1,053 research outputs found

    Impacts of Connected and Automated Vehicles on Energy and Traffic Flow: Optimal Control Design and Verification Through Field Testing

    Get PDF
    This dissertation assesses eco-driving effectiveness in several key traffic scenarios that include passenger vehicle transportation in highway driving and urban driving that also includes interactions with traffic signals, as well as heavy-duty line-haul truck transportation in highway driving with significant road grade. These studies are accomplished through both traffic microsimulation that propagates individual vehicle interactions to synthesize large-scale traffic patterns that emerge from the eco-driving strategies, and through experimentation in which real prototyped connected and automated vehicles (CAVs) are utilized to directly measure energy benefits from the designed eco-driving control strategies. In particular, vehicle-in-the-loop is leveraged for the CAVs driven on a physical test track to interact with surrounding traffic that is virtually realized through said microsimulation software in real time. In doing so, model predictive control is designed and implemented to create performative eco-driving policies and to select vehicle lane, as well as enforce safety constraints while autonomously driving a real vehicle. Ultimately, eco-driving policies are both simulated and experimentally vetted in a variety of typical driving scenarios to show up to a 50% boost in fuel economy when switching to CAV drivers without compromising traffic flow. The first part of this dissertation specifically assesses energy efficiency of connected and automated passenger vehicles that exploit intention-sharing sourced from both neighboring vehicles in a highway scene and from traffic lights in an urban scene. Linear model predictive control is implemented for CAV motion planning, whereby chance constraints are introduced to balance between traffic compactness and safety, and integer decision variables are introduced for lane selection and collision avoidance in multi-lane environments. Validation results are shown from both large-scale microsimulation and through experimentation of real prototyped CAVs. The second part of this dissertation then assesses energy efficiency of automated line-haul trucks when tasked to aerodynamically platoon. Nonlinear model predictive control is implemented for motion planning, and simulation and experimentation are conducted for platooning verification under highway conditions with traffic. Then, interaction-aware and intention-sharing cooperative control is further introduced to eliminate experimentally measured platoon disengagements that occur on real highways when using only status-sharing control. Finally, the performance of automated drivers versus human drivers are compared in a point-to-point scenario to verify fundamental eco-driving impacts -- experimentally showing eco-driving to boost energy economy by 11% on average even in simple driving scenarios

    Leveraging Connected Highway Vehicle Platooning Technology to Improve the Efficiency and Effectiveness of Train Fleeting Under Moving Blocks

    Get PDF
    Future advanced Positive Train Control systems may allow North American railroads to introduce moving blocks with shorter train headways. This research examines how closely following trains respond to different throttle and brake inputs. Using insights from connected automobile and truck platooning technology, six different following train control algorithms were developed, analyzed for stability, and evaluated with simulated fleets of freight trains. While moving blocks require additional train spacing beyond minimum safe braking distance to account for train control actions, certain following train algorithms can help minimize this distance and balance fuel efficiency and train headway by changing control parameters

    Reduced Fuel Emissions through Connected Vehicles and Truck Platooning

    Get PDF
    Vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication enable the sharing, in real time, of vehicular locations and speeds with other vehicles, traffic signals, and traffic control centers. This shared information can help traffic to better traverse intersections, road segments, and congested neighborhoods, thereby reducing travel times, increasing driver safety, generating data for traffic planning, and reducing vehicular pollution. This study, which focuses on vehicular pollution, used an analysis of data from NREL, BTS, and the EPA to determine that the widespread use of V2V-based truck platooning—the convoying of trucks in close proximity to one another so as to reduce air drag across the convoy—could eliminate 37.9 million metric tons of CO2 emissions between 2022 and 2026

    Automated Productivity Models for Earthmoving Operations

    Get PDF
    Earthmoving operations have significant importance, particularly for civil infrastructure projects. The performance of these operations should be monitored regularly to support timely recognition of undesirable productivity variances. Although productivity assessment occupies high importance in earthmoving operations, it does not provide sufficient information to assist project managers in taking the necessary actions in a timely manner. Assessment only is not capable of identifying problems encountered in these operations and their causes. Many studies recognized conditions and related factors that influence productivity of earthmoving operations. These conditions are mainly project-specific and vary from one project to another. Most of reported work in the literature focused on assessment rather than analysis of productivity. This study presents three integrated models that automate productivity measurement and analysis processes with capabilities to detect different adverse conditions that influence the productivity of earthmoving operations. The models exploit innovations in wireless and remote sensing technologies to provide project managers, contractors, and decision makers with a near-real-time automated productivity measurement and analysis. The developed models account for various uncertainties associated with earthmoving projects. The first model introduces a fuzzy-based standardization for customizing the configuration of onsite data acquisition systems for earthmoving operations. While the second model consists of two interrelated modules. The first is a customized automated data acquisition module, where a variety of sensors, smart boards, and microcontrollers are used to automate the data acquisition process. This module encompasses onsite fixed unit and a set of portable units attached to each truck used in the earthmoving fleet. The fixed unit is a communication gateway (Meshlium®), which has integrated MySQL database with data processing capabilities. Each mobile unit consists of a microcontroller equipped with a smart board that hosts a GPS module as well as a number of sensors such as accelerometer, temperature and humidity sensors, load cell and automated weather station. The second is a productivity measurement and analysis module, which processes and analyzes the data collected automatically in the first module. It automates the analysis process using data mining and machine learning techniques; providing a near-real-time web-based visualized representation of measurement and analysis outcomes. Artificial Neural Network (ANN) was used to model productivity losses due to the existence of different influencing conditions. Laboratory and field work was conducted in the development and validation processes of the developed models. The work encompassed field and scaled laboratory experiments. The laboratory experiments were conducted in an open to sky terrace to allow for a reliable access to GPS satellites. Also, to make a direct connection between the data communication gateway (Meshlium®), initially installed on a PC computer to observe the received data latency. The laboratory experiments unitized 1:24 scaled loader and dumping truck to simulate loading, hauling and dumping operations. The truck was instrumented with the microcontroller equipped with an accelerometer, GPS module, load cell, and soil water content sensor. Thirty simulated earthmoving cycles were conducted using the scaled equipment. The collected data was recorded in a micro secure digital (SD) card in a comma separated value (CSV) format. The field work was carried out in the city of Saint-Laurent, Montreal, Quebec, Canada using a passenger vehicle to mimic the hauling truck operational modes. Fifteen Field simulated earthmoving cycles were performed. In this work two roads with different surface conditions, but of equal length (1150 m) represented the haul and return roads. These two roads were selected to validate the developed road condition analysis algorithm and to study the model’s capability in determining the consequences of adverse road conditions on the haul and return durations and thus on the tuck and fleet productivity. The data collected from the lab experiments and field work was used as input for the developed model. The developed model has shown perfect recognition of the state of truck throughout the fifteen field simulated earthmoving cycles. The developed road condition analysis algorithm has demonstrated an accuracy of 83.3% and 82.6% in recognizing road bumps and potholes, respectively. Also, the results indicated tiny variances in measuring the durations compared with actual durations using time laps displayed on a smart cell telephone; with an average invalidity percentage AIP% of 1.89 % and 1.33% for the joint hauling and return duration and total cycle duration, respectively

    Transportation Management

    Get PDF

    New Technology and Automation in Freight Transport and Handling Systems

    Get PDF
    This is an evidence review that examines the trends in manufacturing and global supply chains, looking at the international trade, technology and users, and how these may change between now and 2040. The review has been commissioned by the Government Office for Science within the Foresight project. The Foresight Future of Mobility project is run from within the UK Government Office for Science (GO-Science). The Foresight project was launched to try to understand the broad question "What benefits/ opportunities could the transport system of the future provide and what are the implications for Government and society?

    Supervisory control for emission compliance of heavy-duty vehicles

    Get PDF
    Heavy freight trucks globally contribute to a significant proportion of transport-related air pollution. The dominant air pollutants from heavy freight trucks with diesel engine and exhaust aftertreatment system (EATS) are CO2, hydrocarbons (HC), CO, particulate matter (PM), NOX (NO and NO2), and NH3. The greenhouse gas emission legislation limits the amount of CO2 emission, and Euro VI emission legislation limits the other dominant air pollutants. Emission legislation is gradually becoming more and more stringent to reach the long term goal of near-zero-emission. Several parties are working together to reduce the emissions, keeping both the short and long term goal in mind. Any step which results in ICE downsizing contributes to the reduction of all dominant emissions. But, with size and type of the ICE decided, there is a trade-off between NOX emission and other emissions: reduced NOX emission means reduced fuel efficiency (i.e. increased CO2, PM, and HC emissions). It is a challenge to fulfil the current emission legislation—especially real-driving NOX emission legislation—with existing control functionalities in the engine management system (EMS). However, better control of NOX emission is possible by exploiting predictive driving information and considering the coupling between the engine system and EATS. This work pursues this idea and concludes that fulfilling real-driving NOX emission legislation is possible, considering the coupling between the engine system and EATS while using predictive information. The work provides a mathematical formulation of the concept and then develops, evaluates, and implements an engine-EATS supervisor which optimizes total fuel consumption and fulfils both the world harmonized transient cycle (WHTC) based and real-driving NOX emission legislation. The developed supervisor is a distributed economic nonlinear model predictive controller (E-NMPC). This work develops and analyzes two different versions of the distributed E-NMPC based supervisory control algorithm. The more efficient one of the two is again compared for three variants. Considering the computation time of the three algorithms and processing speed of the existing EMS, one algorithm is selected for implementation. The supervisor performs much better compared to a baseline controller (optimized offline). Simulation results show that the supervisory controller has 1.7% less total fuel consumption and 88.4% less NH3 slip, compared to the baseline controller, to achieve the same real-driving NOX emission

    Considerate and Cooperative Model Predictive Control for Energy-Efficient Truck Platooning of Heterogeneous Fleets

    Full text link
    Connectivity-enabled automation of distributed control systems allow for better anticipation of system disturbances and better prediction of the effects of actuator limitations on individual agents when incorporating a model. Automated convoy of heavy-duty trucks in the form of platooning is one such application designed to maintain close gaps between trucks to exploit drafting benefits and improve fuel economy, and has traditionally been handled with classically-designed connected and adaptive cruise control (CACC). This paper is motivated by demonstrated limitations of such a control strategy, in which a classical CACC was unable to efficiently handle real-world road grade and velocity transient disturbances without the assistance of fleet operator intervention, and is non-adaptive to varied hardware and loading conditions of the operating truck. This automation strategy is addressed by forming a cooperative model predictive control (MPC) for eco-platooning that considers interactions with trailing trucks to incentivize platoon harmonization under road disturbances, velocity transients, and engine limitations, and further improves energy economy by reducing unnecessary engine effort. This is accomplished for each truck by sharing load, maximum engine power, transmission ratios, control states, and intended trajectories with its nearest neighbors. The performance of the considerate and cooperative strategy was demonstrated on a real-world driving scenario against a similar non-considerate control strategy, and overall it was found that the considerate strategy significantly improved harmonization between the platooned trucks in a real-time implementable manner.Comment: Appears in IEEE ACC 2022. 6 pages, 6 figure

    An Investigation of Life Cycle Sustainability Implications of Emerging Heavy-Duty Truck Technologies in the Age of Autonomy

    Get PDF
    Heavy-duty trucks (HDTs) play a central role in U.S. freight transportation, carrying most of the goods across the country. The projected increase in freight activity (e.g. truck-miles-traveled) raises concerns regarding the potential sustainability impacts of the U.S. freight industry, marking HDTs as an ideal domain for improving the sustainability performance of U.S. freight transportation. However, the transition to sustainable trucking is a challenging task, for which multiple sustainability objectives must be considered and addressed under a variety of emerging HDT technologies while composing a sustainable HDT fleet. To gain insights into the sustainability implications of emerging HDT technologies as well as how they can be adopted by freight organizations, given their implications, this research employed an integrated approach composed of methods and techniques, grounded in sustainability science, operations research, and statistical learning theory, to provide a scientific means with public and private organizations to increase the effectiveness of policies and strategies. The research has contributed to the scientific body of knowledge in three useful ways; (1) by comprehensively analyzing HDT electrification based on regional differences in power generation practices and price forecasts, (2) by conducting the first life cycle sustainability assessment (LCSA) on HDT automation and electrification, and (3) providing a case study of an unsupervised machine learning application for sustainability science. Consequently, the research has found that, given the transformation of the U.S. energy system towards renewables, automation and electrification of HDTs offer significant potential for improving the sustainability performance of these vehicles, especially in terms of global warming potential, life cycle costs, gross domestic product, import independence, and income generation. The research has also found that, under the prevailing techno-economic circumstances and except for energy security reasons, natural gas as a transportation fuel option for freight trucks is by almost no means a viable alternative to diesel

    Integrated optimal design for hybrid electric vehicles

    Get PDF
    • …
    corecore