graphically in Figure B.1. This is an example of a single EFSM which does not

use communications channels.

SecondAuto == True ->
label = 1,

sample_uses_autologous = True

UseDonationForSingleldentifiedRecipient

SourcePlasma == False >

SecondAuto == False ->

SourcePlasmaCheck

SourcePlasma == True ->
sample_uses_source_plasma = True

TestDonationWithApprovedTest

ScreeningOutcome == 2 ->

educed == False >

HaveRecordOfPreviousTest ScreeningOutcome == 1 >

Previous == True and PrevSuppOutcome == 1 ->

Previous == False ->

Supplemental TestApproved

RiskReduced

Reduced == True ->
ample_uses_all = True

Figure B.1: CFR example EFSM

266

<?xml version="1.0"7>

<!IDOCTYPE nta PUBLIC "-//Uppaal Team//DTD Flat System 1.0//EN"
"http://www.docs.uu.se/docs/rtmv/uppaal/xml/flat-1_0.dtd">
<nta>

<declaration>

< /declaration>

<template>

<name>CFR< /name>

<declaration>
int[0,1] LicensedFacility := 0;
int[0,1] PrevReact := 0;

int[0,1] ShownSuitable :=

I
s

int[0,1] Emergency := 0;
int[0,1] Manufacturing := 0;
int[0,1] SecondAuto := 0;
int[0,1] SourcePlasma := 0;
int[0,1] MedDevice := 0;

int[0,1] AutologousUse := 0;

int[0,1] aal := 0;

int[0,1] aal := 0;
int[0,1] First30 := 0;

int[0,1] aa2 := 0;

int[0,2] ScreeningOutcome := 0;
int[0,1] Reduced := 0;
int[0,1] Previous := 0;

int[0,2] PrevSuppOutcome := 0;

267

10

20

int[0,1] Supplemental := 0;

int[0,2] SuppOutcome := 0;

int[0,1] Research := 0;

int[0,1] sample_uses_all := 0;

int[0,1] sample_uses_manufacturing := 0;
int[0,1] sample_uses_research := 0;
int[0,1] sample_uses_autologous := 0;
int[0,1] sample_uses_source_plasma := 0;
int[0,1] sample_uses_device := 0;
int[0,1] donor_uses := 0;

int[0,5] label := 0;

< /declaration>
<location id="id0">
<name> SourcePlasmaCheck </name>

< /location>

<location id="id1">

<name> IsltAnEmergency </name>

< /location>

<location id="id2">

<name> ShipToAllowsAllogenic </name>

< /location>

<location id="id3">

<name> IsThisALicensedFacility </name>

< /location>

30

40

50

<location id="id4">
<name> UseDonationForSingleldentifiedRecipient </name>

< /location>

<location id="id5">
<name> AllowAllogenic </name>

< /location>

<location id="id6">
<name> UseAutologousDonation </name>

< /location>

<location id="id7">
<name> RiskReduced </name>

< /location>

<location id="id8">
<name> ResearchUse </name>

< /location>

<location id="id9">
<name> UseForMedicalDevices </name>

< /location>

<location id="id10">
<name> DedicatedDonation </name>

< /location>

269

60

70

80

<location id="id11">
<name> MedicalDevice </name>

< /location>

<location id="id12"> 90
<name> DoNotShipOrUseRejectDonor </name>

< /location>

<location id="id13">
<name> Stop </name>

< /location>

<location id="id14">
<name> HaveRecordOfPreviousTest </name>

< /location> 100

<location id="id15">
<name> SupplementalTestApproved </name>

< /location>

<location id="id16">
<name> Autologous </name>

< /location>

<location id="id17"> 110
<name> PreviouslyReactive </name>

< /location>

270

<location id="id18">
<name> UseDonation </name>

< /location>

<location id="id19">
<name> UseForResearch </name>

< /location> 120

<location id="id20">
<name> FurtherManufacturing </name>

< /location>

<location id="id21">
<name> AutologousDonation </name>

< /location>

<location id="id22"> 130
<name> StopCanNotPerformTesting </name>

< /location>

<location id="id23">
<name> UseSourcePlasma </name>

< /location>

<location id="id24">
<name> TestWithSupplementalTest </name>

< /location> 140

271

<location id="id25">
<name> TestDonationWithApprovedTest </name>

< /location>

<location id="id26">
<name> DoNotUseUnit </name>

< /location>

<init ref="id3"/> 150

<transition>

<source ref = "id3"/>

<target ref = "id17"/>

<label kind="guard">LicensedFacility == 1</label>

< /transition>

<transition>

<source ref = "id3"/>

<target ref = "id22"/> 160
<label kind="guard">LicensedFacility == 0</label>

< /transition>

<transition>

<source ref = "id17"/>
<target ref = "id22"/>
<label kind="guard">PrevReact == 1 and ShownSuitable == 0</label>

< /transition>

272

<transition> 170
<source ref = "id17"/>

<target ref = "id1"/>

<label kind="guard">PrevReact == 1 and ShownSuitable == 1</label>

< /transition>

<transition>

<source ref = "id17"/>

<target ref = "id1"/>

<label kind="guard">PrevReact == 0</label>

< /transition> 180

<transition>

<source ref = "id1"/>

<target ref = "id20"/>

<label kind="guard">Emergency == 0</label>

< /transition>

<transition>

<source ref = "id1"/>

<target ref = "id13"/> 190
<label kind="guard">Emergency == 1</label>

<label kind="action">sample_uses_all := 1< /label>

< /transition>

<transition>

<source ref = "id20"/>

273

<target ref = "id13"/>

<label kind="guard">Manufacturing == 1</label>

<label kind="action">sample_uses_manufacturing := 1</label>

< /transition> 200
<transition>

<source ref = "id20"/>
<target ref = "id10"/>
<label kind="guard">Manufacturing == 0</label>

< /transition>

<transition>

<source ref = "id10"/>

<target ref = "id0"/> 210
<label kind="guard">SecondAuto == 0</label>

< /transition>

<transition>
<source ref = "id10"/>
<target ref = "id4"/>
<label kind="guard">SecondAuto == 1</label>
<label kind="action">label := 1 , sample_uses_autologous := 1< /label>
< /transition>
220
<transition>
<source ref = "id0"/>
<target ref = "id23"/>

<label kind="guard">SourcePlasma == 1</label>

274

<label kind="action">sample_uses_source_plasma := 1</label>

< /transition>

<transition>

<source ref = "id0"/>

<target ref = "id11"/>

<label kind="guard">SourcePlasma == 0</label>

< /transition>

<transition>
<source ref = "id11"/>
<target ref = "id9"/>

<label kind="guard">MedDevice == 1</label>

<label kind="action">label := 2 , sample_uses_device := 1</label>

< /transition>

<transition>

<source ref = "id11"/>

<target ref = "id21"/>

<label kind="guard">MedDevice == 0</label>

< /transition>

<transition>

<source ref = "id21"/>

<target ref = "id25"/>

<label kind="guard">AutologousUse == 0</label>

< /transition>

275

230

240

250

<transition>
<source ref = "id21"/>

<target ref = "id16"/>

<label kind="guard">AutologousUse == 1< /label>

< /transition>

<transition>

<source ref = "id16"/>

<target ref = "id5"/>

<label kind="guard">aa0 == 0</label>

< /transition>

<transition>

<source ref = "id16"/>

<target ref = "id25"/>

<label kind="guard">aal == 1</label>

< /transition>

<transition>

<source ref = "id5"/>

<target ref = "id25"/>

<label kind="guard">aal == 0</label>

< /transition>

<transition>
<source ref = "id5"/>
<target ref = "id2"/>

<label kind="guard">aal == 1</label>

276

260

270

280

< /transition>

<transition>

<source ref = "id2"/>

<target ref = "id25"/>

<label kind="guard">aa2 == 1 and First30 == 1</label>

< /transition>

<transition>

<source ref = "id2"/> 290
<target ref = "id6"/>

<label kind="guard">aa2 == 0</label>

<label kind="action">label := 3 , sample_uses_autologous := 1< /label>

< /transition>

<transition>

<source ref = "id25"/>

<target ref = "id14"/>

<label kind="guard">ScreeningOutcome == 2</label>

< /transition> 300

<transition>

<source ref = "id25"/>

<target ref = "id7"/>

<label kind="guard">ScreeningOutcome == 1</label>

< /transition>

<transition>

277

<source ref = "id7"/>
<target ref = "id25"/> 310
<label kind="guard">Reduced == 0</label>

< /transition>

<transition>

<source ref = "id14"/>

<target ref = "id7"/>

<label kind="guard">Previous == 1 and PrevSuppOutcome == 1</label>

< /transition>

<transition> 320
<source ref = "id14"/>

<target ref = "id15"/>

<label kind="guard">Previous == 0</label>

< /transition>

<transition>

<source ref = "id15"/>

<target ref = "id24"/>

<label kind="guard">Supplemental == 1</label>

< /transition> 330

<transition>

<source ref = "id24"/>

<target ref = "id18"/>

<label kind="guard">SuppOutcome == 1</label>

<label kind="action">sample_uses_all := 1</label>

278

< /transition>

<transition>

<source ref = "id7"/> 340
<target ref = "id18"/>

<label kind="guard">Reduced == 1</label>

<label kind="action">sample_uses_all := 1< /label>

< /transition>

<transition>

<source ref = "id15"/>

<target ref = "id26"/>

<label kind="guard">Supplemental == 0</label>

< /transition> 350

<transition>

<source ref = "id24"/>

<target ref = "id8"/>

<label kind="guard">SuppOutcome == 2</label>
<label kind="action">label := 4</label>

< /transition>

<transition>

<source ref = "id8"/> 360
<target ref = "id19"/>

<label kind="guard">Research == 1< /label>

<label kind="action">label := 5 , sample_uses_research := 1< /label>

< /transition>

279

<transition>

<source ref = "idg"/>

<target ref = "id12"/>

<label kind="guard">Research == 0</label>
<label kind="action">donor_uses := 0</label>

< /transition>

< /template>

<instantiation>

< /instantiation>

<system>
system CFR; </system>

</nta>

280

370

380

Bibliography

1]

D. Alonso, J. Plourde, S. Weininger, and J. M. Goldman. Web-based clinical scenario
repository (CSR). In Poster Presentation at the Society for Technology in Anesthesia

Annual Meeting, 2014.

R. Alur, D. Arney, E. L. Gunter, I. Lee, J. Lee, W. Nam, F. Pearce, S. V. Albert, and
J. Zhou. Formal specifications and analysis of the computer-assisted resuscitation
algorithm (cara) infusion pump control system. Software tools for technology transfer,

5(4):308-319, 2004.

R. Alur and D. L. Dill. Automata for modeling real-time systems. In Proceedings
of the Seventeenth International Colloquium on Automata, Languages and Program-

ming, pages 322-335, Berlin, Heidelberg, 1990. Springer-Verlag.

D. Arney, S. Fischmeister, J. M. Goldman, I. Lee, and R. Trausmuth. Plug-and-play
for medical devices: Experiences from a case study. Biomedical Instrumentation &

Technology, 43(4):313-317, July 2009.

D. Arney, J. Goldman, I. Lee, E. Llukacej, and S. Whitehead. Use case demonstra-

tion: X-ray/ventilator. In High Confidence Medical Devices, Software, and Systems

281

[10]

and Medical Device Plug-and-Play Interoperability, 2007, page 160, June 2007.

D. Arney, J. M. Goldman, S. F. Whitehead, and I. Lee. Synchronizing an x-ray
and anesthesia machine ventilator: A medical device interoperability case study. In

BIODEVICES 2009, pages 52 — 60, January 2009.

D. Arney, J. M. Goldman, S. F. Whitehead, and I. Lee. Improving Patient Safety with
X-Ray and Anesthesia Machine Ventilator Synchronization: A Medical Device Inter-
operability Case Study, pages 96—109. Springer Berlin Heidelberg, Berlin, Heidelberg,

2010.

D. Arney, R. Jetley, P. Jones, 1. Lee, and O. Sokolsky. Formal methods based de-
velopment of a PCA infusion pump reference model: Generic Infusion Pump (GIP)
project. In HCMDSS-MDPNP °07: Proceedings of the 2007 Joint Workshop on High
Confidence Medical Devices, Software, and Systems and Medical Device Plug-and-
Play Interoperability, pages 23-33, Washington, DC, USA, 2007. IEEE Computer

Society.

D. Arney, M. Pajic, J. M. Goldman, I. Lee, R. Mangharam, and O. Sokolsky. Toward
patient safety in closed-loop medical device systems. In ACM/IEEE 1st International
Conference on Cyber-Physical Systems, ICCPS ’10, Stockholm, Sweden, April 12-15,

2010, pages 139-148, 2010.

D. Arney, J. Plourde, and J. Goldman. Openice medical device interoperability

platform overview and requirement analysis. 63, 01 2017.

282

[11]

[12]

[14]

D. Arney, J. Plourde, R. Schrenker, P. Mattegunta, S. F. Whitehead, and J. M. Gold-
man. Design pillars for medical cyber-physical system middleware. In 5th Workshop
on Medical Cyber-Physical Systems, MCPS 201/, Berlin, Germany, April 14, 201/,

pages 124-132, 2014.

D. Arney, K. Venkatasubramanian, O. Sokolsky, and I. Lee. Biomedical devices and
systems security. In Proc. of 33rd Annual International Conference of the IEEFE

Engineering in Medicine and Biology Society (EMBC ’11), September 2011.

D. Arney, S. Weininger, S. F. Whitehead, and J. M. Goldman. Supporting medical
device adverse event analysis in an interoperable clinical environment: Design of a
data logging and playback system. In Proceedings of the 2nd International Conference

on Biomedical Ontology, Buffalo, NY, USA, July 26-30, 2011, 2011.

D. E. Arney, R. Jetley, P. Jones, I. Lee, A. Ray, O. Sokolsky, and Y. Zhang. Generic
infusion pump hazard analysis and safety requirements version 1.0. Technical report,
University of Pennsylvania, February 2009. Department of Computer and Informa-

tion Science Technical Report No. MS-CIS-08-31.

P. Asare, D. Cong, S. G. Vattam, B. Kim, A. L. King, O. Sokolsky, I. Lee, S. Lin,
and M. Mullen-Fortino. The medical device dongle: an open-source standards-based
platform for interoperable medical device connectivity. In ACM International Health
Informatics Symposium, IHI 12, Miami, FL, USA, January 28-30, 2012, pages 667—

672, 2012.

283

[16]

[17]

[19]

[20]

ASTM F2761-09(2013). Medical Devices and Medical Systems - Essential
safety requirements for equipment comprising the patient-centric integrated clin-
ical environment (ICE) - Part 1: General requirements and conceptual model.

http://www.astm.org/Standards/F2761.htm.

G. Behrmann, A. David, and K. G. Larsen. A tutorial on uppaal. pages 200-236.

Springer, 2004.

C. Callan. Patient-controlled analgesia, chapter An analysis of complaints and com-
plications with patient-controlled analgesia, pages 139-50. Blackwell Scientific Pub-

lications, 1990.

T. Carpenter, J. Hatcliff, and E. Y. Vasserman. A reference separation architecture
for mixed-criticality medical and iot devices. In Proceedings of the 1st ACM Workshop
on the Internet of Safe Things, SafeThings@SenSys 2017, Delft, The Netherlands,

November 5, 2017, pages 14-19, 2017.

V. Chan and S. Underwood. A single-chip pulsoximeter design using the MSP430.

Technical Report SLAA274, Texas Instruments, Nov. 2005.

M. R. Cohen, R. J. Weber, and J. Moss. Patient-controlled analgesia: Making it

safer for patients. Technical report, Institute for Safe Medicine Practices.

J. Commission. Sentinel event alert issue 33: Patient controlled analgesia by proxy.
http://www.jointcommission.org/sentinelevents/sentineleventalert /sea_33.htm, De-

cember 2004.

284

23]

[24]

[25]

[26]

[29]

[30]

J. Commission. Preventing patient-controlled analgesia overdose. Joint Commission

Perspectives on Patient Safety, page 11, October 2005.

A. H. A. S. Committee and S. S. Subcommittee. Heart disease and stroke statistics

2007 update. Clirculation, 115(5), February 2007.

J. D. Day and H. Zimmermann. The osi reference model. Proceedings of the IEREE,

71(12):1334-1340, Dec 1983.

L. Feng, A. L. King, S. Chen, A. Ayoub, J. Park, N. Bezzo, O. Sokolsky, and I. Lee.
A safety argument strategy for PCA closed-loop systems: A preliminary proposal. In
5th Workshop on Medical Cyber-Physical Systems, MCPS 2014, Berlin, Germany,

April 14, 2014, pages 94-99, 2014.

J. M. Goldman, M. Jaffe, D. Osborn, and S. Weininger. The integrated clinical
environment (ICE) standard (ASTM {2761-09) - the first ten years. In Poster Pre-

sentation at the Society for Technology in Anesthesia Annual Meeting, 2014.

J. M. Goldman, S. F. Whitehead, and S. Weininger. Eliciting clinical requirements for
the medical device plug-and-play (MD PnP) interoperability program. In Anesthesia
& Analgesia: Abstracts of Posters Presented at the International Anesthesia Research

Society 80th Clinical and Scientific Congress, March 2006.

M. Grissinger. Misprogram a PCA pump? it’s easy! P&T, 33(10):567-568, October

2008.

O. M. Group. Data distribution service (DDS). http://portals.omg.org/dds/, March

2014.

285

31]

[35]

[38]

C. S. Hankin, J. Schein, J. A. Clark, and S. Panchal. Adverse events involving intra-
venous patient-controlled analgesia. American Journal of Health-System Pharmacy,

64:1492 — 1499, July 2007.

R. W. Hicks, V. Sikirica, W. Nelson, J. R. Schein, and D. D. Cousins. Medication
errors involving patient-controlled analgesia. American Journal of Health-System

Pharmacy, 65(5):429-440, March 2008.

C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Inc., Upper

Saddle River, NJ, USA, 1985.

R. M. Hofmann. Modeling medical devices for plug-and-play interoperability. Mas-

ter’s thesis, Massachusetts Institute of Technology, June 2007.

ISO. ISO 14971 medical devices - application of risk management to medical devices.

page 82, 2007.

ISO/IEEE. ISO/IEEE 11073-10101:2004 health informatics — point-of-care medical

device communication — part 10101: Nomenclature. 2004.

R. Ivanov, H. Nguyen, J. Weimer, O. Sokolsky, and I. Lee. Openice-lite: Towards
a connectivity platform for the internet of medical things. In 21st IEEE Interna-
tional Symposium on Real-Time Distributed Computing, ISORC 2018, Singapore,

Singapore, May 29-31, 2018, pages 103-106, 2018.

R. Ivanov, J. Weimer, and I. Lee. Context-aware detection in medical cyber-physical

systems. In Proceedings of the 9th ACM/IEEE International Conference on Cyber-

286

[39]

[41]

[42]

Physical Systems, ICCPS 2018, Porto, Portugal, April 11-13, 2018, pages 232—241,

2018.

P. Jevon and B. Ewens, editors. Monitoring the Critically Il Patient. Wiley-

Blackwell, 2nd edition, 2007.

M. Kasparick, M. Rockstroh, S. Schlichting, F. Golatowski, and D. Timmermann.
Mechanism for safe remote activation of networked surgical and poc devices using
dynamic assignable controls. In $8th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, EMBC 2016, Orlando, FL, USA, Au-

gust 16-20, 2016, pages 2390-2394, 2016.

M. Kasparick, S. Schlichting, F. Golatowski, and D. Timmermann. New ieee 11073
standards for interoperable, networked point-of-care medical devices. volume 2015,

08 2015.

M. Kasparick, M. Schmitz, B. Andersen, M. Rockstroh, S. Franke, S. Schlichting,
F. Golatowski, and D. Timmermann. Or.net: A service-oriented architecture for safe
and dynamic medical device interoperability. Biomedical Engineering / Biomedi-

zinische Technik, 01 2017.

M. Kasparick, M. Schmitz, F. Golatowski, and D. Timmermann. Dynamic remote
control through service orchestration of point-of-care and surgical devices based on
ieee 11073 sdc. In IEEE-NIH 2016 Special Topics Conference on Healthcare Innova-

tions and Point-of-Care Technologies, Cancun, Mexico. IEEE, IEEE, 2016/11 2016.

287

[44]

[45]

[47]

[48]

[49]

Y. J. Kim, S. Procter, J. Hatcliff, V. Ranganath, and Robby. Ecosphere principles
for medical application platforms. In 2015 International Conference on Healthcare
Informatics, ICHI 2015, Dallas, TX, USA, October 21-23, 2015, pages 193-198,

2015.

A. King, D. Arney, I. Lee, O. Sokolsky, J. Hatcliff, and S. Procter. Prototyping
closed loop physiologic control with the medical device coordination framework. In

2nd Workshop on Software Engineering in Health Care SEHC 2010, May 2010.

A. King, A. Roederer, D. Arney, S. Chen, M. Fortino-Mullen, A. Giannareas,
C. W. H. III, V. Kern, N. Stevens, J. Tannen, A. V. Trevino, S. Park, O. Sokol-
sky, and I. Lee. Gsa: A framework for rapid prototyping of smart alarm systems. In
Proceedings of the 1st ACM International Health Informatics Symposium (IHI '10),

November 2010.

K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell, 1997.

B. R. Larson, J. Hatcliff, S. Procter, and P. Chalin. Requirements specification
for apps in medical application platforms. In Proceedings of the 4th International
Workshop on Software Engineering in Health Care, SEHC 2012, Zurich, Switzerland,

June 4-5, 2012, pages 26-32, 2012.

B. R. Larson, Y. Zhang, S. C. Barrett, J. Hatcliff, and P. L. Jones. Enabling safe
interoperation by medical device virtual integration. IEEE Design € Test, 32(5):74—

88, 2015.

288

[50]

[51]

[53]

[55]

[56]

L. L. Leape. Reporting of adverse events. New England Journal of Medicine,

347(20):1633-8, November 2002.

I. Lee and O. Sokolsky. Medical cyber physical systems. In Proceedings of the 47th
Design Automation Conference, DAC 10, pages 743-748, New York, NY, USA, 2010.

ACM.

K. Li, S. Warren, and J. Hatcliff. Component-based app design for platform-oriented
devices in a medical device coordination framework. In ACM International Health
Informatics Symposium, IHI 12, Miami, FL, USA, January 28-30, 2012, pages 343—

352, 2012.

L. Lin, R. Isla, K. Doniz, H. Harkness, K. Vincente, and D. Doyle. Applying human
factors to the design of medical equipment: patient-controlled analgesia. Journal of

Clinical Monitoring and Computing, 14:253—-63, 1998.

L. Lin, K. Vincente, and D. Doyle. Patient safety, potential adverse drug events, and
medical device design: a human factors engineering approach. Journal of Biomedical

Informatics, 34:274-84, 2001.

A. S. Lofsky. Turn Your Alarms On. APSF Newsletter, 19(4):43, 2004.

P. E. Macintyre. Safety and efficacy of patient-controlled analgesia. British Journal

of Anaesthesia, 87(1):36-46, 2001.

P. Masci, A. Ayoub, P. Curzon, M. D. Harrison, I. Lee, and H. W. Thimbleby. Ver-
ification of interactive software for medical devices: PCA infusion pumps and FDA

regulation as an example. In ACM SIGCHI Symposium on Engineering Interactive

289

[58]

[60]

[61]

Computing Systems, EICS’13, London, United Kingdom - June 24 - 27, 2013, pages

81-90, 2013.

P. Masci, A. Ayoub, P. Curzon, I. Lee, O. Sokolsky, and H. W. Thimbleby. Model-
based development of the generic PCA infusion pump user interface prototype in
PVS. In Computer Safety, Reliability, and Security - 32nd International Conference,
SAFECOMP 2013, Toulouse, France, September 24-27, 2013. Proceedings, pages

228-240, 2013.

MD PnP Prototype Regulatory Submission Working Group. PRS level 1 hazard

analysis. Accessed from MD PnP Basecamp Web Site, November 2010.

R. Milner. Communicating and mobile systems - the Pi-calculus. Cambridge Univer-

sity Press, 1999.

M. Mullen-Fontino, N. O’Brien, and M. Jones. Critical care of a patient after CABG

surgery. Nursing Critical Care, 4(4):46 — 53, July 2009.

M. Mullen-Fortino and N. O’Brien. Caring for a patient after coronary artery bypass

graft surgery. Nursing, 38(3):46-52, March 2008.

A. Murugesan, M. P. E. Heimdahl, M. W. Whalen, S. Rayadurgam, J. Komp,
L. Duan, B. Kim, O. Sokolsky, and I. Lee. From requirements to code: Model
based development of a medical cyber physical system. In Software Engineering
in Health Care - 4th International Symposium, FHIES 2014, and 6th International
Workshop, SEHC 2014, Washington, DC, USA, July 17-18, 2014, Revised Selected

Papers, pages 96-112, 2014.

290

[64]

[66]

[67]

[69]

H. Nguyen, B. Acharya, R. Ivanov, A. Haeberlen, L. T. X. Phan, O. Sokolsky,
J. Walker, J. Weimer, W. H. III, and I. Lee. Cloud-based secure logger for medical
devices. In Proceedings of the First IEEE International Conference on Connected
Health: Applications, Systems and Engineering Technologies, CHASE 2016, Wash-

ington, DC, USA, June 27-29, 2016, pages 89-94, 2016.

M. Pajic, R. Mangharam, O. Sokolsky, D. Arney, J. M. Goldman, and I. Lee. Model-
driven safety analysis of closed-loop medical systems. IEEE Trans. Industrial Infor-

matics, 10(1):3-16, 2014.

J. Paul, M. Sawhney, W. Beattie, and R. McLean. Critical incidents amongst 10033

acute pain patients. Canadian Journal of Anesthesiology, 51:A22, 2004.

J. Plourde, D. Arney, and J. M. Goldman. Openice: An open, interoperable plat-
form for medical cyber-physical systems. In ACM/IEEE International Conference
on Cyber-Physical Systems, ICCPS, Berlin, Germany, April 14-17, 2014, page 221,

2014.

S. Procter and J. Hatcliff. An architecturally-integrated, systems-based hazard anal-
ysis for medical applications. In Twelfth ACM/IEEE International Conference on
Formal Methods and Models for Codesign, MEMOCODE 2014, Lausanne, Switzer-

land, October 19-21, 2014, pages 124-133, 2014.

M. I Program. OpenlCE software repository.

http://mdpnp.org/MD_PnP _Program___OpenlCE.html, March 2014.

291

[70]

[71]

[74]

V. Ranganath, Y. J. Kim, J. Hatcliff, and Robby. Communication patterns for inter-
connecting and composing medical systems. In 37th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society, EMBC 2015, Milan, Italy,

August 25-29, 2015, pages 1711-1716, 2015.

R. Schrenker. Ensuring sufficient breadth in use case development: How should
non-functional requirements be elicited and represented? In Proceedings of the 2007
Joint Workshop on High Confidence Medical Devices, Software, and Systems and
Medical Device Plug-and-Play Interoperability, HCMDSS-MDPNP ’07, pages 135—

136, Washington, DC, USA, 2007. IEEE Computer Society.

O. Sokolsky, I. Lee, and M. Heimdahl. Challenges in the regulatory approval of
medical cyber-physical systems. In Proceedings of the Ninth ACM International
Conference on Embedded Software, EMSOFT ’11, pages 227-232, New York, NY,

USA, 2011. ACM.

S. Syed, J. E. Paul, M. Hueftlein, and M. Kampf. Morphine overdose from error
propagation on an acute pain service. Canadian Journal of Anesthesiology, 53(6):586—

90, June 2006.

U.S. Department of Health and Human Services Food and Drug Administration
Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation
and Research (CBER). Design control guidance for medical device manufacturers.

1997.

292

[75]

U.S. Department of Health and Human Services Food and Drug Administration Cen-
ter for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and
Research (CBER). Guidance for industry development and use of risk minimiza-
tion action plans. Technical report, Office of Training and Communication Division
of Drug Information, HFD-240 Center for Drug Evaluation and Research Food and

Drug Administration, 2005.

U.S. Department of Health and Human Services Food and Drug Administration
Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation

and Research (CBER). Guidance for industry: Q9 quality risk management. 2006.

U.S. Department of Health and Human Services Food and Drug Administration Cen-
ter for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and
Research (CBER). Design considerations and pre-market submission recommenda-

tions for interoperable medical devices. 2017.

K. K. Venkatasubramanian, E. Y. Vasserman, V. Sfyrla, O. Sokolsky, and I. Lee. Re-
quirement engineering for functional alarm system for interoperable medical devices.
In Computer Safety, Reliability, and Security - 34th International Conference, SAFE-
COMP 2015 Delft, The Netherlands, September 23-25, 2015. Proceedings, pages 252—

266, 2015.

K. J. Vicente, K. Kada-Bekhaled, G. Hillel, A. Cassano, and B. A. Orser. Program-
ming errors contribute to death from patient-controlled analgesia: case report and

estimate of probability. Canadian Journal of Anesthesiology, 50(4):328-32, 2003.

293

[80] C. F. Wallroth, J. M. Goldman, J. Manigel, D. Osborn, T. Roellike, S. Weininger,
and D. Westenskow. Development of a standard for physiologic closed loop controllers
in medical devices. In Poster Presentation at the World Congress of Anesthesiology,

2008.

[81] P. Welch, N. Brown, J. Moores, K. Chalmers, and B. Sputh. Integrating and extend-

ing jesp. volume 65, pages 349-370, 01 2007.

294

	University of Pennsylvania
	ScholarlyCommons
	2019

	Medical Device Interoperability With Provable Safety Properties
	David Eric Arney
	Recommended Citation

	Medical Device Interoperability With Provable Safety Properties
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Keywords
	Subject Categories

	tmp.1566944574.pdf.n8aQD

