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Security and Interoperable Medical Device Systems, Part 2: Failures,
Consequences and Classifications

Abstract
Interoperable medical devices (IMDs) face threats due to the increased attack surface presented by
interoperability and the corresponding infrastructure. Introducing networking and coordination
functionalities fundamentally alters medical systems' security properties. Understanding the threats is an
important first step in eventually designing security solutions for such systems. Part 2 of this two-part article
defines a failure model, or the specific ways in which IMD environments might fail when attacked. An attack-
consequences model expresses the combination of failures experienced by IMD environments for each attack
vector. This analysis leads to interesting conclusions about regulatory classes of medical devices in IMD
environments subject to attacks.
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Medical devices are gaining considerable communication capabilities, allowing 
them to interact with the devices around them. This interoperability presents many 
benefits for clinical workflows and patient care outcomes. Examples include 
increased safety, usability, and decision support, as well as decreased false alarms 
and clinician cognitive workload.1 

In such open interoperable medical device (IMD) environments, security becomes 
crucial for safe operation because of an increased adversarial presence in the 
network. Efforts are underway to proactively develop interoperability standards, 
involving all key stakeholders (manufacturers, clinical facilities, regulating 
agencies, and so on).2–5 We must work to ensure that the resulting systems and 
protocols prevent unauthorized, unsafe interaction. 

In the first part of this two-part 6 ���article, we defined an abstract model or IMD 
environments and an associated attack model in the context of the integrated-
clinical-environment architecture.2 The IMD environment consists of a 
coordinator (which facilitates interoperability), a network connecting the 
coordinator and medical devices, and an alarm system. The alarm alerts clinicians 
to issues both functional (for example, loss of a device or the coordinator) and 
medical (for example, an abnormally low patient heart rate). Individual medical 
devices might have their own alarms for functional and medical issues, which 
would complement the IMD alarm system’s capabilities. Compare that with today, 
when devices have their own dedicated alarms, sometimes complemented by alerts 
sent to a central location such as the nurses’ station. 



In this part, we define a failure model, or the specific ways in which IMD 
environments might fail when attacked. In addition, an attack-consequences model 
expresses the combination of failures experienced by IMD environments for each 
attack vector. This analysis leads to interesting conclusions about regulatory 
classes of medical devices in IMD environments subject to attacks. 

A Failure Model 

Attacks might cause the IMD environment to fail in arbitrary ways. For our 
purposes, a failure is an adverse effect on a patient due to an adversary’s actions. 
This includes leakage of sensitive patient information; untimely, incorrect, or no 
treatment (actuation); untimely or no monitoring; or alarm deactivation. In part 
one of this article, we defined five kinds of attacks: 

§ Destroy attacks try to physically destroy a device or its components. 
§ Disturb attacks try to disturb and alter the functionality of a device or the IMD 

environment. 
§ Reprogram attacks try to repro- gram a device (this is a subset of the disturb 

attack). 
§ Denials of service (DoS) attacks try to deny service to devices or the entire 

IMD environment. 
§ Eavesdrop attacks try to eavesdrop on communication.6 

Researchers have proposed numerous failure models in computing7,8 and non-
computing settings,9 but these models didn’t take into account device 
interoperability and cyber-physical systems. We propose a (limited but extensible) 
failure model for IMD environments under attack, expressed in terms of the 
system’s failure. That is, an IMD environment as a whole fails in a specific way if 
an individual component fails. 

Failure Modes 

Our failure model involves the following four failure modes. 

In fail-stop, one or more IMD environment components abruptly stop operating 
and can’t be restarted easily. For example, someone burns out an infusion pump’s 
motor by forcing excessive use of the pump. 

In fail-safe, one or more IMD environment components stop or alter their 
operation, enter a safe state, and can be restarted easily. That is, a device 

§ goes offline and stops operating if stopping won’t harm the patient, or  

§ continues operating if it’s administering treatment crucial to the patient’s 



health. ��� 

For example, this might occur if an attack destroys the coordinator, causing an x-
ray scanner to deactivate. ���In fail-loud, an alarm sounds in response to the 
stoppage, alteration, or degradation of functionality of one or more components, 
including the network. Generally, the coordinator controls these alarms. For 
example, if a device suddenly stops or misbehaves, the coordinator, observing this, 
instructs the alarm system to sound. An individual device might likewise generate 
an alarm if it detects a problem, such as unexpected disconnection from the 
network. ���In fail-quiet, an IMD environment component stops, alters, or degrades 
its operation quietly, without raising an alarm. For example, a wire- less blood 
pressure monitor starts broadcasting unencrypted copies of all its data, allowing an 
adversary- controlled (unauthorized) device to eavesdrop on it. 

Intersections 

The two basic types of failures are fail-loud and fail-quiet. Within these, there are 
two overlapping subsets: fail-stop and fail-safe. Five intersections are possible: 

§ Fail-stop ∩ fail-safe. Some devices, such as x-ray scanners and patient-
controlled-analgesia pumps, are designed to be fail- safe when stopped 
abruptly. In an IMD environment, this can lead to fail-loud or fail-quiet, 
depending on whether the alarm system continues to function or fails. 

§ Fail-quiet ∩ fail-stop. Devices might fail both abruptly and quietly. This is 
especially true when failure of both functionality and the alarm system occurs 
simultaneously. 

§ Fail-quiet ∩ fail-safe. This case occurs when the alarm fails but the IMD 
environment enters a safe state. 

§ Fail-loud ∩ fail-stop. This case occurs when a device fails but the alarm alerts 
clinicians to the failure. 

§ Fail-loud ∩ fail-safe. Some IMD environments will sound an alarm when a 
device enters a safe state. 

§ Fail-loud ∩ fail-quiet is, of course, impossible because the alarm sys- tem 
either generates an alarm or stays quiet. 

An IMD environment can potentially experience multiple combinations of failures 
due to an attack. In such cases, we address the combination that’s most dangerous 
to the patient or caregiver. 

The Attack-���Consequences Model  

Previous research in attack-centric modeling focused on attack trees,10 attack-
intention models,11 and capability vulnerability models.12 These models weren’t 



tailored to handle cyber-physical systems such as medical devices, which can have 
attacks and consequences in both the cyber and physical realms. 

Here, we discuss combinations of the attack vectors we described in part one and 
their consequences in terms of failures in the IMD. Owing to space limitations, we 
can’t enumerate all such attacks, so our list comprises10 representative scenarios: 

§ Scenario 1a involves destroy or DoS attack on the coordinator. The 
coordinator’s inability to respond causes the alarm sys- tem to sound. 
Individual devices, unable to reach the coordinator, go offline and might sound 
their internal alarms. 

§ Scenario 1b involves disturb or reprogram attack on the coordinator. The alarm 
system might eventually sound an alarm if it detects abnormal patient health 
indicators. 

§ Scenario 1c is an extension of 1b in which both the coordinator and alarm 
system are compromised. The alarm system should be designed so that 
attackers cannot silence it without attacking it directly. 

§ Scenario 2a involves destroy or DoS attack that causes one or more devices to 
stop abruptly. 

§ Scenario 2b is an extension of 2a in which one or more devices and the alarm 
system are compromised, leading to fail-quiet for the IMD. 

§ Scenario 2c involves disturb or reprogram attack causing one or more devices 
to misbehave. The alarm system isn’t attacked. 

§ Scenario 2d is an extension of 2c in which the alarm system is also 
compromised, leading to fail- quiet for the IMD. 

§ Scenario 3a involves a disturb attack on the network—for example, modifying 
the packets being sent or selectively dropping them. 

§ Scenario 3b involves eavesdrop attack on the network—for example, listening 
in on communication between entities.  

§ Scenario 4 is when the alarm system is compromised and fails completely or 
partially. ��� 

Figure 1 shows where these scenarios fit in the attack-consequences model. We 
don’t consider cases in which the coordinator, medical device, and network fail in 
various combinations in conjunction with the alarm system. That’s a subject 
for ���future research. ��� 

Device Classification Consequences ��� 

The attack-consequences model only lists the possible failures resulting from 
various attacks; it provides no information on the failures’ extent. The extent 
depends on, among other things, the device’s regulatory class—its capability to do 
harm. ���The US Food and Drug Administration (FDA) ranks devices into three 



regulatory classes:  

§ Class I devices can’t cause temporary discomfort or permanent harm if they 
malfunction or are used incorrectly.  

§ Class II devices might cause temporary discomfort.  
§ Class III devices might cause permanent damage.13 

The FDA currently categorizes devices as either stand-alone units or fixed 
interoperability configurations. An IMD environment can’t add new device types 
without reevaluating and potentially reclassifying the entire system.14 

When devices are placed in an IMD environment subject to attacks, classification 
issues arise. For instance, the regulatory class of what was a stand-alone device 
might spill over to other IMD environment components. A simple example 
involves a hospital’s internal network. If a class III device requires the network for 
correct functionality, the entire network might have to be deemed a class III 
device. 

Furthermore, when considering potential threats in an IMD environment, a 
device’s classification might change. For instance, in scenario 1c, the alarm 
system’s failure will lead to fail-quiet, with potentially the most severe 
consequences of any failure. So, the alarm system is a class III device because 
many other devices’ safety depends on it functioning correctly, irrespective of its 
regulatory status as a stand- alone device. 

 

Toward a Revised Classification ��� 

Owing to the spillover of device classifications and the changing nature of device 
classes in IMD environments, perhaps a more fine- grained medical-device 

 ■ Scenario 3b involves an eavesdrop 
a"ack on the network—for exam-
ple, listening in on communica-
tion between entities.

 ■ Scenario 4 is when the alarm sys-
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other things, the device’s regulatory 
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 ■ Class I devices can’t cause tem-
porary discomfort or permanent 
harm if they malfunction or are 
used incorrectly.
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 ■ Class III devices might cause per-
manent damage.13
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devices as either stand-alone units 
or $xed interoperability con$gura-
tions. An IMD environment can’t 
add new device types without 
reevaluating and potentially reclas-
sifying the entire system.14

When devices are placed in 
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environment components. A sim-
ple example involves a hospital’s 
internal network. If a class III 
device requires the network for 
correct functionality, the entire 
network might have to be deemed 
a class III device.

Furthermore, when considering 
potential threats in an IMD envi-
ronment, a device’s classi$cation 
might change. For instance, in sce-
nario 1c, the alarm system’s failure 
will lead to fail-quiet, with poten-
tially the most severe consequences 
of any failure. So, the alarm system 
is a class III device because many 
other devices’ safety depends on it 
functioning correctly, irrespective 
of its regulatory status as a stand-
alone device.

Toward a Revised 
Classification
Owing to the spillover of device 
classi$cations and the changing 
nature of device classes in IMD 
environments, perhaps a more $ne-
grained medical-device classi$ca-
tion is warranted. Such a re$nement 
would seem especially useful when 
considering a"acks that would 
induce deviations from the IMD 
environment’s expected behavior. 
A"acks’ consequences might di&er 
depending on the a&ected medi-
cal device’s importance to patients’ 
health and the time between the 
a"ack and damage to health.

One approach could be to amend 
the FDA classi$cation scheme to 
de$ne at least one new class: IIIa. 
Devices in this class might cause 
permanent harm if they malfunc-
tion without notice for longer than, 
for example, 15 minutes. Current 
class II devices would be mostly 
una&ected by this change. How-
ever, some that are fail-quiet could 
move to IIIa because the period of 
time over which they malfunction is 
unbounded. One possible example is 
a stationary x-ray scanner, currently 
classi$ed as class II, possibly owing 
to the large time scale required to 
deliver dangerous doses of radiation. 
Over time, however, patients or clini-
cians might receive excessive expo-
sure if the radiation source doesn’t 
disengage. %is device could, with 
adversaries present, become IIIa.

In an IMD environment, a 
successful a"ack might change a 
device’s behavior. %e coordinator 
will raise an alarm if other devices 
connected to the patient observe 
degradation of vital signs. If the 
network or coordinator is likewise 
a"acked, alerts might never propa-
gate to the alarm system.

To keep the bene$ts of fail-loud, 
we must ensure that any a"ack 
a&ecting a device or the coordinator 
would a&ect the alarm system in a 
way that activates it. %is implies two 
things. First, the IMD environment 

Figure 1. !e attack-consequences model comprises four failure modes. Each 
number or combination of a number and letter indicates a scenario described 
in the main article.
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classification is warranted. Such a refinement would seem especially useful when 
considering attacks that would induce deviations from the IMD environment’s 
expected behavior. Attacks’ consequences might differ depending on the affected 
medical device’s importance to patients’ health and the time between the attack 
and damage to health. 

One approach could be to amend the FDA classification scheme to define at least 
one new class: IIIa. Devices in this class might cause permanent harm if they 
malfunction without notice for longer than, for example, 15 minutes. Current class 
II devices would be mostly unaffected by this change. How- ever, some that are 
fail-quiet could move to IIIa because the period of time over which they 
malfunction is unbounded. One possible example is a stationary x-ray scanner, 
currently classified as class II, possibly owing to the large time scale required to 
deliver dangerous doses of radiation. Over time, however, patients or clinicians 
might receive excessive expo- sure if the radiation source doesn’t disengage. This 
device could, with adversaries present, become IIIa. 

In an IMD environment, a successful attack might change a device’s behavior. The 
coordinator will raise an alarm if other devices connected to the patient observe 
degradation of vital signs. If the network or coordinator is likewise attacked, alerts 
might never propagate to the alarm system. 

To keep the benefits of fail-loud, we must ensure that any attack affecting a device 
or the coordinator would affect the alarm system in a way that activates it. This 
implies two things. First, the IMD environment won’t survive a destroy attack on 
the alarm. Second, a non-reprogrammable alarm subsystem will be impervious to 
disturb or reprogram attacks and will handle DoS attacks on the network or 
coordinator by activating an alarm. Disturb or reprogram attacks on the 
coordinator are more challenging. However, they’re solvable as long as the alarm 
system listens to device messages on the network independently of the 
coordinator. If we can be certain that, when an IMD component fails, an alarm 
will sound in some bounded time interval, the consequences of the IMD 
environment deviating from the expected behavior are mitigated. Patient health 
will be pre- served as long as someone can hear the alarm and fix the problem. 

So, medical-device classification should take into account time and the potential 
for human action. The potential for immediate patient harm makes a device high-
hazard, but delayed harm with guaranteed fail- loud is a lower-hazard 
classification. However, this system architecture can’t guarantee fail-loud behavior 
if all component devices as well as the coordinator are reprogrammed to give false 
readings. Because devices are falsifying reported data, the alarm will never sound 
if it neither gets a command to do so nor detects problems with patients’ health. 

Therefore, we plan to develop a more fine-grained classification scheme for IMDs. 



Once the classification system is sufficiently expressive, we’ll be able to abstract 
out the properties of individual IMD components and reason about them in terms 
of their classes. We can then expand the attack-consequences model to include the 
information on the consequences’ extent. 
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