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Security and Interoperable Medical Device Systems: Part 1

Abstract
Interoperable medical devices (IMDs) face threats due to the increased attack surface presented by
interoperability and the corresponding infrastructure. Introducing networking and coordination
functionalities fundamentally alters medical systems' security properties. Understanding the threats is an
important first step in eventually designing security solutions for such systems. Part 1 of this two-part article
provides an overview of the IMD environment and the attacks that can be mounted on it.
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Medical devices are essential for modern medicine because they can help 
automate many patient monitoring and management functions. Such devices can 
be stand-alone or interoperable. Stand-alone devices, by far the most common 
type, perform monitoring and treatment with- out directly interacting with other 
medical devices or equipment.1  Recently, however, many medical devices have 
been augmenting their stand-alone operation with considerable communication 
capabilities, allowing them to interact with other devices. This interoperability 
offers numerous advantages, including increased safety, usability, and decision 
support, and a decrease in false alarms and clinicians’ cognitive workload.1 

Until now, interoperability has been the domain of large device and systems 
manufacturers, who require all-or-nothing adoption. That is, all devices must be 
from the same manufacturer or individually vetted partners. This single- integrator 
situation is considered safe, owing to these manufacturers’ extensive control over 
interoperating devices, but this solution doesn’t scale. Overcoming this problem 
requires enabling inter- operability between different manufacturers’ devices but 
sacrifices control, and has negative economic consequences for traditional device 
manufacturers. Furthermore, if a failure occurs, the root causes become difficult to 
trace, which can be problematic for clinical facilities and regulating agencies. 

Given the diversity of medical devices that might need to be interconnected, and 
the structure of economic incentives, the wait for manufacturers to organically 
evolve interoperability for their devices has already been long. Moreover, 
regulatory agencies such as the US Food and Drug Administration don’t have the 
mandate to require interoperability. Fortunately, the various stakeholders 



(manufacturers, clinical facilities, regulating agencies, and so on) are recognizing 
that the future lies in building genuine interoperability. Consequently, various 
groups are proactively developing standards that will let devices talk to one 
another.2–5 

Interoperable medical devices (IMDs) face several threats due to the increased 
attack surface presented by interoperability and the corresponding infrastructure. 
Introducing networking and coordination functionalities fundamentally alters 
medical systems’ security properties. Understanding the threats is an important 
first step in eventually designing security solutions for such systems. Here, in the 
first part of a two-part article, we provide an overview of the IMD environment 
and the attacks that can be mounted on it. 

 
 
The IMD Environment 

Because of its flexibility and openness, we use the Medical Device Plug-and- Play 
Integrated Clinical Environment (ICE) interoperability architecture, as described 
in the ASTM 2761 standard,2 to frame our work. However, the results apply to 
many other architectures and standards. 

Figure 1 demonstrates a simplified view of our ICE-based IMD environment. The 
coordinator is middleware that connects a group of medical devices through a 
shared network. Legacy devices can interoperate using an adapter. An alarm 
system generates alarms, both medical (for example, related to patient health) and 
functional (for example, regarding the unavailability of devices, the network, or 
the coordinator). Individual devices might have additional alarms. 

In the rest of this discussion, we assume that if the coordinator fails (for example, 
in the event of an attack), individual devices independently and automatically 
enter a non-coordinating “offline” safe state and sound their built-in alarm. This 
assumption is necessary to achieve systems that are safer than current ones. 
Devices must have a fail-safe mode in case of coordination failure, or patients 
would face a new risk in the IMD system. 

we use the Medical Device Plug-and-
Play Integrated Clinical Environment 
(ICE) interoperability architecture, 
as described in the ASTM 2761 stan-
dard,2 to frame our work. However, 
the results apply to many other archi-
tectures and standards.

Figure 1 demonstrates a simpli-
!ed view of our ICE-based IMD 
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middleware that connects a group 
of medical devices through a shared 
network. Legacy devices can inter-
operate using an adapter. An alarm 
system generates alarms, both medi-
cal (for example, related to patient 
health) and functional (for exam-
ple, regarding the unavailability of 
devices, the network, or the coor-
dinator). Individual devices might 
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we assume that if the coordinator 
fails (for example, in the event of 
an a#ack), individual devices inde-
pendently and automatically enter a 
noncoordinating “o$ine” safe state 
and sound their built-in alarm. "is 
assumption is necessary to achieve 
systems that are safer than current 
ones. Devices must have a fail-safe 
mode in case of coordination fail-
ure, or patients would face a new 
risk in the IMD system.

IMD Security
One of the most important issues 
with such systems of systems is 
ensuring patient safety, which 
depends at least partially on the 
security guarantees o%ered by the 
IMDs and connecting infrastruc-
ture. If an a#acker can force an 
entity in the IMD environment to 
deviate from correct behavior, the 
environment can no longer be con-
sidered safe. Furthermore, a com-
promised device can cause another, 
otherwise functional, device to per-
form dangerous tasks. In potentially 
adversarial situations, such safety 
concerns are only exacerbated by 
interdevice communication that 
allows remote access of the entities.

Security is therefore a key 
requirement for IMDs for two 
reasons:

 ■ "ey might be deployed in life-
critical se#ings; that is, they 
might administer treatment, caus-
ing changes to the patient’s body, 
potentially as a result of external 
directives.

 ■ "ey have access to sensitive 
health information.

Security a#acks on medical devices 
have thus far been relatively rare, but 
as IMDs become common, incen-
tives increase to a#ack them for 
pro!t. Moreover, owing partly to 
laws such as the US Health Insur-
ance Portability and Accountability 
Act (HIPAA), maintaining secu-
rity and privacy of patient informa-
tion is a legal necessity. Recent years 
have brought increased a#ention 
to security vulnerabilities in stand-
alone medical devices.6 Introduction 
of interoperability makes devices 
increasingly connected to and depen-
dent on each other. Because of this 
increased complexity, the connected 
devices will likely o%er more a#ack 
avenues. An adversary needs only to 
take over the weakest device in the 
IMD environment to gain a foot-
hold. He or she can then reach other 
devices through the existing trust 
relationships in the environment.

An Attack Model
Adversaries targeting IMDs come 
in two basic types. Passive a#ackers 

can eavesdrop on tra'c between 
IMDs and the coordinator. Active 
a#ackers can also alter messages, 
inject tra'c, replay old messages, 
spoof, and ultimately compromise 
the IMDs’ integrity.

Similarly to Zinaida Benenson 
and her colleagues,7 we designate 
!ve classes of a#acks on IMD envi-
ronments: destroy, disturb, repro-
gram, denial of service, and eavesdrop. 
All are active a#acks except for 
eavesdrop. Table 1 illustrates the 
environment’s susceptibility to 
these a#acks.

Destroy
"ese a#acks physically destroy 
some or all of the components in an 
interoperability environment, stop-
ping its operation immediately. For 
example, an a#acker could cut an 
infusion pump tube.

Disturb
"ese a#acks modify the data 
available to some or all of the enti-
ties in the environment to prevent 
them from operating correctly. 
Examples include replay and man-
in-the- middle a#acks.

Reprogram
A special subset of disturb a#acks, 
these a#acks modify data or code 
in a medical device, the coordina-
tor, or the alarm system such that 
it doesn’t perform its designated 
operation. For example, an a#acker 
could modify an infusion pump’s 
so(ware to deliver extra medication. 
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Figure 1. A simplified generic architecture for interoperable medical devices. 
!e coordinator connects a group of medical devices via a shared network. !e 
alarm system generates alarms for both medical and functional problems.
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IMD Security 

One of the most important issues with such systems of systems is ensuring patient 
safety, which depends at least partially on the security guarantees offered by the 
IMDs and connecting infrastructure. If an attacker can force an entity in the IMD 
environment to deviate from correct behavior, the environment can no longer be 
considered safe. Furthermore, a com- promised device can cause another, 
otherwise functional, device to per- form dangerous tasks. In potentially 
adversarial situations, such safety concerns are only exacerbated by inter device 
communication that allows remote access of the entities. 

Security is therefore a key requirement for IMDs for two reasons: 

■  They might be deployed in life- critical settings; that is, they might administer 
treatment, causing changes to the patient’s body, potentially as a result of external 
directives. 

■  They have access to sensitive health information. 

Security attacks on medical devices have thus far been relatively rare, but as IMDs 
become common, incentives increase to attack them for profit. Moreover, owing 
partly to laws such as the US Health Insurance Portability and Accountability Act 
(HIPAA), maintaining security and privacy of patient information is a legal 
necessity. Recent years have brought increased attention to security vulnerabilities 
in stand- alone medical devices.6 Introduction of interoperability makes devices 
increasingly connected to and dependent on each other. Because of this increased 
complexity, the connected devices will likely offer more attack avenues. An 
adversary needs only to take over the weakest device in the IMD environment to 
gain a foot- hold. He or she can then reach other devices through the existing trust 
relationships in the environment. 

An Attack Model 

Adversaries targeting IMDs come in two basic types. Passive attackers can 
eavesdrop on traffic between IMDs and the coordinator. Active attackers can also 
alter messages, inject traffic, replay old messages, spoof, and ultimately 
compromise the IMDs’ integrity. 

Similarly to Zinaida Benenson and her colleagues,7 we designate five classes of 
attacks on IMD environments: destroy, disturb, reprogram, denial of service, and 
eavesdrop. All are active attacks except for eavesdrop. Table 1 illustrates the 
environment’s susceptibility to these attacks. 

Destroy 



 

These attacks physically destroy some or all of the components in an 
interoperability environment, stop- ping its operation immediately. For example, 
an attacker could cut an infusion pump tube. 

Disturb 

These attacks modify the data available to some or all of the entities in the 
environment to prevent them from operating correctly. Examples include replay 
and man- in-the-middle attacks. 

Reprogram 

A special subset of disturb attacks, these attacks modify data or code in a medical 
device, the coordinator, or the alarm system such that I doesn’t perform its 
designated operation. For example, an attacker could modify an infusion pump’s 
software to deliver extra medication. Reprogramming can be done locally or 
remotely if a device provides over- the-network programmability. 

Denial of Service 

These attacks target the network but also affect the devices, coordinator, or alarm 
system to prevent effective interoperation. For example, an attacker could burn out 
an infusion pump’s motors through overuse, pre- venting the device from 
performing the required therapeutic functions. 

Eavesdrop 

These attacks involve listening in on the IMD environment’s network to learn 
sensitive health information. Because these attacks (unlike the previous ones) 
don’t disrupt system operation, detecting them is difficult. 

There’s nothing fundamentally new about the attack vectors we presented. 
However, their use in the context of the coordinating devices and middleware can 
cause a variety of failures, many of which can’t be easily detected because they’re 
silent. ���In part 2, we’ll build on this attack model and demonstrate how adversaries 

Reprogramming can be done locally 
or remotely if a device provides 
over-the-network programmability.
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also a#ect the devices, coordinator, 
or alarm system to prevent e#ec-
tive interoperation. For example, an 
a"acker could burn out an infusion 
pump’s motors through overuse, pre-
venting the device from performing 
the required therapeutic functions.

Eavesdrop
!ese a"acks involve listening in on 
the IMD environment’s network to 
learn sensitive health information. 
Because these a"acks (unlike the 
previous ones) don’t disrupt system 
operation, detecting them is di$cult.

T here’s nothing fundamentally 
new about the a"ack vectors we 

presented. However, their use in the 
context of the coordinating devices 
and middleware can cause a variety of 
failures, many of which can’t be easily 
detected because they’re silent.

In part 2, we’ll build on this 
a"ack model and demonstrate how 
adversaries can cause various types 
of failures in IMD environments, 
and these failures’ security conse-
quences. We’ll also introduce the 
concept of device criticality as a way 
to assess a"acks’ potential damage. 
Finally, we’ll conclude with the les-
sons learned from performing this 
a"ack analysis. 

Acknowledgments
US National Institutes of Health grant 

1U01EB012470-01 and US National 
Science Foundation award CPS-
1035715 partly supported this research.

References
1. D. Arney et al., “Biomedical Devices 

and Systems Security,” Proc. 33rd 
Ann. Int’l Conf. IEEE Eng. in Medi-
cine and Biology Soc. (EMBC 11), 
IEEE, 2011, pp. 2376–2379.

2. ASTM F2761 - 09 Medical Devices 
and Medical Systems—Essential 
Safety Requirements for Equipment 
Comprising the Patient-Centric 
Integrated Clinical Environment 
(ICE)—Part 1: General Require-
ments and Conceptual Model, ASTM 
F29.21, ASTM Int’l, 2009.

3. M. Clarke et al., “Developing a Stan-
dard for Personal Health Devices 
Based on 11073,” Proc. 29th Ann. 
Int’l Conf. IEEE Eng. in Medicine 
and Biology Soc. (EMBC 07), IEEE, 
2007, pp. 6174–6176.

4. “Introduction to HL7 Standards,” 
Health Level Seven Int’l, 2012; 
www.hl7.org/implement/standards.

5. Integrating the Healthcare Enterprise, 
IHE Int’l, 2012; www.ihe.net.

6. D. Halperin et al., “Pacemakers and 
Implantable Cardiac De%brillators: 
So&ware Radio A"acks and Zero-
Power Defenses,” Proc. 2008 IEEE 
Symp. Security and Privacy, IEEE, 
2008, pp. 129–142.

7. Z. Benenson, E. Blaß, and F.C. 
Freiling, “A"acker Models for Wire-
less Sensor Networks,” Information 
Technology, vol. 52, no. 6, 2010, pp. 
320–324.

Krishna K. Venkatasubramanian 
is an assistant professor in the 
Worcester Polytechnic Institute’s 

Department of Computer Science. 
Contact him at kven@wpi.edu.

Eugene Y. Vasserman is an assistant 
professor in Kansas State Univer-
sity’s Department of Computing 
and Information Sciences. Con-
tact him at eyv@ksu.edu.

Oleg Sokolsky is a research associ-
ate professor in the University 
of Pennsylvania’s Department of 
Computer and Information Sci-
ence. Contact him at sokolsky@
cis.upenn.edu.

Insup Lee is the Cecilia Fitler Moore 
Professor of Computer and Infor-
mation Science at the University 
of Pennsylvania. Contact him at 
lee@cis.upenn.edu.

Selected CS articles and columns 
are also available for "ee at 

h#p://ComputingNow.computer.org.

Table 1. !e interoperable-medical-device environment’s susceptibility to attacks.
Attack class

Entity Destroy Reprogram Disturb Denial  
of service

Eavesdrop

Coordinator 9 9 9 9

Medical device 9 9 9 9

Network 9 9 9 9

Alarm system 9 9 9 9
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can cause various types of failures in IMD environments, and these failures’ 
security consequences. We’ll also introduce the concept of device criticality as a 
way to assess attacks’ potential damage. Finally, we’ll conclude with the lessons 
learned from performing this attack analysis. 
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