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Abstract— Medical cyber-physical systems (MCPS) are life-
critical, context-aware, networked systems of medical devices.
These systems are increasingly used in hospitals to provide high-
quality continuous care for patients. The need to design complex
MCPS that are both safe and effective has presented numer-
ous challenges, including achieving high assurance in system
software, intoperability, context-aware intelligence, autonomy,
security and privacy, and device certifiability. In this paper, we
discuss these challenges in developing MCPS, some of our work
in addressing them, and several open research issues.

Index Terms—cyber-physical systems, model-based design,
medical device systems, closed-loop physiological control, design
challenges

I. I NTRODUCTION

The medical device industry is undergoing a rapid trans-
formation, embracing the potential of embedded software and
network connectivity. Instead of stand-alone devices thatcan
be designed, certified, and used independently of each other
to treat patients, we will be faced in the near future with
distributed systems that simultaneously monitor and control
multiple aspects of the patient’s physiology. The combination
of embedded software controlling the devices, networking
capabilities, and complicated physical dynamics exhibited by
patient bodies makes modern medical device systems a distinct
class of cyber-physical systems (CPS). We refer to these as
medical cyber-physical systems (MCPS).

MCPS, due to their increased size and complexity relative to
traditional medical systems, present numerous developmental
challenges. The long-term viability of MCPS requires ad-
dressing these challenges through the development of new
design, composition, verification, and validation techniques.
These present new opportunities for researchers in MCPS
and in general embedded and CPS systems. For MCPS, we
also believe new regulatory procedures to approve their use
for treating patients will be needed. The traditional process-
based regulatory regime used by the U.S. Food and Drug
Administration (FDA) to approve medical devices is becoming
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too lengthy and prohibitively expensive with the increased
MCPS complexity, and we present possible solutions to ease
this process.

In this paper, we describe some of the research directions
that we are taking toward addressing some of the challenges
involved in building MCPS. The ultimate goal is to develop
foundations and techniques for building safe and effective
MCPS.

Overall, we advocate a systematic analysis and design of
MCPS for handling their inherent complexity. Consequently,
model-based design techniques should play a larger role in
MCPS design. Models should cover devices and communica-
tions between them, but also, of equal importance, patientsand
caregivers. The use of models will allow developers to assess
system properties early in the development process and build
confidence in the system design, before the system is built.
Analysis of system safety and effectiveness performed at the
modeling level needs to be complemented by generative im-
plementation techniques that preserve properties of the model
in the implementation. Results of model analysis, combined
with the guarantees of the generation process, can form the
basis for evidence-based regulatory approval.

The paper is organized as follows: Section II provides a con-
ceptual view of MCPS and their principal challenges. Sections
III, IV, V, VI, and VII present our work in addressing some
of these challenges. Section VIII presents a short discussion
on some of the open research issues associated with MCPS
and Section IX concludes the paper.

II. A N OVERVIEW OF MCPS

MCPS aresafety-critical, interconnected, intelligent sys-
tems of medical devices. Traditional clinical scenarios can
be viewed as closed-loop systems where caregivers are the
controllers, medical devices act as sensors and actuators,and
patients are the “plants.” MCPS alter this view by introducing
additional computational entities that aid the caregiver in con-
trolling the “plant.” Figure 1 shows the conceptual overview
of MCPS. The devices used in MCPS can be categorized
into two large groups based on their primary functionality:
monitoring devices, such as bedside heart-rate and oxygen-
level monitors and sensors, which provide different kinds
of clinic-relevant information about patients; anddelivery
devices, such as infusion pumps and ventilators, which actuate
therapy capable of changing the patient’s physiological state.
In MCPS, the monitoring devices can feed data collected to
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Fig. 1. Medical Cyber-Physical Systems: Conceptual Overview

a decision support or administrative support entities, each of
which serves a different, albeit complementary, purpose.

Administrative entities, such as electronic health records
(EHR) and pharmacy stores, manage patient health and treat-
ment information collected over a period of time. Given their
access to a wealth of personalized information, they have the
potential to provide targeted actuation of treatment basedon a
more holistic view of the patient’s health (e.g., by considering
potential drug interactions or by taking into account the longi-
tudinal evolution of a specific patient physiological parameter).
In this regard, they can assist in fulfilling the need for the
continuous care of the patient. Continuous data gathering and
management is essential for many of today’s health issues such
as dealing with the aging population and the rapid rise in the
number of people with chronic conditions such as asthma and
diabetes.

Decision support entities can process the data collected
and generate alarms for many medical emergencies. Alarms
are necessary to allow clinicians to know when the patient’s
state has deteriorated and what information is relevant to treat
them. However, it is now clear that we must develop smart
alarm systems that go beyond the current threshold based
methods to provide more accurate, targeted alarms, along with
context information about them. Caregivers can analyze that
information and can use delivery devices to initiate treatment,
thus bringing the caregiver into the control loop around the
patient. Alternatively, the decision support entities canutilize
a smart controller to analyze the data received from the
monitoring devices, estimate the state of the patient’s health,
and automatically initiate treatment (e.g., drug infusion) by
issuing commands to delivery devices, thereby closing the
loop.
MCPS Challenges.Building these sorts of MCPS requires
addressing several important challenges, which include:

• High Assurance Software:Software plays an increasingly
important role in medical devices. Many functions tra-
ditionally implemented in hardware – including safety
interlocks – are now being implemented in software. Thus
high-confidence software development is critical to assure
the safety and effectiveness of MCPS.

• Interoperability: As medical devices get communication
interfaces, it is essential to ensure that the integrated med-
ical devices are safe, effective, secure, and can eventually

be certified as such.
• Context-Awareness:Patient information exchanged dur-

ing device inter-operation can not only provide a better
understanding of the general health of the patient, but
also enable early detection of ailments and generation of
effective alarms in the event of emergencies. Given the
complexity of the human body and variations of physi-
ological parameters over patient population, developing
such computational intelligence is a non-trivial task.

• Autonomy: The computational intelligence that MCPS
possess can be used for increasing the autonomy of the
system by enabling actuation of therapies based on the
patient’s current health state. Closing-the-loop in this
manner must be done safely and effectively.

• Security and Privacy:Medical data collected and man-
aged by MCPS is very critical. Unauthorized access or
tampering with this information can have severe con-
sequences to the patient in the form of privacy-loss,
discrimination, abuse and physical harm. Preserving the
security of MCPS is thus crucial.

• Certifiability: The complex and safety-critical nature
of MCPS requires a cost-effective way to demonstrate
medical device software dependability. Certification of
medical devices provides a way of achieving this goal.
Certifiability is therefore an essential requirement for the
eventual viability of MCPS and an important challenge
to be addressed.

In the next several sections, we briefly highlight some of
our current work in addressing the various of the challenges
in building MCPS. We begin with a model-based development
for high assurance medical devices in Section III. We then
present our work on interconnecting several of these high-
assurance medical devices, enabling them to interoperate in
Section IV. The data collected from such interoperating de-
vices can be processed to enable the understanding of and in-
forming caregivers of the patient context. We describe several
smart alarm systems that can generate effective alarms based
on processing multiple streams of patient vital signs in Section
V. The availability of context-awareness enables autonomous
medical systems. In this regard, building MCPS for safe
closed-loop control for patient care delivery is describedin
Section VI. Finally, we present our work on issues involved
with certification of MCPS in Section VII.

III. H IGH-CONFIDENCEDEVELOPMENT OFMCPS

Software plays an increasingly important role in the de-
velopment of new MCPS. Most new device functionality is
software based, and many functions traditionally implemented
in hardware – including safety interlocks – are being switched
to software. Thus high-confidence software development is
very important for the safety and effectiveness of MCPS.

Model-based development has emerged as a means of
improving software quality [[CITATION]]. The model-based
approach allows developers to perform rigorous model ver-
ification with respect to safety and functional requirements,
and then through systematic code generation techniques derive
code that preserves the verified properties of the model. Such
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Fig. 2. Development process in the pacemaker case study

a development process allows one to detect problems with the
design and fix them at the model level, early in the design
cycle, where changes are easier and cheaper to make. More
importantly, it holds the promise of improving the safety
of the system through verification. Model-based techniques
currently used in the medical device industry rely on semi-
formal approaches such as UML and Simulink [9] and thus
do not allow developers to fully utilize the benefits of model-
based design.
Our Approach. Here we will discuss a model-based de-
velopment process, illustrated by two recent case studies:
an infusion pump [42] and an implantable pacemaker [38].
The process, shown in Fig. 2, relies on well-known formal
modeling and analysis tools, UPPAAL [10] and TIMES [6],
to develop and verify the model of a system and generate code
from it.

We begin with system requirements, which are given as
natural language or using informal state machine notation.
Requirements may also contain tolerance, with which timing
constraints must be satisfied by an implementation. Based on
the requirements, we develop a system model in UPPAAL. We
also formalize requirements in a variant of the CTL temporal
logic supported by the UPPAAL model checker. Then, we
perform verification of the UPPAAL model with respect to
the formalized requirements. The obtained model is an ideal
one, in that it satisfies the requirements under the assumption
that computation performed by the system is instantaneous.
From the verified model, we perform code generation using
the TIMES tool and adapt the code to the selected execution
platform. We then perform validation of the resulting system
implementation with respect to the system requirements. In
addition to testing functional behavior of the system, we also
check that timing constraints are within tolerances specified
in the requirements.

Validation results may show that tolerances are not observed
due to non-trivial computation time in the implementation.
In this case, we identify the source of the violation and
modify the model according to measurements on the imple-
mentation, obtained during the validation experiments. We
then perform another iteration of the process, re-verifying the
model, performing code generation again, and repeating the
validation. It is possible that several iterations are needed until
all constraints are met. However, in our case studies, we did

not have to cycle more than once. When the process completes,
we obtain a software implementation of the system that runs
on the chosen platform and has been validated against the
system requirements.

Generic PCA Infusion Pump:Patient-controlled analgesia
(PCA) infusion pumps are widely used for pain control of post-
operative patients. PCA pumps deliver opioid drugs, which
put the patient at risk of respiratory depression and death in
case of overdose. PCA pumps therefore are subject to stringent
safety requirements that aim to prevent overdose. The Generic
PCA (GPCA) project, a joint effort between our group and
researchers at the U.S. Food and Drug Administration, aims to
develop a series of publicly available artifacts that can beused
as guidance for manufacturers. In the first phase of the project,
a collection of documents has been developed, including a
hazard analysis report, a set of safety requirements [39], and a
reference model of the state controller. The model concentrates
on the state transitions in the controller software and abstracts
away much of the functional computation performed by the
pump (for example, estimation of the remaining drug volume
to be infused).

Based on these documents, we studied a model-driven
implementation of a PCA infusion pump controller software.
We used the Hospira LifeCareR©PCA pump platform, as the
platform of choice in this regard. The platform contains
a microcontroller-equipped pump motor, several sensors for
environmental conditions, and a buzzer for sounding alarms.
Controller software is deployed on a OMAP3530 processor
running Linux OS, which communicates with the motor micro-
controller over a serial line. The user interface is implemented
using an Android app on a smartphone.

Following the process described above, we formalized both
the model and the requirements in UPPAAL, performed formal
verification of the model, then generated code using TIMES.
To validate the generated code, we performed conformance
testing using a testbed that monitors the execution of the
implementation and compares it with the corresponding model
execution. No violations were observed during testing.

As part of the formalization process, we categorized safety
requirements according to their precision and level of abstrac-
tion: 1) requirements that are detailed enough to be formalized
and verified on the UPPAAL model; 2) requirements that are
beyond the scope of the UPPAAL model; 3) requirements that
are too imprecise to be formalized. Only 20 out of 97 re-
quirements fell into the first category. Most of the requirments
in the second category concern the functional aspects of the
system that are abstracted away by the UPPAAL model. Im-
plementation of these functional aspects, such as the remaining
drug volume estimation, is performed outside of the model-
based process. Thus these requirements can be validated on
the implementation. An example from the third category is
“Flow discontinuity at low flows should be minimal,” which
does not specify what is a low flow or what discontinuity can
be accepted as minimal. This example shows the importance
of a model-based process not just for software design, but also
for requirements engineering. Through formalization, we are
forced to identify ambiguous requirements like the one shown
above and provide feedback to the requirements engineers.



Pacemaker Challenge Problem:The second case study
was motivated by the Pacemaker Challenge, the certification
challenge problem issued by the Software Certification Con-
sortium (SCC) [62]. The challenge involves the development
of pacemaker controller software that is formally verified for
compliance with the timing requirements released by Boston
Scientific.

A cardiac pacemaker is an electronic device implanted into
the body to compensate for irregularities in the intrinsic heart
rhythm by delivering electrical stimuli, calledpaces, to the
heart. The pacemaker may also detect natural heart activity,
called sensesignals. Timing requirements for the pacemaker
operation are given by a number of properties known as
timing cycles. The applicable timing cycles depend on the
operating mode of the pacemaker. The operating mode is set
by a physician before the pacemaker is implanted, depending
on the patient condition. The mode describes what sensing
and pacing is performed and relationship between them. For
example, the VVI mode is characterized by ventricular sensing
and ventricular pacing with inhibition. That is, pacing will
occur at regular intervals, unless heart activity in the ventricle
is sensed. A sense will inhibit the next pace, allowing the heart
to beat on its own.

The timing cycles applicable in the VVI mode make use
of the lower rate limit interval (LRI) and the ventricular
refractory period (VRP). The LRI specifies the maximum time
interval that can elapse between any two cardiac events (senses
or paces). During the VRP, which begins after every pace,
sensing has to be turned off to avoid pace-induced false senses.
In addition to prescribing the timing cycles, the pacemaker
requirements specify tolerances with which the cycles must
be adhered to.

We used the process described above to implement the
pacemaker controller [38]. First, we created a model of
the controller using timed automata in the UPPAAL tool,
then we converted the applicable timing cycles into temporal
logic properties and verified them using the UPPAAL model
checker, followed by code generation. In this case, however,
validation demonstrated that timing constraints were not sat-
isfied within their tolerance levels. By analyzing the timing
traces of the contoller, we identified operations that contributed
most to the property violation and measured their execution
times. We modified the UPPAAL model by tightening tran-
sition guards, making the offending operations start earlier.
After re-verifying the model and generating the code again,
the controller implementation passed the validation phase.

Future work. The case studies demonstrated that, while
the overall process achieves good results in practice, it is
somewhatad hocwhen iterations of the process occur. Further
work is needed to identify, which changes to the model
would make the process converge faster, or to quickly detect
that the timing requirements are not implementable and no
amount of model modification will succeed. In general, more
rigorous development processes are needed, providing stronger
guarantees for timing and other non-functional properties.

IV. SOFTWARE PLATFORMS FORMEDICAL DEVICE

INTEROPERABILITY

Engineering MCPS goes beyond considering the individual
medical device: MCPS will consist of networks of medical
devices and computer systems cooperating to provide care
to patients. Conceptually, the set of device types and the
algorithm which defines how those devices should interact in
a given clinical scenario is aVirtual Medical Device (VMD).
VMDs can be instantiated into aVMD instanceby coupling
specific1 network-connected devices with the appropriate clin-
ical algorithm executing on a computer. The software artifact
that contains the list of required devices and the executable
clinical algorithm can be thought of as aVMD App.

To manage the instantiation and shutdown of the VMD
instance, there should be some system present on the hospital
network. For example, the Medical Device Plug-and-Play (MD
PnP) Interoperability initiative [26] has proposed aninterop-
erability platform and architecture known as theIntegrated
Clinical Environment(ICE) which would serve that purpose.
Such a ‘plug and play’ mechanism can be used to support the
following clinical workflow:

1) The clinician decides on the treatment plan for the
patient.

2) The clinician selects medical devices used to apply the
treatmeant.

3) The clinician assembles the treatment system by con-
necting the devices to an ICE supervisor computer and
to the patient.

4) The clinician starts the required VMD App, which will
automatically bind the physical devices into the VMD
instance and orchestrate interaction among the devices
to execute the treatment plan.

At the moment Steps 3 and 4 are infeasible, because out-
of-the-box medical devices do not have the ability to commu-
nicate with each other. Further, they are neither interoperable
(i.e., expose interfaces for remote control to the network), nor
are safely composable. This also severely limits the choices
for the first and second step, because the clinician must
take the availability and quality of only single devices into
consideration when deciding on the treatment plan.
Our Approach. As shown in Fig. 3, a critical component
in interoperability platforms is theinteroperability manager.
The interoperability manager tracks which medical devices
are connected to the network, bind connected medical devices
into VMD instances, provide an execution environment for a
VMD’s workflow algorithms, detect device or network faults,
and ensure that concurrently executing VMD instances do
not interfere with one another. We have been building an
open-source, prototype, interoperability manager known as the
Medical Device Coordination Framework (MDCF) [44].

Medical Device Coordination Framework Overview:The
MDCF is middleware designed to facilitate and manage the
composition of medical devices and clinical algorithms into
VMD instances. The middleware consists of a server process
that runs on a computer and a lightweight communications

1The specific devices must possess the capabilities required by the given
VMD
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library that can be incorporated into the software of the
individual medical devices. The server process and commu-
nications library work in tandem to provide:

1) Publish-Subscibe Messaging Service- Data between the
MDCF and the devices are published as messages to
topics. Publish-subscribe communication facilitates easy
sharing of data (e.g.,physiologic data from one device
can easily be shared amongst multiple concurrent VMD
instances).

2) Device Management- The MDCF only allows devices
approved by the MDCF adminstrator to associate (con-
nect) with the middleware. The status of associated
devices is tracked via a heartbeat mechanism.

3) VMD App Management- The MDCF facilitates the
instantiation and deactivation of VMD instances. Clini-
cians instantiate a VMD by selecting a VMD App and
the currently connected devices to use in the VMD. The
MDCF will load the VMD App’s clinical algorithm into
a virtual machine then bind the selected devices to the
algorithm. The VMD deactivates a VMD instance by
notifying each device that it is no longer bound and by
releasing any resources used by the clinical algorithm.

Additionally, the MDCF provides anIntegrated Develop-
ment Environment(IDE), which is a separate program VMD
App developers can use to design and implement VMD Apps
as well as define the logical interfaces (i.e., capabilities) of
MDCF devices. In particular developers can use the IDE to:

1) Define Device Types- A device can be abstractly de-
scribed in terms of the data it publishes (output ports)
and the data it subscribes to (input ports).

2) Automatically Generate Code- The IDE can auto-
matically generate the communications library for a
specific device type. The generated code handles all
the communcations between the MDCF and the device
(including an implementation of the MDCF association
protocol). Because the generated code conforms to the
MDCF specification for the device type, device devel-
opers only need to write the ‘adapter-code’ required to

convert data between the MDCF data format and the
device’s native data format.

3) Specify VMD Apps- VMD App developers can define
their application by specifying what device types are
used in the VMD, what clinical algorithms are used, and
what topics each device and algorithm should subscribe
to. Figure 4 shows how the closed-loop PCA application
(described later in Section VI) looks like in the IDE’s
graphical VMD App editor.

While the MDCF is a prototype and under development,
we have used the MDCF to implement a number of different
medical device integration scenarios such as a closed-loop
PCA application (see Section VI) using a combination of real
and simulated devices [43] and asmart alarm(see Section V)
for post coronary artery bypass graft surgery patients [45].
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Fig. 4. Data-flow specification for a closed-loop PCA application

Future Work. A number of open problems remain to be
addressed in VMD instantiation. Support for real-time com-
munication, which requires run-time allocation of processor
and network resources to VMD Apps, is currently missing. A
large part of the challenge is to implement such allocation in
hospital communication network, which are open to various
sources of interference from other traffic. We also need to
establish a sufficient level of confidence in both the interoper-
ability framework, such as MDCF, and VMD Apps. For this,
verification of association and communication protocols used
by MDCF is necessary, as well as establishing conformance
of MDCF software implementation to formal design specifi-
cations. A process similar to the one discussed in Section III
should be used for the development of high-confidence VMD
Apps and their instantiation over MDCF. Additionally, open
challenges in medical device interoperability include security
and privacy concerns (see Section VIII) and certification of
VMDs (see Section VII).

V. SMART ALARMS AND CLINICAL DECISION SUPPORT

Achieving medical device interoperability will allow medi-
cal information to be streamed from multiple devices into cen-
tral locations in real-time. This presents unique opportunities
to significantly improve clinical care. Modern hospital rooms
are commonly equipped with many such medical devices, cur-
rently used to continuously monitor their patients’ vital signs.
These vital sign monitors give clinicians a window into the
patient’s state and can be configured to alarm to alert clinicians
to a deterioration in state. Most medical devices currentlyin
use can only be configured with threshold alarms,i.e., alarms
which activate when a vital sign crosses a predefined threshold.
While threshold alarms can be vital in the timely detection of



emergency states, they have been shown to be unscientific [47],
cause a high number of alarms [33], and have a high rate
of false alarms [17], [35], which fatigues caretakers [61] and
leads them to ignore or turn off many alarms [21]. This
has been shown to decrease quality of care [17], [20], [34].
Also, these alarms only alert clinicians to the fact that some
threshold was crossed; they fail to provide any physiologicor
diagnostic information about the current state of the patient
that might help reveal the underlying cause of the patient’s
distress.

Creating MCPS which stream real-time medical information
from different devices and combine it with information from
the patient’s health record would improve the accuracy and
usefulness of alarms [11], [13], [14]. Such systems could
then be equipped to automatically suppress irrelevant alarms
and provide summaries of the patient’s state, as well as
predict future trends in the patient. These MCPS, realized
as VMDs, would act as high accuracysmart alarms,which
would alert clinicians to deterioration in the patient’s state
quickly and precisely, while providing them with access to
the data that evidences the deterioration [34]. There have been
many calls for a focus on evidence-based medicine as standard
practice [22], [58], and smart alarms would help to satisfy
these calls.

Smart alarm systems in particular require achieving some
level of context-aware computational intelligence in MCPS.
Relevant information from multiple medical device data
streams must be extracted and filtered [15], [34] and used
in concert with a patient model to create a context-aware
clinical ”picture” of the patient. Developing context-aware
computational intelligence is difficult. Possible solutions, such
as encoding hospital guidelines, extracting mental modelsfrom
medical professionals, and learning the models statistically
from data all pose unique challenges.

Many efforts have been made to improve the accuracy of
threshold alarms [16], [23], [53], [59]. Likewise, many clin-
ical decision support systems, which are inherently evidence-
based, have been shown to hold promise in improving
care [25], [32]. Initial successes in the area highlight theneed
for a cohesive, unified effort to improve all alarms used in
hospitals.
Our Approach. Achieving context-awareness in MCPS re-
quires the ability to pre-process and store patient data from
patient streams. Techniques can be simple, such as down-
sampling or capturing trends, or they can be complex, such as
using time series analysis to extract meaningful characteristics
from a waveform. These techniques are well understood and
can be employed to this end. Determining the best technique
to use in any application, however, is difficult.

Data thus acquired must be compared with some sort of
clinical model to be used in an intelligent fashion. As with
preprocessing, this multitude of available techniques makes
choosing the best technique difficult. Additionally, few ma-
chine learning techniques have been rigorously analyzed inthe
context of medicine. Chosen algorithms must be equipped to
handle missing values and effectively account for the passage
of time.

Generic Smart Alarm:We are addressing these challenges
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Fig. 5. Generic Smart Alarm Architecture, instantiated as a smart alarm for
CABG patients

by building smart alarm systems subscribing to a generic
architecture which is flexible enough to rapidly prototype re-
configurable and verifiable systems. This architecture consists
of: several stages of pre-processing modules which process
the raw data from the medical devices and deliver it to
the inference modules; a stage of inference modules which
combine these data streams to produce some high-level output
(e.g., an alarm level); and a visualization component. This
architecture is shown in Figure 5.

We are working closely with doctors and nurses at the
Hospital of the University of Pennsylvania on specific im-
plementations of the generic smart alarm. The smart alarm
is designed to target areas of the ICU in which alarms are
perceived as inadequate. We also plan to introduce smart
alarms in areas where no alarm exists, owing to the difficulty
to diagnose some particular alarmable patient state. Each of
these implementations has begun to shed light on possible
solutions to the challenges outlined above.

Smart Alarm for CABG patients:After undergoing artery
bypass graft (CABG) surgery, patients are at high risk of
physiologic instability [50] which causes a high level of false
alarms. To attempt to improve the accuracy of alarms in
this domain, and to begin testing the generic smart alarm
architecture, we created a straightforward instantiationof the
GSA, using simple pre-processing and inference modules.
We interviewed ICU nurses to create pre-processing modules
which classified four major vital signs commonly monitored in
the ICU (heart rate, blood pressure, blood oxygen saturation,
and respiratory rate) into categories based on ranges (‘Low,’
‘Normal,’ ‘High,’ ‘Very High,’ etc.). Afterwards, nurses de-
termined rules that identified combinations of these vital sign
categories which they deemed would be cause for concern. The
smart alarm monitors a patient’s four vitals, classifies those
into categories, and searches the rule table for a corresponding
alarm level to output. Combining vital signs produced a
57.13% reduction in false alarms generated without suppress-
ing any true alarms [45].

Seizure Smart Alarm:Brain tissue oxygen monitors are
currently utilized in a threshold-based fashion. Some practice
guidelines suggest that a seizure is a potential culprit when
brain tissue oxygen crosses a particular threshold. We have
conducted preliminary studies which seem to indicate that



this threshold may not be substantiated [54]. We are currently
integrating multiple vital signs including brain tissue oxygen
to create a “smart alarm” for seizures in the context of
neurocritical care which goes beyond simple thresholds.

Vasospasm Smart Alarm:After aneurysmal subarachnoid
hemorrhage, patients are kept in the ICU for up to fourteen
days to monitor for cerebral vasospasm (VSP), a narrowing
of the blood vessels in the brain. The VSP condition, if
undiagnosed or untreated, can lead to cerebral ischemia and
neurologic dysfunction. While there are clinical factors which
increase suspicion for VSP, the ability to define onset of this
clinical syndrome is made difficult by the poor sensitivity of
available tests. The only definitive measure of its presence
is a cerebral angiogram, which is an invasive and resource-
intensive study whose repetition is limited by radiation and
contrast exposure to the patient. There is benefit to detecting
VSP early, and risk to the patient from over-testing with
cerebral angiogram. Integrating signals from multiple patient
monitors, we strive to reduce the number of false alarms for
VSP, as well as enable discovery of significant features that
would improve the timeliness of diagnosis.
Future Work. As mentioned above, these sorts of smart
alarms have been developed in the past, and most have been
shown to improve care when utilized in hospitals. Few of these
systems, however, have gained widespread use, due to several
shortcomings:

1) Data: Current systems often combine only a few vital
signs, limiting their scope. Most do not address issues
with sparse data, or with capturing data not collected
electronically. Significant challenges still exist in de-
termining which patient model generation technique is
most advantageous in any given context. Future work
must expand the number of vital signs considered, and
justify choice of model generator.

2) Workflow: Due to their experimental nature, published
smart alarm systems are often highly complex and rarely
incorporate user-centered design. Work is needed to
ensure that smart alarm systems are clear and simple
to use, which will help to justify their integration into
clinician workflow.

3) Practicality: These systems are often domain and hos-
pital specific, making reuse in wider contexts difficult.
Additionally, these systems are rarely certified to be
safe. Significant challenge still exists in understanding
what safety means in the case of “smart” systems and
in creating systems that are both safe and reusable.

Future smart alarms must take the form of a tool to be
utilized to improve patient care, and not constitute a choreto
be completed or a replacement for physician reasoning [60].
Smart alarms, however, have the potential to go beyond
advisory roles.

VI. PHYSIOLOGICAL CLOSED-LOOP SYSTEMS

In smart alarm systems, physiological data is integrated
and processed to provide clinical decision support. Integrated
physiological data can also be used to directly control ther-
apeutic delivery devices, forming a physiological closed-loop

system. Automatic controllers have been successfully deployed
in many safety critical systems,e.g.,auto pilot in avionics and
active cruise control in automobiles. In patient care, it ispossi-
ble to construct a physiological closed-loop system by contin-
uously monitoring patients’ states, automatically reconfiguring
delivery devices, and only alerting caregivers if patients’ states
divert from the normal range. Caregivers can then concentrate
on making important clinical decisions, reducing the chances
of missing critical events, thereby improving patient safety.

Closed-loop control has been deployed in some medical
applications, but mostly in implantable devices such as car-
dioverter defibrillators, and other special purpose devices that
do not need to be interconnected with other devices for routine
operations. This need not be the case. A physiological closed-
loop system can be modeled as a VMD and can be built in
a cost-effective way by networking existing medical devices,
such as infusion pumps and vital sign monitors. However,
such a system also introduces new hazards that need to be
systematically identified and mitigated.

One critical issue in applying the model-driven development
to such systems is the patient modeling. There has been
much work in patient modeling; for example, glucose-insulin
kinetics have been extensively studied and modeled. Several
control strategies, such as the model predictive control [46],
[55], have been developed and evaluated on these specific
biochemical models. However, most previous studies [12], [18]
on physiological control assume no communication failuresor
delays. Our work, on the other hand, considers failures that
networked closed-loop systems may suffer from in practice.

Figure 6 shows how medical devices can be interconnected
to form a physiological closed-loop system. We first give a
high-level overview of two clinical cases that can benefit from
closed-loop systems, and we will revisit them to address the
technical challenges after introducing our general approach.
The systems in the two cases share the same structure shown
in the figure.

Closed-Loop Patient Controlled Analgesia (PCA):As men-
tioned in Section III, a major safety concern in PCA pump
use is that an overdose of analgesic can cause respiratory fail-
ure. However, the existing safety mechanisms are considered
insufficient to cover all possible scenarios [52]. A closed-loop
solution to address the safety issues of PCA pump use is
proposed in our previous work [7]. Here, a pulse oximeter
is used to continuously monitor two respiratory-related vital
signs, heart rate (HR) and blood oxygen saturation (SpO2),
and transmit the readings to a controller. The controller can
stop the PCA infusion if it detects possible respiratory failures
based on the HR/SpO2 readings, and thus overdosing is
prevented.

Closed-loop Blood Glucose (BG) Regulation:Diabetics and
some ICU patients depend on external insulin and glucose
administration to maintain their BG level within a reference
range,e.g., 70 to 130 mg/dl [1]. Traditionally, nurses take
glucose measurements regularly and manually adjust the in-
sulin infusion rate or administrate glucose. The problem is
that the interval between two check points may be rather
long, which limits the quality of control leading to severe
oscillations of BG levels. In addition, the manual measurement
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and adjustment process is prone to human errors. In a closed-
loop BG control system, a controller continuously monitors
the BG and adjusts the insulin infusion rate. Caregivers are
alerted if an adverse event such as hypoglycemia occurs. Such
a closed-loop system can improve the quality of BG control.

In the above two cases, networked closed-loop systems can
be used to improve clinical care, but networks also introduce
new hazards that could compromise patient safety. Our re-
search goal is to develop networked physiological closed-loop
systems that assure patient safety. The key issue here is to
identify and mitigate hazards introduced by the networked
closed-loop systems, and ensure that the hazardous situations
do not happen.
Our Approach. For the design of a safe physiological closed-
loop system, we follow the iterative verification and validation
approach shown in Figure 7. First, we identify concrete use
cases. We then model individual components of the system
as shown in Figure 6: the patient, monitoring and delivery
devices, and network. The patient model is developed by
implementing physiological models on verification and sim-
ulation tools, such as UPPAAL and Simulink. We model the
input-output behavior of monitoring and delivery devices by
considering the measurement and delivery errors that realistic
devices may exhibit [41]. For example, to model a glucometer
that has10% measurement errors, our glucometer model in-
troduces10% errors onto the BG value it gets from the patient
model, and transmits the resulting value to the controller.The
network model describes the statistical behavior of network
communication.

Next, we model a controller and design the entire system by
connecting and defining interfaces between individual compo-
nents. We then perform a hazard analysis and identify possible
causes for each hazard. For example, in the PCA case, a
possible cause of overdosing is that a “stop” command fails to
reach the PCA pump due to network failure. We systematically
identify such failure conditions and check whether all safety
properties are satisfied in all scenarios, by running simulation
on Simulink and formal verification on UPPAAL. We revise
controller and system designs until all hazards are proved to
be properly mitigated. The final step is instantiating our safe
design of physiological closed-loop VMD as a VMD instance.

Clinical Scenario
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• Network

Controller Design

System Integration
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A safe design
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Fig. 7. Development of a distributed physiological closed-loop system

We next describe how we have applied this design process
to the PCA and BG case studies.

Closed-Loop PCA:We have developed a patient model
from [48] to represent the effect of drug level to HR and
SpO2. The model can be tuned to capture the variation of
patient dynamics. We have constructed a Simulink model to
precisely capture the continuous dynamics of the patient model
and validated it by simulation. To formally verify the timing
properties of the model, we also constructed a UPPAAL model
that abstracts continuous dynamics, but preserves the timing
behavior of components, which allows us to reason about the
maximum end-to-end delay in delivering commands to the
pump. We identified two types of failure in the PCA closed-
loop system:

• sensor failures,e.g.,the pulse oximeter leads get detached
from the patient so that the controller cannot receive
correct HR/SpO2 readings, and

• network failures, in which case the controller cannot
receive any readings from the sensor and the pump cannot
receive any commands from the controller.

To mitigate hazards due to these failures, we refined the
system design so that open-loop stability is guaranteed; that is,
if the controller cannot receive readings or the pump cannot
receive control commands, the system can automatically go
into a safe mode to prevent overdosing. One possible solution
to achieve such open-loop stability, or fail-safe operation, is
to let the controller instruct the PCA pump the duration of
each drug delivery requested by the patient. The controller
calculates this duration at run time based on the difference
between the patient’s current drug level and the safety limit.
Therefore, it is guaranteed that the patient cannot be overdosed
within the instructed time duration. Doing so, even if the
sensor or network fails, the pump will stop infusion based
on the last duration command it received, thus the system can
fail safe. Another possible solution is let the controller set a
maximum drug dosage.

Closed-loop BG Control: We have implemented the
glucose-insulin patient model introduced in [55] in Simulink.
As a start point of controller design, we have modeled and
implemented several BG control guidelines being used at
the Hospital of the University of Pennsylvania. We have run



closed-loop simulations by connecting the patient model with
the guideline-based controllers. Our preliminary simulation
results show that long intervals between two check points
may indeed limit the quality of control and result in severe
overshooting of BG trajectories.

We have found that the complexity of hazard analysis is
closely related to control objectives. Specifically, the objective
of maintaining BG within a certain range makes the hazards
identification and mitigation in the BG case more complicated
than the PCA case. This is because there is no trivial fail-
safe mode for BG control (e.g., simply stopping infusion is
no longer a safe default option), and a mitigation strategy
design is more challenging because both hyperglycemia and
hypoglycemia need to be avoided.
Future work. Validation of physiological closed-loop sys-
tems remains a major challenge. Ultimately, clinical outcomes
delivered by a closed-loop system needs to be compared with
current caregiver-centric approaches. We are exploring the
use of SimMan [2], which provides a controlled, realistic
caregiving environment with patient simulator. More generally,
we will explore the notion ofvirtual clinical trial , which so far
has been considered only in drug development. Also, the role
of a caregiver in a closed-loop system needs to be studied more
carefully. After all, we are not aiming at fully autonomous
systems that exclude humans. We expect that work on smart
alarm systems (see Section V) will provide useful insights.

VII. C ERTIFICATION AND REGULATORY ISSUES

Like most safety-critical system, MCPS are subject to reg-
ulatory oversight through a certification or approval process.
The fundamental goal of certification of MCPS is to assess
safety and effectiveness of MCPS. The traditional process-
based regulatory regime used currently by the U.S. Food and
Drug Administration (FDA) to approve medical devices is
becoming inadequate for the MCPS complexity [31]. A new,
evidence-based regulatory regime is being put in place. Within
the Infusion Pump Improvement Initiative [64], the FDA now
requires assurance cases as part of the documentation submit-
ted for approval. We can expect that similar requirements will
be extended to MCPS in general.

An important part of the challenge is software certification
and ways to incorporate it into the regulatory approval process
for the device as a whole. Medical devices have increasingly
large amounts of software, performing various monitoring and
care delivery tasks. Software-specific risks are not as well
understood, and evidence of software quality is harder to
evaluate. Current design practice places verification and certi-
fication at the end of the design cycle, when it is frequently
too late to change design choices. As medical devices be-
come more complex and more interconnected, it is becoming
increasingly evident that verification and certification should
be incorporated in early design stages. This can be done in
two ways: on the one hand, the “design for verification”
approach [5] can help verification techniques scale better
and make generation of verification evidence easier; on the
other hand, model-based generative techniques that allow one
to perform verification early in the design and then extend

the guarantees provided by verification to the implementation
through code generation.

Throughout the domain of software-intensive embedded
and CPS systems, a new regulatory approach to certification
has been advocated [36], based on collecting and reviewing
evidence that the system achieves its goals. Model-driven
techniques can help with the transition to evidence-based
certification, from the current process-based approach. Us-
ing compositional modeling techniques and assume-guarantee
reasoning may enableincremental certification, which would
allow us to re-certify MCPS after component upgrades without
reconsidering the whole assurance case from scratch.
Our approach. Model-based development processes produce
a number of artifacts that can be used as evidence of system
quality. The artifacts include models, formalized properties,
results of verification and testing, etc. Assurance cases have
been suggested for organizing the generated evidence for
the purpose of regulatory approval or certification [36]. An
assurance case is a documented body of evidence that provides
a convincing and valid argument that a specified set of critical
claims about a system’s properties are adequately justifiedfor
a given application in a given environment [4]. Assurance
cases hold the promise of both reducing certification costs
and improving the quality of certification by tying it to
evidence. Yet, there are few commonly accepted ways of
constructing assurance cases. A poorly structured assurance
case, however, can hamper the evaluation process, rather than
help it [67]. Clearly, there is no “one size fits all” structure,
and software developed through different processes is likely to
require different arguments about its safety. In [37], we aimed
to discover appropriate assurance case structures for model-
driven development.

Using the pacemaker case study described in Section III,
we constructed an assurance case for the controller developed
by our iterative model based process. The structure of the
assurance case, shown in Figure 8, reflects the main steps of
the process. The top-level claim of the assurance case is that
the pacemaker software is acceptably safe to operate. The two
main sub-claims decompose the argument into assessment of
the system requirements and assessment of the requirements
satisfaction. That is, we argue that requirements guarantee
safety and, once that is established, argue that the developed
system satisfies the requirements. Our case study, however,
did not include development of the requirements and thus we
introduce an assumption that the requirements are adequate
and concentrate on the second subclaim. It states that the code
satisfies the timing properties with the specified tolerance. We
then decompose the claim further into three subclaims accord-
ing to the steps of the process: 1) the model satisfies the timing
properties, demonstrated by the UPPAAL verification results;
2) code generation preserves model properties, demonstrated
by the correctness proof of the TIMES tool algorithm; and
3) the generated code exhibits the required timing properties
with the prescribed tolerance, demonstrated by measurements
during testing.
Future work. Assurance case templates:The constructed
assurance case captures the source of our confidence in the de-
sign as well as in the model-based process we used. Ultimately,
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we would like to develop assurance case templates for various
development processes in order to simplify construction of
cases for future systems developed through the same process.
An important aspect of the assurance case framework, which
remains a significant challenge for their application in practice,
is evaluation of assurance cases. We need to develop means
of rigorous, if informal, ways of quantifying the level of
confidence delivered by an assurance case. This will be an
important direction of our future work.

Certification of Virtual Medical Devices: Certification of
Virtual Medical Devices is another major challenge of MCPS.
It requires a fundamental change in the regulatory process.
Stand-alone medical devices are certified (or approved) by
a rigorous analysis of the device’s design, manufacturing
process, and final testing. However, VMD instances are in-
stantiated in hospitals in different ways and cannot be certified
individually. Ideally, a VMD should be certified as a spec-
ification, so that as long as a VMD instance is instantiated
according to the respective VMD, it is guaranteed to be safe.
Note also that VMD instances are not built from scratch,
but from stand-alone medical devices, which were themselves
certified, and an assurance case for a VMD instance should
be able to rely on these certificates. A vision for VMD
instance certification has been put forth under the names
of compositional, runtime, or just-in-time certification [57].
However, to this date, the vision remains largely unrealized
and requires further research. A regulatory framework based
on third-party certification approach for VMDs is proposed
in [29]. It lays out primary verification tasks associated with
each VMD component and tool support necessary for the veri-
fication and certification activities. The framework is supported
by a security and authentication layer in the interoperability
platform that establishes trust in the safety and correctness of
VMDs used in building the VMD instance.

VIII. O PEN ISSUES

In this section we present some of the open issues that still
require addressing in the domain of MCPS.
Security and Privacy. While interoperability capabilities al-
low medical devices to be incorporated into MCPS, acquiring
functionality that was never possible previously, they also open
the door to a host of security and privacy concerns [3]. An
attacker who penetrates an MCPS network has the potential
to harm or kill patients by reprogramming devices [27]. The
increased autonomy of MCPS with closed-loop control, auto-
mated therapy delivery, and alarm capabilities has the potential
to exacerbate the problem. In general, when attacking an
MCPS, adversaries can choose from four classes of targets [8]:

• Patient: An attacker directly targets the patient’s health.
This is usually achieved by targeting the sensing, pro-
cessing, communication, and treatment delivery aspects
of the MCPS. One example might involve an attacker
programming an infusion pump to administer a larger
than necessary dose of medicine.

• Data: An attacker accesses an individual patient’s health
data from the MCPS in an unauthorized manner. The
consequence is loss of patient privacy leading to potential
discrimination and abuse [65].

• Device: An attacker mounts a denial-of-service (DoS) on
the MCPS in some form so that it cannot perform its task,
thus limiting device availability. This can also result in
loss of privacy in systems that are designed to fail-open
as suggested in [19].

• Institution: The goal is to compromise the interaction
between the MCPS and the internal network of the
institution it is deployed in to obtain access, at a large-
scale, to patient data or network operational information.

The approach usually taken by most device manufacturers
today is to limit the functionality that can be invoked through
the network interface. In most cases, the device can send out
data, such as sensor readings or event logs, but not accept
commands from the network. Although such an approach
improves security of the system, it severely limits the ability
to deploy closed-loop scenarios. In other cases, device manu-
facturers introduce proprietary security solutions and rely on
“security through obscurity”. This attitude has been shownto
be problematic, as adversaries will always be able to break
into such a system [24].

Recent years have seen the issue of medical device security
addressed for different classes of medical devices such as
implantable [19], [27] or interoperable devices [65]. However,
in most of these cases the focus is on specific aspects of MCPS
operation, namely secure communication, and effective access
control. Fundamentally, the challenge of targeting security
for MCPS involves developingflexible and open solutions
while addressing the following four issues: (1) minimizing
the overhead that security solutions inevitably bring, (2)
dealing with theheterogeneityof MCPS that precludes system-
wide solutions, (3) improvingusability (even transparency)
of security solutions developed, and (4) consideringsafety
implications of security solutions and decisions.

As a first step in securing MCPS, we are extending the



MDCF to support encrypted communications between the
devices and MDCF. Additionally, the middleware server needs
to establish trust in the devices, and the devices need to
establish trust in the middleware (i.e., only known, certified
devices should be bound into a VMD) [29]. Furthermore,
the MDCF needs to ensure that the set of medical devices
are indeed connected to the same patient. Eventually, more
holistic solutions for MCPS that look at security in the larger
context of their deployment in clinical workflows will need to
be created.
Patient Modeling and Simulation. A closely related chal-
lenge is that of patient modeling. Patient models are needed
for the design of closed-loop control, as well as for the
safety analysis of scenarios. For example, the closed-loop
PCA scenario requires a model of drug absorption by the
patient body, as well as the relationship between the drug
dose and concentration and patient vital signs, such as heart
rates and respiratory rates. Pharmacokinetic models of drug
absorption are known from the literature (e.g., [49]), and
there is statistical data on the effect of the drug on vital signs.
However, comprehensive models are too complex to be used in
the design and analysis. Thus, development of new abstraction
techniques is paramount for addressing this challenge.
User-Centered Design.Caregiver errors in using medical
devices are a major source of adverse events [30], [66].
Undoubtedly, some of these errors are due to stress and
overload that caregivers experience daily. Poor user-interface
design also has been attributed for many of these errors. If a
device is hard to operate, has a counterintuitive interface, or
responds to user inputs in an unexpected manner, user errors
are much easier to occur. Design and validation of medical
devices needs to take into account user expectations. To use
model-based design for interactive medical devices, we have to
incorporate models of caregiver behavior. Such user modeling
is a notoriously challenging problem. However, incorporating
information about likelihood of certain actions into caregiver
models opens the way for quantitatively reasoning about
device safety.
Compositionality. Interoperable network-enabled medical de-
vices will increasingly be composed into MCPS dynamically.
Compositional reasoning is the only rigorous way to ensure
safety of such systems. A particularly challenging problemis
predicting the possibilities of unexpected interactions between
devices in the system. For example, devices providing different
treatments to the same patient may incur radio interference
because of close proximity to each other. More importantly,
treatments themselves can interfere with each other by affect-
ing physiological responses [28]. MCPS designers should
be aware of these interferences and ensure that the system
providing a treatment is made aware of potentially interfering
treatments through sufficient context information.
Continuous Monitoring and Care. One of the most important
needs of modern medicine is to develop medical devices capa-
ble of providing continuous care (i.e., , monitoring, decision
support, and delivery of therapy). Such devices are expected
to decrease healthcare cost by enabling alternatives such as
home-based or ambulatory care. Caregivers can have a detailed
picture of the patient’s health at all times, enabling them to

better tune the treatment provided. Such a system also allows
for real-time notification in the event of emergencies and
providing first-responders with accurate and complete infor-
mation about the patient’s health. Continuous care systems
are being designed to monitor a plethora of ailments such
as cardiovascular diseases [40], neurological problems [63],
collecting meta-physiological state information (sleep,awake,
fatigue) [56], circadian activity monitoring [68], and extreme
environment medical monitoring (e.g.,space) [51].

IX. CONCLUSIONS

In this paper, we considered MCPS as a distinct CPS
domain. Due to increasing societal pressures and new tech-
nological capabilities, the field of MCPS is on the verge
of a substantial transformation that will change the ways
these systems are developed and approved, as well as expand
features and strengthen safety guarangees the MCPS offer to
caregivers and patients. This transformation will lead to a
further increase in the complexity of MCPS and the degree
of integration within them.

Thus, the domain of MCPS offers a unique set of challenges,
distinct from any other CPS domain [31]. The challenges
facing MCPS are formidable, yet they present vast opportu-
nities for research with immediate practical impact. We iden-
tified major challenges in MCPS development and discussed
promising research directions that may help to overcome some
of these challenges. We envision that these challenges will
provide major opportunities for R&D communities in the next
ten years.
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