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ABSTRACT 

Automated Productivity Models for Earthmoving Operations 
 

Ashraf Salem, PhD 

Concordia University, 2018 

 

Earthmoving operations have significant importance, particularly for civil infrastructure projects. 

The performance of these operations should be monitored regularly to support timely recognition 

of undesirable productivity variances. Although productivity assessment occupies high importance 

in earthmoving operations, it does not provide sufficient information to assist project managers in 

taking the necessary actions in a timely manner. Assessment only is not capable of identifying 

problems encountered in these operations and their causes. Many studies recognized conditions 

and related factors that influence productivity of earthmoving operations. These conditions are 

mainly project-specific and vary from one project to another. Most of reported work in the 

literature focused on assessment rather than analysis of productivity.  

This study presents three integrated models that automate productivity measurement and analysis 

processes with capabilities to detect different adverse conditions that influence the productivity of 

earthmoving operations. The models exploit innovations in wireless and remote sensing 

technologies to provide project managers, contractors, and decision makers with a near-real-time 

automated productivity measurement and analysis. The developed models account for various 

uncertainties associated with earthmoving projects.  

The first model introduces a fuzzy-based standardization for customizing the configuration of  

onsite data acquisition systems for earthmoving operations. While the second model consists of 

two interrelated modules. The first is a customized automated data acquisition module, where a 

variety of sensors, smart boards, and microcontrollers are used to automate the data acquisition 

process. This module encompasses onsite fixed unit and a set of portable units attached to each 

truck used in the earthmoving fleet. The fixed unit is a communication gateway (Meshlium®), 

which has integrated MySQL database with data processing capabilities. Each mobile unit consists 

of a microcontroller equipped with a smart board that hosts a GPS module as well as a number of 
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sensors such as accelerometer, temperature and humidity sensors, load cell and automated weather 

station. The second is a productivity measurement and analysis module, which processes and 

analyzes the data collected automatically in the first module. It automates the analysis process 

using data mining and machine learning techniques; providing a near-real-time web-based 

visualized representation of measurement and analysis outcomes. Artificial Neural Network 

(ANN) was used to model productivity losses due to the existence of different influencing 

conditions.  

Laboratory and field work was conducted in the development and validation processes of the 

developed models. The work encompassed field and scaled laboratory experiments. The laboratory 

experiments were conducted in an open to sky terrace to allow for a reliable access to GPS 

satellites. Also, to make a direct connection between the data communication gateway 

(Meshlium®), initially installed on a PC computer to observe the received data latency. The 

laboratory experiments unitized 1:24 scaled loader and dumping truck to simulate loading, hauling 

and dumping operations. The truck was instrumented with the microcontroller equipped with an 

accelerometer, GPS module, load cell, and soil water content sensor. Thirty simulated earthmoving 

cycles were conducted using the scaled equipment. The collected data was recorded in a micro 

secure digital (SD) card in a comma separated value (CSV) format. The field work was carried out 

in the city of Saint-Laurent, Montreal, Quebec, Canada using a passenger vehicle to mimic the 

hauling truck operational modes. Fifteen Field simulated earthmoving cycles were performed. In 

this work two roads with different surface conditions, but of equal length (1150 m) represented the 

haul and return roads.  These two roads were selected to validate the developed road condition 

analysis algorithm and to study the model’s capability in determining the consequences of adverse 

road conditions on the haul and return durations and thus on the tuck and fleet productivity. The 

data collected from the lab experiments and field work was used as input for the developed model. 

The developed model has shown perfect recognition of the state of truck throughout the fifteen 

field simulated earthmoving cycles. The developed road condition analysis algorithm has 

demonstrated an accuracy of 83.3% and 82.6% in recognizing road bumps and potholes, 

respectively. Also, the results indicated tiny variances in measuring the durations compared with 

actual durations using time laps displayed on a smart cell telephone; with an average invalidity 

percentage AIP% of 1.89 % and 1.33% for the joint hauling and return duration and total cycle 

duration, respectively.  
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1 Chapter 1: Introduction 

1.1 General Overview  

It is generally unusual to find a construction project free of earthmoving operations. These 

operations might be either simple as in of moving soil from one location to another for dumping 

or filling or building a dam or highway. Earthmoving operations are typical in most civil 

engineering and infrastructure projects. It represents a considerable portion of civil infrastructure 

projects such as highways, mines, and dams (Hassanien, 2002).  

Accordingly, numerous endeavors were done to improve the efficiency of such operations. Various 

studies were carried out on calculating, assessing and forecasting the productivity of earthmoving 

operations over the past decades. Moreover, several influencing factors and adverse conditions 

that could affect productivity were defined. Hauling equipment plays a pivotal role in the success 

of the earthmoving operations, as these operations are heavy-equipment oriented. Consequently, 

economic utilization of this heavy equipment has a significant impact on the profitability of 

contractors (Halpin, 2010).  

Several factors can influence the productivity and cost of earthmoving operations, where these 

factors can be grouped as follows: (1) excavated soil conditions, (2) access and hauling roads 

conditions, and (3) equipment and operational conditions, (4) weather conditions. 

Performance of earthmoving operations considerably contributes to the success or failure of 

construction projects. Cost of earthmoving operations represents about 20% of the total cost of 

construction projects (Kang et al., 2009), that clarifies the importance of monitoring the 

productivity variation in earthmoving operations. Variations in Productivity may lead to cost 

overruns, schedule delays and unnecessary depletion of resources in earthmoving operations. Low 

productivity may produce in schedule delays and inefficient utilization of resources. However, 

high productivity may lead to cost overrun and over depleted resources. Therefore, monitoring 

productivity of earthmoving operations is essential to avoid undesirable consequences that may be 

harmful to project objectives.  



2 
 

The performance level in earthmoving operations is closely related to production rate, which 

depends on various operational, environmental, technical and managerial factors. Therefore, 

assessment of productivity rate is an essential primary indicator for evaluating the performance in 

earthmoving operations. However, productivity assessment solely does not provide any indication 

of the possible occurrence of undesirable consequences. Therefore, only examining the 

productivity is unsatisfactory for assessing the performance of an operation (Fu, 2013). Hence, the 

assessment process should go deeper not only to identify the causes behind the undesirable 

variations but also to find out precisely the contribution of each of the influencing factors, which 

lead to loss of productivity.  

1.2 Problem Statement and Motivation 

Precise and timely monitoring, tracking and reporting of onsite progress of construction operations 

participate in promoting the management efficiency of these operations. There is a need to improve 

current practice in automated data acquisition systems to exploit the vast advancement in modern 

technologies and computation techniques to address this challenge in a cost-efficient manner. Most 

widely utilized on-site data acquisition systems configuration depends on subjective views and 

available technologies. Researchers have focused on efficient utilization of different wireless 

sensing technologies, but the majority integrates black-box and off-the-shelf technologies, where 

there is no means for customized configuration. The literature lacks a well-defined, standardized 

methodology for customizing the configuration of data acquisition systems. A comprehensive 

review of literature brings out limitations and gaps in interrelated research work and indicates the 

need for a standardized methodology that assists in enhancing on-site data acquisition system in a 

way that fulfills requirements of the production performance monitoring process, which meets its 

specific desires. In other words, the need for a systematic method to study, configure, design and 

develop a cost-effective automated data acquisition system was one of the primary motivations 

behind this research. 

Furthermore, the vast majority of research has focused on assessment more than analysis of 

productivity of earthmoving operations. There is a need to use new methods for measuring and 

analyzing productivity in order to identify the leading causes behind productivity losses. Also, 

exploiting modern advancement in computation, artificial intelligence and remote sensing 
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technologies promising efficiently automated potentials for data acquisition, processing and 

analysis. 

This research was motivated by the need of automating the process of productivity measurement 

and analysis, starting with data collection and ending in near-real-time web-based monitoring of 

productivity. Analyzing productivity throughout a project guarantees expertise that supports 

realistic planning for future projects to guarantee, (1) robustness of the operations design, (2) early 

detection of the bottlenecks and vulnerable points of the system, (3) capability to take the necessary 

corrective actions timely and in a prioritized manner. Also, the advancement in computing and 

sensing technology can efficiently participate in automation of productivity measurement and 

analysis of earthmoving operations.   

1.3 Research Objectives 

The main objectives of this research is to study, design and develop a fully automated customized 

data acquisition model. In addition, to develop productivity measurement and analysis model that 

exploits the advancement of computation and innovative sensing technology. These objectives can 

be achieved through the following sub-objectives: 

1. Study the literature to identify the factors that commonly influence productivity of 

earthmoving operations. 

2.  Study previous developed models for automating data collection and recognition of 

adverse factors and conditions. 

3. Evaluate and prioritize those influencing factors to use the highly ranked factors in 

customizing the configuration of the proposed data acquisition system. 

4. Study previous models of data acquisition to identify the associated gaps and 

limitations, then, to develop an automated data acquisition model that overcomes the 

identified limitations of previous models. 

5. Overcome subjective configuration of data acquisition systems and provide a 

systematic selection procedure of necessary sensors based on the particular needs of 

each project.  

6. Study and develop customized configuration of the data acquisition system using open-

source software and hardware in a cost-efficient manner. 
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7. Develop near-real-time automatic productivity measurement model incorporating road 

and driving conditions engine.  

8. Utilize artificial intelligence techniques to automate the analysis process, providing 

fast, robust and accurate analysis of productivity in earthmoving projects. 

9. Develop web-based monitoring platform that allows efficient visual representation of 

productivity measurement and analysis output in near real-time. 

10. Validate the developed models for customizing the configuration of data acquisition 

systems and automated productivity and analysis models.  

1.4 Research Methodology  

The flow chart shown in Figure 1-1 represents the methodology that was followed in this research. 

This methodology includes five phases: analysis, design, development, validation, and 

recommendations. The developed methodology started with a comprehensive investigation, study, 

and analysis of the literature and ended up with recommendations for future work after validating 

the developed models for productivity measurement analysis of earthmoving operations. 

1.5 Thesis Organization 

This thesis consists of eight chapters; Chapter 1 presents an introduction that includes a general 

overview, problem statement, research objectives, motivations, and methodology. Chapter 2 

presents a comprehensive literature review, ended with a summary of the identified gaps and 

limitations. Chapter 3 depicts the research methodology, a framework of the three developed 

integrated models and the utilized hardware. Chapter 4 presents the first developed model for 

customizing the configuration of the developed data acquisition system. Chapter 5 presents a 

comprehensive description of the second developed model for automated productivity 

measurement, driving, and road conditions analysis. Chapter 6 presents the third model for 

automated productivity analysis of earthmoving operations. Chapter 7 represents the developed 

case study for validating the developed models. Also, it represents the web-based monitoring of 

productivity.  Finally, Chapter 8 discusses the contributions and limitations of this research, as 

well as the recommendations and future work. 
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Figure 1-1: Research Methodology 
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2 Chapter 2: Literature Review 

2.1 General Overview 

This Chapter presents a comprehensive review of the literature on productivity in construction and 

earthmoving operations. It sheds light on previous and current practices related to types of 

construction site information and methods used in measuring activity progress and productivity 

measurement, the challenges associated with data collection and several methods that were and 

currently utilized in data collection. It also provides a review of the different methods used in 

measuring, predicting and analyzing productivity. It also includes a summary of previous studies 

of automated data-collection techniques and research efforts related to productivity assessment 

and analysis in earthmoving operations. Finally, it outlines the gaps and limitations. Figure 2-1 

illustrates the organization of this chapter. 

 
Figure 2-1: Chapter Organization 

2.2 Data Acquisition 

Timely collection of data about resources and project status is essential for supporting management 

to lead a project successfully. In this process, a significant amount of data from construction sites 

is required to determine the project status, and hence corrective actions can be taken if needed 

(Shahi et al., 2013).  
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2.2.1 Manual and Semi-Automated Data Acquisition 

Collecting, storing and processing construction job-site data are regularly manual and labor-

intensive methods. The usual practice for progress tracking typically depends on foremen daily or 

weekly reports which entail rigorous manual data collection and involve frequent record or data 

entry mistakes (Keziltas and Akinci, 2005). Studies concluded that site supervisory personnel 

spend about 30-50% of their working hours on construction sites in field data recording and 

analysis (McCullouch, 1997). Data collected using manual methods is based on the collector site 

personnel skills, judgment, and motivations; hence, it is neither reliable nor complete. Also, data 

collected manually is usually transferred and stored in papers, so it is difficult to explore and 

retrieve purposed data sets, which makes both processing and achievement of useful information 

expensive and unreliable. In other words, eventual valuable data may not be handy to the project’s 

parties when required, and/or data turns out to be obsolete (Moselhi and El-Omari, 2006). 

However, manual and semi-automated data collection and analysis approaches are subjective, 

expensive and time-consuming. Such practice leads to ineffective project management and creates 

the need for automated solutions that are accurate, efficient, timely and autonomous with minimal 

user intervention (Sacks et al., 2005). It is evidently concluded that current manual methods for 

data collection and progress tracking have limitations in studying project progress accurately, 

objectively, and promptly (Turkan et al., 2012). Hence, cost-effective automated data collection is 

needed where it can increase productivity, and reduce cost. 

2.2.2 Automated Data Acquisition 

The construction industry has an emergent need for automated means of measuring construction 

progress, especially for approaches that employ remote-sensing technology, because the methods 

that are typically used to measure progress are labor intensive and therefore time-consuming 

(Abeid et al., 2003; Wu et al., 2009). Many efforts were made to replace data collection paper-

based with project monitoring and control systems providing a project-wide scope of automated 

solution. Several researchers have presented integrating different automation technologies, e.g., 

RFID, bar coding, 3D laser scanner, and GPS. The research is persistent in that field to augment 

the efficiency and to reduce the cost of implementation. The last two decades have included several 

research endeavors to study and develop automated on-site data acquisition systems. These studies 
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have utilized several technologies, and they have targeted a broad scope of applications in 

construction. Throughout these studies, the recent advancement in sensing technologies, 

computing techniques, and wireless communication have played a vital role to automate the 

process of on-site data acquisition not only on construction job sites but also on the constructed 

facilities (Li et al., 2016).  These research studies have incorporated different technologies such as 

barcode, radio frequency identification system (RFID), GPS, image processing and 

Photogrammetry, laser scanners, remote and embedded sensors, wireless sensor networks (WSN), 

and mobile computing. 

According to literature, numerous applications of automated data acquisition in construction were 

studied (Brilakis et al., 2011; Montaser and Moselhi, 2012b; Hegazy and Abdel-Monem, 2012; 

Ibrahim and Moselhi, 2014). These applications vary from on-site safety enhancement, project 

monitoring and control, progress tracking, infrastructure monitoring, equipment tracking, and 

monitoring, supply chain tracking, resources localization, and management, to data visualizations.  

2.2.2.1 Automated Identification  

Barcodes 

Barcodes are the most mature and commonly used technology in automated identification of 

products in retail and manufacturing (Baldwin et al. 1994). Barcodes typically consist of a series 

of parallel bars representing identification information of the component, a barcode is read by a 

specific reader, this reader is an optical device works as a scanner. However, barcodes are being a 

mature and commonly existing technology; barcodes experience the drawback of the need for line-

of-sight between the bar code reader and the component. Also, the reading range of the reader is 

limited to a few inches. Due to this limitation, scanning each required element for a typical 

construction site is time-consuming and labor-intensive. 

Moreover, in harsh environments in construction sites, barcodes can get grimy and occulted, and 

then the line-of-sight does not be fulfilled. Another limitation is the read-only format of barcodes; 

hence, the data on barcodes cannot be updated. (Tesrng et al. 2005) has summarized the most 

common applications of barcode technology in the construction industry: (1) identifying materials 
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and building components, (2) tracking and management of equipment, (3) tracking Job-site 

workforce tracking, and (4) identifying drawing sheets, documentation and project activities. 

Radio Frequency Identification (RFID) 

Radio Frequency Identification (RFID) is another automated identification technology. (RFID) is 

the wireless communication via radio waves. A typical RFID system includes an RFID reader, 

tags (chips), and at least one antenna. RFID systems are classified to active or passive depending 

on the utilized RFID tags. Tags can be categorized as passive or active, according to their power 

source (Jaselskis and El-Misalami 2003). Active systems utilize tags that contain a battery (active 

tags) that enable longer read ranges and larger storage capacity. Passive systems use (passive tags) 

tags without batteries. RFID does not have the barcode technology limitation, where the 

dependency on radio waves does not require line-of-sight between tags readers and tags. Unlike 

the automated identification using barcode, RFID is more suitable for harsh construction 

environments, where there are encapsulated tags. Some types of RFID have large communication 

range, which extensively facilitates automated identification. Tags working on Ultra High 

Frequency (UHF) typically have longer read ranges than tags working on high or low frequencies. 

Table 2-1 summarizes the main features of the two automated identification technologies  

Table 2-1: Summary of the main features of barcode and RFID technologies 

                                              Technology 
Feature Barcode RFID 

Line-of-Sight Required Not required 

Number of scanned items One Many 

Data Storage Very limited Up to several KBs 

Reading range Few inches Up to several meters 

Data update Not possible Possible 

Performance problems in metal media Yes No 

Suitable for harsh environment No Yes 

However, these technologies experience limited read range, where barcodes read range is about 

few inches, and passive RFID read range is 3 to 5 meters. Also, the cost of RFID readers is quite 

costly where the reader price approximately $1500. Also, the manual scanning and data analysis 

are time-consuming processes.  
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Both technologies were used for progress tracking of structural steel erection (Cheng and Chen, 

2002), on-site data collection and information sharing between project members (Tserng et al., 

2005), and tracking of different material delivery (Jaselskis et al., 1995; Akinci et al., 2002; Song 

et al., 2006; Lee et al., 2008; Montaser, 2013). 

RFID technology has demonstrated efficient results in applications for emergency response, 

search, and rescue (Ergen et al. 2011). Wang (2008) Proposed RFID based model for quality 

inspection and management of concrete specimens' lab test. The models examine the influence of 

inserting the RFID tags inside the concrete specimens on the concrete strength and the RFID 

readability. The main objective of this study was the assessment of the RFID technology 

application as a promising solution to quality inspection and management of concrete specimens. 

Moreover, this study develops a web portal to solve information communication problems. The 

readability of the RFID tags inserted inside concrete specimens is a significant risk, with which 

the system is rendering failure. According to field test results, the maximum readable distance of 

RFID tags inserted inside the concrete specimen was 3 cm from the top surface of the concrete 

specimen.  

 

Montaser and Moselhi (2012a) utilized the data acquired by 2 RFID gates readers (one in the 

loading area and the other in the dumping area). Through these data, the loading-dumping cycle 

could be calculated efficiently. This study proofs how economical the usage of RFID over GIS 

technologies in case of one loading, one dumping areas, and eight hauling trucks, as the number 

of loading areas increased, a less number of hauling trucks are economical to use RFID over GIS. 

Montaser and Moselhi (2014) developed a model utilizes passive RFID tags and two-step 

algorithm localization methods within a specially designed relational database to identify locations 

of worker(s) who are equipped with RFID readers and to track materials onsite. RFID reference 

tags with known location are used as a reference point within a predefined zone.  

 

The coordinates of targets are calculated through triangulation or proximity methods, where the 

known locations of the reference tags are used in the estimation of the worker's location upon the 

signal strength received from those tags. The algorithm applied in two steps:  

1. Detection of worker's location.  
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2. Identification of material location using the pre-detected locations of the RFID reader 

equipped worker. 

(Ko et al.) 2016 Presented a cloud-based materials tracking system prototype integrated with RFID 

and barcode to eliminate the information bottleneck among designers, manufacturers, and 

installers, hence to improve teamwork in the construction supply chain. The system is suitable for 

(SMB) Small to Medium Business Contractors. The system is primarily dedicated to serving SBM 

contractor specializes in manufacturing and installation of commercial HVAC and process piping. 

The system's validation results indicate the need for using extra reliable RFID tags and reader, 

which will be more appropriate in the harsh work environment. 

2.2.2.2 Out-Door Tracking 

Global Positioning System (GPS) is the most commonly used technology in out-door localization 

and tracking. A variety of other technologies were utilized for progress tracking of outdoor 

construction operations such as radio frequency identification (RFID), ultra-wideband (UWB), and 

vision-based technologies. GPS is primarily a military system, but nowadays it has a numerous 

number of civil applications. Like any other technology; GPS has advantages and drawbacks. 

Unlike other technologies that might be influenced by weather and temperature, GPS can be used 

in varying conditions GPS system is consists of three component: 

1. Space segment; where the satellite is orbiting the earth in predictable equally spaced orbits 

at an altitude of around 20,200 Km. 

2. Control segment; where a Master Control Station (MCS) in Colorado, USA, in addition to 

another ten passive monitoring stations around the world are responsible for monitoring 

and retaining the satellites accurately on their orbits. 

3. User segment; where this segment is usually associated to the GPS signal receiver, a GPS 

receiver calculates its position via solving a set of equations based on the distance between 

the receiver and three or more satellites (Ogaja, 2011).  

Figure 2-2 shows the three segments of the GPS system.  
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Figure 2-2: The three segments of GPS system (Leonard, 1999) 

Civilian GPS receivers can be categorized into three different types based on the accuracy of 

location and proposed applications: 

1. Navigational / Recreational receivers.  

2. Mapping-Grade receivers. 

3. Geodetic-Grade (Scientific) receivers.   

Figure 2-3 illustrates an overview of civilian GPS receiver classification and associated 

approximate accuracy of each class (Ogaja, 2011).  
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Figure 2-3: Overview of civilian GPS receiver classification (Ogaja, 2011) 

GPS technology was identified as an accurate and robust technology for automated data collection 

for controlling highway construction. However, there are inaccuracies associated with the 

collected GPS data which are caused by objects hindering communication between GPS receiver 

and satellites (Navon and Shpatnisky 2005). GPS technology was utilized in tracking, e.g., to track 

earthmoving operations and/or highway construction (Montaser et al., 2012;Alshibani and 

Moselhi, 2007; Hildreth et al., 2005; Navon and Shpatnitsky, 2005), also in tracking pipe spools 

position  in a construction project (Caldas et al., 2006).  

Pradhananga and Teizer (2013) Presented an automatic spatiotemporal analysis for construction 

site equipment operations using a low price commercial GPS data logger for continuous 

acquisition of equipment location. The system presents technology and algorithms supporting the 

automated assessment of construction site equipment operations. A software interface was created 
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where equipment trajectories can be shown for a user-defined duration, which allows the user to 

set, analyze, and visualize several important factors related to the equipment to achieve more 

realistic equipment operation analysis and potential for utilization in simulation models. This work 

permits support for project managers to make better decisions to plan, manage, monitor and control 

equipment as well as its related work activities on construction sites. 

Many research studies used GPS as a standalone tool, while most of these studies concluded that 

standalone GPS could not usually satisfy the needed requirements to solve the research problems. 

In case of standalone GPS utilization, the obtained data are limited to time and location, which is 

sometimes hard to differentiate between productive and idle times. Furthermore, the acquired 

records do not present enough information that could be used to estimate the quantities of the 

excavated soil or confirm that the trucks are fully loaded (Ibrahim, 2015). 

(Montaser and Moselhi, 2012b) utilized RFID to collect data related to earthmoving operations to 

calculate the loading-dumping cycle. This study verified how economical is the utilization of RFID 

over GIS technologies in case of single loading and dumping areas using a fleet of eight hauling 

trucks.  

2.2.2.3 Laser Scanning and Photogrammetry 

Laser Scanning (LADAR)  

Laser scanning has started using a single point to measure systems such as total stations. Currently, 

this technology yields the collection and creation of  (x, y, z)  coordinates which are known as  3D 

point clouds. 3D laser scanner uses a laser beam to determine the distance to an object. Laser 

Scanning is the most 3D imaging common technology utilized for spatial measurements to capture 

shapes of objects, buildings, and landscapes. There are multiple names like 3D laser scanning, 3D 

object scanning or LADAR, but all are referring to the same technology. The most common 

applications of this technology are often related to systems that are utilized to measure or to capture 

the existing conditions of the detected objects. These applications include tracking and monitoring 

the progress of concrete casting surveying, earthmoving operations, paving operations, road 

alignment, monitoring, and control of construction quality (Lytle, 2011).  
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Bosché (2008) and Bosché et al. (2008, 2009) proposed an object detection method for as-built 

modeling using a 3D CAD model together with real data obtained with a laser scanner. In Bosché's 

algorithms, STL format was used in the exportation of the 3D CAD model and converted to a point 

cloud demonstration. For the alignment of the coordinate system of the actual, single-scan data 

with the coordinate system of the 3D CAD model a semi-automated process is used. Finally, a 

recognition of a 3D CAD component is given, and an as-built model of it is constructed. The study 

reports that 83% of the as-built steel components already completed, were recognized by this 

method as being completed, in case of the number of actual 3D data covering the surface of that 

component is larger than some pre-established limit. The approach was efficiently verified in a 

steel construction project. Figure 2-4 shown Bosché 3D scan and 3D model object recognition for 

steel construction. 

 
Figure 2-4: 3D scan and 3D model object recognition (Bosché et al., 2009) 

Nahangi et al. (2014) presented an automated approach to register as-build status data acquired via 

a laser scanner, with prefabricated steel assemblies’ 3D CAD models in two steps; registration and 

processing respectively. The proposed model aims to enable the user to monitor the fabrication 

and installation processes remotely. (Turkan et al., 2012) Used 3D point clouds acquired by the 
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3D laser scanner and 4D model, which provides the as planned status. Both 3D point cloud and 

4D BIM model to be registered in the same coordinate system, hence as-built objects can be 

recognized, progress estimated, and the schedule updated, all automatically. The recognition is 

accomplished through three steps; coarse registration (manual matching), fine registration using 

ICP algorithm and finally, object recognition. Kim et al. (2013) presented a method for 

construction progress measurement based on information contained in a 4D BIM model and 3D 

data obtained from a construction site via remote-sensing technology, the method still valid even 

if the 3D data set is incomplete. The framework for measuring the progress is divided into three 

stages: First, alignment of the as-built data with the as-planned model. Second, matching of the as-

built data to the BIM.  

Bosché et al. (2015) presented a method that automates the recognition and identification of objects 

with circular cross-sections (e.g., pipes) in 3D TLS data collected from construction sites, and 

given BIM model. This method integrates an object detection and recognition technique, which 

employed in Scan-to-BIM applications. Son et al. (2015) Presented a method for modeling 3D as-

built data of structural elements using data acquired by 3D laser scanner during the construction. 

This method recognizes the elements of interest from the whole point cloud using color value for 

distinguishing between various elements. Then the method uses supervoxel algorithm to generate 

a graph of connected linear patches. Once the connected linear areas are generated a convexity 

graph is formed by classifying edges to concaves and convexes. From the created convexity graph, 

each of the elements connected by convex edges is found. Convexity graph demonstrates the way 

elements are connected in addition to the consequences of the connectivity between patches. The 

method capabilities were evaluated through a field experiment. The results demonstrate that 

method could be used for semantic as-built BIM without any prior information from an as-planned 

model. 

Photogrammetry 

Photogrammetry is the discipline of creating measurements from photographic images by 

extracting the geometrical properties of an object from an image (Styliadis, 2007). 

Photogrammetry has an advantage over the laser scanning; this advantage is the value of obtaining 

information about texture and color from images (Zhu et al., 2010).  
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Golparvar-Fard et al. (2012) proposed an automated approach to measuring the progress, where 

daily construction photographs and a 4D BIM are used to collect information about the as-built 

status of each structural component for schedule updating. For the generation of 3D data from 

photographs, structure-formation (SfM) techniques were used. An alignment to be done for the 

coordinate systems of the 3D data and the 4D BIM, and the progress of each activity is calculated 

by using information about the as-built status of each element, which is achieved using a support 

vector machine (SVM) classifier. This method is robust, even in the face of differences in the 

density of the 3D data. However, it too recognizes only the noticeable elements that are not entirely 

occluded. Moreover, the 3D registration was carried out using only a semi-automated approach, 

and it was applied only to the 3D data obtained from the photographs. For that reason, although 

the method was verified for very simple structures, it accomplished an average of 83–91% 

accuracy in terms of progress recognition.  

Zhu et al. (2016) presented a Photogrammetric vision-based tracking method using particle 

filtering to track labor and equipment in construction sites. The system tries to solve the issues 

raised from an occlusion in visual tracking. The system embraces generating hundreds of particles 

for each detected object, then calculating the weight of each particle, finally, those particles to be 

assembled and hence followed. This method has the ability to track only one object at the same 

time. Brauna et al. (2015) presented photogrammetric-point clouds based and precedence 

relationship graphs system for automated progress monitoring. The system reconstructs as-built 

point clouds from images and then compare them to an existing 4D BIM model. The images could 

be captured manually using a calibrated commercial cameras or using unmanned aerial vehicles 

(UAV). The system tries to overcome the occlusion of some executed elements by automatically 

investigating the interdependences of elements in the 3D BIM model in addition to the temporal 

information from the fourth BIM dimension (schedule) that can be done through the usage of 

precedence relationships. Integrating precedence relationship graphs permits not only higher 

accuracy to the utilized detection algorithm but also occluded element recognition. Ahmed et al. 

(2011) Introduced a rapid monitoring and progress tracking system of Pipe-Works using Digital 

Photogrammetry. This system consists of a hand-held digital camera and Photogrammetry 

software which utilized for constructing a 3D model of as-built pipe-works. 
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Most of the developed systems are only able to register and recognize the visible components. 

Furthermore, nowadays construction projects become larger and more complex, and so it becomes 

more challenging to acquire complete data sets. The collected incomplete data sets are still 

considered a significant effect to the automated construction progress measurement in the 

construction projects (Kim et al., 2013).  

The drawback of many systems that individually utilize 3D laser scanning or Photogrammetry may 

be overcome through the integration of both techniques. This integration alleviates the limitations 

associated with the utilization of each of them individually such as the required number of scans 

and the needed duration for each scan to turn out in satisfactory results in the 3D modeling process 

(El-Omari and Moselhi, 2007;  El-Omari, 2008). 

2.2.2.4 Data Visualization 

BIM stands for Building Information Modeling. BIM is defined as a digital representation of the 

physical and functional characteristics of a facility (Eastman et al., 2008). BIM Models are the 

most common visualization of building information. According to National building information 

modeling standard, ''A basic premise of BIM is collaboration by different stakeholders at different 

phases of the life cycle of a facility to insert, extract, update or modify information in the BIM to 

support and reflect the roles of that stakeholder” (NIBS, 2013). One of the advantages of a BIM 

over a 3D - CAD models is that the objects in BIM models are parametric, are associated with 

each other, and hold an array of attributes. This long-term advantage of the BIM may rationalize 

the permanent attachment of sensors, such as RFID tags, to some of the key components 

(Motamedi and Hammad, 2009).  

Many studies have introduced a variety of approaches to combining those 3D BIM models with 

project management information, such as time, cost, and as-built data. Responding to rising need 

for visualization, its techniques are used for visual simulations with Augment Reality (Behzadanet 

al. 2008) and the viewing of time-lapsed image (Golparvar Fard et al., 2009; Abeid et al. 2003; 

Abeid and Arditi, 2002) within 3D and 4D (3D BIM + schedule) models. Motamedi et al. (2011) 

presented a model that integrates BIM and RFID for facilities lifecycle management. RFID tags 

attached to the targeted components within the facility, subsequently retrieving the data from BIM 

database to RFID tags. 
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Zhang and Arditi (2013) presented an automated system that measures construction progress 

through the integration of 3D - BIM models and 3D laser scanning. This system has three steps to 

do this. First, linking 3D model and schedule to develop a 4D model. Second, capturing the point 

cloud data using 3D laser scanner in a daily bases. Third, superimposing the point clouds on the 

3D model. A Java syntax was developed to evaluate the construction progress in terms of the 

percentage complete. 

Montaser and Moselhi (2012b) presented an automated method utilizing 4D - BIM models and 

tablet PC for reporting the progress in construction job sites. This method integrates the 3D - BIM 

model and project. The integration process generated a 4D model which utilized to simulate the 

planned construction sequence. A tablet PC is used to collect the as-built progress data using the 

built-in RFID reader, barcode reader, a camera for capturing images, recording notes, sounds, and 

video clips. The collected data is then utilized to update the project status on the 4D model, which 

is then used for comparison with the as planned conditions. Figure 2-5 shows As-Build and As-

Planned 4D Models that obtained using the tablet PC. 

 
Figure 2-5: As-Build and As-Planned 4D models (Montaser and Moselhi, 2012b) 
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Mawlana et al. (2015) integrated 4D modeling and discrete event simulation by introducing a new 

method for generation and assessment of reconstruction phasing plans. This method calculates the 

probability of stochastic spatiotemporal clashes associated with the finest practical phasing plan. 

4D visualization modeling is presented to show the feasible progression in which the sections of 

the bridges can be constructed or demolished. Montaser and Moselhi (2015) presented an 

automated outdoor data acquisition system for progress reporting and visualization in near real 

time. The system integrates 4D BIM models, GPS and tablet PC. The tablet Pc integrates many 

sensing technologies and data communication protocols, e.g., RFID reader, camera, Wi-Fi, and 

Bluetooth. The usage of tablet PC not only adds a lot of automated data acquisition capabilities, 

but also it is used as an integration platform. The system collects on-site data and stores it in a 

database for processing, hence to generate progress reports. The methodology was applied on a 

real construction site in Montreal, Quebec, Canada to illustrate the features of the system. 

2.2.2.5 Data Fusion in Construction 

Data fusion is the process in which multiple data and knowledge are integrated for representing 

the same object into a consistent, accurate, and useful representation. The goal of data fusion is to 

improve the quality of information obtained separately from each source (Haghighat et al., 2016). 

A construction site often has many types of data which usually collected from multi sources. This 

data is needed for assessing a large variety of aspects such as progress tracking and safety 

management. Both objective assessment of those aspects and relating informed decision are 

necessitating the combination of different data sources because not all of the needed information 

can be obtained using a single data source. Tablet PCs and pen-based computers were an ideal 

integration platform in some models, where tablet PC allows the user a variety of data collection 

forms, such as handwritten notes, taking images, or even videos and voice comments (El-Omari 

and Moselhi, 2011). 

The last two decades were the prosperous era of developing multisensory data fusion models that 

serving the construction industry. Cheng & Chen (2002); Song et al. (2006); Ergen & Akinci 

(2007); Moon & Yang (2009) and Razavi (2010) have developed models in which the acquired 

data from GPS, RFID, and other sources of information is fused for locating and tracking 

construction materials.  
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El-Omari and Moselhi (2011) presented an integrating control model within a centralized database. 

The model integrates several data acquisition technologies; RFID, barcodes, 3D laser scanning, 

Photogrammetry and multimedia using a pen-based computer as a media of integration and the 

main interface tool. This model integrates. A relational database was developed using MS-Access 

to ease the interaction with the scheduling software. Once the captured data are well organized 

through the different entities of the database, it can help in progress reporting, production of as-

built drawings and claim management. Object-based models have employed data fusion for the 

automated of progress tracking of construction projects through the development of automated 

object-recognition models (Cheng et al., 2012; Golparvar-Fard et al., 2013; Turkan et al., 2013) 

and automated object-tracking models (Khaleghi et al., 2013; Shahandashti et al., 2011).  

Shahi (2012) and Shahi et al. (2014) presented an activity-based framework for multisensory data 

fusion for tracking the progress of construction activities throughout the entire duration of the 

project. The developed data fusion processes enabled the tracking of objectless activities such as 

welding and inspection, which were not possible with other object tracking and recognition 

methods. This framework was done by complementing various sources of information with the 3D 

marking data collection system, which incorporates ultra wide band (UWB) positioning system 

for tracking structural and non-structural construction activities. Although the scope of the 

validation experiments was limited to ductwork, HVAC, and piping activities of an industrial-type 

project, results show that the developed data fusion framework improves on the existing object-

based material tracking and automated object recognition algorithms. 

Ibrahim & Moselhi (2014) and Ibrahim (2015) presented an automated system for actual 

productivity assessment of earthmoving operations in near real-time. The system fusses data 

captured via various sensing technologies. The system includes hardware and software 

development. The hardware incorporates the latest advances in sensing technologies; it consists 

of: microcontroller, GPS and different types of sensors (Strain gauges,3-Axis accelerometer, and 

barometric pressure sensor). Bluetooth wireless communication is used for data streaming and 

proximity detection. 

Liu et al. (2016) presented a system for real-time monitoring and control of pavement lift thickness 

for highway construction. The system integrates a robotic total station, inclinometer (for tilt angle 
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measurement), laser ranging sensor (for measuring the distance to the road service) and GPRS 

(communication protocol). The robotic total station continuously tracks a platform cart which is 

connected to the road paver. The platform cart is equipped with the laser ranging sensor and the 

inclinometer. GPRS communication protocol then is used to transfer data to the database and 

server for processing. The management team can retrieve the results through laptops and PDAs 

devices.  According to the conducted field applications, the system demonstrated its capability for 

real-time, automated and accurate monitoring of pavement lift thickness. 

2.3 Productivity 

Productivity is defined as a process output over input, in another word; earned outcomes over input 

resources. Productivity measurement for an operation can be simply realized by dividing the 

number of produced units over the total input resources in this operation. The main purpose of 

evaluating productivity is to measure the efficiency of input resources. Over the decades, literature 

has provided many methods for Productivity measurement, e.g., work sampling, craftsman 

questionnaire, foreman daily survey and craftsman questionnaire sampling (Jeffrey et al. 1987), 

Activity sampling and recording present work-face practices (Oglesby et al., 1989). Upon the 

advancement of imaging and video recording technologies, photographing, video and time-lapse 

recording became a common productivity measurement tool. Each of the above-mentioned 

methods has its advantages and disadvantages. Getting information is a crucial issue to measure 

and assess productivity. All methods of productivity measurement and evaluation depend on 

gathering data. One of the better ways to get data that can be useful in productivity measurement 

is to observe the process in the study to develop realistic records of how it is being done (Oglesby 

et al., 1989). Potential advancement in remote sensing technologies provides innovative models 

for productivity measurement and evaluation, for example, but not limited to  (Ibrahim & Moselhi, 

2014; Ibrahim, 2015; Alshibani and Moselhi, 2016).    

2.3.1 Productivity in Construction Industry 

The construction industry plays a significant role in national economies in most countries around 

the globe, where it is influencing both GDP and the workforce of these countries  (Arditi & 

Mochtar, 2000; Haupt, 2001). Upon that importance of the construction industry, it is fundamental 

to improve productivity. Hence it is vital to understand and measure productivity, which leads to 
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analyze the factors that influence it and the degree of impact of each. Evaluating construction 

performance was mostly measured using two criteria; productivity and unit costs(Nunnally, 2000; 

Schaufelberger, 1999). Productivity measurement utilities as a pointer for the status of the 

construction operation. Obtaining relevant information is crucial, where which can improve 

productivity. There are many ways to get information that can be helpful in productivity 

improvement. Two of the superior ones are to ask those who are involved in the processes and the 

observation of the process to obtain factual records of how it is being done. Each of these two 

approaches has its advantages while no fixed rules on which is better (Oglesby et al., 1989). 

Estimating productivity of construction operation is commonly experience-based due to the 

complexity involved. However, primarily empirical practices do not pledge a reliable estimate 

because of the absenteeism of a fastening system that relates the current case to previous patterns 

(Chao & Skibniewski, 1994; Rueda & Javier, 2011). 

2.3.2 Earthmoving Operations  

Earthwork projects involve moving substantial magnitudes of earth from source locations to 

specific destinations. Construction contractors use various procedures and equipment to move 

earth depending mostly on their equipment availability and hauling distance (Kannan et al., 1997; 

Rueda & Javier, 2011). However, appropriate selection of size and type of equipment by the project 

managers should consider many factors such as soil condition, operation zone, and required 

specification. The conventional deterministic method of production rate estimation is as follows: 

Loading equipment production rate 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =  
3600𝑠𝑒𝑐.𝑥 𝑄 𝑥 𝐹 𝑥 (𝐴𝑆:𝐷)

𝑡
 𝑥 

𝐸

60 𝑚𝑖𝑛 ℎ𝑟
 𝑥 

1

𝑉𝑜𝑢𝑚𝑒 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛
          Equation (2-1) 

Where; 
Q = bucket capacity  

F = bucket fill factor  

AS: D = angle of swing and depth (height) of cut correction  

t = cycle time in seconds  

E = efficiency (min. per hour) 

Hauling trucks 
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Hourly completed trips by the hauling trucks is a function of cycle time. Truck cycle time has four 

components: (1) loading time, (2) hauling time, (3) dumping time, and (4) returning time. Many 

factors could affect each of those four components. Management and operating conditions are 

considered combined influencing factors. The loading time depends on the percentage of bucket 

capacity to hauling truck capacity. The hauling and returning cycle times depend on the truck 

weight, the engine capacity, the haul and return roads distances, in addition to the condition of 

these roads. Dumping time is a function of the type of equipment and dumping site conditions 

(Shapira et al., 2010). 

2.3.3 Calculating Production of Hauling Truck 

1. Number of bucket loads 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑢𝑐𝑘𝑒𝑡 𝑙𝑜𝑎𝑑𝑠 =  
𝑇𝑟𝑢𝑐𝑘 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝐵𝑢𝑐𝑘𝑒𝑡 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
                                 Equation (2-2) 

2. Loading time 

Load time = Number of bucket loads x Bucket cycle time                                 Equation (2-3) 

3. Truck load 

Truckload (volumetric) = Truck volumetric capacity                                      Equation (2-4) 

Truckload (gravimetric) = Vol. load x Unit weight (loose vol.)                        Equation (2-5) 

4. Hauling time 

Hauling time primarily depends on the traveling distance and the traveling speed. Based on the 

total weight of the truck including the load of the soil, and considering the rolling and grade 

resistance from the loading area to the dump area, the estimated speeds can be obtained using the 

manufacturer's performance chart of the truck. Figure 2-6 shows the Performance chart of 777G 

off Highway truck as an example. Performance charts do not consider the acceleration and 

deceleration in addition to the road condition that can affect the speed of the truck. Hence the truck 

is not necessarily traveling at the speed indicated using performance charts (Peurifoy et al., 2006). 

The expected effective speed is what should be used in estimating travel time (Equation 2-6). 
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Figure 2-6: Performance chart of 777G off Highway truck - © 2012 Caterpillar Inc. 

Extracted from: https://mining.cat.com/cda/files/3352106/7/AEHQ6553-00.pdf 

 

𝐻𝑎𝑢𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 =  
𝐻𝑎𝑢𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝐾𝑚)

𝐻𝑎𝑢𝑙 𝑆𝑝𝑒𝑒𝑑 (
𝐾𝑚

ℎ𝑟
)
 𝑥 60 (

𝑚𝑖𝑛

ℎ𝑟
)                                                   Equation (2-6) 

5. Returning time 

Similarly, as in the calculation of hauling time but considering the emptiness of the truck returns 

from the dumping point to the loading area. Performance charts might be used in order to determine 

the possible maximum speed. 

  𝑅𝑒𝑡𝑢𝑟𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 =  𝑅𝑒𝑡𝑢𝑟𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝐾𝑚)
𝑅𝑒𝑡𝑢𝑟𝑛 𝑆𝑝𝑒𝑒𝑑 (

𝐾𝑚

ℎ𝑟
)
 𝑥 60 (

𝑚𝑖𝑛

ℎ𝑟
)                                             Equation (2-7) 
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 6. Dumping time  

Dumping time depends on the dumping site conditions and waiting time resulting from site 

congestion. Moreover, the operational and management conditions within the dumping point.  

7. Truck cycle time 

Truck cycle time = Load time +Haul time+Dump time+Return time +Wait for Load & Dump time  Equation (2-8) 

8. Number of trucks required 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑐𝑘𝑠 =  
𝑇𝑟𝑢𝑐𝑘 𝑐𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒 (𝑚𝑖𝑛)

𝐿𝑜𝑎𝑑𝑖𝑛𝑔 𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 𝑐𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒 (𝑚𝑖𝑛)
                          Equation (2-9) 

9. Production  

Production controlled either by the trucks or by the loading equipment. The number of trucks must 

be an integer number. If this integer number of trucks lower than the calculated balanced number 

of trucks obtained using equation 2-9., then the trucks will control production and therefore:  

Production (m3/h)  

= Truck load (m3) x Number of trucks x 60 min / Truck cycle time (min)                 Equation (2-10) 

While, if the integer number of trucks is greater than the calculated balanced number of trucks 

produced by equation 2-9., then the loading equipment will control production and therefore: 

Production (m3/h)  

= Truck load  x Number of trucks x 60 / Loading equipment cycle time                 Equation (2-11) 

10. Efficiency 

The above-mentioned steps are showing the calculation of production based on a full 60 minutes 

working hour. Logically, it does not be the reality, so that production should be adjusted by an 

efficiency factor.  

Adjusted production = Production x Working time (min/hour)/60 min                   Equation (2-12) 



27 
 

Finally, this production can be expressed by means of the desired units using the soil property 

information. Volumetric units are commonly used while gravimetric units are also necessary for 

evaluating the load capacity for the trucks.  

2.3.4 Productivity of Earthmoving Operations 

Earthmoving work package usually takes up around 20% of the total cost of construction projects 

(Kang et al., 2009). Therefore, estimating onsite earthmoving productivity is always a major 

concern for project managers (Zhang et al., 2009). Furthermore, productivity is a significant aspect 

when assessing the design of any process, and it is the most frequently used performance gauge in 

construction projects. In an earthmoving operation, productivity is defined as the total output from 

the entire fleet. However, only examining the productivity is unsatisfactory for assessing the 

performance of an operation (Fu, 2013). It is also important to use methods for analyzing the 

productivity in order to guarantee robustness of the operations design, moreover, to detect the 

vulnerability of the system to take the necessary corrective actions.  

Earthmoving projects usually involve cyclic routine operations. These operations in most 

earthmoving projects are loading, hauling, dumping and travel back to the loading area to repeat 

the same cycle of work. The problem of accurate estimation of earthmoving productivity has 

attracted many researches for decades; however, a model that predicts the output of such operations 

with a satisfactory degree of confidence for all situations is not yet available (Smith, 1999). 

The researchers’ endeavors towards assessing and predicting the productivity of earthmoving 

operations followed deterministic or stochastic procedure. Experience-based models were 

commonly used in industry for earthmoving productivity forecasting. These heuristic methods are 

based on rules of thumb and engineering knowledge. The methods suffer from a lack of 

mathematical validity and credibility and also do not guarantee optimal solutions. Also, using 

heuristic methods do not adequately secure the proper solutions when the construction operations 

grow large and complex (Fu, 2013).  

Rueda & Javier (2011) presented a method to obtain and present historical productivities of key 

equipment using different data processing methods to extract useful information from the acquired 

historical data, in order to develop a tool that aids estimation and generation of reference 
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information to support decision making. Montaser et al. (2014) presented a tool for stochastic 

forecasting of productivity of earthmoving operations considering uncertainty. The proposed 

method integrates the use of GPS/GIS technology for automated site data acquisition and DES 

(Discrete Event Simulation) for estimating activity’s future performance.  

Ibrahim & Moselhi (2014) presented an automated system for actual productivity assessment of 

earthmoving operations in near real-time. The developed method includes hardware and software 

development. The hardware incorporates the latest advances in sensing technologies; it consists 

of: microcontroller, GPS and different types of sensors (Strain gauges,3-Axis accelerometer, and 

barometric pressure sensor). Bluetooth wireless communication is used for data streaming and 

proximity detection. Alshibani & Moselhi (2016) presented an automated web-based system for 

estimating productivity, time and cost of earthmoving operations. This system utilizes samples of 

collected GPS data as representation to the whole operations, where these data utilized to develop 

realistic probability distribution curves for actual duration of open cut excavation earthmoving 

operations, which utilize a fleet of loaders and trucks. The system accounts for uncertainty 

associated with activity durations and cost. The system has applied on two actual projects for 

validation; the results indicate the effectiveness of the system as a tracking and control tool for 

earthmoving operations. 

2.3.5 Simulation 

Simulation is “ The process of designing a model of a real system and conducting experiments on 

this model to understand the behavior of the system and/or evaluating various strategies for the 

operation of the system ” (Shannon, 1998). In construction, simulation is one of the most powerful 

methods for modeling, analysis, and understanding of construction operations. Simulation of 

construction operations permits planners and estimators to evaluate construction operations before 

starting site work and to predict productivity (Alzraiee et al., 2012). 

There are three types of methodologies in the field of construction simulation: discrete event 

simulation (DES), system dynamics (SD) and agent-based modeling (ABM).  
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2.3.5.1 Discrete Event Simulation (DES) 

The Discrete Event Simulation (DES) was established in the 1960s by Geoffrey Gordon 

(Greenberg, 1972). DES is utilized for modeling the sequences of a system (Koenig, 2011). 

Accordingly, it is usually used in simulating construction and earthmoving operations sequences. 

Halpin (1973) developed a powerful modeling system called CYCLONE, which simplified the 

simulation and modeling process for users with limited simulation background. CYCLONE was 

later used as a base for other simulation systems (Montaser & Moselhi, 2014). In 1996, Martinez 

created a more advanced simulation tool (STROBOSCOPE). This tool has the ability to handle 

uncertainty not only in time but also for various resource quantities. Once again, in 1999, Martinez 

and Ioannou went to reduce the complexity associated with their previous model 

(STROBOSCOPE) by developing the system (EZSTROBE). 

2.3.5.2 System Dynamics (SD) 

The System Dynamics (SD) was created in the mid-1950s by Jay Forrester, MIT scholar and 

electrical engineer (Forrester 1961). Most of the principles of system dynamics were developed in 

the 1950s and early 1960s. System Dynamics is “The study of information feedback characteristics 

of industrial activity to show how organizational structure and time delays (in decisions and 

actions) interact to influence the success of the enterprise” (Forrester, 1958, 1961). System 

dynamics helps in understanding the behavior of complex systems over time. It deals with internal 

feedback loops and time delays that affect the behavior of the entire system. In system dynamics, 

realistic processes are represented in as a stocks, e.g., of material, knowledge, people, money, 

flows between these stocks, and information that determines the values of the flows (Borshchev 

and Filippov, 2004). Stocks, e.g., people, money, and knowledge characterize the state of the 

system. Flows express the movement of items between various stocks within the system borders 

or in and out of the system (XJ Technologies, 2012). 

2.3.5.3 Agent-Based Modeling and Simulation (ABMS) 

Since the early 2000s, agent-based modeling (ABM) was adopted in academic research. The 

developments and applications of ABM were running in parallel in multiple research areas such 

as artificial intelligence, computer science, complexity science, and game theory, among others. 
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There is no standard definition of what are the properties and characteristics of the entity called 

agent. Agents are adaptive, pro-active, re-active, spatially aware, and self-learners. Moreover, 

agents have social abilities and have intelligence. Accordingly, they can influence and interact 

with each other. Also, they learn from their experiences and adapt their behaviors, so they are 

better fitted to their environment (Schieritz and Milling, 2003; Macal and North, 2010). 

Many efforts were made by many researchers in the construction field to model and simulate 

various construction operations. Literature has many models for different computer simulation for 

modeling repetitive cyclic operations (Zayed, and Halpin, 2001, Marzouk and Moselhi 2004, 

AbouRizk, 2010 and Jabri, 2014).  

2.4 Identified Gaps and Limitations  

The productivity of earthmoving operations was substantially studied during the last decades. 

However, equipment as a part and particular of earthmoving operations play a vital role in the 

production, many other internal and external factors could influence productivity i.e., weather and 

road conditions. Research has introduced numerous analytical methods that used in the planning, 

measurement and analysis of earthmoving operations. However, some of these methods proved 

the efficiency and effectiveness; they still lack being fully automated in line with the current 

technological advancement. Moreover, most of automated models have depended on black-box 

and off-the-shelf technologies.  The identified gaps and limitations are summarized as follow:  

 Most automated data acquisition systems utilized black-box and off-the-shelf 

technologies. 

 The need for automated data acquisition system which ables to collect and 

communicate all the valuable data needed for measurement and analysis of 

productivity. The system that improves its performance through the advancement of 

the new sensing technologies as well as communication techniques. 

 Literature lacks systematic method to customize the configurations of data acquisition 

systems for earthmoving operations. 

 Literature lacks data fusion algorithms application for near real-time productivity 

measurement and analysis.  



31 
 

 Most data fusion models in literature were more adequate for building projects than 

earthmoving operations and highway construction and usually they require human 

interventions. 

 Uncertainty due to the dynamic nature of earthmoving operations and probability of 

sensors malfunction is not considered.  

 Only examining the productivity is unsatisfactory for assessing the performance of an 

operation (Fu, 2013). Most research has focused on assessment more than analysis of 

productivity. Where assessment often indicates the presence of problems that have 

affected the productivity, it may evaluate problems and their consequences, while it 

does not identify these problems and their causes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



32 
 

3 Chapter 3: Developed Models 

3.1 General Overview 

This chapter presents a description of the integrated developed models. The main aim of the 

developed models is to overcome the previous research identified gaps and limitations by 

addressing the research objectives. The developed models present the integration and automation 

of various methods and algorithms to support the process of productivity measurement and 

analysis of earthmoving operations. The automated models for productivity in earthmoving 

operations are discussed in details. Figure 3-1 depicts the main sections of the developed models, 

and how they are integrated. 

Developed Models
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Figure 3-1: Main sections of the integrated developed models  
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3.2 Identification of Factors Influencing Productivity of Earthmoving Operations 

Many factors could impact productivity of earthmoving operations. The timely detection of these 

factors aids management to avoid cost overruns and schedule delays. The advancement in wireless 

sensing technology and data communication enriched research and practice for identifying various 

factors that could influence earthmoving operations. The influence degree of these factors is varied 

from a factor to another. This variation of influence motivates the need for ranking these factors 

based on the degree of influence on productivity. A questionnaire was designed to reconnaissance 

the judgment of experts on the impact of each factor on productivity of earthmoving operations. 

Appendix I shows the questionnaire and Figure 3-2 shows literature based brainstorming for some 

factors that could lead to productivity losses in earthmoving operations. Each of these factors has 

identification signs as shown in the middle column, while the last column illustrates the type of 

data necessary to facilitate this identification as well as the sensing tool recommended. 
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Loss in 
Productivity

Adverse access 
road conditions

 Increase in the duration 
that the truck spends on 
the access road

 Rutty/muddy/snowy 
access roads
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   - GPS (Truck speed & location)
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   - Moisture content
   - Number of buckets
   - Bucket Fill Factor
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   - Load cell (payload)
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   - Bucket Fill Factor

   - Automated weather station
   - Humidity sensor
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   - 3D Accelerometer
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   - OBD II
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   - GPS
   - OBD II
   - Generic weather database 

   - GPS
   - Luminosity sensor

 

Figure 3-2: Major  proposed factors influencing productivity of EMOs, 

required sensing data and recommended acquisition technology 
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3.3 Automated Productivity Analysis Framework 

The main objective of this research is the automation of productivity measurement and analysis to 

guarantee a near-real time detection of different factors influencing productivity of earthmoving 

operations. To achieve this objective a framework of three integrated models was designed, these 

models are as follow: 

1. Fuzzy-based model for customization of data acquisition system. 

2. Automated productivity measurement, driving and road condition analysis model. 

3. Productivity analysis model and web-based monitoring. 

The three models are articulated in chapters 4, 5 and 6 respectively, while this chapter includes: 

1. Automation framework and the scheme of linking the three models and showing how they 

work in an integrative manner. 

2. Examination of the functionality of the utilized data acquisition system and its components. 

The developed holistic framework of this research integrates data acquisition as well as 

productivity measurement and analysis in a near-real-time. Figure 3-3 shows a simplified overview 

of this framework. 

 
Figure 3-3: Simplified overview for productivity measurement and analysis framework 

The developed automated models consist of two main modules; each module has one or more sub-

modules. Figure 3-4 shows a schematic design of the proposed automated productivity analysis 

framework. 
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Figure 3-4: Schematic design of the developed automated productivity analysis framework 

 

 

The developed model has the opportunity to use variety of data communication protocols, such as 

3G, GPRS, Bluetooth, Xbee and Wi-Fi. The data collected by different sensors as well as the 

weather station is tabulated in internal MySQL database. This internal database is built-in the 

communication gateway (Meshlium®).  

The gateway was developed by Libelium®™ and it has a capacity of data storage up to 40 GB. In 

this research, GPRS and Wi-Fi are the utilized data communication protocols due to their low risk 

in data transmission. The internal MySQL database allows preprocessing of the collected sensor 

data. The main purpose of this preprocessing is to filter and hence to lighten the data load on the 
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final processing distention on the host server (cloud). Figure 3-5 shows a framework of the 

developed automated productivity analysis model. 
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Figure 3-5: Framework of the developed automated productivity analysis model 

3.4 Data Acquisition 

3.4.1 Fuzzy-Based Model for Customization of Data Acquisition Module 

The developed model is explained in details in chapter 4, where it introduces a new fuzzy set-

based model that follows this procedure:  

 Identify the factors that affect the productivity in earthmoving operations using a 

questionnaire that been sent to eighty experts involved in such industry.  

 Evaluate the effects of each factor through the received responses from the responadent 

experts.  
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 Analyze the consequences of each factor and select the most influencing factors on the 

productivity of earthmoving operations. 

 Configure the data acquisition system in a customized manner by selecting the most needed 

sensors based on the rank of their corresponding influencing factors. 

The different influencing factors were categorized into four main groups as follow:  

1. Excavated soil conditions.  

2. Hauling and access roads conditions.  

3. Equipment and operational conditions. 

4. Weather conditions.  

Figure 3-6 shows the data acquisition system, which covers different influencing categories and 

their required corresponding sensors. 

 
Figure 3-6: Data acquisition system, different influencing categories and required sensors 

3.4.2 Automated Data Acquisition Module 

Automated data acquisition module is responsible for the automated collection of a diversity of 

data associated with the different activities in earthmoving operations. Mega-projects, as well as 

highway construction projects, could benefit from this model. The proposed data includes moved 

and excavated soils, road conditions, as well, operational and weather conditions. The utilized 

components of the data acquisition module in this research are generally designed for numerous 
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applications. Although the utilized smart boards, sensors and microcontrollers have 

comprehensive applications, construction activities are not a part of these applications. The utilized 

kit contains a low-cost open-source microcontroller, smart sensing board and variety of sensors. 

The smart sensing board is dedicated to bundle a particular type of sensors. Earthmoving 

operations, as well as highway construction, have different activities that mostly if not always take 

place in outdoor environment. The outdoor earthmoving operations will be monitored and tracked 

using a diverse group of sensors based on the customized configuration using the fuzzy-based 

customization model. The developed model has significant reliance on GPS, because of the useful 

spatiotemporal data that could be provided by GPS. A GPS low power consumption sensor is 

utilized for spatiotemporal recognition of the operations' resources, i.e., hauling equipment. 

The outcome of the fuzzy-based customizing model aids the approach of engaging other supportive 

sensors. The utilization of other sensors within this module not only helps in overcoming the 

limitations of conventional standalone GPS but also the data collected from these sensors is 

efficient in productivity measurement and analysis. These sensors permit the availability of many 

data types that used in discrete or fused approach leading to efficient productivity measurement, 

assessment and analysis. Data acquisition module has the role of collecting all the necessary data 

required in calculating the actual productivity, also analyzing productivity, and road and driving 

conditions. Earthmoving operations are cyclic activities in which spatiotemporal data is a part and 

particular of data needed for productivity measurement and analysis. The developed Data 

acquisition module integrates a GPS receiver module with the utilized Waspmote® 

microcontroller. Figure 3-7 shows the utilized A1084 (Vincotech) GPS receiver. This receiver has 

sufficient appropriateness to be used in earthmoving operations, where it permits reasonable 

sensitivity and accuracy, which are suitable for earthmoving operations. GPS receiver 

characteristics are shown in Table 3-1. 
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Figure 3-7: GPS receiver module A1084 (Vincotech) 

 

Table 3-1: GPS receiver module A1084 (Vincotech®) characteristics 

Movement sensitivity:  -159dBm 

Acquisition sensitivity: -142dBm 

Accuracy 

Horizontal position  

 

< 2-5 m 

Time To First Fix TTFF 

Hot start 

Warm 

Cold 

 

< 1 S 

< 32 S 

< 35 S 

Dimension 

Length 

Width 

Height 

 

15.24 mm (0.6") 

15.24 mm (0.6") 

2-4 mm (0.042") 

Weight 1.2 g (0.042 oz) 

Acquired data Latitude, longitude, altitude (height), 

speed, direction, date/time, ephemerides 

Data acquisition module is responsible for collecting data through a group of sensors. However, 

the data collected by the data acquisition module forms the significant portion of data needed for 

the productivity measurement and analysis model, other sources of data is required too. 

Accordingly, the data is grouped into five sections. These sections were categorized based on the 

required information for productivity measurement and analysis. These sections are as follows: 
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I. Excavated soil conditions data collection: This section is responsible for collecting data 

related to excavated soils. Excavated soil characteristics influence the entire earthmoving 

operations. For example, the truck may reach its payload capacity before it reaches the 

usual utilized volumetric capacity when there is a change in soil density or water content. 

The payload of the truck is obtained using a load cell sensor. Once the load acquired, the 

volume of the loaded soil can be calculated using the excavated soil properties, i.e., 

density.  

II. A. Road conditions data collection: This section is responsible for collecting data related 

to hauling and access roads conditions. Uneven surfaces, rutted and soft roads that have 

higher rolling resistance can affect the hauling duration (Kannan 1999). Rutting and 

bumpy roads are considered a principal cause of compulsory deceleration and many 

hauling trucks' mechanical damages. Hence, an extensive loss in productivity is expected 

in the presence of such adverse road conditions.  

II. B. Operational behavioral conditions data collection: This section is responsible for 

collecting data needed in the analysis of operational behavior of the drivers of trucks. 

Achieving productivity targets usually leads equipment operators to stress the equipment 

ahead of its upper limit capacity. Also, due to limited durations and to achieve higher 

production rates, the operators stress the equipment. This stress affects the machine 

negatively and turns to mechanical damage (i.e., speeding, harsh acceleration, and 

braking). A 3D accelerometer is used for recognizing violent driver behavior against 

hauling equipment. 

III. Equipment conditions data collection: This section is responsible for collecting data 

related to the hauling equipment which could remarkably affect the productivity of the 

machine itself and hence the operations’ productivity. Trucks are considered a vital part 

of utilized equipment in earthwork. These trucks are subject to different types of faults, 

which may affect not only the machinery production but also it produces in delays and 

cost overrun. These faults are always related to one or more of the following: body, 

chassis, power-train and electrical network. Body and chassis problems are considered to 

be detected merely through visual inspection. Detection of Power-train and electrical 

network problems are usually done in a computerized way, especially on the trucks which 

were manufactured from mid-1990s onward, where they have OBD (On-Board 
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Diagnostics) system. The last two mentioned series of problems include transmission, fuel 

consumption, tire pressure monitoring and rolling resistance indicators. Figure 3-8 shows 

a simplified representation of OBD II scanning system and a sample gauge panel of the 

diagnostics and scanned items.  One of the OBDII strengths is its capability to detect 

problems a long time before the driver is able to notice any symptoms, such as low-

performance, low-fuel economy, and heavy emissions. Some modern scan tools can be 

connected to a desktop or laptop while other tools allow a smartphone or tablet to connect 

via Bluetooth and then turns the phone to a comprehensive scan tool 

 

     
Figure 3-8:  OBD II scanning system and sample outputs dashboard  

 

OBDII is connected to a slot under the steering wheel of the truck. It can be connected to 

a USB port of the computer or laptop. Moreover, OBDII can send the acquired truck 

health data to database using Bluetooth or Wi-Fi protocol. Monitoring speed of the 

hauling truck is essential in the developed models. However, GPS data includes the speed; 

the utilized GPS receiver module did not show acceptable accuracy. This inaccuracy was 

the emitter to exploit the speed data obtained by the OBD II.  

IV. Weather conditions data collection: This section is responsible for collecting the weather 

conditions data that have an influence on the productivity of earthmoving operations. The 

utilized weather station permits the delivery of real-time, accurate data, in a reliable and 

flexible way. Weather Station WS-3000, a kit that encompasses three productivity 

analysis advantageous sensors: wind gauge, anemometer, and wind vane as shown in 

Figure 3-9. 

http://www.makeuseof.com/tag/obd2-windows-save-auto-repair-diagnostic-tools/
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Figure 3-9: Libelium WS-3000 includes wind gauge, wind vane, and anemometer 

 

V. Generic updated data sources: This section is a source of some required data that has not 

been acquired physically as in the sections explained above. As well, it is considered a 

system robustness element, where it adds redundancy to the system as another truthful 

source of data. The generic data sources such as soil databases and weather condition API 

databases. The developed model can benefit from data extraction from weather condition 

databases in a timely manner. Most of these weather API databases provide developers 

with an access to existing weather conditions as well as weather forecasts based on the 

location; as well as weather maps based on region. The usual practice uses such types of 

databases in many practical applications such as agriculture, while construction still 

mostly depends on conventional procedures to investigate weather conditions on job sites.  

The developed model automates the usage of such databases to effectively support the level of 

confidence of the weather data collected via the different utilized sensors. The aim is to provide 

an automated vigorous model that accounting the uncertainty of sensors malfunction by adding 

additional automated authentic source rather than sensors. This API calls can be reached through 

web access to the current weather data for any location in the globe including more than 200,000 

cities. Current weather is regularly updated based on global models and data from more than 
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40,000 weather stations. Data is available in many formats e.g. JSON, XML, or HTML format.  

An example of open source API respond, and explanation of all the associated parameters are 

presented in Appendix II. These responses can be tabulated as a part of the developed database. 

Weather API calls data could be compared with the collected weather sensing data. Comparing 

both online retrieved data and weather data from the automated weather station depends on the 

conformity of the timestamps for the same type of data. This comparison allows continuous 

synchronized calibration of all sensors utilized to capture different types of weather conditions 

data. As a conclusion, this approach permits not only higher reliance on the collected data, but also 

it considers the risk of any weather sensor malfunction.       

Each of the sections mentioned above incorporates one or more type of data, for example weather 

condition has more than data type, i.e., temperature, humidity and rainfall. The collected data will 

be fused at succeeding steps. The aim of data fusion is to provide a better understanding of the 

whole picture of different operations. Also, to overcome the limitations of a utilized technology 

by benefiting from the data collected by other technologies.  

It is worthy to refer to the flexibility of the proposed utilized tools, where the board gives consent 

to a customized usage of a wide variety of sensors. Waspmote agriculture smart board permits the 

usage of a wide range of sensors.  

Figure 3-10 shows the board, where all the red marked blocks are sensing sockets, while some of 

the utilized sockets in the developed model are the ones with arrows. The same figure also shows 

the socket that allows the integration of the automated weather station with the smart board. 

Appendix III represent several programming syntaxes for different utilized sensors. 
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Figure 3-10: Sensor board, sensor slots, and integrated Libelium WS-3000 

 

Figure 3-11 shows the architecture of the onsite automated data acquisition module.  It was 

provided with sensors for air temperature and humidity, luminosity, wind speed and direction, 

rainfall. This board (Waspmote agriculture) allows up to fifteen sensors to be connected at the 

same time. As shown in Figure 3-11, the main components of the data acquisition module are the 

microcontroller and the smart sensor board. Table 3-2 represents the main two components of the 

data acquisition module as well as the sensors integrated into the microcontroller and the sensors 

connected directly to it as well. Table 3-3 shows the specifications of sensors associated with the 

developed data acquisition module through the smart sensor board.   
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Figure 3-11: Onsite data acquisition module block diagram 
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Table 3-2: Specifications of main components of the developed data acquisition module  

Component Specifications 

Waspmote microcontroller 

 

Characteristics 

SD Card: 2GB 
Weight: 20gr 
Dimensions: 73.5 x 51 x 13 mm 
Temperature range:   [-10ºC, +65ºC] 
Clock: RTC (32KHz) 
Consumption 
ON: 15mA 

Sleep: 55uA 
 

 Sensor board 

 

Characteristics 

Weight:                       20gr  
Dimensions:               73.5 x 51 x 1.3 mm  
Temperature range:    [-20ºC, 65ºC]                                
Consumption 
Maximum (continuous): 200mA 
Maximum (peak):           400mA                                      
The Agriculture 2-0 Board for Waspmote includes all the 
electronics and sockets required to connect a variety of 
sensors; from which the soil moisture content sensor. 

3D Accelerometer  

(Build-in the microcontroller) 

 

 
The integrated accelerometer can make up to 2560 
measurements per second from -6g to +6g on the 3 axes (X, 
Y, Z). This device is ideal to be used in portable wireless 
sensing networks, where it is possible to be integrated into 
trucks and equipment 

Data communication module (poster) 

 

 
Different modules can be used as a data poster. Waspmote 
microcontroller can integrate Wi-Fi, Bluetooth, LoRa wan 
and Xbee modules to communicate data to a sister module 
which has the same characteristics as the receiver geteway. 
The chosen module depends on the required wireless 
coverage. In this research, Wi-Fi and GPRS are used to 
transfer data. 
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Table 3-3: Specifications of sensors associated with developed data acquisition module 

Component Specifications 

Temperature sensor 
 

 

Measurement range: -40ºC ~ +125ºC  
Output voltage (0ºC): 500mV  
Sensitivity: 10mV/ºC  
Accuracy: ±2ºC (range 0ºC ~ +70ºC), ±4ºC (range -40 ~ 
+125ºC)  
Typical consumption: 6μA  
Maximum consumption: 12μA  
Power supply: 2-3 ~ 5.5V  
Operation temperature: -40 ~ +125ºC  
Storage temperature: -65 ~ 150ºC  
Response time: 1.65 seconds (63% of the response for a 
range from +30 to +125ºC) 
 

Humidity sensor 
 

 

Measurement range: 0 ~ 100%RH  
Output signal: 0.8 ~ 3.9V (25ºC)  
Accuracy: <±4%RH (a 25ºC, range 30 ~ 80%), <±6%RH 
(range 0 ~ 100)  
Typical consumption: 0.38mA  
Maximum consumption: 0.5mA  
Power supply: 5VDC ±5%  
Operation temperature: -40 ~ +85ºC  
Storage temperature: -55 ~ +125ºC  
Response time: <15 seconds 
 

Luminosity sensor 

 

Resistance in darkness: 20MΩ  
Resistance in light (10lux): 5 ~ 20kΩ  
Spectral range: 400 ~ 700nm  
Operating Temperature: -30ºC ~ +75ºC  
Minimum consumption: 0uA approximately 
 

Water content sensor 

 

Measurement range: 0 ~ 200cb 
Frequency Range: 50 ~ 10000Hz approximately 
Diameter: 22mm 
Length: 76mm 

 
Load cell 

 

 

Rate load: 3, 5, 6, 8, 10, 15, 20, 30, 35, 40, 50kg 
Output sensitivity: 2-0±0.1mv/V 
Accuracy grade: 0.02%F.S 
Nonlinearity: ±0.02%F.S 
Recommended excitation voltage: +9V ~ +12V 
Operation temperature: -20ºC ~ +60ºC 
Protection class: IP-65 
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3.4.3 On-site Data Acquisition Development 

The data acquisition system consists of portable components installed on hauling equipment and 

fixed data storage and preprocessing gateway (Meshlium) on the excavation site, as shown in 

Figure 3-12. The customized multi-sensor data acquisition prototype and the on-board-diagnostic 

scanner OBDII are attached to all the hauling trucks in the earthmoving project, while the data 

receiver is installed near either the loading zone or the project gate.  

 
 

Figure 3-12: Data acquisition module deployment 

3.4.4 Productivity Measurement, Assessment and Analysis Models 

These models involve different algorithms that automate the measurement, assessment, and 

analysis of earthmoving operations using data mining, data fusion and machine learning 

techniques. The main goal of developing the productivity measurement, assessment, and analysis 

models in this research is to avoid the time consumed in conventional recognition of productivity 

variations. Also, to automate the identification of main grounds behind this productivity variation. 

Productivity analysis model receives different data from the data acquisition module, where the 

collected data is pre-processed on the microcontroller units and the gateway’s local database. 
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Microcontrollers have the role of controlling not only data capture delays and transmission 

intervals, but also it determines the appropriate data sets to communicate to the productivity 

analysis module. Waspmote™ smart boards and microcontrollers permit through its programming 

the application of efficient strategies and algorithms needed for data sampling, processing and 

storing.  

There are different trade brands of sensing boards and microcontrollers, such as Arduino™ Uno 

and Raspberry™ Pi. The last mentioned tools introduced good capability on some similar 

applications, while Waspmote™ has advantages over these mentioned microcontrollers. These 

advantages are revealed illustratively in chapter 5 in a comparative study between the most 

common microcontrollers available in the market. Collected and communicated data sets should 

satisfy its acquisition purposes without data streaming congestions. The amount of data should not 

be so scanty as to put its usefulness at risk, nor should it be so roomy as to overwhelm processing. 

The developed model allows the fulfillment of this purpose through the application of some data 

sampling algorithms. Figure 3-13 shows an example of two raw data acquisition algorithms; the 

first algorithm is for recording only values greater than a threshold value, while the second one 

records only predetermined significant changes in readings. In both algorithms, the times of each 

change are also recorded.  

 
Figure 3-13: Example of raw data acquisition algorithms 
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Productivity Measurement Algorithm 

The developed productivity measurement algorithm employs multi-sensors data fusion. Table 3-4 

shows the concept of how different sensory data acquisition sources are the inputs for the truck 

operational state classifier. Automatically collected data sets by GPS, OBDII, three axial 

accelerometer, and load cell are tabulated into the developed database, then based in the fused data 

from all these sensor sources; developed MySQL procedures recognize different states of the 

hauling truck. 

The main necessary six states for calculating the productivity are waiting for loading, loading, 

hauling, waiting for dumping, dumping and returning. Once these states are recognized, the 

productivity could be calculated using the associated timestamps that could be retrieved from GPS 

data. The timestamps permit the determination of the start and end time of each state, and hence 

its duration, likewise the total duration of each earthmoving cycle. 

Equation (3-1) used for calculating each truck productivity. Soil volume determined using soil 

properties data obtained from specific or generic soil database and soil weights acquired from the 

load cell as shown in Equation (3-2). 

Truck productivity m3 ℎ𝑟⁄ =  
Soil Volume (m3)

Cycle time (hr)
 x Load Factor                    Equation (3-1) 

𝑉 =
𝑚

𝜌
                                                                                               Equation (3-2) 

Where: 

V: Soil volume in m3 

m: Soil weight in tons 

ρ: Soil density in ton/m3 

Therefore, the total productivity of hauling fleet can be calculated using Equation (3-3).  

Total Productivity = ∑ Truck Productivity𝑛
𝑖=1 (𝑖)                                      Equation (3-3) 
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Table 3-4: Conceptual overview of data fusion algorithm for truck state recognition  

 

               State   

Detector 

Wait / 

Loading 
Loading Hauling 

Wait / 

Dumping 
Dumping Return 

GPS 
Location Loading Zone Road Dumping Zone Road 

Speed  Zero  > 0  Zero > 0 

OBD II 

 Engine (ON / OFF) 

 Low / No Fuel 

consumption 

 Low Gear Speed / N / P 

 Engine (ON) 

 Fuel 

consumption 

 High Gear 

Speed 

 Engine (ON / OFF) 

 Low / No Fuel consumption 

 Low Gear Speed / N / P 

 Engine (ON) 

 Fuel 

consumption 

 High Gear Speed  

Accelerometer X, Y, Z  0 
X, Y 0 

Z > 0 
Fluctuated X, Y, Z  0 

X++, Y 0 

Z--, &Mirror 
Fluctuated 

Load cell 
Constant   

Zero 

Exponential 

(+)   Capacity  

Constant   

Capacity 

Constant             

  Capacity 

Exponential  

(-)   Zero 
Constant   Zero 
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3.5 Characteristics of Sensors Used in the Developed Model 

The developed customized prototype is subject to testing procedures in laboratory and outdoor 

environment. These tests are conducted to ensure the functionality, accuracy, and reliability of the 

main components of the data acquisition module. The test procedure applied to the sensors in this 

study are:  

 Functionality and accuracy of GPS as well as its detected coordinates. 

 Functionality of 3D accelerometer. 

 Functionality and accuracy of the soil moisture sensor. 

 Functionality and accuracy of the load cell. 

3.5.1 GPS Module Testing  

The GPS module utilized in this research is capable of providing latitude, longitude, altitude 

(height), speed, direction, date/time, ephemerides. The latitude and longitude were audited to 

validate the accuracy of the GPS module. The following outdoor experiment was conducted to 

auditing to validate depending on the reliability of the Google® maps robust, refined and updated 

global information system (GIS). The experiment procedures have carried out as follows: 

1. Waspmote® microcontroller equipped with the GPS module and its associated antenna. 

Also, a 2 GB micro SD card inserted into the data logging slot. 2300 mAh -3.7V Lithium-

ion (Li-Ion)  rechargeable battery was connected to the microcontroller as shown in Figure 

3-14. 
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Figure 3-14: Microcontroller powered via rechargeable battery and equipped with GPS  

2. The microcontroller connected to a laptop computer via standard mini-USB data cable, 

model B and then the microcontroller switched ON.  

Waspmote’s USB has different power sources as shown in Figure 3-15, where these sources are:  

i. USB to PC connection.  

ii. USB to 110 / 220V connection.  

iii. USB to vehicle connector connection.  
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Figure 3-15: Possible connections for Waspmote USB 

3. GPS basic data programming codes were written, compiled and therefore uploaded to the 

microcontroller using the installed Waspmote® IDE (Programming platform). The codes 

are written in C++ and C # programming languages where both are considered the most 

famous encoding languages for programming microcontrollers over its microprocessor. 

Figure 3-16 shows a snapshot of the encoding platform utilized for this outdoor experiment. 

4. The microcontroller attached to a passenger car near the windshield to ease the detection 

of required satellite signals. The trip started and ended at a position that is well known with 

a civic number on Google® maps. The trip conducted in the city of Saint-Laurent, Montreal, 

Quebec, Canada. 

5. The global positioning data was written to the data logger, i.e., micro SD card. 
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Figure 3-16: Snapshot of encoding platform (Waspmote IDE) 

6. GPS acquired data has uploaded to a text file. Figure 3-17 shows a snapshot of a sample of 

the collected GPS real data. The data tabulated for better presentation as shown in Table 3-

5, where starting point and destination data are shown in rows number 1 and 20 

respectively. 



57 
 

 
Figure 3-17: Snapshot for a sample of the collected GPS real data 

Table 3-5: Tabulation of the collected GPS real data 

 

7. The last two columns have the latitude and longitude converted to degrees system in a 

specialized format, which is useful for such GIS platforms, i.e., google maps. Figure 3-18.a 

shows the original collected latitude and longitude data entry. Figure 3-18.b shows the 

automatic conversion to the civic number of the start point; it also shows the original data 
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entry for the destination.  Figure 3-18.c shows the automatic conversion to the civic number 

of the destination point as well as the trip path. 

Figure 3-18.a: Start point - original collected latitude and longitude 
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Figure 3-18.b: Automatic conversion to the civic number of the start point - Original data entry 

for the destination 

 
Figure 3-18.c: Automatic conversion to the civic number of the destination point - Trip path 

between the two positions 
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8. The final destination in this experiment was chosen to be two adjacent buildings to check 

how accurate the GPS can distinguish each building from the other. The coordinates of the 

first destination building was identified as 45.526632, -73.673757, while the coordinates 

of the other building was identified as 45.526620, -73.673709. The distance between these 

two coordinates can be calculated using ''Haversine'' formulas shown by Equation (3-4), 

Equation (3-5), and Equation (3-6) respectively. 

a = sin² (Δφ/2) + cos φ1 ⋅ cos φ2 ⋅ sin² (Δλ/2)                                              Equation (3-4)  

c = 2 ⋅ a.tan2( √a, √(1−a) )                                                                           Equation (3-5) 

d = R ⋅ c                                                                                                       Equation (3-6)                                                           

Where; 

φ is latitude, λ is longitude, R is earth’s radius (mean radius = 6,371km); 

noting that angles need to be in radians  
Therefore the distance d= 0.003970 Km ( 4 m) 

Previous steps demonstrate the GPS module ability to detect a coordinate of a destination that is 

adjacent to another. Where the distance of the mapping system identified two coordinates is 

approximately 4 meters. Then the GPS module is accurate to recognize positions within two 2 

meters (The distance between midpoints of the two acquired coordinates for the adjacent ends of 

the two buildings in this experiment). 

3.5.2 3D Accelerometer Sensor  

The utilized three-axial accelerometer sensor is built-in the Waspmote microcontroller. The 3D 

accelerometer was tested to evaluate its accuracy and functionality in the proposed applications in 

this research. These applications namely are driving and road conditions, i.e., bumpy and rutty 

roads detection. Also, monitoring truck operators’ aggressive driving behaviors, i.e., unsafe lane 

change reckless maneuvers, harsh braking, and acceleration. 

Each of X, Y, and Z axis reading is utilized for some of the aforementioned applications as shown 

in Table 3-6. 
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Table 3-6: Recognized driving and road conditions from each of 3-Axes records  

Axis Recognized driving or road conditions 

X Harsh braking, speeding, and frequent acceleration 

Y Reckless maneuvers, and unsafe lane change 

Z Bumps, and rutty segments 

The first part of this experiment was a field test, in which Waspmote microcontroller was installed 

on the dashboard of a mimicked truck, where a passenger minivan was utilized instead. The 

microcontroller’s built-in 3D accelerometer records are aligned to X, Y, and Z-axis of the truck. 

The microcontroller was aligned to fulfill the following orientation:  

 X + axis is horizontally pointing towards the front of the truck in the direction of the road’s 

traffic flow.  

 Y + axis is horizontally pointing to the truck’s right-hand side.  

 Z + axis is vertically pointing towards the roof of the truck cabin.  

Figure 3-19 shows the orientation of the 3D accelerometer. Acceleration readings were recorded 

while the car passes through a road that contains some segments that have bumps and potholes. 

During the passage in this road, the driver has frequently changed the lane in safe and unsafe 

manners. In addition, the driver has accelerated and deaccelerated smoothly and aggressively.  

 

Figure 3-19: 3D accelerometer orientation 
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The 3-axes records were jointly taken in a synchronized manner, in other words, continuous 

capture of acceleration in X, Y, and Z-axis each millisecond as shown in Figure 3-20.     

 

Figure 3-20: 3D acceleration reading for part of truck trip 

In order to clarify the different acceleration patterns and their significance in driving and road 

conditions recognition process, the acceleration data set for each axis was extracted, and then 

represented separately. Figure 3-21 shows X-axis acceleration patterns, through which the 

developed algorithm can identify driving behaviors during a short trip of the mimicked hauling 

truck, where a passenger minivan was utilized instead. This figure illustrates graphically driving 

behavior in a schematic representation. 
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Figure 3-21: Acceleration patterns throughout different states of traffic flow direction driving 

Likewise, a graphical representation of Y-axis acceleration data set signifies various patterns that 

demonstrate recognition of the studied driving condition. Figure 3-22 shows different patterns of 

smooth, safe, and unsafe lane change and impulsive maneuvers, where, substantial change in Y 

acceleration demonstrates unsafe detour. Such behaviors not only endanger the driver and the truck 

but also affect productivity because of the implicit risk of rising problems that might result in work 

crashes, i.e., traffic jams and collisions due to this undesirable driving behavior during hauling and 

returning trips. Trip durations are likely to increase due to resulted problems, which certainly in 

turn reduce productivity.    
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Figure 3-22: Acceleration patterns for safe and unsafe turning and maneuvers 

Similarly, graphical representation of Z-axis acceleration data set signifies either patterns 

differentiating among smooth adequate, rutty, and bumpy road conditions. Figure 3-23 shows 

graphical representation of acceleration patterns in Z direction. In this figure, the developed 

algorithm can detect road conditions, i.e., rut, severe rutty segment, bump, and aggressive bump. 

The developed model was tested; it was able to identify fifteen of eighteen bumps. Also, it 

recognized eighteen of twenty-three potholes. Based on the results of this test, the developed model 

has 83.3 % and 82.6 % in recognition of bumps and ruts respectively. 
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Figure 3-23: Acceleration patterns for bumpy and rutty road 

The second part of this experiment was a lab test in which a 1:24 remotely control scaled dumping 

truck was used to simulate dumping action. The scaled truck is fully functional to dump the same 

way as well as the real one, upon that it considered a well-chosen prototype that simulates reality.  

The main goal of this experiment is the recognition of the unique pattern of unloading action for 

the dumping truck during dumping state. The microcontroller’s built-in 3D accelerometer w 

aligned to fulfill the same orientation described earlier in the first part of this experiment unless it 

installed on the top front flat part of the truck bed. Figure 3-24 shows the installed microcontroller 

on the truck during dumping action. 
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Figure 3-24: Acceleration recording for a scaled truck during dumping 

 

In this experiment, and based on the assumption that the truck mounted on a flat rigid surface and 

the accelerometer is adequately oriented as described above, X and Z axes exchange their positions 

to form symmetrical mirrored parabolas as shown in Figure 3-25. This pattern facilitates the 

distinction between dumping and other actions.       

 
Figure 3-25: Graphical pattern for acceleration readings during dumping 

Microcontroller with 
integrated accelerometer 
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3.5.3 Soil Water Content Sensor 

Soil water content is an essential factor that influences compaction in most construction projects, 

i.e., highways, and earth dams. The compacted soil dry density raises with increasing soil moisture 

content until reaching a specific extent of watering. The soil water content that corresponds to the 

maximum dry density is called optimum moisture content. Therefore, soil water content is the key 

to guarantee quality of soil compaction. Soils naturally have a moisture content smaller than the 

required optimum moisture content needed for reaching desired compaction quality. Hence, 

appropriate adjustment of that content is needed by providing water supplements during 

compaction. This supplement usually added in the job site, and it is based on the quantification of 

the natural water content of the moved soils. Where the determination of this content has many 

methods, which summarized as follow: 

A. Gravimetric soil sampling: 

This is the most common technique used in determining soil water content, where a field sample 

of soil is weighted using a sensitive weighing scale, then to be dried in (105◦ C) oven. Subtracting 

the oven dry weight from the original field weight gives the soil water content by weight (gm/gm). 

The volume of soil sample can be used, so the water content could be evaluated using volumetric 

units as well.  This method is time-consuming, and requires sampler equipment, weighing scale 

and an oven. A large number of samples must be taken to overcome the variability of soils and 

associated water content. Generally, this method is commonly used to evaluate and standardize 

indirect methods as described in the developed method using an analog sensor connected to a smart 

sensor board for determining soil water content. 

B. Qualitative methods - Tensiometers 

These methods are commonly used in the domain of agriculture to provide a qualitative 

measurement of soil water content for irrigation purposes. In another word, those methods are used 

to indicate the availability of water not the quantity of water kept in the soil. Although these 

methods use direct water content reading devices, they are not automated, and human intervention 

is essential. Figure 3-26 shows the vacuum tensiometer (one of the soil water content qualitative 

methods’ devices).   
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Figure 3-26: Vacuum tensiometer - AGRI Expo website  

These methods measure how tightly the contained water in soil is held by soil particles. The energy 

required to extract this water is measured in tension units. Many terminologies are used for 

describing soil water energy status, i.e., soil water tension, soil water retention, soil water suction 

or soil water potential. The idea behind the tensiometer is a simulation of the plant root, whereas 

when the tension increases; water extraction becomes more difficult for the plant. Therefore, the 

higher the water tension, the lower the water content.   

The relationship between soil tension and soil moisture content is not linear and it differs from soil 

type to another. Figure 3-27, and Figure 3-28 show typical curves for generalized relationship 

between soil moisture content and water tension for different types of soils.  
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Figure 3-27: Generalized relationship between soil moisture content and water tension 

(Ley et al., 1994) 
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Figure 3-28: Relationship between soil moisture content (%) and water tension (Kpa) 

However, such curves were developed in a research-based manner, and they were not worthy to 

rely on them quantitatively in practice. In this study, such identical curves were digitized in order 

to quantify soil water content using the developed most fitted relationship between soil moisture 

content and soil water tension as illustrated in chapter 5. Where an analog tensiometer is used to 

measure the loaded soil water content quantitatively. The proposed sensor was evaluated to 

examine its functionality and measuring accuracy. The evaluation test was a comparison between 

the water content results determined by the proposed sensor and those of the common standard 

gravimetric soil sampling in which ASTM D2216 (2010) laboratory standard test was followed. 

Ten samples of sand was dried, then the shown processes in Figure 3-29, A to E were conducted 

respectively to determine the water content experimentally, while image F shows the proposed 

water content sensor embedded into the same wet sample and connected to a laptop to record soil 
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water content in frequency units (Hz). The correlation between frequency and water tension was 

articulated in chapter 5. Experimental results for conventional laboratory test and sensor records 

are shown in Table 3-7, and represented graphically in Figure 3-30. 

 
A 

 
B 

 
C 

 
D 

 
E 

 
F 

Figure 3-29: Soil water sensor functionality and accuracy test 
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Table 3-7: WC % using conventional laboratory test and soil moisture content sensor 

Sample # 1 2 3 4 5  6 7   8   9 10 

Lab. Wc (%) 0.2439 0.1519 0.1940 0.2489 0.1976 0.1099 0.1757 0.2317 0.1706 0.2010 

Sensor Reading 1 0.2639 0.1419 0.1900 0.2629 0.1826 0.1125 0.1507 0.2198 0.1844 0.2185 

Sensor Reading 2 0.2521 0.1386 0.1979 0.2603 0.1760 0.1107 0.1776 0.2458 0.1868 0.2105 

Sensor Reading 3 0.2493 0.1577 0.1840 0.2571 0.2008 0.0973 0.1697 0.2291 0.1676 0.1986 

Sensor - Mean 0.2551 0.1461 0.1906 0.2601 0.1865 0.1068 0.1660 0.2316 0.1796 0.2092 

Sensor - Min. 0.2493 0.1386 0.184 0.2571 0.176 0.0973 0.1507 0.2198 0.1676 0.1986 

Sensor - Max 0.2639 0.1577 0.1979 0.2629 0.2008 0.1125 0.1776 0.2458 0.1868 0.2185 

    

 

Figure 3-30: Experimental results for conventional laboratory test and water sensor records 
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Based on the relevant literature recommendations (Ley et al., 1994; MEA, 2018); the reference is 

the laboratory standard test results according to ASTM D2216 (2010). Therefore, relying on the 

conventional gravimetric soil sampling laboratory test; mean error value for each sample was 

determined as shown in Table 3-8. The calculated mean error values are insignificant, as they do 

not approximately exceed ± 1%. Figure 3-31 depicts sensor mean error values against both 

laboratory test and sensor mean readings for each sample. 

Table 3-8: Sensor mean error values against standard laboratory test    

Sample  Lab. Test-WC (%) R1 - Lab. R2 - Lab. R3 - Lab. Sensor Mean Error 

1 0.2439 0.02 0.0082 0.0054 0.0112 

2 0.1519 -0.01 -0.0133 0.0058 -0.0058 

3 0.194 -0.004 0.0039 -0.01 -0.0034 

4 0.2489 0.014 0.0114 0.0082 0.0112 

5 0.1976 -0.015 -0.0216 0.0032 -0.0111 

6 0.1099 0.0026 0.0008 -0.0126 -0.0031 

7 0.1757 -0.025 0.0019 -0.006 -0.0097 

8 0.2317 -0.0119 0.0141 -0.0026 -0.0001 

9 0.1706 0.0138 0.0162 -0.003 0.0090 

10 0.201 0.0175 0.0095 -0.0024 0.0082 
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Figure 3-31: Sensor mean error values against both laboratory test and sensor mean readings 
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3.5.4 Load Cell Sensor 

The utilized load cell in the smart board is a cell with a Wheatstone bridge output. The principal 

of measuring weight using load cells is determining unknown resistance due to applied voltage 

between a pair of opposite corners in a simple electrical circuit.  The result is a differential voltage 

that is amplified and filtered to obtain an analog voltage proportional to the weight on the cell. 

Figure 3-32 shows the linear relationship between the output voltage of the cell in microVolt and 

the corresponding loads in kilograms. 

 

Figure 3-32: Relationship between load cell output voltage and load 

The developed model employs the load cell to measure not only the truck payload but also to 

determine loading efficiency in a novel automated method. Figure 3-33 shows C# code associated 

with the coding logic comments to read load cell and writing the measured voltage value to the 

USB. This syntax is uploaded to the microcontroller, which connected to a laptop computer. Then 

load cell reading values in microvolts can be shown on the computer screen via a serial monitor, 

copied to SD card, or transmitted by a communication protocol, i.e., WiFi, or GPRS to a local or 

cloud-based server. The imported data to the receiving media, i.e., database in a server; is then 

subjected to be processed, filtered and converted to loads in kilograms.   
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#include <WaspSensorSmart_v20.h> 

// Variable to store the read value 

float value; 

void setup() 

{ 

  // Swich on USB and print a start message 

  USB.ON(); 

  USB.println(F("start")); 

  delay(100); 

  // Swich on sensor board 

  SensorSmartv20.ON(); 

  // Swich on RTC (Real Time Clock) 

  RTC.ON();  

} 

void loop() 

{ 

  // Part 1: Sensor reading 

  // Turn on the sensor and wait for stabilization and response time 

  SensorSmartv20.setSensorMode(SENS_ON, SENS_SMART_LCELLS_10V); 

  delay(5000);  

  // Read load cell 

  value = SensorSmartv20.readValue(SENS_SMART_LCELLS_10V); 

  // Turn off load cell 

  SensorSmartv20.setSensorMode(SENS_OFF, SENS_SMART_LCELLS_10V); 

  // Part 2: USB printing 

  // Print the voltage value through the USB 

  USB.print(F("Voltage: ")); 

  USB.print(value); 

  USB.println(F("V")); 

  delay(1000); 

} 

Figure 3-33: C# code for reading load cell 

The load cell is proposed to be fixed on the chassis of the dumping truck underneath its bed. Figure 

3-34 shows a sketchy explanation for fixation of the load cell. In reality, mechanical modification 

might be need by adding additional stringer between the two girders of the chassis.  
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Figure 3-34: Fixing the load cell to dumping truck chassis 

The load cell was subjected to a loading test to examine its functionality and accuracy. The loading 

test was conducted in a laboratory environment, the procedure was as follow:  

1. Attaching rigid cardboard to the load cell using two screws as shown in Figure 3-35. A, 

and B. The cardboard in this experiment is simulating the truck bed. 

2. Connecting the load cell to the smart board, which connected to the microcontroller. 

3. Connecting the microcontroller to a laptop as shown in Figure 3-35. C. Hence, uploading 

the designated C# code shown in Figure 3-33 to the microcontroller. 

4. Loading the cardboard with pre-known precise weights as shown in Figure 3-35.D, E and 

F. A small gradual flask was utilized, where it was filled with different volumes of water; 

5, 8, 10, 12 and 14 Ounce (OZ). Water was chosen as it has equal volume and weight. The 

volume of water is shown in OZ, and then it converted arithmetically to liter or kilogram 

as shown in Table 3-9. A 22 gm (weight of the flask) will be added to each weight. 

 

 

Truck Bed 

Loading Position 

Load Cell 

Additional 
Stringer Beam 

Hydraulic 
Cylinder Main Chassis 

Truck Bed 

Dumping Position 

Side View 

Top View 
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5. Recording three voltage values for each load. Then, determining equivalent loads using 

Equation (3-7).     

 
A 

 
B 

 
C 

 
D 

 
E 

 
F 

Figure 3-35: Load cell functionality and accuracy test 

W = 2.5 V                                                                                          Equation (3-7) 

Where;  

W is weight in kg, and v is voltage in microvolt mv. 
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Table 3-9: Applied water loads conversion from Ounce to Liter and Kilogram  

Water Volume (OZ) Volume (Liter) Weight (kg) 

5 0.147868 0.147868 

8 0.236588 0.236588 

10 0.295735 0.295735 

12 0.354882 0.354882 

14 0.414029 0.414029 

 

The voltage values were recorded three times for each of the applied loads, and then the equivalent 

weight in Kg was determined. Then, the mean value for each load was calculated, also the mean 

error as well as shown in Table 3-10. 

 

Table 3-10: Conversion between mV and kg – Error associated with the load cell 

Volume (OZ) 5 8 10 12 14 

Volume (L) - Weight (Kg) 0.17357 0.25649 0.31434 0.37948 0.43793 

1st.  Record – Voltage (mV) 0.06943 0.10260 0.12573 0.15179 0.17517 

2nd. Record – Voltage (mV) 0.06699 0.10416 0.12757 0.15199 0.17389 

3rd. Record – Voltage (mV) 0.06731 0.10216 0.12825 0.14999 0.17565 

Mean – Voltage (mV) 0.06791 0.10297 0.12719 0.15126 0.17490 

Load Cell - Weight (Kg) 0.16977 0.25742 0.31797 0.37815 0.43726 

Mean Error -0.00380 0.00093 0.00363 -0.00133 -0.00067 

 

Figure 3-36 Comparison between reference precise loads and those measured by the load cell and 

the produced mean error as well. 
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Figure 3-36: Mean error between reference loads and those measured by load cell 
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4 Chapter 4: Customising the Configuration of Data 

Acquisition Systems for Earthmoving Operations 

4.1 General Overview 

This chapter presents a description of a fuzzy-set-based model for customizing the configuration 

of efficient and cost-effective onsite automated data acquisition systems for earthmoving 

operations. The developed model overcomes subjective configuration of data acquisition systems 

and provides a systematic selection procedure of the needed sensors. The developed model 

identifies, evaluates and analyzes the factors affecting the performance of earthmoving operations 

in construction projects. The results of this analysis are then used to customize the configuration 

of the required data acquisition system. This procedure includes selection of necessary sensors for 

efficient tracking of earthmoving operations. Finally, results are discussed, and conclusions are 

drawn highlighting the key features of the developed method and how it can assist project 

managers in customizing the configuration of automated onsite data acquisition systems 

considering the unique nature of their projects. Figure 4-1 depicts the structure and main sections 

of this chapter.  
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Chapter 4

4.2 Proposed Model 
for Customising the 
Configuration of 
DAS
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4.5  Discussion and 
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Configuration

4.7 
Summary
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4.3.1 Linguistic – 
Numeric Conversion

4.3.2 Data Reliability 
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4.3.3 Combination of 
Fuzzy Numbers

4.3.4 Defuzzification 
of Combined Fuzzy 
Numbers

4.3.5 Prioritization of 
Influencing Factors

4.1 General 
Overview

 
Figure 4-1: Chapter 4 – Structure and main sections 

4.2 Developed Model for Customising the Configuration of DAS 

The developed model introduces a new fuzzy set-based model that follows this procedure:  

1. Identify the factors that impact the performance of earthmoving operations using a 

questionnaire that was send to a variety of experts involved in such industry.  

2. Evaluate the effects of each factor thru the received responses from the responadent 

experts.  

3. Analyze the consequences of each factor and select the most influencing factors on the 

performance of earthmoving operations. 

Hence, results of the analysis are utilized to customize the configuration of the required data 

acquisition system and to select the necessary technologies and sensors for efficient tracking and 

monitoring of these operations. Figure 4-2 shows the flowchart of the proposed method. 
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Questionnaire

Identification of 
Influencing Factors

Conversion of Linguistic to 
Numeric

Determination of fuzzy numbers

Fuzzy-set-theory 
Application

Combination of fuzzy numbers

New fuzzy numbers for each factor

Defuzzification 

Design

Distribution

Receive Experts’ 
Responses

Customized Configuration of 
On-Site DAS

Incompleted Outliers

Remove

Ranking 
(Based on the defuzzified crisp numbers)

1st   Selection of Required Sensors
Based on:

Related Factor Rank

2nd   Selection of Required Sensors
Based on:

Sensors Cover More Than a Factor

Sensor Covers One Factor

3rd   Selection of Required Sensors
Based on:

(1) (2)
(3)

Figure 4-2: Proposed model for customizing configuration of DAS flowchart 

4.2.1 Factors Influencing Productivity of Earthmoving Operations 

Investigating the literature related to monitoring and control of earthmoving operations led to 

different findings. A significant part of those findings is considerably justified the substantial need 

for timely discovery of the grounds behind the variations in actual productivity compared with the 

planned productivity of earthmoving operations. The analysis process requires different 

information items, which are varied according to many scenarios where different factors could 

affect the productivity of earthmoving operations. In a real environment of earthmoving projects, 

these factors might be randomly combined based on a specific adverse scenario. Different factors 

could influence the productivity of earthmoving operations, where each of these factors has some 

signs that can help in its identification. These signs are mainly detected by collecting data from 

specific sensors.  

Many factors that could influence the productivity of earthmoving operations. The hauling 

equipment is a principle participant in earthmoving operations; consequently, the various factors 

that may affect the hauling trucks are certainly influencing productivity of earthmoving operations 

and highway construction as well. However, the factors that might influence the productivity of 
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earthmoving operations are extensive; the literature is worthy of the identification of these factors. 

Although a wide range of factors were cited to have an impact on productivity of earthmoving 

operations, the reasons behind their impact are not well documented and require further studies. 

There is a need for prioritizing those factors with respect to their impact on productivity of these 

operations. Then, the customized on-site data acquisition system is appropriately configured, and 

required sensing technologies are selected to measure and monitor the status of these factors. In 

other words, the sensors related to influencing factors are those to be integrated into the utilized 

data acquisition system.    

In brief, different factors could affect the productivity of earthmoving operations in various 

influencing scenarios; either individually or collectively. Distinctive signs ease the identification 

of each factor using a particular sensor or set of sensors. Hence, the efficient selection process of 

sensors, which need to be incorporated in the data acquisition system, has a crucial role in 

recognition of the factors affecting the productivity of earthmoving operations. The different 

influencing factors were categorized into four main groups; (1) excavated soil conditions, (2) 

hauling and access roads conditions, (3) equipment and operational conditions, and (4) weather 

conditions. Figure 4-3 shows the different influencing categories and their respective factors. 
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Factors Influencing Productivity of 
Earthmoving Operations

I. Excavated Soil 
Conditions

II. Hauling and access 
roads conditions

III. Equipment and 
operational conditions

IV. Weather 
conditions

 Loadability 
(A measure of the difficulty in 
excavating and loading a soil)
 Moisture Content 
(Water content in soil)
 Swelling factor  
(The percentage of increase in 
the volume)
 Compactability 
(The ability of soil to be 
compacted)
 Soil weight

 Loosely soil road
 Rutty road
 Congested road
 Road with up or downhill
 Muddy road
 Snowy road

 Fuel Consumption

 Operation zones (power 
zone, slow speed zone and 
high speed zone)

 Tire pressure
 Age of equipment
 Operator skills
 Excessive loads
 Wind resistance
 Bad road conditions
 Cold weather
 Frequent short trips
 Wheel slippage and excessive torque
 Engine tuning / maintenance

 Using gear speed lower than the appropriate
 Using gear speed higher than the appropriate

 Improve operation cycle time

 Least waiting durations
 Considering equipment balance
 Skilled drivers and operators
 Strict supervision
 Good road conditions

 Rain
 Humidity
 Wind
 Temperature
 Fog
 Sun shine
 Duration of daylight 

 
Figure 4-3: Factors influencing productivity of earthmoving operations
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4.3 Questionnaire-based Evaluation of Influencing Factors 

Literature was investigated to identify the different factors that are mostly influencing productivity 

in earthmoving and highway construction projects. Consequently, a questionnaire was designed to 

comprise the majority of those factors to acquire the evaluation of their impact on productivity 

using a fuzzy-set-based model. Then the questionnaire distributed online to eighty construction 

firms and professionals who are involved in such kind of construction projects. The targeted 

sample of experts was considered to include professionals from different countries. Table 4-1 

shows the number of contacts from the different regions, where North America has the majority 

of questionnaires. 

Table 4-1: Country-based number of contacted experts 

Country Number of Contacts Percentage 

Canada 40 50.00 % 

USA 3 03.75 % 

United Arab Emirates (UAE) 10 12.50 % 

Qatar 10 12.50 % 

Kuwait 12 15.00 % 

Kingdom of Saudi Arabia (KSA) 5 06.25 % 

Total Number of Contacts 80 100 % 

 

Twenty-seven responses out of eighty distributed questionnaires were received from experts from 

different countries and in different job positions as shown in Figure 4-4, and Figure 4-5 
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respectively. While Figure 4-6 represents the number of years of experience of the respondents 

and the annual value of work in their firms is shown in Figure 4-7. 

 

Figure 4-4: Location-based distribution of the respondents 
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Figure 4-5: Position-based distribution of the respondents 

 

 
Figure 4-6: Years of experience of the respondents 
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Figure 4-7: Annual work value of the participating firms  

This questionnaire aimed to get experts' evaluation of various factors that affect productivity of 

earthmoving operations. Evaluation is usually a subjective and qualitative process that often 

associated with uncertainty. Fuzzy-Set-Theory (Zadeh, 1965) was recommended to model and 

account for the uncertainty and imprecision associated with expert judgment. Fuzzy set theory can 

be used regardless of the availability of historical data (Salah and Moselhi, 2016). Also, fuzzy 

theory eases the utilization of linguistic evaluation, or natural language terms, which is 

complicated to express with probability theory (Salem et al., 2017, Salah et al., 2017, Pinto et al., 

2011). Therefore, fuzzy set theory was selected to model the subjectivity associated with the input 

received from experts. The developed method applies fuzzy set theory for the identification, 

assessment, and prioritization of the factors influencing the efficiency and productivity of 

earthmoving operations and highway construction. The respondents were advised to express their 

experience and knowledge to evaluate the impact of each factor in a linguistic term for more 

convenience. 
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4.3.1 Linguistic – Numeric Conversion 

Quantitative assessment approach is used for conversion of expert linguistic evaluation into 

numeric fuzzy numbers (Salem et al., 2017, Salah and Moselhi, 2016).  Figure 4-8 (a) shows the 

linguistic-numeric conversion scheme for the different expert evaluations; from no effect up to 

extreme effect on productivity. Figure 4-8 (b) shows the numeric consequence for the various 

influencing factors on 1-10 scale. Membership functions can be of different shapes, but practically, 

trapezoidal and triangular membership functions are most frequently used. In the majority of 

practical applications, trapezoidal membership functions work well (Barua et al., 2013). Also, the 

application of trapezoidal membership function eases and simplifies getting target results without 

any distortion. Based on that, the fuzzy membership functions were established. 

This Linguistic-Numeric scheme provides flexibility in reflecting the predefined organization 

scale for each linguistic term that represents an impact. The incorporated effects on productivity 

for each factor vary from; no effect (NE) to extreme effect (EE) as shown in Figure 4-8. Explicitly, 

the different included effects were; no effect, low effect, moderate effect, high effect and finally 

extreme effect. The projected linguistic terms were labeled to cover a scale of 1:10. Each linguistic 

term covers a particular organization's predefined range; for example, a factor has a moderate 

effect means it has an expert evaluation 5 to 6 on the 1:10 organization's predefined scale.  

The linguistic-numeric conversion scheme shown in Figure 4-8 supposed to be created once for 

each influencing factor to convert the respective linguistic evaluations of experts into numeric 

fuzzy numbers as shown in Table 4-2. 
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Figure 4-8: Fuzzy linguistic - numeric conversion scheme: preliminary (a) and final (b) 

Table 4-2: Numerical fuzzy numbers for each influencing state  

Linguistic Evaluation Numerical Fuzzy Numbers 

No Effect [ 0.0    0.0     1.0     2.5 ] 

Low Effect [ 1.0    2.5     3.5     5.0 ] 

Moderate Effect [ 3.5   5.0      6.0     7.5 ] 

High Effect [ 6.0   7.5      8.5     9.5 ] 

Extreme Effect [ 8.5   9.5     10.0  10.0 ] 

The distribution of experts' assessments for the effect of each factor is shown in Table 4-3. 
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Table 4-3: Experts' votes on the effect of each influencing factor 

 

4.3.2 Data Reliability Examination 

Reliability in statistics is the overall consistency of a measure. A measure is said to have high 

consistency if it produces alike results under steady conditions. Reliability is usually expressed 

through the internal consistency, where internal consistency is a measure based on the inter-

correlations between items on the same test. It measures whether several items that propose to 

measure the same general concept produce related scores. For example, if a respondent expressed 

agreement with the statements "I like to ride horses" and "I've enjoyed riding horses in the past," 

Influencing Factors 
Experts' Evaluation 

Influencing Factors 
Experts' Evaluation 

N L M H E N L M H E 

I. Excavated Soil Conditions A. Fuel Consumption ...Continue.      

A. Soil Properties      4. Excessive loads 0 0 7 16 4 

1. Loadability 0 2 7 14 4 5. Wind resistance 0 4 14 8 1 

2- Moisture content 1 1 9 15 1 6. Bad road conditions 0 2 5 17 3 

3. Swelling factor 0 2 14 7 4 7. Cold weather 0 4 13 8 2 

4. Compactability  0 3 10 10 4 8. Frequent short trips 0 4 13 9 1 

5. Soil Weight 0 3 14 7 3 9. Wheel slippage / excessive torque 0 2 19 6 0 

B. Bucket Fill Factor      10 Engine tuning / maintenance 0 0 13 9 5 

1. Soil hardness 0 3 8 11 5 B. Operation zones      
2- Change of cut depth 0 1 8 16 2 1. Using improper lower  gear speed  1 3 13 8 2 

3. Operator skills 0 2 3 12 10 2- Using improper higher gear speed  1 3 6 15 2 

4. Excavated soil particle size 0 1 9 12 5 C. Improve Operation Cycle      
5. Power of machine 0 3 7 13 4 1. Least waiting durations 0 3 4 6 14 

II. Hauling and Access Roads Conditions 2- Considering equipment balance 0 2 6 15 4 

1. Loosely soil road 0 2 5 17 3 3. Skilled drivers and operators 1 0 4 17 5 

2- Rutty road 0 1 10 12 4 4. Strict supervision 0 4 5 15 3 

3. Congested road 0 4 4 4 15 5. Good road conditions 1 1 3 16 6 

4. Road with up or downhill 1 3 5 14 4 IV. Weather Conditions      
5. Muddy road 0 2 6 13 6 1. Rain 0 1 4 18 4 

6. Snowy road 0 3 1 10 13 2- Humidity 1 9 15 0 2 

III. Equipment and Operational Conditions 3. Wind 0 2 9 14 2 

A. Fuel Consumption      4. Temperature 0 4 17 4 2 

1. Tire pressure 1 2 9 14 1 5. Fog 0 0 6 8 13 

2- Age of equipment 0 2 3 18 4 6. Sun shine 13 2 6 3 3 

3. Operator skills 1 3 4 15 4 7. Duration of daylight 0 2 3 7 15 
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and disagreement with the statement "I hate knighthood", this would be an indication of good 

internal consistency of the test. Internal consistency is commonly measured with Cronbach's alpha, 

which calculated from the pairwise correlations between items. Internal consistency ranges 

between negative infinity and one. Coefficient alpha could be negative when there is bigger within-

subject inconsistency than between-subject inconsistency (Knapp, 1991). 

There are different reports about the acceptable values of alpha, ranging from 0.70 to 0.95 (Bland 

and Altman, 1997). A low value of alpha could be due to a low number of questions, poor 

correlation between items or heterogeneous constructs. (George and Mallery, 2003) described a 

commonly established rule of thumb for labeling internal consistency as shown in Table 4-4. 

Table 4-4: Cronbach’s Alpha values and corresponding internal consistency  

Cronbach's alpha Internal consistency 

α ≥ 0.9 Excellent 

0.9 > α ≥ 0.8 Good 

0.8 > α ≥ 0.7 Acceptable 

0.7 > α ≥ 0.6 Questionable 

0.6 > α ≥ 0.5 Poor 

0.5 > α Unacceptable 

 

Reliability of the data collected through the questionnaire is a fundamental aspect of the evaluation 

of measurements, and it is a vital mean to enhance the accuracy of the collected data evaluation. 

A statistical reliability analysis was done to examine the consistency of the received data through 

the questionnaire.  Cronbach's alpha (α) measure was used to check the internal consistency of the 

acquired data. Cronbach's alpha (α) test was applied using IBM® software package SPSS. Table 

4-5 shows the different item statistics, where the word item refers to the experts who evaluated the 

forty influence factors. 

 

https://en.wikipedia.org/wiki/Cronbach%27s_alpha
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Table 4-5: Different item statistics  

Item # Mean Std. Deviation N Item # Mean Std. Deviation N 

1 2.6563 1.23184 40 15 7.9719 1.67454 40 

2 3.4469 1.09225 40 16 8.0344 1.52411 40 

3 4.2594 1.36179 40 17 8.0938 1.46808 40 

4 4.6969 1.28443 40 18 8.4219 1.19919 40 

5 5.4063 .99588 40 19 8.5063 1.10323 40 

6 5.9125 1.60583 40 20 8.5063 1.10323 40 

7 5.9969 1.67095 40 21 8.5063 1.10323 40 

8 6.3344 1.87070 40 22 8.7906 .70221 40 

9 6.6719 1.99332 40 23 8.8531 .73483 40 

10 6.9844 2-03538 40 24 9.1000 .72235 40 

11 7.3000 1.94821 40 25 9.2031 .69838 40 

12 7.6125 1.88742 40 26 9.3969 .31123 40 

13 7.7281 1.89104 40 27 9.4844 .09882 40 

14 7.9406 1.65080 40 
    

 

Inter-item covariance matrix in Table 4-6 shows the covariance between different items .
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Table 4-6: Inter-Item covarience matrix
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The test result shows a robust data consistency with 0.962 as shown in Table 4-7. 

Table 4-7: Reliability statistics  

Cronbach's Alpha 
Cronbach's Alpha Based on 

Standardized Items 
N of Items 

0.962 0.961 27 

 

This reliability could be impacted due to a nonresponse of one of the experts. Table 4-8 represent 

Cronbach’s Alpha if a response (item) excluded from this data. 

Table 4-8: Cronbach’s Alpha if item delated 

Item 1 2 3 4 5 6 7 8 9 

Cronbach's Alpha if 

Item Deleted 
0.963 0.962 0.961 0.961 0.960 0.960 0.960 0.959 0.959 

Item 10 11 12 13 14 15 16 17 18 

Cronbach's Alpha if 

Item Deleted 
0.959 0.959 0.959 0.959 0.959 0.959 0.959 0.959 0.960 

Item 19 20 21 22 23 24 25 26 27 

Cronbach's Alpha if 

Item Deleted 
0.960 0.960 0.960 0.962 0.962 0.962 0.962 0.963 0.963 

 

4.3.3 Combination of Fuzzy Numbers 

The combination process takes into account the significance of the fuzzy numbers produced from 

the evaluation of different impacts provided by respondents. Equation (4-1) is used to calculate 

the combination of fuzzy numbers used to calculate the fuzzy number that represents each factor 

influencing productivity of earthmoving operations. Prior realization of the combined fuzzy 

numbers, large figure of fuzzy numbers were obtained, where, these numbers depict the fuzzy 

number for each attribute versus each of the influence five criterion. Hence, these five fuzzy 
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numbers were combined as shown in Table 4-9. Due to the sizable number of mathematical 

operations, the combination formula was programmed using a Microsoft Excel®. 

F̃i=
Nr
NT

×NoEffect̃  + Nr
NT

×Minor̃  + Nr
NT

×Moderatẽ  + Nr
NT

×High̃ + Nr
NT

×Extremẽ             Equation (4-1) 

Where; 

F̃i, represents the fuzzy number of factor i=1...to 27 

Nr, represents the number of responses for each attribute A (e.g., No Effect) 

NT, represents the total number of responses each factor  
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Table 4-9: Combined Fuzzy number for each influencing factor 

4.3.4 Defuzzification of Combined Fuzzy Numbers 

The acquired combined fuzzy numbers are not suited for demonstrating the importance of each 

influencing factor and which of these factors transcends the others. Therefore, it is preferable to 

have these fuzzy numbers in a crisp format. Accordingly, each fuzzy number is defuzzified using 

Equation (4-2). The defuzzified value of each factor represents its score as shown in Table 4-10. 

Influencing Factors 
Combined Fuzzy 

Number 
Influencing Factors 

Combined Fuzzy 

Number 

I. Excavated Soil Conditions A. Fuel Consumption, ........Continue.  

A. Soil Properties      4. Excessive loads [5.722   7.148   8.074   9.056] 

1. Loadability [5.352   6.778   7.704   8.722] 5. Wind resistance [4.056   5.537   6.519   7.815] 

2- Moisture content [4.852   6.315   7.259   8.426] 6. Bad road conditions [5.444   6.889   7.833   8.852] 

3. Swelling factor [4.704   6.130   7.056   8.204] 7. Cold weather [4.241   5.704   6.667   7.907] 

4. Compactability  [4.889   6.315   7.241   8.333] 8. Frequent short trips [4.148   5.630   6.611   7.889] 

5. Soil Weight [4.426   5.870   6.815   8.019] 9. 
Wheel slippage / excessive 

torque 
[3.870   5.370   6.370   7.759] 

B. Bucket Fill Factor      10 Engine tuning / maintenance [5.259   6.667   7.574   8.630] 

1. Soil hardness [5.167   6.574   7.481   8.500] B. Operation zones      

2- Change of cut depth [5.259   6.722   7.685   8.778] 1. 
Using improper lower  gear 

speed  
[4.204   5.648   6.574   7.815] 

3. Operator skills [6.278   7.593   8.407   9.130] 2- 
Using improper higher gear 

speed  
[4.852   6.296   7.222   8.333] 

4. 
Excavated soil particle 

size 
[5.444   6.852   7.759   8.759] C. Improve Operation Cycle      

5. Power of machine [5.167   6.593   7.519   8.556] 1. Least waiting durations [6.370   7.611   8.352   8.963] 

II. Hauling and Access Roads Conditions 2- 
Considering equipment 

balance 
[5.444   6.870   7.796   8.796] 

1. Loosely soil road [5.444   6.889   7.833   8.852] 3. Skilled drivers and operators [5.870   7.259   8.130   9.037] 

2- Rutty road [5.259   6.685   7.611   8.667] 4. Strict supervision [5.074   6.519   7.463   8.519] 

3. Congested road [6.278   7.500   8.222   8.815] 5. Good road conditions [5.870   7.241   8.093   8.963] 

4. 
Road with up or 

downhill 
[5.130   6.537   7.426   8.444] IV. Weather Conditions      

5. Muddy road [5.630   7.019   7.907   8.833] 1. Rain [5.800   7.220   8.140   9.080] 

6. Snowy road [6.556   7.815   8.574   9.167] 2- Humidity [2-860   4.300   5.220    6.600] 

III. Equipment and Operational Conditions 3. Wind [4.900   6.360   7.320    8.460] 

A. Fuel Consumption      4. Temperature [3.900   5.360   6.320    7.620] 

1. Tire pressure [4.667   6.130   7.074   8.259] 5. Fog [6.500   7.780   8.560    9.240] 

2- Age of equipment [5.722   7.148   8.074   9.019] 6. Sun shine [2-660   3.880   4.380   5.640] 

3. Operator skills [5.222   6.630   7.519   8.519] 7. Duration of daylight [6.521   7.771   8.521   9.125] 
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Fi=
∫ xμAdx

∫ μAdx
                                                                                          Equation (4-2) 

Where; 

Fi, represents the defuzzified value of fuzzy number F̃i 

μA, represents the membership function for each attribute A (e.g., No Effect) 

Table 4-10: Defuzzification output for the studied influencing factors 

Influencing Factors 
Defuzzification 

Output 
Influencing Factors 

Defuzzification 

Output 

I. Excavated Soil Conditions A. Fuel Consumption ...Continue. 

A. Soil Properties      4. Excessive loads 7.500 

1. Loadability 7.139 5. Wind resistance 5.981 

2- Moisture content 6.713 6. Bad road conditions 7.255 

3. Swelling factor 6.523 7. Cold weather 6.130 

4. Compactability  6.694 8. Frequent short trips 6.069 

5. Soil Weight 6.282 9. 
Wheel slippage / excessive 

torque 
5.843 

B. Bucket Fill Factor      10

. 
Engine tuning/maintenance 7.032 

1. Soil hardness 6.931 B. Operation zones      

2- Change of cut depth 7.111 1. 
Using improper lower  gear 

speed 
6.060 

3. Operator skills 7.852 2- 
Using improper higher gear 

speed  
6.676 

4. 
Excavated soil particle 

size 
7.204 C. Improve Operation Cycle      

5. Power of machine 6.958 1. Least waiting durations 7.824 

II. Hauling and Access Roads Conditions 2- Considering equipment balance 7.227 

1. Loosely soil road 7.255 3. Skilled drivers and operators 7.574 

2- Rutty road 7.056 4. Strict supervision 6.894] 

3. Congested road 7.704 5. Good road conditions 7.542 

4. 
Road with up or 

downhill 
6.884 IV. Weather Conditions      

5. Muddy road 7.347 1. Rain 7.560 

6. Snowy road 8.028 2- Humidity 4.745 

III. Equipment and Operational Conditions 3. Wind 6.760 

A. Fuel Consumption      4. Temperature 5.800 

1. Tire pressure 6.532 5. Fog 8.020 

2- Age of equipment 7.491 6. Sunshine 4.140 

3. Operator skills 6.972 7. Duration of daylight 7.984 
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4.3.5 Prioritization of Influencing Factors 

The factors that are related to the same influencing category were ranked based on their respective 

scores as shown in Figures 4-9 to 4-13. Where the higher score, the higher priority the factor has. 

Figure 4-9 presents the prioritization of the factors related to the soil properties of the excavated 

soil. Figure 4-10 shows the prioritization of the factors that could affect the bucket fill factors 

(BFF) of the excavated soils. Figure 4-11 presents the prioritization of the factors related to hauling 

and access road conditions that might affect the productivity of earthmoving operations. 

Equipment and operational conditions were categorized into three sub-groups, where, the factors 

related to each group were ranked from higher to lower scores to determine the factors with higher 

priority to be detected using the proposed customized data acquisition system.  

Figure 4-12, Figure 4-13, and Figure 4-14 show the fuzzy-set-based ranking of factors that have 

an impact on fuel consumption, operational zone and improving operational time respectively. 

Where, Figure 4-12 illustrates a group of ten factors related to equipment and operational 

conditions that might influence the equipment fuel consumption where, excessive loads, 

equipment age, and bad road conditions represent the factors that lead to uneconomic fuel 

consumption. The same demonstration philosophy applied to factors depict by Figure 4-13 and 

Figure 4-14, where the usage of an equipment gear speed higher than the appropriate diminishes 

the equipment utilization efficiency as shown in Figure 4-13. Figure 4-14 indicates the ranking of 

factors that contribute to the improvement of the operation cycle time. Finally, Figure 4-15 

presents the ranking of the factors related to the weather conditions. 
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Figure 4-9: Ranking scores of excavated soil conditions- Soil properties 

 

 
Figure 4-10: Ranking scores of excavated soil conditions-Bucket Fill Factor 
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Figure 4-11: Ranking scores of hauling and access road conditions 

 

 
Figure 4-12: Ranking scores of equipment and operational conditions - Fuel consumption 
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Figure 4-13: Ranking scores of equipment conditions- Operation zone 

 

 
Figure 4-14: Ranking scores of operational conditions - Improving operation cycle time 
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Figure 4-15: Ranking scores of weather conditions 

4.4 Discussion and Analysis of Results   

Ranking results identify the factors that have the higher priority to be recognized as compared to 

other factors. The first group of factors related to excavated soil condition includes two subgroups. 

First, the soil properties influencing factors subgroup, in which, Loadability (a measure of the 

difficulty in excavating and loading a soil), and soil moisture content have come in the first and 

second positions. This analysis is genuinely compatible with the logical engineering sense, where, 
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of the fleet. Also, soil water content has a significant share from the actual loaded quantities 
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maintenance, and then more production. Second, the factors of excavated soil that impact the 
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the most three important, affecting factors.  
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roads have come in the first and second state respectively. Snowy roads result in higher rolling 

resistance, excessive torque, wheel slippage and hence slow speeds and long durations for hauling 

and returning trips. Similarly, the top-ranked factors in other groups are the most recommended 

factors to be recognized to detect as early as possible their respective influence on productivity. 

Hence, this early detection of factors influencing productivity of earthmoving operations permits 

the management personnel in charge to take the necessary actions in a timely and prioritized 

manner. Also, it helps in selecting the most appropriate configuration or customization of on-site 

data acquisition system to collect the data related to the selected significant influencing factors. 

4.5 Customized Configuration 

Over the last decades, automation technology market made noticeable advancements, in both 

hardware and software. In particular, is the advancement in remote sensing technologies, Wireless 

Sensing Networks (WSN) and data communication, which all provide an opportunity to detect 

these prioritized influencing factors and communicate their relating data sets using automated data 

acquisition and transmission systems. The majority of the existing data acquisition systems are 

off-the-shelf, expensive and in a black box format in both perspectives of software and hardware, 

such as On-Board Instrumentation Systems (OBIS). Those commercial data acquisition systems 

have traditionally been used, where, the user has no right neither to configure the hardware nor to 

access the relevant algorithms and modify it as they see fit, where the stored data is often difficult 

to be accessed without using the seller specific software. 

Open-source technologies have a minute portion in data acquisition systems' marketplace. There 

are two pioneers in the domain of the cost-efficient available technologies, Arduino and 

Waspmote.  Although Arduino has older existence than Waspmote, both platforms are using 

typical coding syntax. Arduino is considerably purposeful to learn how to use electronics and to 

do cheap, and simple projects, e.g., home automation projects, while Waspmote is a device 

specially designed to create long lifetime wireless sensor networks which expected to be installed 

in a real scenario like a city, agriculture farm or construction job site. 

A detailed comparative study was done to select the most suitable open source technology for 

automated data acquisition and communication, Both Arduino and Waspmote are certified open 

source, so all the source code libraries are released under the Lesser General Public License 
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(LGPL). Moreover, Both Waspmote and Arduino boards are FCC and CE certified. However, 

Radio certification is needed in case of using a communication module, i.e., Wi-Fi, GPRS, and 

Xbee. Only Waspmote has the Radio Certification for all the possible combinations of the 

communication modules, i.e., 802-15.4, ZigBee, 3G, ZigBee + 3G, while, Arduino does not. Table 

4-11 summarizes the different comparison aspects for both Arduino and Waspmote including the 

cost of various modules. 

Table 4-11: Detailed Comparison between Arduino and Waspmote 

                                    Technology     
Feature 

Arduino Waspmote 
UNO Mega 2560 

Compiler/IDE Same compiler and core libraries 

Code Same code is compatible in both platforms 

Suitability Automated home projects  Wireless sensor networks 
 Long lifetime real scenarios 

RTC (Real Time Clock) Separate module Built-in 

3D Accelerometer Separate module Built-in 

Data Logging Separate module Built-in SD card slot 

Frequency 16 MHz 16MHz 14MHz 

RAM 2 KB 8 KB 8 KB 

External Storage (SD card) No No Yes, 2GB 

Consumption ON 50 mA 50 mA 15 mA 

Sleep mode No No Yes, 55µA 

Hibernate mode No No Yes, 0.7µA 
Board 22,00 € 41,00 € 

155.00 € 

Arduino Xbee 802-15.4  
+ 2dBi antenna 45,00 € 45,00 € 

Triple axis accelerometer 7,75 € 7,75 € 
On Board Programmable LED 
+ ON/OFF Switch 1,00 € 1,00 € 

RTC DS3234 + Button Battery 16,00 € 16,00 € 
uSD Adaptor 20,00 € 20,00 € 
Solar Panel Socket 
6600mAh Battery 47,00 € 47,00 € 30,00 € 

Total 158,75 € 177,75 € 185,00 € 
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The proposed data acquisition system is configured to be fully automated, accurate, reliable and 

cost-effective. The system is customizable to include a variety of sensors that able to detect the 

most important factors influencing performance and production of earthmoving operations. The 

customized selection of these sensors depends on the fuzzy-set-based application of the proposed 

questionnaire. Although the selection of the required sensors depends on the realized ranking, this 

selection could be prioritized by giving higher priority to a sensor which covers more than an 

influencing factor over another sensor which covers just one factor.  

The factors took place in the top ranks of each influencing category or sub-category are the base 

for selecting the appropriate sensor. The sensors were selected to capture the reading related to 

these factors directly or indirectly to their indicators.   

The chosen sensors should mainly and to satisfy the following configuration criteria: (1) cost-

effective, (2) reliable, and (3) open-source based. In the light of this configuration criterion and 

the above-stated results of the proposed fuzzy-set-based ranking method, Table 4-12 shows the 

highly recommended, and top-ranked influencing factors and their relevant associated selected 

sensing technology. Figure 4-16 illustrates the architecture of the proposed customized data 

acquisition system. 
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Table 4-12: Top-ranked influencing factors and their relevant recommended sensors 

Top Ranked Influencing Factors Relevant Selected Sensors 

Excavated Soil Properties  

Loadability Indicator: Number of buckets Pressure Atmospheric sensor 

Soil Moisture Content Moisture Content sensor 

Bucket Fill Factor (BFF) 

Operators Skills 

Indicator: Number of buckets  Pressure Atmospheric sensor Soil Size Particles 

Change of Cut Depth 

Hauling and Access Road conditions 

Snowy Road Indicator: Wheel slippage OBDII Scanner 

Congested Road Indicator: Frequent Delays GPS  

Muddy Road Indicator: Wheel slippage and 

Excessive torque 
OBDII Scanner 

Loosely Soil Road 

Rutting Road 
Indicator: Frequent excessive 

vibration with distinct zones 
3D Accelerometer 

Road with Up / Down Hills 3D Accelerometer 

Equipment and Operational Road Conditions 

Excessive loads Load Cell 

Bad Road Conditions 3D Accelerometer 

Tire Pressure OBDII Scanner 

Weather Conditions 

Fog Humidity sensor 

Rain 
Automated Weather Station 

Wind (Speed and Direction) 

Daylight Duration Luminosity sensor 

Temperature Temperature sensor 

Humidity Humidity sensor 

Sunshine Luminosity sensor 
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Figure 4-16: Architecture of the proposed customized data acquisition system 
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4.6 Summary 

This chapter introduced a new method for customizing the configuration of on-site automated data 

acquisition systems for earthmoving operations. The method is efficient and less costly compared 

to other black box market available technologies. The data needed for the conducted study was 

collected using a questionnaire survey, after that, the questionnaire responses were analyzed using 

fuzzy set theory. This approach identifies, categorizes, evaluates and prioritizes vast scope of 

factors affecting productivity of earthmoving operations. The influencing factors were ranked 

based on scores calculated as the defuzzified values of fuzzy numbers representing those factors. 

The highly scored factors that belong to the same influencing category are selected to be measured 

using proper sensory tools to measure those factors. Then, the selected sensory tools are combined 

into one particular customized data acquisition system for automating the monitoring and tracking 

process in a manner that improves the performance of earthmoving operations.  

In this chapter, the linguistic-numeric conversion was performed based on the answers of twenty-

seven experts, and the results were reflected in the prioritization of influencing factors. The utilized 

linguistic-numeric conversion is updatable, where the opinions of more experts should are 

reflected. Hence, the combined fuzzy numbers, defuzzification output, and prioritization of 

influencing factors change. The developed method represents a proactive decision support 

assistive tool that helps owners and contractors to identify the most influencing factors. And, 

accordingly, allow them to cost-efficiently select the technologies that need to be included for 

customizing an automated data acquisition system that augments the productivity and elevates the 

utilization efficiency of equipment in earthmoving operations.  

The developed methodology is flexible to be expanded and more factors that affect the productivity 

performance throughout the various cycles of earthmoving operations. Also, other factors that 

influence productivity can be investigated and included in a way that increases the effectiveness 

of the proposed method in tracking and monitoring productivity in either earthmoving projects or 

other applications in construction. 
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5 Chapter 5: Automated Productivity Measurement Model 

5.1 General Overview 

This chapter presents a comprehensive description of the developed model for automated 

productivity measurement, driving, and road conditions. The aim of the developed model is to 

overcome the previous research identified gaps and limitations through addressing the relating 

research objectives.  

Over the last few decades, automation technology market witnessed a remarkable advancement in 

both hardware and software. Data acquisition systems were promoted as a direct consequence of 

this advancement. These data acquisition systems are inevitable to be automated with less or no 

human intervention to avoid subjectivity and to boost accuracy and reliability of the acquired data.   

This chapter introduces a novel automated model for near real-time measurement of productivity 

of earthmoving operations. The developed model consists of four modules; (1) automated data 

acquisition module, (2) planned productivity module, (3) automated measurement of actual 

productivity module, and (4) driving and road condition analysis module.  

A set of sensors, smart board, and a microcontroller used in the development of a customized data 

acquisition module. Sensor data fusion algorithm is developed for accurate productivity 

measurement. Detailed illustration of the developed model, different correlated modules, and 

applied algorithms are revealed in this chapter. Figure 5-1 depicts the main sections of this chapter. 
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Chapter 5
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5.2.3. Data fusion 
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B. Model Implementation

5.1. General 
Overview

 

Figure 5-1: Main sections of chapter 5 

5.2 Developed Model for Automated Productivity Measurement 

The developed model introduces an automated model for tracking and monitoring productivity of 

earthmoving operations. The model automatically measures the productivity of hauling equipment 

(dump trucks) and hence the productivity of earthmoving fleet. The developed model has the 

following main roles:  

(1) Collecting necessary data required for calculating actual productivity.  

(2) Analyzing drivers’ behavior of hauling equipment. 

(3) Analyzing access and traveled road conditions.  

Figure 4-1 shows the developed model flow chart, where different sensor data acquired in an 

automated manner. Then, this data is transmitted to the model’s relational database to be processed. 

Finally, achieving the model’s outputs as follow: truck state recognition, each state start and end 

time, hence each state duration, soil weight and volume in addition to the water content in the 

loaded soil.  
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Figure 5-2: Developed model flowchart (Salem & Moselhi,2018) 
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This output data is then used to calculate the actual productivity of each truck in the fleet. 

Automated determination of actual productivity allows for near-real-time recognition of 

productivity variations when compared to those planned. Furthermore, the model is capable of 

monitoring road conditions and drivers’ behavior. 

The model utilizes principally; two components as follow:  

(1) Customized configured open source hardware (Waspmote®™) for multi-sensor data acquisition, where 

this module was developed using Arduino®™ open source platform.  

(2) OBD (On-Board Diagnostic scanner).  

The hardware designated for data acquisition consists of a smart sensing board associated with a 

microcontroller as shown in Figure 5-3. It is worthy to mention that the microcontroller and the smart board 

have a lightweight of 40 grams for both of them. 

 

 
Figure 5-3: Components of the customized data acquisition module 

 

Although the utilized smart boards, sensors and microcontrollers have a comprehensive 

application; construction activities are not a part of these applications. The smart board is dedicated 

to bundle a selected variety of sensors that satisfy the specific requirements of each project. This 
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customization was performed through questionnaire-base, where the experts’ responses were 

analyzed to determine the most needed sensors in a ranked manner (Salem et al., 2017) as 

articulated in chapter 4. The selected sensors undertake capturing of data required in calculating 

actual productivity. The microcontroller is a small computer, where it contains a limited capacity 

data processor, memory and in and out programmable peripherals. It drives all the associated 

sensors by uploading special programming code syntaxes, which control both the amounts and 

acquisition intervals of the captured data. 

5.2.1 Data Acquisition Module 

Module Description 

Earthmoving operations are cyclic activities in which spatiotemporal data is a part and particular 

of data needed for productivity measurement and analysis. The developed Data acquisition system 

incorporates a GPS receiver module with the utilized microcontroller. The microcontroller has 

integrated RTC (Real Time Clock) and a sensitive 3D accelerometer. The RTC permits unified 

timestamps for all the collected sensor data to the timestamp of the GPS. It sets its time and date 

by getting the data from the GPS, where time and date are identified by the values returned by the 

GPS using a specific programming function as follow: 

{  

     char* time; time=GPS.getTime( );   

     // Get time given by GPS module  

}  

A soil moisture content sensor, and a load cell sensor are hosted by the smart board for collecting 

the percentage of water content that naturally incorporated in the excavated soil and soil weight 

respectively. The utilized soil moisture content sensor is an electrical resistance sensor for 

assessing soil water tension, which is also known as soil water suction. This sensor comprises a 

permeable body in which a pair of electrodes is embedded. The sensor can be laid to rest at any 

desired depth in the excavated soil, which was loaded in the truck. A two-wire lead from the sensor 

is connected to the smart board mounted on the microcontroller. Such sensors actually measure 

the fluctuated frequency of an electronic circuit or changes in this frequency (Evett, 2008). Soil 

water content is very dependent on soil type thus there is no direct way to achieve it from Soil 
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water tension without heading off to the laboratory (Evett, 2008). Equation (4-1) depicts the 

relationship between water tension and the sensor frequency reading according to the sensor’s data 

sheet (Libelium website, 2018). 

𝑇𝐴 =
150940+19.74 F

2−8875 F−137.5
                                                                                       Equation (4-1) 

The relation between these two parameters was determined for some soil types using the curves shown in 

Figure 5-4. Web-Plot- Digitizer® application was used to digitize the chart’s image to determine the 

relationship between soil water tension and percentage of water content and its most fitting equation. 

 
Figure 5-4: Typical relationship bet. soil water tension and soil water content (MEA, 2018)  

 

The relationship was determined for three different types of soil; sand, clay, and loam as follow:  

1. Digitize the image of the specific curve, e.g., for sand, a soil moisture tension of 10 Kpa 

corresponds to 20% of soil moisture content. 

2. Establish a graphical representation of the relationship using the obtained pairs of digits. 

3. Recognize the most fitting equation demonstrates each curve.  

Aforementioned three steps procedure permitted converting the soil water content acquired sensor 

data from the frequency in Hertz into a percentage of water content. The higher the frequency, the 

lower water tension, and vice versa the lower water tension, the higher water content. Therefore, 

the higher the frequency, the higher the water content. This multi-step conversion process was 
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coded thru series of queries in the developed MySQL database. Table 1 shows the developed 

equations (5-2), (5-3), and (5-4) for sand, clay, and clay loam soils respectively. Where TA is the 

water tension measured in Kpa or Cmb (Centibar), and WC % is the percentage of water content. 

Since the water tension represented in logarithmic scale, a range of 1:300 Kpa has identified as 

effective range for developing this algorithm. 

Table 5-1: Best fit equations represent the relationship between (WC) % and TA 

Soil Type TA          1:300 Kpa (Effective range) R2 

Sand (WC) % = - 4.036ln TA + 28.342                                     Equation (5-2) 0.9808 

Clay (WC) % = 3 x 10-05 TA2 - 0.0371 TA + 32-298               Equation (5-3) 0.9953 

Clay Loam (WC) % = 0.0002 TA2 - 0.1265 TA + 37.741                  Equation (5-4) 0.9993 
 

Figure 5-5, Figure 5-6 and Figure 5-7 represent these relationships for the three types of soil; sand, 

clay and clay loam respectively. Figure 5-8 shows the relationship between water tension in 

centibars (Kpa) and the frequency in Hertz according to the sensor’s data sheet (Libelium website, 

2018). 

 
Figure 5-5: WC % - TA relationship for sand soil 
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Figure 5-6: WC % - TA relationship for clay soil 

 

 

Figure 5-7: WC % - TA relationship for loam soil 
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Figure 5-8: Relationship between water tension and frequency (Libelium®, 2018) 

Soil water content remarkably contributes to the achievement of the truck’s payload, as the 

presence of water increases the total weight of soil. Hence, the truck may unnoticeably reach its 

weight capacity before reaching the commonly in-practice utilized volumetric burden. The 

recognition of the amounts of water associated with loaded soils contributes to not only retaining 

the truck away of mechanical damage due to overloading, but also sidestepping from the traffic 

penalties due to excessive loads than those designated for roads and bridges.  

The degree of compaction is a vital requirement in related activities which encountered 

earthmoving operations, e.g., highways and earth-dams construction. The compaction is directly 

impacted by soil water content. Determining the water content automatically using the developed 

model eliminates the need of conducting the time-consuming field tests. These tests are typically 

done for determining the water content after the delivery of soils to the fill areas. The existed water 

content is compulsory to be known to calculate the required amount of water to be added to reach 

the optimum water content corresponding to the maximum dry density to achieve the desired 



 

120 
 

degree of compaction. Equation (5-5) depicts the relation between existing natural water content 

and the required amounts of water which needed to be added to satisfy the maximum dry density. 

WC𝑂𝑝𝑡  = WC𝐸𝑥𝑡  +  WC𝑅𝑒𝑞                                                                                   Equation (5-5) 

The developed model works mainly on the hauling equipment (dump truck) in typical earthmoving 

operations. Figure 5-9 shows the different components of the developed model, where:  

 Part A: customized data acquisition system for collecting a variety of datasets.  

 Part B: OBD II (On-Board Diagnostic scanner); provides self-diagnostic and reporting 

capabilities of the status of various vehicle sensors and subsystems.  

 Part C: is a MySQL relational database, which forms the model’s processing and reporting 

unit. Appendix IV shows the developed database structure plan, entity relationship diagram 

and the developed MySQL procedures’ encoding for data processing. 

 Part D: is the model’s output.  

Table 5-2 shows the data sets include different data components collected by the sensors associated 

with parts A and B. 

The microcontroller integrated RTC permits unified timestamps for all data sets collected using 

different sensors, where these timestamps work as a principal connecting identifier for the various 

entities in the relational database. In other words, the data records captured at the same time are 

connecting to each other through their respective timestamp. The frequency of obtaining data 

differs from a sensor to another, which means that the time intervals of acquiring data are varied 

accordingly as shown in Table 5-3. 
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Figure 5-9: Components of the developed model (Salem & Moselhi,2018) 

Table 5-2: Utilized sensor data and each dataset components  
Sensor Data Type 

GPS Timestamp, latitude, longitude, altitude, course, and speed  

Accelerometer Timestamp, acceleration in three direction X, Y, and Z (m / sec2) 

Load cell Timestamp, Electrical potential in Microvolt (converted to weigh in Kg)  

Water content 

sensor 

Timestamp, frequency in Hz, which converted to water tension that converted to 

% of water content   

OBD II Timestamp, Speed, and engine rpm (revolution per minute) 
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Table 5-3: Data sampling rates for each of the utilized sensors 

Sensor Date record delay 

GPS 3 Seconds (≈ record each 3 sec) 

Accelerometer 0.01 Second (≈ 100 records / sec) 

Load cell 10 Seconds  

Water content sensor 10 Seconds 

OBD II 0.2 Second (≈ 5 records / sec) 

 

Model Implementation 

The developed model was implemented initially by fixing the Waspmote data acquisition module 

on the truck dashboard close to the windshield to guarantee a robust GPS-satellite signal. The 

orientation of the data acquisition module is crucial, where the microcontroller’s integrated 3D-

Axis accelerometer readings are aligned to X, Y, and Z axis of the truck. X + axis is horizontally 

pointing towards the front of the truck, Y + axis horizontally pointing to the truck’s right-hand 

side, while Z + axis is vertically pointing towards the roof. Figure 5-10 shows the implementation 

and orientation of the developed data acquisition module, the utilized OBD II scanner, and its 

connecting slot, where the adequately oriented data acquisition module fixed on the truck 

dashboard. The OBD II has a specific 16-pin slot underneath the truck’s steering wheel. The load 

cell sensor is fixed underneath the truck bed and connected through its four wires electric plexus 

to the smart board. The water content sensor is attached to the truck bed and connected by two 

wires to the smart board. Load cell and soil water content sensors are designed to have long wires 

for connecting them to boards, which helps in the protection of the data acquisition system in harsh 

environments. 
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Figure 5-10: Data acquisition modules implementation and orientation 

 

In the beginning, the utilized microcontroller connected to a laptop computer via standard mini-

USB data cable to upload the designated code for capturing data according to the user commands. 

The hardware is powered by a 6600mAh -3.7V (Li-Ion) Lithium-ion rechargeable battery through 

a particular slot for the battery connection. The low power consumption extends the battery life 

for up to 8 hours before the need for recharging. The model also utilizes another economic and 

practical power source thru 12V truck’s battery port. The hardware has data storage capabilities, 

where a maximum 2 GB micro SD card can be inserted into the data logger slot. The developed 

model stores the different collected sensor data on SD card in CSV format, which in turn is 

transmitted to the SQL database for applying different algorithms and procedures. Figure 5-11 

shows a schematic architecture of the model’s inputs and the interim CSV output files. 

 

 

 

 

 

3D Accelerometer Axis Orientation 

Figure 7 Data acquisition modules implementation and orientation 
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Figure 5-11: Schematic architecture of the model’s inputs and interim CSV output files                 

(Salem & Moselhi,2018) 
 

 

5.2.2 State Recognition  

Earthmoving operations are cyclic and encounter repetitive tasks, in which each of the involved 

equipment has a specific state. The states of different equipment are directly related to each other, 

for example, a truck in a loading state means that at least one loader or excavator is doing that 

loading. The hauling equipment (dump truck) is considered a common denominator in 

earthmoving operations, where the identification of the truck state is an essential step towards 

measuring its productivity and hence the productivity of the fleet. The developed data acquisition 

module collects multiple sources data, which are heterogeneous in nature, content, and format. 

Each set of the collected data may have some characteristic patterns and trends that could help in 

recognizing the state of the truck.  
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The vast sums of collected data make the manual observation of these patterns and trends a very 

challenging task that consumes time and lacks accuracy. The developed model overcomes this 

problem, where the developed relational MySQL database navigates through all collected sensor 

data regardless of its source to recognize the truck state. The developed algorithm fuses different 

types of data by satisfying some specific predetermined conditions in each truck state.  

The hauling equipment has six probable states of operation, which are frequently repeated in 

earthmoving operations. These states usually happen in this order: wait for loading, loading, 

hauling (traveling), wait for dumping, dumping and returning back to the loading or cut zone. 

These six states form a complete earthmoving cycle. Another possible state is out of service in 

which the truck may become in idle mode regardless of its location. Two additional states are 

considered: exist loading zone and exist dumping zone, to differentiate the traveled distances in 

and out these zones. This differentiation is crucial in the assessment of access roads condition.    

Data sampling process was done to determine the prevalent ranges throughout each state. So, a 

number of experiments were conducted to distinguish the different patterns and trends of each 

sensor data set in the course of each state. The purpose of these experiments is to determine the 

most probable lower and upper sensor readings, i.e., the maximum and minimum acceleration 

readings in the three directions for each state. Similarly, the lower and upper limits were 

determined for soil water content.  

Accordingly, a truck is considered in traveling state when; 1) its previous state of operation was 

loading, 2) GPS data refers to a location within the access or travel road, 3) OBD II data records a 

speed higher than 0 Km/h, 4) load cell shows an electrical potential approximately equivalent to 

the truck payload capacity, and 5) soil water content and acceleration records fall within the 

predefined ranges. 

5.2.3 Data Fusion Algorithm 

The model fuses captured sensors data to recognize the truck state. Then the timestamps for the 

start and end of each state are used to determine the duration of each state. Accordingly, determine 

the total duration of each earthmoving operations cycle. Figure 5-12 shows a tabulation of the 

prevalent sensor data patterns and trends, which are utilized to develop data fusion algorithm. 
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Figure 5-12: Prevalent sensor data patterns and trends utilized to develop the data fusion algorithm 

5.2.4 Positioning Trucks and Correlation to Soil Properties  

The database is programmed to run the algorithm shown in equation (5-6). Figure 5-13 shows 

graphical illustration the utilized algorithm. The aim of using this algorithm is to scan the GPS 

detected latitude and longitude recorded points to determine whether the truck is located within 

the loading, dumping zones or the hauling road. This algorithm is built on Jordan Curve Theorem, 

where; any continuous simple closed curve cuts the plane in exactly two pieces: the inside and the 

outside (Princeton University, 2018). It checks if any line segment of the polygon intersects a ray 

from the GPS point of study. 

  Y0 = Y𝑖+1−Y𝑖
X𝑖+1−Y𝑖 
 (X0 − X𝑖) + Y𝑖                                                                                  Equation (5-6) 

Where: Xi ≤ X 0 ≤ X i+1 
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Figure 5-13: Graphical illustration of the utilized algorithm (in / out polygon recognition) 

 

The polygons shaped by the coordinates of the different point of both loading and dumping zones 

were registered in the database as predefined givens. Hence this algorithm checks if the recorded 

truck’s coordinate lie in or out of this polygon. Figure 5-14 shows the change of soil properties 

within the same loading zone.  The same procedure is applicable for a multi-cut and fill zones in 

case of highway construction, where soil properties are most probably changeable from a cut zone 

to another. 

 
Figure 5-14: Change of soil properties within the same loading zone 
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The readings of the load cell are interpreted from the electrical potential in microvolt to weights 

in kilogram using the proper conversion formula according to the load cell data sheet. Soil reports 

are always prepared prior commencement of projects, where these reports include soil density for 

different spots within the same site depending on its area. Consequently, for the same loading 

zone; may have a variety of soil densities. The captured GPS data during the loading state permits 

the stipulation of related soil density to the loaded soil. Hence, the model determines the loaded 

soil volume using payload information from the load cell and the specific soil density associated 

with exact area of the loading zone. 

Figure 5-15 represents the flowchart of the productivity measurement algorithm. The model takes 

into consideration not only the change of soil types but also its water content. The productivity 

analysis module is responsible for comparing actual and planned productivity. It also associates any 

loss in productivity with operational and road condition. 
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Figure 5-15: Flowchart of the productivity measurement algorithm (Salem & Moselhi,2018) 
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5.3 Driving and Road Condition Analysis 

Operational behavior of truck drivers and traveled road conditions affects productivity in 

earthmoving projects. Achieving targeted productivity usually leads equipment operators to stress 

the equipment beyond its upper limit capacity. As well the driver to achieve higher production 

rates may lead to harmful and abusive actions for hauling equipment (i.e., speeding, harsh 

acceleration, and braking). Figure 5-16 represents an example from literature that depicts how the 

negligence of such adversarial access road conditions can lead to a catastrophic productivity 

degradation. The evaluation index that been used in this simulated case example is productivity 

differential, which introduced by American Society for Testing and Materials (ASTM E2691 - 09).  

Where equation (5-7) explains the method of determination of productivity differential. 

 

Productivity Differential =  
Current Productivity−Av.Productivity

Av.Productivity
          Equation (5-7) 

 

The graph shows how the percentage of productivity differential was descended starting from the 

10th day, where the bad road condition initiated to show up. 

However, figure 5-17 shows how the situation can be changed if the right information reaches the 

project manager or the responsible decision maker at the right time. The figure shows that 

corrective action was taken on the 17th day to improve the access road surface, and hence to correct 

the productivity path.       

 
Figure 5-16: Productivity degradation due to bad access road surface (Shahandashti et al. 2010) 
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Figure 5-17: Potential ability of project manager if he/she received the right information at 

the right time. (Shahandashti et al. 2010)  

The previous example shows the importance of monitoring the road conditions and acquiring its 

data. In addition, it shows how early recognition of road conditions problems could help the 

management to keep the right planned path of productivity.  Figure 5-18 shows the flowchart of 

driving road conditions analysis algorithm. The algorithm profits in detection of adverse road 

conditions and operational behavior recognition using a tri-axial accelerometer. The proposed 

accelerometer is build-in the utilized Waspmote microcontroller. 

The 3D accelerometer is used for recognizing undesirable driver behavior of hauling equipment. 

The Waspmote built-in accelerometer can make up to 2560 measurements per second from -6g to 

+6g on the three axis X, Y, and Z. The algorithm shown in Figure 5-18 depicts driving and road 

conditions analysis. The application of this algorithm allows automated monitoring of hauling 

equipment drivers to detect and report any adverse behavior. Also, it recognizes access and 

traveling road deficiencies as well. Alerts are triggered by excessive speeding, harsh breaking, 

severe maneuvers, and unsafe lane changes. 
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Figure 5-18: Flowchart of driving and road condition analysis algorithm  

 Figure 5-19 shows a sample of the 3D accelerometer data representation and driving and detection 

of abnormal road conditions. The boundaries of safe and harsh accelerations and brakes are ±0.3g 

and ±0.5g respectively (Langle & Dantu, 2009; Fazeen et al., 2012; Li et al., 2017).   
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Figure 5-19: 3D accelerometer data representation, driving and road conditions recognition 

 

The algorithm utilizes these acceleration boundaries to flag violent operational behavior. The 

microcontroller is coded using C++ syntax, where the acceleration thresholds are defined as 

triggers. The data collected by the integrated 3D accelerometer is processed in the central MySQL 

database, where acceleration data integrated with GPS data to recognize the driving triggered event 

time and location. 

The utilized data acquisition module permits an opportunity to process the collected data in the 

microcontroller, which means in-sensing-node processing. Thereafter processing outcome can be 

send the right stakeholder by integrating a  GPRS module that can send alerts in the form of short 

text or recorded vocal messages. The procedure above permits data collection, aggregation, and analysis 

in near-real-time. Also, it allows exact momentous and rapid retrieval of analysis results. 

The shortcoming of this algorithm that it does not take into consideration the risk of sensors malfunction. 

Another algorithm that uses data fusion and artificial intelligence techniques is conceptually explained  as 

shown in Figure 5-20. The same expected results can be achieved in a sophisticated and robust approach 

using this algorithm, where it allows more redundancy, and it takes the uncertainty of sensors malfunction 

in consideration. The data from different sensors is fused. For automating this approach, different modes 

and patterns are recognized using a machine learning classifier. The proposed classifier utilized in this 

algorithm is Naive Bayesian.     
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Figure 5-20: Data fusion and machine learning for modes of hauling truck 

5.4 Summary 

This chapter introduces a novel automated model for near real-time monitoring and assessment of 

productivity in earthmoving operations. The developed model consists of four modules; (1) 

automated data acquisition module, (2) planned productivity module, (3) automated measurement of 

actual productivity module, and (4) driving and road condition analysis module. A variety of sensors, 

smart boards, and a microcontroller are utilized in the development of the customized data acquisition 

module. A sensor data fusion algorithm is developed for accurate productivity measurement. The 

model fuses data acquired by different sensing technologies to recognize the operational state of 

hauling trucks, start and finish times for each state of operation, hence the duration of each 

earthmoving cycle. The integrated load cell captures the loaded soil weight, which is used to calculate 

its volume, hence truck, and fleet productivity. The driving and road conditions module is capable 

of detecting drivers’ offensive behavior such as aggressive acceleration and barking. Also it can 

identify unsafe maneuvers and lane change. This module can automatically detect road anomalies 

and differentiate between potholes and bumps. 
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6 Chapter 6: Earthmoving Productivity Analysis 

6.1 General Overview 

This chapter presents a productivity analysis model that comprises two modules for assessing and 

analyzing the productivity of earthmoving operation. This model applies two different techniques 

on the acquired outputs from the developed automated productivity measurement model 

demonstrated in chapter 5. The developed two modules organize the assessment and analysis 

process in the form of two tiers.  

The first tier module utilizes fuzzy sets theory to assess the variation between actual and planned 

productivity. The second tier module exploits the accessibility to vast scope of automatically 

collected sensor data to introduce a more in-depth analysis using artificial neural network (ANN). 

It is worthy to remark that the combined two tiers analysis modules provide early warning and 

decision support tool that allows contractors to early recognize the grounds behind the variations 

in productivity. Furthermore, it supports the decision making for appropriate and timely corrective 

actions. Figure 6-1 shows the main sections of this chapter. 

Chapter 6

6.3  Productivity Assessment Module 
Using Fuzzy-Set Theory 

6.4  Productivity 
Analysis Module 
Using ANN

6.5  Summary

6.3.1 Fuzzy-Set Based 
Assessment

6.3.2 Agreement Index

6.4.1 Influencing Parameters  
(No Weather Conditions)

6.2  The Necessity 
of This Model

6.3.3 Early Warning 
Module

6.3.4 Illustrative Case 
Example

6.1 General 
Overview

6.4.2  Influencing Parameters  
(With Weather Conditions)

Figure 6-1: Main sections of chapter 6 
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6.2 The Necessity for this Model 

According to most dictionaries, the linguistic definition defers between assessment and analysis 

where: 

 Assessment: ((Examining system’s outputs and performance)) (Oxford Dictionary, 2018) 

 Analysis: ((Detailed examination of the elements of something)) (Oxford Dictionary,  2018) 

Upon the understanding of this difference between assessment and analysis, it is easy to conclude 

that most research work in the domain of productivity of earthmoving operations has focused on 

assessment than analysis. However, the assessment has crucial importance; it does not individually 

satisfy all the productivity control needs. Assessment often indicates the presence of problems that 

have affected productivity. It may evaluate unidentified problems and its consequences, while it 

does not identify those problems and their causes. The project benefits from having a robust 

analysis tool in all stages, i.e., planning, execution, and operation as well. Analyzing productivity 

and project performance guarantee: 

 Robustness and realistic operations design and planning. 

 Early detection of weak points and bottlenecks of the system. 

 Capability to take the necessary corrective actions timely and in a prioritized manner. 

Based on the aforementioned facts, there is a need for such a model that combines both assessment 

and analysis. The following sections depict the developed model that performs productivity 

assessment and analysis of earthmoving operations. This model consists of two modules, one for 

assessment and the other goes deeper to model and analyze the productivity.  

6.3 Productivity Assessment Module 

Productivity assessment module utilizes the measured actual productivity obtained from the 

automated productivity measurement model depicts in chapter 5 of this thesis. In addition, it 

utilizes the planned earthmoving quantities and production rates. This planned data can be 

provided to the module manually, or it can be extracted from a 3D model using software like 

Autodesk Revit®. In case of inclusion of the schedule, the planned data can be delivered through 
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the extraction from a 4D model using BIM 360 Field API. The assessment is performed at each 

period of time (t), the actual productivity (AP). Then, productivity ratio (PR) is calculated as the 

ratio between actual and planned productivities for the same period (t) using Equation (6-1). 

PR(t) =   
AP (t)

PP (t)
                                                                                             Equation (6-1) 

Where; 

PR (t), AP (t) and PP (t), represent respectively productivity ratio, actual productivity, and planned 

productivity at time (t). 

6.3.1 Fuzzy Set-Based Assessment 

In general, it is well known that the ideal productivity ratio is equal to one, where that means; the 

achieved production equals to the planned one. However, this is the usual planned situation, and 

the project management always desires to achieve it, but due to some conditions and risks the 

management usually accepts a lower productivity ratio, i.e., PR (t) < 1. In this case and upon the 

evaluation of these conditions and risks, the project management usually utilizes a new custom-

made productivity ratio instead of the unachieved planned one. In another word, due to the project-

associated risks, management may predefine an optimal accepted productivity ratio. This ratio 

might not be a specified determined number, but it could be a range based on each project 

associated uncertainty and conditions.     

The developed assessment module presents a low-optimum-high (LOH) fuzzy set-based 

productivity-monitoring algorithm. The productivity is evaluated based on these three states; low, 

optimum, and high. Each of these states has higher and lower limits, where those limits are project 

management or organization dependent (Salah and Moselhi, 2016). Therefore, each contractor has 

to estimate lower and upper bounds of each fuzzy attribute (e.g., High) based on his experience in 

similar previous earthmoving operations projects.  

Figure 6-2 illustrates the LOH fuzzy- set based productivity monitoring and assessment scheme. 

The productivity ratio (PR) values are represented on the x-axis of LOH fuzzy system while the 

fuzzy membership function (µ) is represented by y-axis. As reported, the ideal value of PR equals 

to one, whereas actual productivity ratio at period (t), PR (t), is acquired from the productivity 
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measurement module and the manual input of the planned quantities. The productivity ratio 

indicator is shown on the proposed assessment scheme as a vertical indicator for the ideal state.  

 

 

Figure 6-2: LOH fuzzy- set based assessment scheme 

  

It should be noted that the productivity ratio monitoring indicator position directs the management 

to the required responding action, where no action is required as long as the indicator of 

productivity ratio is located within the optimum acceptable predefined range (e.g., between 0.85 

and 1.15) as shown in Figure 6-2. However, if the indicator, at a particular period t, moves away 

from the optimum zone (i.e., Low or High), that means further advanced analysis is required. In 

other words, when there is a chance for occurrence of unwanted events that influence the 

productivity the advanced analysis module is commenced to identify and evaluate the 

consequences of the undesired event being considered. Then issuing an early warning that supports 

the decision making process in earthmoving operation in order to take the suitable corrective action 

to revert actual productivity to its desired planned path. 

Figure 6-2 shows two fuzziness zones, where L~O and O~H fuzzy zones are shown. If the indicator 

is located in one of these two zones and intersects both membership functions, then the scheme 

represents the situations where the productivity performance cannot be evaluated without 
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additional analysis. In this case, the fuzzy-set based productivity analysis module is initiated to 

differentiate between low – optimum and optimum - high states. 

6.3.2 Agreement Index for Productivity Ratio Assessment  

Kaufmann and Gupta (1985) have introduced the agreement index. The agreement index computes 

the ratio of the overlapped area between two fuzzy events and the entire area of the measured 

event. Arithmetically, different methods could be used in the calculation of the intersection area 

and thus the agreement index. 

Agreement Index Calculation Using Partial Integration  

Figure 6-3 shows an illustrative scheme for Agreement Index (AI) calculation using partial 

integration.  First by identifying integration limits, in another word, the projection of the corner 

points on the productivity ratio axis. Then, formulating the equations of membership function for 

the boundary lines i.e., µA and µB for the intersection area as shown in Figure 6-3. Either 

developing an algorithmic procedure or using a graphical method to perform this task is valid. 

Then, the intersection area between the two fuzzy areas can be calculated using the partial 

integration, taking into account the membership functions of the boundary lines and their 

corresponding limits using Equation (6-2).  
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Figure 6-3: Illustrative scheme for Agreement Index (AI) calculation using partial integration 

Agreement Index Calculation Using Algebra  

Assuming that Ã represents one of the low or high states, and B̃ represents the optimum state. The 

productivity analysis module generates the fuzzy membership function that represents the L~O 

and O~H fuzzy area based on low, optimum and high fuzzy numbers using Equation (6 -3). The 

relative weights of fuzzy numbers of Ã and B̃  are measured respectively as membership of Ã and 

B̃ at actual productivity ratio using Equation (6 – 4). It also utilizes the agreement index.  

B~A~= B~~A~ ~~  BA ww                                                                                    Equation (6 – 3) 

))((~~ tPRw AA 
                                                                                   Equation (6 – 4) 

Where; 
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Ã and B̃, represent respectively two fuzzy numbers A and B. 

𝑤Ã and 𝑤B̃, represent respectively two weights of fuzzy numbers A and B. 

Ã ~ B̃, represents the fuzzy number that represents the fuzzy area between A and B, also noted as 

A~B̃. 

The agreement index represents the ratio of the intersected area between the fuzzy membership 

functions that represent the fuzzy area (i.e., L~O) and each of the two states (i.e., L and O) using 

Equation (6 - 5) and Equation (6 - 6).  

 )B~~A~( Area
)B~B~~A~( Area=)B~,B~~A~( AI                 Equation (6 - 5) 

 

 )B~~A~( Area
)A~B~~A~( Area=)A~,B~~A~( AI                            Equation (6 - 6) 

 

Agreement index ratio (AIR) is presented to differentiate between the two different states at a 

given productivity ratio as introduced in Equation (6 - 7). Supposing that Ã represents the low or 

high state and B̃ represents the optimum state, if AIR (Ã , B̃) is higher or equal to 1, then the 

productivity is considered optimum and hence no necessity for further action. Otherwise, (i.e., AIR 

(Ã , B̃) is lower than 1), it is considered low, and that motivates the initiation of early warning 

decision support module. 

)A~B~~A~( Area
)B~B~~A~( Area=)B~,A~( AIR



                         Equation (6 - 7) 

 

Where; 

AI(A~B̃, B̃) and AI(A~B̃, �̃�) represent the agreement indices between the fuzzy area between 

Ã and B̃. 

AIR(Ã, �̃�) represents the agreement index ratio between the fuzzy number Ã and B̃. 
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6.3.3 Early Warning Decision Support Module 

Early warning decision support module is initiated based on the productivity assessment module 

recognized state (e.g., low) as presented in section 6.2.2. If the identified state was low, that 

indicates the possibility of a schedule delay or ineffective use of resources then, the project 

management in charge personnel are notified. Vice versa, in case of the identified productivity 

state is high, that indicates the possibility of cost overrun or over depletion of resources (i.e., 

number of equipment is more than needed). Hence, the responsible parties should also be warned.  

Figure 6–4 shows a flowchart of the proposed early warning module. This module identifies any 

predefined undesirable consequence and then notifies the responsible project parties.  

 

Figure 6-4: Early warning decision support module 

 

An embedded notification system could be coded through the Waspmote IDE, and then uploaded 

to the microcontroller. Hence, the microcontroller dispatches the required notifications via the 

associated GPRS module in the form of cellular short message service (SMS), email or recorded 
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voice message. Figure 6-5 shows the schematic design flowchart of the proposed automated early 

warning system. These notifications address the need for intervention and permit decision makers 

to take prompt and proactive decisions. Consequently, the timely intervention corrects the 

performance and so it increases the productivity. Hence, it assists in avoidance of schedule delays, 

cost overruns, and inefficient utilization of resources. 

Waspmote Microcontroller

C++ programming codes 

GPRS Module

Waspmote IDE

Upload

Send 
SMSPhone call

Cellular network

Send an 
email

Figure 6-5: Schematic design flowchart of the proposed automated early warning system 

6.3.4 Case Example 

This hypothetical example is used to validate the applicability of the proposed method and to 

explain its features in monitoring the productivity of earthmoving operations. Assuming that the 

input sensor data are received from various technological sources (i.e., customized data acquisition 

system; as in chapter 4). Then, this data was used to measure the actual productivity (AP) at each 

period of time t (i.e., using automated productivity measurement model; as in chapter 5). Assuming 

that, the actual productivity at period t =50 was evaluated as 106 m3/day and for the same period 

of time, the productivity was planned as 125 m3/day. In this case, the productivity ratio for period 

t=50 is calculated using Equation (6-1) as 0.85. Hence, the developed LOH fuzzy monitoring 

system shows the indicator of actual productivity ratio in the L~Õ fuzzy area as shown in Figure 
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6-6. The weights of each fuzzy state L̃ and Õ are calculated using Equation (6-3) as 0.25 and 0.75 

respectively. A trapezoidal fuzzy number for L~Õ fuzzy area is calculated using Equation (6-3) 

and Equation (6-4) and the membership function that represents the L~Õ  fuzzy number is 

generated as shown in Figure 6-6. 

L~Õ=0.25×L̃ + 0.75×Õ 

L~Õ=0.25×[0,0,0.7,0.9] + 0.75×[0.7,0.9,1.1,1.3] 

L~Õ=[0.525,0.675,1.0,1.2] 

Using the membership functions, the agreement indices of L~Õ with L̃ and that of L~Õ with Õ are 

calculated using Equation (6-5) as follows: 

AI(L~Õ, L̃)=
Area(L~O ̃∩ L̃)

Area(L~Õ)
=

0.2
0.5

=0.4 

AI(L~Õ, Õ)=
Area(L~O ̃∩ Õ)

Area(L~Õ)
=

0.3
0.5

=0.6 

AIR(L~Õ, Õ)=
Area(L~O ̃∩ Õ)
Area(L~O ̃∩ L̃)

=
0.3
0.2

=1.5 
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Figure 6-6:  Agreement Index of Low Optimum with Optimum 

In this case, the system identified the productivity as optimum that means no further action is 

required. However, if the productivity ratio remains to decrease and it reaches a level of 90 m3/day 

at period t=60 then, the calculation process is modified as follows: 

PR(60)=0.8 

 

μL̃(PR(60))=μÕ(PR(60))=0.5 

 

L~Õ=0.5×L̃ + 0.5×Õ=[0.35,0.45,0.9,1.1] 

 

AI(L~Õ, L̃)=
Area(L~O ̃∩ L̃)

Area(L~Õ)
=

0.4
0.6

=0.67 

 

AI(L~Õ, Õ)=
Area(L~O ̃∩ Õ)

Area(L~Õ)
=

0.2
0.6

=0.332 
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AIR(L~Õ, Õ)=
Area(L~O ̃∩ Õ)
Area(L~O ̃∩ L̃)

=
0.2
0.4

=0.5 <1 

In this case, the productivity is recognized as low which means it is prospect of schedule delay or 

inefficient utilization of resources. Consequently, the early warning decision support module 

should be initiated and notifications would be sent to the predefined responsible personnel in order 

to take corrective actions whether to overcome the schedule delay or to increase the efficiency of 

using resources if believed necessary. 
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6.4 Productivity Analysis Module Using ANN 

Artificial Neural Network (ANN) is a computational model that is motivated by the way biological 

neural networks in the human brain process information. ANN is one of the famous machine 

learning techniques. Neural networks simulate the human brain in learning and utilizing experience 

to improve their performance. ANN is convenient in data modeling when there is no clear 

relationship among different data elements, even when dealing with noisy data (Du and Swamy, 

2006). The central computational unit in a neural network is the neuron, often called a node. It gets 

inputs from some other nodes, or from an external source, i.e., database to compute outputs. Each 

input has an associated weight (w), which is assigned based on its relative importance to the other 

inputs. The node applies a function f (activation function) to the weighted sum of its inputs as 

shown in Figure 6-7. Where the network takes inputs X1 and X2, those inputs are associated with 

weights w1 and w2. In addition to the regular inputs that the node receives, there is another input 1 

(as shown in the figure) with weight b (called Bias). The main function of Bias is to provide every 

node with a trainable constant value. 

 

Figure 6-7: Single neuron structure 
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The neural network has many interconnected neurons each of them works as a processor. Those 

neurons are connected between weighted links passing signals from one neuron to another. Each 

neuron receives a number of input signals; hence, it produces only one output. Then, the different 

produced outputs from multiple neurons are brought into line with the initial outputs to determine 

the initial error. Based on that error; the network starts to adjust weights. ANN learns through 

repeated adjustment of weights of links between neurons. In other words, a training set of inputs 

and associated outputs are presented to the network. Then the network computes its output, and if 

there a difference (usually called error) between original and network output; the weights are 

adjusted to reduce this error. Neural networks are trained using pre-known data sets of inputs and 

their outputs. Generally, the establishment of an ANN should follow these steps: 

1. Decide the network architecture, i.e., number of layers, hidden layers, how many neurons 

in each layer and how those neurons are connected. Figure 6-8 shows a typical architecture 

and components of artificial neural network. 

2. Decide which learning algorithm to use. 

3. Train the ANN (initialize and update weights from a set of training examples). 

 

Figure 6-8: Typical ANN architecture and components 
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More than hundred different learning algorithms are available, but the most popular method is 

back-propagation. This method was first introduced by Bryson and Ho in 1969 but was ignored 

because of its challenging computations. Only in the mid-1980s was the back-propagation learning 

algorithm rediscovered (Negnevitsky, 2005). Back-propagation neural network (BPNN) is 

recommended when it is desired to correlate large amount of data arranged into inputs and output, 

and there is no clear relationship between the data. BPNN learns by examples; therefore, the user 

must provide a learning set that consists of some input examples with known output for certain cases 

(Sadiq et al. 2010).   

There are a wide variety of factors that may influence the productivity of earthmoving operations. 

Any individual factor or a haphazard group of those influencing factors can affect productivity. In 

the case of an individual affecting factor, the selected corresponding sensor as explained in chapter 

4 is capable of identifying this factor. However, the microcontroller’s associated sensors are still 

able to capture a group of the influencing factors; the magnitude of influence is not quantified. 

Hence, there is a necessity to determine how much does each factor contribute to the total 

productivity loss. Also, to predict the impact of residual affecting factors on productivity.  

The developed ANN model presents a dynamic tool for modeling and analyzing the productivity 

determined by the developed automated productivity measurement (explained in chapter 5). 

Fifteen affecting parameters are the network input. Those parameters can be categorized into four 

groups corresponding to loading efficiency, time spent in different states, road, driving and 

operational conditions and weather conditions. Table 6-1 depicts groups of the ANN input 

parameters and their corresponding items. The network output is the percentage of productivity 

differential, which represents the variation of productivity index. 

Since earthmoving operations have a random nature, small samples of data not always represent a 

comprehensive picture of an operation. Hence, the more the data sets the best the network results. 

The available complete data sets collected from the developed field experiments were for fifteen 

cycles. While available, complete data sets collected from the developed laboratory experiments 

were for thirty loading-dumping data sets. In order to provide the network with a reasonable 

amount of data, fifteen cycles data sets were generated. The generation process was based on the 
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statistical analysis, i.e., the type of distribution and descriptive indices of the original fifteen 

collected data sets. 

Table 6-1: ANN input parameters groups 

Loading Efficiency States Duration Road and driving 
conditions 

Weather 
Conditions 

Loading duration Hauling and return Number of bumps Temperature  

Bucket Fill Factor Waiting in loading 
and dumping zones Number of ruts Humidity 

 Time spent to exit 
load and dump zones Number of harsh brakes Rainfall 

  Number of stoppages 
exceed certain duration  

 

Matlab® software was the selected computational platform as it can be integrated with MySQL 

databases to retrieve the required data for ANN analysis automatically. Iteratively, a variety of 

network architectures were developed to enhance the network learning. Figure 6-9 shows a sample 

for a network architecture, where it consists of one hidden layer of ten neurons in addition to the 

default output layer.  

 

Figure 6-9: Sample for a network architecture 
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6.4.1 Influencing Parameters without Consideration of Weather Conditions 

A network with two hidden layers has shown better performance than other networks regardless 

of the number of neurons. In order to evaluate the effect of adding or extracting items from the 

inputs, weather conditions were not considered in the first run of the utilized software. Table 6-2 

shows the developed networks’ architectural attributes and error associated with the corresponding 

outputs compared with the original productivity differential determined by the automated model. 

Mean absolute error and average invalidity percentage are expected to be diminished in case of 

larger number of data sets. 

Table 6-2: Different ANN and corresponding errors and R2 value – No weather input 

Iteration 
No. of Hidden 

Layers 

No. of 

Neurons 

Average Invalidity 

Percentage 

Mean Absolute 

Error 
R2 

1 

2 

10 32.54 % 1.43 % 0.900555 

2 8 26.36 % 1.40 % 0.94427 

3 6 23.81 % 1.18 % 0.951644 

In case that weather conditions inputs were not considered, Figure 6-10, Figure 6-11 and Figure 

6-12 show a graphical representation of actual productivity differential for thirty earthmoving 

cycles and those produced by the ANN1, ANN2 and ANN3 respectively.  
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Figure 6-10: Determined productivity differential vs ANN1 output 

 

Figure 6-11: Determined productivity differential vs. ANN2 output 

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0

ANN-1 WITH NO WEATHER INPUT

Prod. Diff. N1_2 Hidden Layers_10 Neurons

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0

ANN-2 WITH NO WEATHER INPUT

Prod. Diff. N1_2 Hidden Layers_8 Neurons



 

153 
 

 

Figure 6-12: Determined productivity differential vs. ANN3 output 

6.4.2 Influencing Parameters with Consideration of Weather Conditions  

Based on the recorded temperature, humidity and rainfall quantity, the input items of the weather 

condition was categorized into two states for simplification; 1 for good weather condition and 0 

for bad weather condition. Further states can be defined for more weather conditions. Weather 

condition was considered in the second run of the software. Table 6-3 shows the developed 

networks’ architectural attributes and error associated with the corresponding outputs compared 

with the original productivity differential determined by the automated model. 

Table 6-3: Different ANN and corresponding errors and R2 value – weather input considered 

Iteration 
No. of Hidden 

Layers 

No. of 

Neurons 

Average Invalidity 

Percentage 

Mean Absolute 

Error 
R2 

4 

2 

10 25.06 % 0.97 % 0.9649248 

5 8 45.22 % 1.49 % 0.9509133 

6 6 9.29 % 0.81 % 0.9741865 
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In case that weather conditions inputs were considered, Figure 6-13, Figure 6-14 and Figure 6-15 

represent the actual productivity differential for thirty earthmoving cycles and those produced by 

the ANN4, ANN5 and ANN6 respectively.  

 

Figure 6-13: Determined productivity differential vs. ANN4 output 
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Figure 6-14: Determined productivity differential vs ANN5 output 

 

Figure 6-15: Determined productivity differential vs. ANN6 output 

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0

ANN-5 WITH WEATHER CONDITION INPUT

Prod. Diff. N5_W_2 Hidden Layers_8 Neurons

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 0

ANN-6 WITH WEATHER CONDITION INPUT

Prod. Diff. N6_W_2 Hidden Layers_6 Neurons



 

156 
 

The sixth ANN iteration (ANN6) demonstrated higher accuracy in terms of lower average 

invalidity error, mean absolute error and better regression than all the other ANN iterations. The 

input items in this model are covering influencing factors associated with loading operation and 

each of the operational modes of the hauling truck on the road in addition to the influence of 

weather conditions. 

6.4.3 Influencing Factors Contribution to the Loss of Productivity 

Quantifying the contribution of each influencing factor on productivity; supports the effectiveness 

of management corrective decisions. The impact of each input variable on the output of the neural 

network can be expressed by the relative importance of input variables. Olden and Jakson (2002) 

introduced the connection weights algorithm (CW). This algorithm calculates the relative 

importance of each input variable based on the weights of connections between the different layers 

of the network which performed adequately in terms of accuracy and regression. Based on that, 

among all the iterations, ANN6 has shown adequate performance. Therefore, The relative 

importance of each of the utilized input variables can be derived using Equation (6-8). 

RI𝑥 = ∑ 𝑊𝑥𝑦 𝑊𝑦𝑧𝑛
𝑦=1                                                                                            Equation (6-8) 

Where  

RIx is the relative rank of input neuron x, i.e., Productivity influencing variable  

 ∑ 𝑊𝑥𝑦 𝑊𝑦𝑧𝑛
𝑦=1   is summation of the product of the of final weights of the connection from input 

neuron to hidden neurons with the connection from hidden neurons to output neuron.  

y is the total number of hidden neurons.  

z is output neurons.  

Connecting weights were extracted from Matlab as shown in Figure 6-16. Summation of product 

of the different connecting weights were calculated. The final resulted weights and their 

corresponding ranks are shown in table 6-4. 
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Figure 6-16: Weights of connections between ANN6 layers 

 

Table 6-4: Final resulted weights and their corresponding ranks 

Influencing Input Variable Relative Weight Rank 
Hauling and Return Duration -4.4422 1 
No. of Stoppage -2.0321 2 
Wait for Loading Duration -1.4039 3 
Bumps -1.2034 4 
Wait for Dumping -1.092 5 
Ruts -1.0106 6 
Weather Conditions -0.8183 7 
No. of Brakes -0.7513 8 
Exit-Load Zone Duration -0.6219 9 
Loading Duration 0.9644 10 
Exit-Dumping Zone Duration 1.3488 11 
BFF 2.3158 12 
Dumping Duration 2.4117 13 
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7 Chapter 7: Model Validation and Web-based Monitoring 

7.1 Case Study 

The applicability of the developed model was examined through a designed hybrid case study to 

evaluate and validate the model. This case study is divided into two integrated phases to collect 

three types of data. Figure 7-1 shows the framework of the developed case study.  
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Figure 7-1: Framework of the developed case study  

 



 

159 
 

7.1.1 Phase 1: Laboratory Experiment 

The first phase was performed in an outdoor laboratory environment using remotely controlled 

1:24 scaled loading and hauling equipment due to unavailability of real loading and hauling 

equipment. The purpose behind this phase is:  

1. Simulate loading and dumping operations. 

2. Check the sensitivity of the utilized 3D accelerometer in detecting the change of 

acceleration in each of the three directions. 

3. Collect the loaded soil weight and water content data. 

4. Examine the prototype functionality in streaming collected data using WiFi to the built-

in Meshlium MySQL database.  

The laboratory experiment was conducted in an open to sky terrace to allow a reliable contact to 

GPS' satellites. Also, to make a direct connection between Meshlium and a computer PC to observe 

the received data latency. A WiFi signal was available thru an Internet router connected to a PC 

computer. Connecting the gateway to WiFi aims to simulate its installation in loading and dumping 

zones as described in the developed automated productivity measurement model. In real 

application, the data acquisition module sends the acquired sensor data to Meshlium using GPRS, 

WiFi, Xbee or Bluetooth, while the communication protocol used in this laboratory experiment is 

WiFi. The experiment was conducted as follow: 

1. Connecting the gateway (Meshlium) to the computer which connected to WiFi router. 

Then, the gateway is creating its particular identification protocol (IP). Figure 7-2. A, B 

respectively shows a schematic and physical connection of the gateway to both of the 

computer and the internet router. 

2. Connecting the load cell sensor to the smart board associated with the microcontroller that 

hosts a WiFi shield (data poster) and GPS module. C# code was uploaded to the 

microcontroller to perform the data acquisition and communication. A 2GB micro SD card 

was used to record a copy of the acquired data for loading and dumping states to be 

integrated with the data collected for other earthmoving states in phase 2 field experiment. 
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A B 

Figure 7-2. : Schematic and physical connection of the gateway to both of the 
computer and the internet router. 

3. Connecting a rechargeable battery to the prototype, then installing and orienting the 

prototype in the top front of scaled truck bed above the cabinet as shown in Figure 7-3. 

  

Figure 7-3: Set up of the oriented prototype on the scaled hauling truck 
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4. Starting a simulated loading, hauling and dumping operations. The loaded soil was sand 

with known density and different water contents, where specific various amounts of water 

were added to a fully dray sand. Figure 7-4 depicts the simulation of loading, hauling and 

dumping operations using scaled equipment. 
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Figure 7-4: Simulation of loading, hauling and dumping operations using scaled equipment 
 

5. Data was captured by the different sensors for loaded sand weights, latitude and longitude 

of the truck, and the acceleration in the three directions. Then the collected data streamed 

thru the WiFi shield to the Meshlium built-in database. 

6. Soil water content data was collected separately using the soil water content sensor 

connected to the same prototype. 
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In this Phase, thirty simulated earthmoving cycles were conducted using the scaled equipment. 

Where the truck has a payload capacity of 864 cm3 and the loader bucket capacity is 175 cm3. The 

performed cycles incorporate a total of 143 buckets with different fill capacities Acceleration data 

was recorded in a high sampling rate (100 reading/second). Also, the load cell records, water 

content sensor readings were filed in CSV format. All data sets were recorded in the SD card to be 

integrated with the data collected in the second phase. Figure 7-5 shows samples of the collected 

data from different sensors in the case study. 

Acceleration (cm/s2) Soil water content (Hz) 
 

Load cell (mv) 

 
GPS 

Figure 7-5: Samples of collected sensor data in the case study 
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7.1.2 Phase 2: Field Experiment 

The second phase was conducted in field using a passenger vehicle. The selected site located in 

the city of Saint-Laurent, Montreal, Quebec, Canada. The data acquisition module was installed 

on the dashboard near the windshield of the mimicked truck i.e., the passenger vehicle. An OBD 

II scanner was appropriately attached to the car as explained in the developed model. Then the 

vehicle has performed fifteen trips between two designated locations, which identified as loading 

and dumping zones. A specific criterion has controlled the choice of the site for this phase, where 

the selected site provides two equal in length hauling roads with a significant alteration in road 

conditions. The selected site layout is shown in Figure 7-6, the figure shows both loading and 

dumping zones in addition to hauling and the alternative roads.  

The distance between loading and dumping area through any of the two roads is 1150 m. The 

marked hauling road has a good surface condition, while the marked alternative road has some 

segments in adverse conditions as it contains bumps and potholes. Trips were done from loading 

to dumping zone and versa in an average speed of 35 Km/hr. These trips have utilized the 

connecting two roads as shown in Table 7-1. 

Table 7-1: Trips between loading and dumping zones and utilized roads 

Number of Trips Hauling Road Road Condition Returning Road Road Condition 

5 Main Good Main Good 

5 Main Good Alternative Bad 

5 Alternative Bad Alternative Bad 
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Figure 7-6: Case study field - loading, dumping zones and hauling roads 

In this stage, the vehicle has simulated different operational states of hauling truck as in real 

earthmoving operations, unless loading and dumping states which were done in phase 1. This 

phase could also incorporate weather data acquisition from the job-site using a smart board 

equipped with temperature and humidity sensors. In a real application, the smart board is attached 

to another microcontroller, while in this phase for simplification, data was retrieved from online 

weather records. Duration of each state was recorded through time laps using a smartphone  as a 

reference for evaluating the developed model in terms of automated determined durations.  

GPS, acceleration and OBD II data were stored in the SD card in a CSV format. Thereafter, all the 

acquired data from the two implemented phases were transmitted to the central MySQL relational 

database. The designed MySQL procedures were run for the application of the associated 

developed algorithms. Preliminary evaluation was performed using the data of two trips. Figure 7-

7 shows model outputs of the first two trips in this case study, where every two adjacent columns 

with the same color are representing a specific state in which the first column shows the start and 

the second indicates the end of this state. The figure also shows the developed procedure to 

calculate the productivity of a dump truck and hence the total productivity for a fleet of trucks. In 
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this procedure, exact volumes of soil were calculated using the records of the load cell and the 

precise density of the excavated soil based on its location determined using the GPS module. 

 

Figure 7-7: Automated Productivity model outputs for the first two trips of the case study 

7.1.3 Results and Discussion 

The application of the developed model through the first two earthmoving cycles in the case study 

demonstrated good capabilities of the developed model including the recognition of the tuck’s 

state of operation and the duration each state. To simplify the comparison between manual and 

model’s outputs; the first two trips are compared. Table 7-2 shows a comparison between the actual 

operational times for each state captured using a stopwatch in time laps and the calculated 

durations by the developed model. In this comparison, the calculated durations for exit loading 

and dump areas were added to the hauling and return states respectively. The model demonstrates 

ability to recognize different states even for the ones which take few seconds as in the states of 

exit loading and dumping zones, where they have durations as little as 5 seconds.



 

166 
 

Table 7-2:  Actual manual versus the developed model’s calculated records  

Trip Trip 1 Trip 2 Total 

Dur. 

(Sec.) 

Recognized 
State 

Wait for 
Loading Loading Hauling Wait for 

Dumping Dumping Return Wait for 
Loading Loading Hauling Wait for 

Dumping Dumping Return 

Actual Dur. (1) 
(Sec.) 103 97 147 96 38 172 91 65 223 94 39 131 1296 

Model Dur. (2) 
(Sec.) 109 90 145 101 34 167 96 51 236 99 34 126 1288 

Difference 
(Sec.) 6 -7 -2 5 -4 -5 5 -14 13 5 -5 -5 -8 

Error % 0.0583 -0.0722 -0.0136 0.0521 0.1053 -0.0291 0.0549 -0.2154 0.0583 0.0532 -0.1282 -0.0382 -0.0062 

 
(1) Based on manual observation using time laps. 
(2) Calculated based on captured sensor data. 
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Figure 7-8:  Duration of different states of operations for the first two trips 

The variance between the manual and the automated monitoring ranges was from +5 to -12% for 

individual states. However the difference was varied from a state to another, the percentage of the 

total difference between manual and automated monitoring procedure was 0.06% which validates 

the model accuracy. 

Discussion scope is extended to cover all the performed fifteen trips. This section illustrates in 

details the model’s capabilities and validation. Table 7-3 shows the duration of each state using 

the developed model, while the duration of the same states using manual time laps method using 

a smartphone is shown in Table 7-4. The shown resulted numbers in the tables are automatically 

calculated by the database, while the number of decimals does not intended to reflect the precision.    
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Table 7-3: Duration of states by the developed model 

 
W4L_Duration W4D_Duration L_Duration EL_Duration H_Duration D_Duration ED_Duration R_Duration Total_Duration 

1 1.816666667 1.683333 1.5 0.183333 2.233333 0.566667 0.083333333 2.7 10.76666667 
2 1.6 1.65 0.85 0.366667 3.566667 0.566667 0.116666667 1.983333 10.7 
3 1.75 0.833333 1.083333 0.216667 2.7 0.833333 0.216666667 3.25 10.88333333 
4 1.483333333 1.266667 1.616667 0.25 2.75 0.716667 0.15 2.633333 10.86666667 
5 0.983333333 1.383333 1.383333 0.3 3.066667 0.783333 0.266666667 3.066667 11.23333333 
6 1.216666667 1.883333 1.3 0.216667 2.266667 0.65 0.2 3.466667 11.2 
7 1.2 1.333333 1.266667 0.266667 2.483333 0.816667 0.15 3.666667 11.18333333 
8 1.316666667 0.416667 1.45 0.316667 3.733333 0.783333 0.266666667 3.916667 12.2 
9 0.966666667 1.583333 1.533333 0.3 2.633333 0.8 0.233333333 4.033333 12.08333333 
10 1.116666667 1.55 1.616667 0.366667 2.316667 0.883333 0.25 3.85 11.95 
11 1.05 0.916667 0.933333 0.516667 3.633333 0.966667 0.183333333 3.366667 11.56666667 
12 0.933333333 0.766667 1.483333 0.433333 3.816667 0.866667 0.466666667 3.616667 12.38333333 
13 0.866666667 1.15 1.583333 0.316667 3.983333 1.266667 0.433333333 4.15 13.75 
14 1.4 0.666667 0.95 0.416667 4.116667 0.783333 0.35 4.016667 12.7 
15 0.916666667 1.383333 1.05 0.366667 4.066667 0.833333 0.383333333 3.966667 12.96666667 

∑ 18.61666667 18.46667 19.6 4.833333 47.36667 12.11667 3.75 51.68333 176.4333333 

Where the notations in the heading of the table; stand for the different operational states of the hauling truck as follow: 

W4L: wait for loading      W4D: wait for dumping 

L: loading    D: dumping   

EL: exit-loading zone   ED: exit-dumping zone 

H: hauling    R: return 
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Table 7-4: Duration of states by manual time laps method 

 W4L_Duration W4D_Duration L_Duration EL_Duration H_Duration D_Duration ED_Duration R_Duration Total_Duration 
1 1.7166667 1.6 1.616667 0.15 2.3 0.633333 0.116667 2.75 10.88333333 
2 1.5166667 1.566667 1.083333 0.283333 3.433333 0.65 0.116667 2.066666667 10.71666667 
3 1.8 0.716667 1.083333 0.2 2.616667 0.75 0.15 3.35 10.66666667 
4 1.4833333 1.2 1.583333 0.283333 2.816667 0.716667 0.2 2.716666667 11 
5 1.05 1.433333 1.316667 0.266667 2.966667 0.783333 0.216667 2.983333333 11.01666667 

6 1.2666667 1.783333 1.183333 0.266667 2.35 0.7 0.2 3.35 11.1 
7 1.15 1.4 1.383333 0.216667 2.566667 0.75 0.2 3.716666667 11.38333333 
8 1.4166667 0.55 1.35 0.316667 3.816667 0.8 0.316667 4.016666667 12.58333333 
9 1.05 1.433333 1.6 0.366667 2.516667 0.716667 0.183333 4.183333333 12.05 
10 1.15 1.583333 1.683333 0.316667 2.25 0.816667 0.283333 4.066666667 12.15 

11 1.1166667 1.033333 0.866667 0.433333 3.483333 0.9 0.233333 3.316666667 11.38333333 
12 1.0166667 0.816667 1.383333 0.483333 3.95 0.866667 0.383333 3.65 12.55 
13 0.7833333 1.066667 1.716667 0.25 4.083333 1.233333 0.483333 4.216666667 13.83333333 
14 1.3666667 0.783333 0.85 0.35 4.016667 0.916667 0.4 3.933333333 12.61666667 
15 0.85 1.266667 1.15 0.416667 4.083333 0.883333 0.45 4.1 13.2 

∑ 18.733333 18.46667 19.6 4.833333 47.36667 12.11667 3.75 51.68333333 177.1333333  
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7.1.4 Validation of the Developed Model 

The goal of this step is to examine the developed model’s output efficiency and accuracy. Equation 

7-1, Equation 7-2 and Equation 7-3 were applied for validating the model, where the first equation 

represents the average invalidity percentage (AIP), which expresses the percentage error, in 

another word, the relative difference between the developed model outputs and those of the time 

laps method, which used as a reference. If the AIP value is closer to 0.0, the model is performing 

well and a value closer to 1.0 shows that the model is not appropriate (Zayed and Halpin, 2005).  

AIP = (∑ (1 − |
Mi

Ri
|)n

i=1                                                                                               Equation (7-1) 

AIP % = (∑ (1 − |
Mi

Ri
|) ∗  
100

n

n
i=1                                                                                Equation (7-2) 

AVP % = 100 − AIP %                                                                                            Equation (7-3)   

Where:  

AIP is Average Invalidity Percentage and AVP is Average Validity Percentage  

n is the number of records 

Mi, and Ri  are the output from the model and the corresponding reference output respectively  
 

Table 7-5 shows the average invalidity percentage of the output total duration of each cycle for 

both the model and the manual time laps method. Also, the table identifies the minimum and 

maximum durations from which the management can notice how the change is in duration. The 

hauling and dumping roads were in a good surface condition in the second trip; hence, the 

minimum duration was recognized. Vice versa, the maximum duration was recorded in the 

thirteenth trip; in which the hauling and dumping roads were the ones with bad surface condition. 

The table also shows that the maximum absolute relative error is 3.04%, while the minimum 

absolute relative error as little as 0.16 %. Figure 7-9 shows the total cycle duration for each of the 

fifteen trips; determined by the developed model and those of the recorded time laps method. The 

chart shows approximate coincide between the two methods. 

 



 

171 
 

Table 7-5: Average invalidity percentage of total cycle durations determined by model 

Total Duration (Minutes) 

Model Time Laps AIP 
10.76666667 10.88333333 0.010719755 
10.7 10.71666667 0.00155521 
10.88333333 10.66666667 0.0203125 
10.86666667 11 0.012121212 
11.23333333 11.01666667 0.019667171 
11.2 11.1 0.009009009 
11.18333333 11.38333333 0.017569546 
12.2 12.58333333 0.030463576 
12.08333333 12.05 0.002766252 
11.95 12.15 0.016460905 
11.56666667 11.38333333 0.016105417 
12.38333333 12.55 0.013280212 
13.75 13.83333333 0.006024096 
12.7 12.61666667 0.00660502 
12.96666667 13.2 0.017676768 

      
  AIP (%) 1.335577667 
  AVP (%) 98.66442233 
  Minimum 10.7 
  Maximum 13.75 
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Figure 7-9:  Output from model and time laps method for total duration of each cycle 

The conditions of hauling roads have a considerable influence on the haul and return durations and 

hence the total duration of the earthmoving cycle. As mentioned before; the first five trips were 

utilized the good surface road in haul and return, the second five trips were utilized the good 

condition road in hauling and the bad condition surface road in return and the last five trips were 

utilized the bad condition road in both haul and return. Table 7-6 shows the average invalidity 

percentage of the output hauling and return duration of each cycle for both the model and the 

manual time laps method. Also, the table identifies the minimum and maximum durations from 

which the management can notice how the change is in duration. The minimum hauling and return 

duration were recorded in the first trip, where the hauling and dumping roads were in a good 

surface condition. While the maximum duration was recorded in the thirteenth and fourteenth trip; 

in which the hauling and dumping roads were the ones with adverse surface conditions. The table 

also shows that the maximum absolute relative error is 3.08%, while the minimum absolute relative 

error as little as 0.27 %. Figure 7-10 shows haul and return duration for each of the fifteen trips; 

determined by the developed model and those of the recorded time laps method. The chart shows 
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approximate coincide between the two methods. The table shows as well the average duration of 

hauling and return for each of the three groups in which, the duration is elevated incrementally, as 

the road conditions are of more inferior quality.  

Table 7-6: Average Invalidity Percentage of hauling and return durations determined by model 

Trip Hauling + Return (Minutes) Average 
Model Model Time Laps AIP 

1 4.933333333 5.05 0.02310231 

5.59 
2 5.55 5.5 0.009090909 
3 5.95 5.966666667 0.002793296 
4 5.383333333 5.533333333 0.027108434 
5 6.133333333 5.95 0.030812325 
6 5.733333333 5.7 0.005847953 

6.473333333 
7 6.15 6.283333333 0.021220159 
8 7.65 7.833333333 0.023404255 
9 6.666666667 6.7 0.004975124 
10 6.166666667 6.316666667 0.023746702 
11 7 6.8 0.029411765 

7.746666667 
12 7.433333333 7.6 0.021929825 
13 8.133333333 8.3 0.020080321 
14 8.133333333 7.95 0.023060797 
15 8.033333333 8.183333333 0.018329939 

        
   AIP (%) 1.899427427  
   AVP (%) 98.10057257  
   Minimum 4.933333333  
   Maximum 8.133333333  

Where, 

AIP is average invalidity percentage. 
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Figure 7-10:  Output from model and time laps method for hauling and return durations  

Table 7-7 shows the discrete record of hauling and return durations for each cycle in the three 

groups of the conducted field experiment. Moreover, it shows the average duration of each group. 

This average facilitates the comparison for easier preliminary detection of the trip with a fault that 

produces in increasing the duration. As shown in the table, the model recognizes a stoppage 

throughout hauling state in trip two and eight as well. The model is able to recognize start, end, 

and duration of any stoppage during the operations; furthermore, it recognizes the stoppage 

location. 

Loading efficiency is one of the most influencing factors on productivity of earthmoving 

operations. Defects in loading efficiency are referenced to many factors, i.e., operational skills, 

soil type, and cut depth.   Monitoring the bucket fill factor (BFF) is the direct approach to primarily 

identify any defect to the loading efficiency.  Figure 7-11 shows ascended loading durations and 

corresponding BFF. The chart depicts that; the lesser the efficiency, the longer the loading duration 

and vice versa. Both durations and BFF were used as input variables of a linear regression model 

using Minitab® 17.  
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Table 7-7: Hauling and return duration compared to the average duration under different road conditions 

Cycle Hauling Average Return Average Remarks 
1 2.233333333 

2.863333333 

2.7 

2.726666667 Stoppage through 
hauling (Trip 2) 

2 3.566666667 1.983333333 
3 2.7 3.25 
4 2.75 2.633333333 
5 3.066666667 3.066666667 
6 2.266666667 

2.686666667 

3.466666667 

3.786666667 Stoppage through 
hauling (Trip 8) 

7 2.483333333 3.666666667 
8 3.733333333 3.916666667 
9 2.633333333 4.033333333 
10 2.316666667 3.85 
11 3.633333333 

3.923333333 

3.366666667 

3.823333333   
12 3.816666667 3.616666667 
13 3.983333333 4.15 
14 4.116666667 4.016666667 
15 4.066666667 3.966666667 

 

Figure 7-11:  Ascend loading duration and BFF 

Equation 7-4 shows the linear regression modeling of the relationship between BFF and loading 

duration. 
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BFF = 1.4443 − 0.3876 L_Duration                                                                      Equation (7-4) 

In order to validate the derived relationship between loading efficiency and duration, the regression 

model was used to calculate the predicted BFF for all the given loading durations as shown in 

Table 7-8. The model shows tiny average invalidity of 3.13%. Figure 7-12 shows the model’s 

determined loading durations, corresponding efficiencies and the calculated efficiencies using the 

developed linear regression modeling equation. Moreover, the chart shows the average absolute 

error between developed model results and those of regression model. 

Table 7-8: Validation of loading duration and BFF regression model  

Trip # L_Duration (minutes) BFF Predicted BFF AIP 

2 0.85 1.081309524 1.11484 0.031009 

11 0.933333333 1.115236508 1.08254 0.029318 

14 0.95 1.090244173 1.07608 0.012992 

15 1.05 1.011582328 1.03732 0.025443 

3 1.083333333 1.045090596 1.0244 0.019798 

7 1.266666667 0.928200739 0.95334 0.027084 

6 1.3 0.899941514 0.94042 0.044979 

5 1.383333333 0.937064454 0.90812 0.030888 

8 1.45 0.923005413 0.88228 0.044123 

12 1.483333333 0.855569158 0.86936 0.016119 

1 1.5 0.89538872 0.8629 0.036284 

9 1.533333333 0.896953466 0.84998 0.05237 

13 1.583333333 0.820291781 0.8306 0.012567 

4 1.616666667 0.770840553 0.81768 0.060764 

10 1.616666667 0.796873946 0.81768 0.02611 

  AIP %  3.13231564 
  AVP %  96.86768436 
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Figure 7-12: Loading durations and corresponding efficiencies by model and regression model 

The developed model permits productivity analysis capabilities, where it utilizes planned 

productivity rate as a reference. In a real project, planned rates are organization predetermined; 

usually from preceding practise and historical data of past similar projects. In this case study; due 

to unavailability of historical data, the average productivity rate of the first five trips was 

considered as a planned productivity rate. The developed model measures actual productivity rates 

and then analyses those rates by applying two correlated analysis indices. These indices are 

productivity differential percentage and cumulative productivity differential percentage. American 

Society Testing and Materials (ASTM E2691 - 09) has introduced this index. Equation (7-5) 

illuminates the method of determination of productivity differential. 

    Productivity Differential =  Current Productivity−Av.Productivity
Av.Productivity

                              Equation (7-5)      

 

Table 7-9 shows the measured productivity rates by the developed model and corresponding 

productivity and cumulative productivity differential percentage. Figure 7-13 shows the 
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productivity differential of each cycle independently. The chart shows fluctuated losses in 

productivity. While Figure 7-14 depicts the cumulative productivity differential percentage. The 

chart shows how the percentage of productivity differential was descended starting from the 6th 

cycle. The frequent inclined records of productivity differential percentage address a problem that 

affects production rates. The model has the ability to evaluate these negative variances of 

productivity in near real time and allows web-based visualized representations.   

Table7-9: Evaluation of the influenced productivity using productivity differential index  

Trip 

# 

Productivity 

Rate cm3/min. 

Average 

Productivity Rate 

Productivity 

Differential % 

Cumulative Productivity 

Differential % 

1 75.87682 74.24339 0.022001 0.022001082 

2 71.6166 74.24339 -0.03538 -0.013379706 

3 76.46126 74.24339 0.029873 0.016493272 

4 72.86926 74.24339 -0.01851 -0.002015172 

5 74.393 74.24339 0.002015 -7.6588E-16 

6 68.74543 74.24339 -0.07405 -0.074053175 

7 69.42314 74.24339 -0.06492 -0.138978101 

8 66.19916 74.24339 -0.10835 -0.247327556 

9 67.84835 74.24339 -0.08614 -0.333463644 

10 66.40674 74.24339 -0.10555 -0.439017161 

11 65.80538 74.24339 -0.11365 -0.552670481 

12 64.68586 74.24339 -0.12873 -0.681402815 

13 57.73363 74.24339 -0.22237 -0.903776318 

14 63.84796 74.24339 -0.14002 -1.043794556 

15 61.43607 74.24339 -0.1725 -1.216299022 
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Figure 7-13:  Model’s calculated percentage of productivity differential for each cycle 

 

Figure 7-14:  Model’s calculated cumulative productivity differential for each cycle 
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7.2 Web-based Near-Real-Time Monitoring 

The developed productivity measurement and analysis model guarantees a fully automated 

application for acquiring and processing raw data to achieve meaningful information. As big as 

the project as gigantic as the acquired raw data and hence the proposed meaningful information. 

Tabulation is the common routine for simplifying the representation of the derived information 

that needed for proper management practice. Since this information has an infinite value and it 

considers the common denominator in successful delivery of projects, it should be accessible in a 

stress-free interpreted and timely manner. Therefore, the usual reporting even from an automated 

model through tabulating the significant outputs; is not the appropriate practice. In other words, a 

bunch of information in the form of tabulated numerical records could consume considerable time 

and it is still subjected to misinterpretation. The best practice to avoid these risks is the visualized 

representation of the required information. Therefore, collaborative productivity measurement and 

analysis data monitoring, representation and sharing web-based platform was developed. 

This model exploits both the power and flexibility of the developed MySQL database in addition 

to Knowi® representation and analytics abilities. Knowi is an integrated analytics platform built 

for modern data stacks. Knowi data management and analytics engine is capable of dealing with 

both structured and unstructured data alike. The developed system is mainly processing the raw 

data in a developed MySQL in the cloud database. Then, near real-time, monitoring not only 

measurement and analysis results for each cycle but also road and driving condition analysis can 

be accessed in Knowi platform through any internet browser. Figure 7-15 depicts the framework 

of the web-based monitoring system schematically. 

Web-based productivity monitoring through Knowi provides an efficient collaborating 

environment for tracking productivity and causes behind its variations. It also generates a pre-

customized timely distribution of productivity and progress reports. Hourly, daily, weekly and to 

date reports can be sent by emails in a pre-determined time instants to one or more project 

management team members.     
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Figure: 7-15: Schematic framework of the web-based monitoring system  

7.2.1 Web-based Productivity Monitoring 

However, analytics tools in Knowi are customizable to satisfy management needs, it provides 

artificial intelligence capabilities, i.e. natural language queries. The web-based intelligent engine 

allows friendly non-programming specialist user’s inquiries using natural language. Figure 7-16 

shows an example of utilizing natural language queries. In addition, the data analytics and 

representation platform can generate predesignated trigger notifications; hence, it allows users to 

set triggers on any data to drive an action including email alerts to trigger actions in downstream 

applications. 
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Figure 7-16: Example of utilizing natural language queries in the web-based platform 

 

7.2.2 Web-based Road Conditions Monitoring 

Interactive road condition interactive charts in which a computer mouse tick on a recognized road 

anomaly (bump or rut) that are shown in the chart, directs the user to a geo-spatiotemporal 

representation of that anomaly. A bump and successive rut and bump are identified in road 

condition analysis chart as shown in Figure 7-17, a and b respectively. While Figure 7-18, a and b 

shows the geo-spatiotemporal representation of the identified bump and rut respectively; showing 

both location and time of detection on the map. 
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(a) Bump identification 

 
(b) Successive rut and bump identification 

Figure 7-17: Web-based identification of bumps and ruts 

 

 
(a) Bump location representation 

 
(b) Rut location representation 

Figure 7-18 : Web-based spatiotemporal representation of bumps and ruts 
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7.3 Summary 

This chapter introduces the validation of the developed model for automated productivity 

measurement and analysis of earthmoving operations. A pre-designed case study was used to 

reveal the applicability and accuracy of the developed model in measuring, monitoring and 

analyzing actual productivity. The model was validated using two integrated phase’s case study; 

the first phase utilized 1:24 loader and dumping truck. The second phase was a field experimental 

simulation of earthmoving operations. The loading and dumping data were retrieved from the first 

phase while all the other operational states of the hauling truck were extracted from the second 

phase. The data from both two phases was processed in the designed MySQL database. Results 

were drawn and discussed to shed lights on the model’s applicability, validity and capabilities . 

The developed model demonstrated to measure actual productivity in an accurate manner, in 

addition to the timely recognition of undesired variances in productivity. A web-based platform 

was utilized to allow near real-time graphical representation of the model’s outputs.  
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8 Chapter 8: Conclusions and Future Work 

8.1 Summary and Conclusions 

This research incorporating many objectives to automate data acquisition, productivity tracking 

and monitoring efficiently. These objectives were to study, design and develop a customized data 

acquisition model with automated measurement and analysis capabilities that satisfy the needs of 

earthwork projects. This research has a special focus on profiting from the advancement in wireless 

sensing technologies, artificial intelligence techniques, and the Internet of Things (IoT) to deliver 

near real-time tracking and monitoring of productivity and performance of earthmoving 

operations. This research presented three integrated models for cost-effective smart productivity 

monitoring, measurement, assessment and analysis of earthwork projects. The models were 

developed sequentially, whereas the utilized data acquisition module was configured in a 

customized manner to collect the necessary data. Then, the collected data streamed to a designated 

MySQL database that applies data fusion and mining algorithms in the form of encoding MySQL 

procedures. It is worthy to mention that the developed data acquisition model was customized to 

serve earthmoving operations and highway construction projects, while it could serve other 

construction projects, i.e., dams. 

This customized data acquisition module consists of a microcontroller equipped with a several 

types of selected sensors. The selection of sensors was based on fuzzy-set based analysis of 

experts’ responses to a questionnaire. This questionnaire was designed to poll experts’ evaluation 

of different influencing factors contained in literature and basic references in earthmoving and 

equipment management i.e., Peuifoy and Schexnayder, Day and Benjamin, and Nunnally. Based 

on the questionnaire analysis, the selected sensors were GPS module as well as a collection of 

sensors such as load cell, 3D accelerometer, soil water content, temperature, and humidity sensor. 

The developed model for customizing the configurations of data acquisition systems overcomes 

not only limitations of the common utilized standalone GPS but also eliminates the subjectivity 

associated in customization process. The collected data from the aforementioned model is the input 

for the automated productivity measurement, driving, and road condition analysis model. This 

model applies the data fusion algorithm that improves productivity measurement and analysis, as 

it guarantees the benefit of all the acquired data. The developed model for productivity analysis of 
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earthmoving operations aims at integrating the superior sensing technologies along with artificial 

intelligence techniques to develop a fully automated productivity analysis model that tracks the 

adverse factors and flags any productivity deficiency in a timely manner. Also, the developed 

productivity measurement and analysis models have high potential applicability in various types 

of construction projects. A web-based monitoring platform was developed using cloud-based 

integration of the developed database and Knowi® analytics. The developed web-based platform 

allows near real-time graphical representation of the output from the developed models for 

productivity measurement and analysis.  

8.2 Contributions 

The contributions of this research are projected to overcome a number of gaps associated with 

existing automated site data acquisition systems and current practice in measuring, tracking and 

analyzing the productivity of earthmoving operations. The research contributions can be concluded 

as follow: 

 Study, identify, evaluate and prioritize factors influencing the productivity of earthmoving 

operations in order to consider that in customizing the configuration of data acquisition 

systems. 

 Develop a systematic method for customizing the configuration of data acquisition systems 

for earthmoving operations. This method eliminates the subjectivity associated with 

customizing the configurations of data acquisition systems.  

 Develop a customized, cost-effective automated data acquisition system utilizes cutting-

edge, innovative sensing and communication technologies. The developed systematic 

customization model guarantees flexibility that could serve other applications in 

construction (e.g., safety and collision detection in job sites).  

 Develop a web-based monitoring platform that guarantees appropriate graphical 

representation for monitoring productivity of earthmoving operations in near real-time. 

Automate the productivity measurement and analysis process using data mining, fusion 

algorithms; providing fast, robust and truthful outcomes.  

 Consider the uncertainty associated with weather condition sensors reading by integrating 

weather API calls, which guarantee redundancy through another truthful source of data.  
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 Examine how embracing the technological revolution can positively impact a vital key 

activity in construction like earthmoving operations. 

 Develop cost-effective machine-based instead of the common conventional expensive 

human-based to measure and analyze productivity of earthmoving operations. 

8.3 Limitations 

 The data related to planned quantities and productivity rates have to be provided manually 

into the developed database. 

 The developed models supposed to be applied on adequately planned earthmoving 

operations only, where a balanced number of trucks that guarantee efficient operations was 

determined. 

 The developed models were validated using a laboratory, scaled and real field experiments.  

8.4 Recommendations for Future Work 

A methodology and a computational procedure for customized configuration of data 

acquisition systems in earthmoving operations, and automated productivity measurement and 

analysis were presented in this study. The developed model and the computational platform 

are flexible to be applied to other domains of construction projects. However, the expansion of 

the model’s potential applications could benefit from the following recommendations for 

future research work: 

 Validating the model using a real case study. 

 Promoting the model’s applicability to embrace other applications in the construction 

industry. 

 Linking the productivity analysis model with computerized planned quantities and duration 

extractor such as BIM 360 Field. 

 Integrating machine learning software, i.e., Matlab with the developed MySQL database 

to permit further automated analysis capabilities. 
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Appendix I 

Survey of Major Factors Influencing Earthmoving Operations Productivity 
Contractors are routinely utilizing heavy construction equipment in earthmoving operations and 
road construction. Economical utilization of these equipment has a great impact on the 
contractor’s profitability. Several factors can impact the productivity and cost of earthmoving 
operations such as the machine utilization, fuel consumption, labor, and soil properties. 
This survey aims to examine some of these factors and to identify their impact on earthmoving 
operation productivity and profitability. In addition, it explores some of the problems contractors 
can run into and look for early warning signs that can pin points to the underlying issues. The 
report that is generated from the results of this survey will seek to recommend best practices 
contractors can adopt in order to maximize their chances of delivering effective and efficient 
earthmoving projects. 
This research is conducted at Concordia University, Montreal, Quebec, Canada. Any data 
obtained will not be used for either commercial purposes or made available to third party. The 
results from this study will be available to all participants. 
 
The following scheme explains the utilized scale, please make you respond on each question 
according to this scale unless otherwise mentioned. 
 

 
Fuzzy linguistic-Numeric conversion scheme 

 
1. Which of the following best describes your job title? 
Mark only one oval. 

o Project manager  
o Construction manager  
o Site engineer  

o Foreman  

o Operator  

o Academic staff  

o Other:  
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2. How many years of experience do you have in Earthmoving / Highways construction 
projects? 
Mark only one oval. 

o Less than 5 years  
o 5 - 10 years  
o 10 - 15 years  

o More than 15 years  

3. Where are you located? 

 
4. What is the annual volume of your business in construction projects? 
Mark only one oval. 

o Less than $100 Million  
o $100 - $250 Million  
o $2500 - $500 Million  

o More than $500 Million  

5. With respect to soil properties, Please weigh the influence of the following factors on 
the productivity of earthmoving operations. 
Mark only one oval per row. 

 No effect Minor 
effect 

Moderate 
effect High effect Extreme 

effect 

Loadability          (A 
measure of the 
difficulty in 
excavating and 
loading a soil) 

     

Moisture Content 
(Water content in 
soil) 

     

Swelling 
factor     (The 
percentage of 
increase in the 
volume) 

     

Compactability   (The 
ability of soil to be 
compacted) 

     



 

201 
 

 No effect Minor 
effect 

Moderate 
effect High effect Extreme 

effect 

Soil weight      
Others (specify 
below)      

Please enter one response per row 

 
6. The condition of access roads to loading or dumping site can influence the productivity 
of earth-moving operations, rate on a scale from 1-5 the influence of the following access 
road conditions: 
Mark only one oval per row. 

 No effect Minor effect Moderate 
effect High effect Extreme 

effect 

Loosely soil 
road      

Rutty road      

Congested road      
Road with up or 
downhills      

Muddy road      

Snowy road      
Others (specify 
below)      

Please enter one response per row 

 
7.Wheel slippage is an undesirable phenomenon which results in loss of traction Please, 
evaluate the following conditions that could lead to wheel slippage. 
Mark only one oval per row. 

 No effect Minor effect Moderate 
effect High effect Extreme 

effect 

Loosely soil 
road      

Road with up or 
downhills      

Muddy road      
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 No effect Minor effect Moderate 
effect High effect Extreme 

effect 

Snowy road      

Excessive loads      

Operator skills      

Tire pressure      
Others (specify 
below)      

Please enter one response per row 

 
8. The bucket fill factor significantly affects the productivity of earthmoving operations. 
Please, in the light of your experience, evaluate the following factors that affect the buck 
fill factor. 
Mark only one oval per row. 

 No effect Minor effect Moderate 
effect High effect Extreme 

effect 

Soil hardness      
Change of cut 
depth      

Operator skills      
Excavated soil 
particle size      

Power of 
machine      

Others (specify 
below)      

Please enter one response per row 
9. The fuel consumption efficiency of the machine; directly affects the operational 
cost.Please, based on your experience, evaluate the following factors that could cause low 
fuel consumption efficiency. 
Mark only one oval per row. 

 No effect Minor effect Moderate 
effect High effect Extreme 

effect 

Tire pressure      
Age of 
equipment      
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 No effect Minor effect Moderate 
effect High effect Extreme 

effect 

Operator skills      

Excessive loads      

Wind resistance      
Bad road 
conditions      

Cold weather      
Frequent short 
trips      

Wheel slippage 
and excessive 
turk 

     

Engine tuning / 
maintenace      

Others (specify 
below)      

Please enter one response per row 

 
There are three operation zones (power zone, slow speed zone and high speed zone), In 
the power zone, maximum power is required to overcome adverse site such as rough 
terrain or steep slopes. The slow-speed hauling zone is similar to the power zone since 
power, more than speed, is the essential factor. Site conditions are slightly better than in 
the power zone, and the haul distance is short. In the high-speed hauling zone, the ground 
conditions are good, longer, or well-maintained haul roads are established.  
10. In the light of the above mentioned definition of the operating zones and depending 
on various conditions (e.g. the ground condition, hauling travel distance and grade 
resistance), the operator have to choose the relevant appropriate gear speed. Please, 
evaluate the impact of inappropriate choice of operation zones for the following cases 
Mark only one oval per row. 

 No effect Minor effect Moderate 
effect High effect Extreme 

effect 

Using gear 
speed lower 
than the 
appropriate 

     

Using gear 
speed higher      
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 No effect Minor effect Moderate 
effect High effect Extreme 

effect 

than the 
appropriate 

Please enter one response per row 
11. Operation cycle time is the period required to complete one cycle. Weigh the factors 
that could improve the operation cycle time 
Mark only one oval per row. 

 No 
importance 

Low 
importance 

Moderate 
importance 

High 
importance 

Extreme 
importance 

Least waiting 
durations      

Considering 
equipment 
balance 

     

Skilled drivers 
and operators      

Strict 
supervision      

Good road 
conditions      

Others (specify 
below)      

Please enter one response per row 

 
12. What is the impact of increasing the cycle time on the productivity of Earth-moving 
operations in case of the following cases? 
Mark only one oval per row. 

 No impact Low 
impact Moderate impact High 

impact Extreme impact 

+5 % of the 
planned 
duration 

     

+10 % of the 
planned 
duration 

     

+15 % of the 
planned 
duration 
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 No impact Low 
impact Moderate impact High 

impact Extreme impact 

+20 % of the 
planned 
duration 

     

+25 % of the 
planned 
duration 

     

Please enter one response per row 
13. Please, evaluate the impact of the following weather conditions on the productivity of 
Earth-moving operations 
Mark only one oval per row. 

 No effect Minor effect Moderate 
effect High effect Extreme 

effect 

Rain      

Humidity      

Wind      

Temperature      

Fog      

Sun shine      
Others (specify 
below)      

Please enter one response per row 

 
14. Most crafts do not work in the rain, but many do. Up which level of rain quantity the 
work in different operations may not be stopped? 
Mark only one oval per row. 

 Up to 5 mm 5 - 10 mm 10 - 15 mm 15 - 20 mm More than 
20 mm 

Loading      

Travel / Return      

Dump      
Please enter one response per row 
15. Please, assess the influence of rain on the productivity (reduction) for the following 
rain records. 
Mark only one oval per row. 
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 No effect Minor effect Moderate 
effect High effect Extreme 

effect 

Less than 5 mm      

5 - 10 mm      

10 - 15 mm      

15 - 20 mm      
More than 20 
mm      

Others (specify 
below)      

Please enter one response per row 

 
16. Different regions and locations around the world have different amounts of daylight 
hours, depending on the season. Please, assess the influence of the seasonal daylight 
duration on the productivity. 
Mark only one oval per row. 

 No effect Minor effect Moderate 
effect High effect Extreme 

effect 

Fall      

Winter      

Spring      

Summer      
Please enter one response per row 
17.There are many factors related to labors which may affect the productivity Please, 
evaluate the impact of the following factors on the productivity of Earth-moving 
operations 
Mark only one oval per row. 

 No effect Minor effect Moderate 
effect High effect Extreme 

effect 

Over time      

Absenteeism      

Learning curve      
Moral and 
attitude      
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 No effect Minor effect Moderate 
effect High effect Extreme 

effect 

Fatigue      
Others (specify 
below)      

Please enter one response per row 

 
18. What is the usual percentage of workers in Earth-moving operations (e.g. operators) 
who are motivated to work overtime? 
Mark only one oval. 

o Less than 25 %  
o 25 - 50 %  

o 50 - 75 %  
o More than 75 %  

19. Please, evaluate the impact of overtime on productivity (e.g. reduction in 
productivity) in the following numbers of overtime hours. 
Mark only one oval per row. 

 No impact Minor 
impact 

Moderate 
impact High impact Extreme 

impact 

2 Hrs/day      

4 Hrs/day      

6 Hrs/day      

8 Hrs/day      
Please enter one response per row 
20. What are the other factors that might impact the productivity of Earth-moving 
operations? Please, evaluate these factors on the same shown scale. 
  
  

Appendix II 

Generic databases for weather conditions and forecast 
 
Example of API respond: 
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{"coord": 

{"lon":145.77,"lat":-16.92}, 

"weather":[{"id":803,"main":"Clouds","description":"broken 

clouds","icon":"04n"}], 

"base":"cmc stations", 

"main":{"temp":293.25,"pressure":1019,"humidity":83,"temp_min":289.82,"temp_m

ax":295.37}, 

"wind":{"speed":5.1,"deg":150}, 

"clouds":{"all":75}, 

"rain":{"3h":3}, 

"dt":1435658272, 

"sys":{"type":1,"id":8166,"message":0.0166,"country":"AU","sunrise":143561079

6,"sunset":1435650870}, 

"id":2172797, 

"name":"Cairns", 

"cod":200} 

Parameters: 

 coord  
 coord.lon City geo location, longitude 
 coord.lat City geo location, latitude 

 weather (more info Weather condition codes)  
 weather.id Weather condition id 
 weather.main Group of weather parameters (Rain, Snow, Extreme etc.) 
 weather.description Weather condition within the group 
 weather.icon Weather icon id 

 base Internal parameter  
 main  

 main.temp Temperature. Unit Default: Kelvin, Metric: Celsius, Imperial: 
Fahrenheit.  

 main.pressure Atmospheric pressure (on the sea level, if there is no sea_level or 
grnd_level data), hPa 

 main.humidity Humidity, % 
 main.temp_min Minimum temperature at the moment. This is deviation from 

current temp that is possible for large cities and megalopolises geographically 
expanded (use these parameter optionally). Unit Default: Kelvin, Metric: Celsius, 
Imperial: Fahrenheit. 

 main.temp_max Maximum temperature at the moment. This is deviation from 
current temp that is possible for large cities and megalopolises geographically 
expanded (use these parameter optionally). Unit Default: Kelvin, Metric: Celsius, 
Imperial: Fahrenheit. 

 main.sea_level Atmospheric pressure on the sea level, hPa 
 main.grnd_level Atmospheric pressure on the ground level, hPa 

 wind  
 wind.speed Wind speed. Unit Default: meter/sec, Metric: meter/sec, Imperial: 

miles/hour. 
 wind.deg Wind direction, degrees (meteorological) 

 clouds  
 clouds.all Cloudiness, % 
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 rain  
 rain.3h Rain volume for the last 3 hours 

 snow  
 snow.3h Snow volume for the last 3 hours 

 dt Time of data calculation, unix, UTC  
 sys  

 sys.type Internal parameter 
 sys.id Internal parameter 
 sys.message Internal parameter 
 sys.country Country code (GB, JP etc.) 
 sys.sunrise Sunrise time, unix, UTC 
 sys.sunset Sunset time, unix, UTC 

 id City ID  
 name City name  
 cod Internal parameter  

https://openweathermap.org/current 

 

 

 

 

 

 

 

 

 

Appendix III 

Several programming syntaxes for different utilized sensors 
 

A. Recorddind different sensor data to SD card 
// variables 
float temp = 0.0; 

https://openweathermap.org/current
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int light = 0; 
i // Put your libraries here (#include ...) 
#include <WaspSensorAgr_v20.h> 
#include <WaspGPS.h> 
// define GPS timeout when connecting to satellites 
// this time is defined in seconds (240sec = 4minutes) 
#define TIMEOUT 10 
// define status variable for GPS connection 
bool status; 
float value_light; 
float value_hum; 
float value_temp; 
// define file name: MUST be 8.3 SHORT FILE NAME 
char filename[]="OUTPUT.csv"; 
// define variable 
uint8_t sd_answer; 
void setup() { 
    // put your setup code here, to run once: 
 // Turn on the USB and print a start message 
  USB.ON(); 
  USB.println(F("start")); 
  delay(100); 
  // Turn on the sensor board 
  SensorAgrv20.ON(); 
  // Turn on the RTC 
  RTC.ON(); 
  SD.ON(); 
    // Delete file 
  sd_answer = SD.del(filename); 
  if( sd_answer == 1 ) 
  { 
    USB.println(F("file deleted")); 
  } 
  else  
  { 
    USB.println(F("file NOT deleted"));   
  } 
   
  // Create file 
  sd_answer = SD.create(filename); 
   
  if( sd_answer == 1 ) 
  { 
    USB.println(F("file created")); 
  } 
  else  
  { 
    USB.println(F("file NOT created"));   
  }  
  // Set GPS ON   
  GPS.ON();   
   
} 
 
void loop() { 
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    /////////////////////////////////////////////////// 
  // 1. wait for GPS signal for specific time 
  /////////////////////////////////////////////////// 
  status = GPS.waitForSignal(TIMEOUT); 
   
  if( status == true ) 
  { 
//    USB.println(F("\n----------------------")); 
    USB.println(F("Connected")); 
//    USB.println(F("----------------------")); 
  } 
  else 
  { 
 //   USB.println(F("\n----------------------")); 
    USB.println(F("GPS TIMEOUT. NOT connected")); 
//    USB.println(F("----------------------")); 
  } 
   
  //*********************************** 
//  USB.print(RTC.getTime()); 
 // Part 1: Sensor reading 
  // Turn on the sensor and wait for stabilization and response time 
  SensorAgrv20.setSensorMode(SENS_ON, SENS_AGR_HUMIDITY); 
//  delay(1000); 
   
  // Read the humidity sensor  
  value_hum = SensorAgrv20.readValue(SENS_AGR_HUMIDITY); 
   
  // Turn off the sensor 
  SensorAgrv20.setSensorMode(SENS_OFF, SENS_AGR_HUMIDITY); 
   
  // Part 2: USB printing 
  // Print the humidity value through the USB 
//  USB.print(F("Humidity: ")); 
//  USB.print(value_hum); 
//  USB.println(F("%RH")); 
   
 // delay(1000); 
  //------------ 
 SensorAgrv20.setSensorMode(SENS_ON, SENS_AGR_LDR); 
 // delay(100); 
   
  // Read the LDR sensor  
  value_light = SensorAgrv20.readValue(SENS_AGR_LDR); 
   
  // Turn off the sensor 
  SensorAgrv20.setSensorMode(SENS_OFF, SENS_AGR_LDR); 
   
  // Part 2: USB printing 
  // Print the LDR value through the USB 
//  USB.print(F("Luminosity: ")); 
//  USB.print(value_light); 
//  USB.println(F("V")); 
   
//  delay(1000); 
  //----------- 
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   // Part 1: Sensor reading 
  // Turn on the sensor and wait for stabilization and response time 
  SensorAgrv20.setSensorMode(SENS_ON, SENS_AGR_TEMPERATURE); 
///  delay(100); 
   
  // Read the temperature sensor  
  value_temp = SensorAgrv20.readValue(SENS_AGR_TEMPERATURE); 
   
  // Turn off the sensor 
  SensorAgrv20.setSensorMode(SENS_OFF, SENS_AGR_TEMPERATURE); 
   
  // Part 2: USB printing 
  // Print the temperature value through the USB 
//  USB.print(F("Temperature: ")); 
//  USB.print(value_temp); 
//data = RTC.getTime() + "," + value_temp + "," + value_hum + "," + value_light; 
//USB.print(RTC.getTime()); 
//USB.print(F(",")); 
//USB.print(value_temp); 
//USB.print(F(",")); 
//USB.print(value_hum); 
//USB.print(F(",")); 
//USB.println(value_light); 
 // define local buffer for float to string conversion 
  char str_value_temp[10]; 
  char str_value_hum[10]; 
  char str_value_light[10];   
  char NS_ind = GPS.NS_indicator; 
  char str_NS_ind[1]; 
  snprintf( str_NS_ind, sizeof(str_NS_ind),"%c", NS_ind); 
 
  char EW_ind = GPS.EW_indicator; 
  char str_EW_ind[1]; 
  snprintf( str_EW_ind, sizeof(str_EW_ind),"%c", EW_ind); 
   
  // use dtostrf() to convert from float to string:  
  // '1' refers to minimum width 
  // '3' refers to number of decimals 
  dtostrf( value_temp, 1, 3, str_value_temp); 
  dtostrf( value_hum, 1, 3, str_value_hum); 
  dtostrf( value_light, 1, 3, str_value_light); 
// 1 - It appends “he” in file indicating 2-byte length 
//  sd_answer = SD.append(filename, RTC.getTime()); 
if( status == true ) 
  { 
 // sd_answer = SD.append(filename, GPS.dateGPS); 
  sd_answer = SD.append(filename, ","); 
//  sd_answer = SD.append(filename, GPS.timeGPS); 
  sd_answer = SD.append(filename, ","); 
//  sd_answer = SD.append(filename, GPS.latitude); 
  sd_answer = SD.append(filename, ","); 
//  sd_answer = SD.append(filename, str_NS_ind); 
  sd_answer = SD.append(filename, ","); 
//  sd_answer = SD.append(filename, GPS.longitude); 
  sd_answer = SD.append(filename, ","); 
 // sd_answer = SD.append(filename, str_EW_ind); 
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  sd_answer = SD.append(filename, ","); 
 // sd_answer = SD.append(filename, GPS.altitude); 
  sd_answer = SD.append(filename, ","); 
 // sd_answer = SD.append(filename, GPS.speed); 
  sd_answer = SD.append(filename, ","); 
 // sd_answer = SD.append(filename, GPS.course); 
  sd_answer = SD.append(filename, ","); 
} 
  sd_answer = SD.append(filename, str_value_temp); 
  sd_answer = SD.append(filename, ","); 
  sd_answer = SD.append(filename, str_value_hum); 
  sd_answer = SD.append(filename, ","); 
  sd_answer = SD.append(filename, str_value_light);   
  sd_answer = SD.append(filename, "\n");   
 
  if( sd_answer == 1 ) 
  { 
    USB.println(F("\n1 - append \"he\" in file indicating 2-byte length")); 
  } 
  else 
  { 
    USB.println(F("\n1 - append error")); 
  } 
   
  // show file 
  SD.showFile(filename); 
   
//USB.println(F("ºC")); 
   
  delay(1000); 
} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B. Sending GPS reading to Meshlium gateway via Wi-Fi 
 
#include <WaspFrame.h> 
#include <WaspGPS.h> 
#include <WaspWIFI.h> 
// Define GPS timeout when connecting to satellites 
// this time is defined in seconds (240sec = 4minutes) 
#define TIMEOUT 240 
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// WiFi AP settings (CHANGE TO USER'S AP) 
///////////////////////////////// 
char ESSID[] = "libelium_AP"; 
char AUTHKEY[] = "password"; 
///////////////////////////////// 
// MESHLIUM settings 
/////////////////////////////////////////////////////////////// 
char ADDRESS[] = "10.10.10.1"; 
int REMOTE_PORT = 80; 
/////////////////////////////////////////////////////////////// 
// Define status variable for GPS connection 
bool status; 
// Variable to store sleeping period. Format DD:HH:MM:SS 
char sleepTime[] = "00:00:00:10";  
// Variable to store data to be sent 
char data[200]; 
void setup() 
{ 
  // 0. Init USB port for debugging 
  USB.ON(); 
  USB.println(F("C_11 Example")); 
 
  //////////////////////////////////////////////// 
  // 1. Initial message composition 
  //////////////////////////////////////////////// 
  // 1.1 Set mote Identifier (16-Byte max) 
  frame.setID("WASPMOTE_001");  
  // 1.2 Create new ASCII frame 
  frame.createFrame(ASCII);   
  // 1.3 Set frame fields (String - char*) 
  frame.addSensor(SENSOR_STR, (char*) "C_11 Example"); 
  // 1.4 Print frame 
  frame.showFrame(); 
  //////////////////////////////////////////////// 
  // 2. Send initial message 
  //////////////////////////////////////////////// 
  USB.println(F("Turning WIFI module ON")); 
  // 2.1 Switch on the WIFI module on the desired socket. 
  WIFI.ON(SOCKET0); 
  // 2.2 Configure the transport protocol (UDP, TCP, FTP, HTTP...) 
  WIFI.setConnectionOptions(HTTP|CLIENT_SERVER);   
  // 2.3 Configure the way the modules will resolve the IP address. 
  WIFI.setDHCPoptions(DHCP_ON);  
  // 2.4 Configure how to connect the AP  
  WIFI.setJoinMode(MANUAL);    
  // 2.5 Set the AP authentication key 
  WIFI.setAuthKey(WPA1, AUTHKEY);   
  // 2.6 Save current configuration 
  WIFI.storeData(); 
  // 2.7 Power off WIFI module 
  WIFI.OFF(); 
} 
 
void loop() 
{ 
  //////////////////////////////////////////////// 
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  // 3. Measure corresponding values 
  //////////////////////////////////////////////// 
  USB.println(F("Obtaining GPS data...")); 
  // 3.1 Set GPS ON   
  GPS.ON();   
  /////////////////////////////////////////////// 
  // 3.2 Wait for GPS signal 
  /////////////////////////////////////////////// 
  status = GPS.waitForSignal(TIMEOUT); 
  if( status == true ) 
  { 
    USB.println(F("\n----------------------")); 
    USB.println(F("Connected")); 
    USB.println(F("----------------------")); 
  } 
  else 
  { 
    USB.println(F("\n----------------------")); 
    USB.println(F("GPS TIMEOUT. NOT connected")); 
    USB.println(F("----------------------")); 
  } 
  /////////////////////////////////////////////// 
  // 4. Message composition 
  //////////////////////////////////////////////// 
  // 4.1 Set mote Identifier (16-Byte max) 
  frame.setID("WASPMOTE_001");  
  // 4.2 Create new frame 
  frame.createFrame(ASCII);   
  // 4.3 if GPS is connected then get position 
  if( status == true ) 
  { 
    // getPosition function gets all basic data  
    GPS.getPosition();    
    USB.print("Latitude (degrees):"); 
    USB.println(GPS.convert2Degrees(GPS.latitude, GPS.NS_indicator)); 
    USB.print("Longitude (degrees):"); 
    USB.println(GPS.convert2Degrees(GPS.longitude, GPS.EW_indicator)); 
    // add frame fields 
    frame.addSensor(SENSOR_GPS,  
    GPS.convert2Degrees(GPS.latitude, GPS.NS_indicator), 
    GPS.convert2Degrees(GPS.longitude, GPS.EW_indicator) ); 
  } 
  else 
  {     
    // add frame fields 
    frame.addSensor(SENSOR_STR,"GPS not connected"); 
  } 
  // 4.4 Print frame 
  // Example: <=>\0x80\0x03#35689884#WASPMOTE_001#... 
  frame.showFrame(); 
  //////////////////////////////////////////////// 
  // 5. Send message 
  //////////////////////////////////////////////// 
  USB.println(F("Turning WIFI module ON")); 
  // 5.1 Switch on the WIFI module on the desired socket. 
  WIFI.ON(SOCKET0); 
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  if (WIFI.join(ESSID))  
  { 
    USB.println(F("Joined AP")); 
    status = WIFI.sendHTTPframe(IP,ADDRESS, REMOTE_PORT, frame.buffer, frame.length);   
    if( status == 1) 
    { 
      USB.println(F("\nHTTP query OK.")); 
      USB.print(F("WIFI.answer:")); 
      USB.println(WIFI.answer);   
      /* 
      * At this point, it could be possible 
       * to parse the web server information 
       */ 
    } 
    else 
    { 
      USB.println(F("HTTP query ERROR")); 
    }      
  }  
  else 
  { 
    USB.println(F("NOT joined")); 
  } 
  // 5.2 Power off WIFI module 
  WIFI.OFF(); 
  //////////////////////////////////////////////// 
  // 6. Entering Deep Sleep mode 
  //////////////////////////////////////////////// 
  USB.println(F("Going to sleep...")); 
  USB.println(); 
  PWR.deepSleep(sleepTime, RTC_OFFSET, RTC_ALM1_MODE1, ALL_OFF); 
  USB.ON(); 
  USB.println(F("wake")); 
} 
 
 
 
 
 
 
 

Appendix IV 

A. Developed MySQL Database Structure Plan 
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B. Developed MySQL Database Procedures 
Procedure Name FindZone_new 

Description Fill GPS table with the zone from polygons table  

 

DELIMITER $$ 
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CREATE DEFINER=`root`@`localhost` PROCEDURE `FindZone_new`() 
begin 
    -- Variables to hold values from the communications table 
    declare Latt double; 
    declare Longt double; 
    declare Pointt varchar(100); 
    declare tt varchar(100); 
    declare tc integer; 
    declare currentzone varchar(4); 
    declare previouszone varchar(4); 
    declare Zone1 varchar(4); 
 declare Zone2 varchar(4); 
    -- Variables related to cursor: 
--    1. 'done' will be used to check if all the rows in the cursor were read 
    --    2. 'curComm' will be the cursor: it will fetch each row 
    --    3. The 'continue' handler will update the 'done' variable 
    declare done int default false; 
    declare curComm cursor for 
        select LongitudeD, LatitudeD,Time from gps1;  
-- This is the query used by the cursor. 
    declare continue handler for not found  
-- This handler will be executed if no row is found in the cursor (for example, if all rows were 
read). 
        set done = true; 
 
 -- Open the cursor: This will put the cursor on the first row of its 
 -- rowset. 
    set tc=1; 
    set zone1='X'; 
    open curComm; 
     
    -- Begin the loop (that 'loop_comm' is a label for the loop) 
    loop_comm: loop 
        -- When you fetch a row from the cursor, the data from the current 
        -- row is read into the variables, and the cursor advances to the 
        -- next row. If there's no next row, the 'continue handler for not found' 
        -- will set the 'done' variable to 'TRUE' 
        fetch curComm into LongT, Latt, tt; 
        -- Exit the loop if you're done 
        if done then 
            leave loop_comm; 
        end if; 
    
           SET pointt = CONCAT('POINT(',Latt,' ',LongT,')');  
        set zone2= ifnull((SELECT location FROM polygons WHERE 
MBRContains(polygon_data,GeomFromText(pointt)) AND 
point_inside_polygon(Latt,LongT,ASTEXT(polygon_data))),"R");  
                      
        if zone2=zone1 then set currentzone=previouszone; 
        elseif concat(zone1,zone2) = 'XL' then set currentzone = concat('L',tc); 
        elseif concat(zone1,zone2) = 'LR' then set currentzone = concat('R',tc,'LD'); 
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        elseif concat(zone1,zone2) = 'RD' then set currentzone = concat('D',tc); 
        elseif concat(zone1,zone2) = 'DR' then set currentzone = concat('R',tc,'DL'); 
        else set currentzone = concat('L',tc+1); 
        end if; 
             
            update gps1 set zone = currentzone where time = tt; 
             
              if concat(zone1,zone2) = 'RL' then set tc=tc+1; 
     end if; 
               
   set zone1=zone2; 
   set previouszone=currentzone; 
    
     end loop; 
     
    close curComm; 
end$$ 
DELIMITER ; 
 

Procedure Name Fill_Acc_Zones 

Description Fill acceleration table with the missing data due to frequency differences 

 
DELIMITER $$ 
CREATE DEFINER=`root`@`localhost` PROCEDURE `Fill_Acc_zones`() 
begin 
    -- Variables to hold values from the communications table 
    declare Rowid integer; 
    declare Zonee varchar(20); 
    --    1. 'done' will be used to check if all the rows in the cursor were read 
    --    2. 'curComm' will be the cursor: it will fetch each row 
    --    3. The 'continue' handler will update the 'done' variable 
 declare done int default false; 
    declare curComm cursor for 
        select Row_id from acceleration where zone_new is null;  
-- This is the query used by the cursor. 
     declare continue handler for not found  
-- This handler will be executed if no row is found in the cursor (for example, if all rows were 
read). 
        set done = true; 
 
 -- Open the cursor: This will put the cursor on the first row of its 
 -- rowset. 
    open curComm; 
    -- Begin the loop (that 'loop_comm' is a label for the loop) 
    loop_comm: loop 
        -- When you fetch a row from the cursor, the data from the current 
        -- row is read into the variables, and the cursor advances to the 
        -- next row. If there's no next row, the 'continue handler for not found' 
        -- will set the 'done' variable to 'TRUE' 
        fetch curComm into Rowid; 
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        -- Exit the loop if you're done 
        if done then 
            leave loop_comm; 
        end if; 
    SELECT zone_new into zonee FROM acceleration  where row_id = 
rowid-1; 
        
  update acceleration set zone_new = zonee 
        where Row_id=Rowid;     
    end loop; 
close curComm; 
end$$ 
DELIMITER ; 

Procedure Name Fill_OBD_Zones 

Description Fill OBD table with the missing data due to frequency differences 

 
DELIMITER $$ 
CREATE DEFINER=`root`@`localhost` PROCEDURE `Fill_obd_zones`() 
begin 
    -- Variables to hold values from the communications table 
    declare Rowid integer; 
    declare Zonee varchar(20); 
 --    1. 'done' will be used to check if all the rows in the cursor  
    --       were read 
    --    2. 'curComm' will be the cursor: it will fetch each row 
    --    3. The 'continue' handler will update the 'done' variable 
 declare done int default false; 
    declare curComm cursor for 
        select Row_id from obd where zone_new is null;  
-- This is the query used by the cursor. 
     declare continue handler for not found  
-- This handler will be executed if no row is found in the cursor (for example, if all rows were 
read). 
        set done = true; 
 
-- Open the cursor: This will put the cursor on the first row of its rowset. 
    open curComm; 
    -- Begin the loop (that 'loop_comm' is a label for the loop) 
    loop_comm: loop 
        -- When you fetch a row from the cursor, the data from the current 
        -- row is read into the variables, and the cursor advances to the 
        -- next row. If there's no next row, the 'continue handler for not found' 
        -- will set the 'done' variable to 'TRUE' 
        fetch curComm into Rowid; 
         
        if done then 
            leave loop_comm; 
        end if; 
                
       SELECT zone_new into zonee FROM obd  where row_id = rowid-1; 
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  update obd set zone_new = zonee 
        where Row_id=Rowid;     
    end loop; 
close curComm; 
end$$ 
DELIMITER ; 
 

Procedure Name Fill_State 

Description Fill acceleration table with the state using the loadcell, water, and OBD tables 
data 

 
DELIMITER $$ 
CREATE DEFINER=`root`@`localhost` PROCEDURE `Fill_State`() 
begin 
    -- Variables to hold values from the communications table 
     declare var_time varchar(20); 
     declare var_x double; 
     declare var_y double; 
     declare var_z double; 
     declare var_zone varchar(20); 
     declare var_rowid varchar(20); 
     declare var_speed double; 
     declare var_voltage double; 
  declare var_frequency double; 
     declare var_count double; 
     declare var_rowid_before varchar(20); 
  
 declare done int default false; 
 
 -- Get data for only loading zones 
 
    declare curComm1 cursor for 
        select substring(time,1,8),truncate(x,6),truncate(y,6),truncate(z,6),zone_new, row_id from 
acceleration where zone_new like 'L%' ;  
 
-- Get data for only dumping zones 
    
    declare curComm2 cursor for 
        select substring(time,1,8),truncate(x,6),truncate(y,6),truncate(z,6),zone_new, row_id from 
acceleration where zone_new like 'D%' ;  
         
 
-- Get data for only Road zones 
 declare curComm3 cursor for 
        select substring(time,1,8),truncate(x,6),truncate(y,6),truncate(z,6),zone_new, row_id from 
acceleration where zone_new like 'R%' ;  
         
         
      declare continue handler for not found  
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        set done = true; 
    
    open curComm1; 
    loop_comm1: loop 
        fetch curComm1 into var_Time, var_x, var_y, var_z, var_zone, var_rowid; 
        if done then 
            leave loop_comm1; 
        end if; 
        
-- Get speed data from odb table 
 
        SELECT avg(speed) into var_speed FROM obd  where substring(time,1,8) = var_time; 
        
       select count(*) into var_count from loadcell where substring(time,1,8) = var_time; 
        
     if var_count = 0 then  
        
    begin 
  select max(row_id) into var_rowid_before from loadcell where substring(time,1,8)< 
var_Time; 
  select substring(time,1,8) into var_time from loadcell where row_id = var_rowid_before; 
     end; 
     end if; 
        
       
       SELECT voltage into var_voltage FROM loadcell  where substring(time,1,8) = var_time; 
       SELECT Frequency into var_Frequency FROM water  where substring(time,1,8) = 
var_time; 
        
     
       -- checking limits to get state 
        
       if ((var_x between -2.212249  and 1.177947) and (var_y between -1.819599 and 1.139649 ) 
and (var_z between 8.485051 and 11.511329) and (var_speed between 0 and 25) and 
(var_voltage between 0 and 0.015) and (var_frequency between 40 and 300)) then   
       update acceleration set state = 'WFL' where Row_id=var_rowid;     
        
       elseif ((var_x between -6.608999   and 3.572149 ) and (var_y between -2.288856  and 
2.126059 ) and (var_z between 7.249643  and 11.473019) and (var_speed = 0) and 
(var_voltage between 0.1 and 0.6) and (var_frequency between 100 and 6500)) then   
       update acceleration set state = 'Loading' where Row_id=var_rowid;   
       
       elseif ((var_x between -6.608999   and 3.572149 ) and (var_y between -2.288856  and 
2.126059 ) and (var_z between 7.249643  and 11.473019) and (var_speed > 0) and 
(var_voltage between 0.1 and 0.6) and (var_frequency between 100 and 6500)) then   
       update acceleration set state = 'Exit Load' where Row_id=var_rowid;   
       
       else update acceleration set state = 'LOOR' where Row_id=var_rowid;   
       end if; 
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    end loop; 
     
    update acceleration set state = 'WFL' where zone_new = 'L3'  and state = 'LOOR'; 
     
     
close curComm1; 
     
    set done = false; 
     
    open curComm2; 
    loop_comm2: loop 
        fetch curComm2 into var_Time, var_x, var_y, var_z, var_zone, var_rowid; 
        if done then 
            leave loop_comm2; 
        end if; 
         
           SELECT avg(speed) into var_speed FROM obd  where substring(time,1,8) = var_time; 
            
     select count(*) into var_count from loadcell where substring(time,1,8) = var_time; 
        
      if var_count = 0 then  
        
begin  
  select max(row_id) into var_rowid_before from loadcell where substring(time,1,8)< 
var_Time; 
  select substring(time,1,8) into var_time from loadcell where row_id = var_rowid_before; 
end; 
      end if; 
          
     
       SELECT voltage into var_voltage FROM loadcell  where substring(time,1,8) = var_time; 
       SELECT Frequency into var_Frequency FROM water  where substring(time,1,8) = 
var_time; 
        
        
       if ((var_x between -2.250699 and 2.365471 ) and (var_y between -2.181879  and 1.268371 
) and (var_z between 8.207323  and 11.358099) and (var_speed between 0 and 25) and 
(var_voltage between 0.3 and 0.6) and (var_frequency between 100 and 6500)) then   
       update acceleration set state = 'WFD' where Row_id=var_rowid;     
        
       elseif ((var_x between -8.858559 and 3.552995) and (var_y between -5.746089 and 
11.444289) and (var_z between 2.260126 and 13.148969) and (var_speed = 0) and 
(var_voltage between 0 and 0.6) and (var_frequency between 97 and 6500)) then   
       update acceleration set state = 'Dumping' where Row_id=var_rowid;   
        
       elseif ((var_x between -8.858559 and 3.552995) and (var_y between -5.746089 and 
11.444289) and (var_z between 2.260126 and 13.148969) and (var_speed >0) and 
(var_voltage between 0 and 0.6) and (var_frequency between 97 and 6500)) then   
       update acceleration set state = 'Exit Dump' where Row_id=var_rowid;   
        
       else update acceleration set state = 'DOOR' where Row_id=var_rowid;   
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       end if; 
          
    end loop; 
    -- Don't forget to close the cursor when you finish 
    close curComm2; 
     
       set done = false; 
     
    open curComm3; 
    loop_comm3: loop 
        fetch curComm3 into var_Time, var_x, var_y, var_z, var_zone, var_rowid; 
        if done then 
            leave loop_comm3; 
        end if; 
         
           SELECT avg(speed) into var_speed FROM obd  where substring(time,1,8) = var_time; 
         
        select count(*) into var_count from loadcell where substring(time,1,8) = var_time; 
        
       if var_count = 0 then  
        
      begin 
    select max(row_id) into var_rowid_before from loadcell where 
substring(time,1,8)< var_Time; 
    select substring(time,1,8) into var_time from loadcell where row_id = 
var_rowid_before; 
       end; 
      end if; 
            
       SELECT voltage into var_voltage FROM loadcell  where substring(time,1,8) = var_time; 
       SELECT Frequency into var_Frequency FROM water  where substring(time,1,8) = 
var_time; 
        
       if ((var_x between -10.448399 and 14.001299) and (var_y between -10.879399 and 
9.078813) and (var_z between -4.185079 and 19.613399) and (var_speed between 0 and 100) 
and (var_voltage between 0.3 and 0.6) and (var_frequency between 100 and 6500)) then   
       update acceleration set state = 'Hauling' where Row_id=var_rowid;     
        
       elseif ((var_x between -6.866579 and 8.044518) and (var_y between -9.940739  and 
9.710882) and (var_z between -4.970369 and 19.613399) and (var_speed between 0 and 100) 
and (var_voltage between 0 and 0.015) and (var_frequency between 50 and 1000)) then   
       update acceleration set state = 'Return' where Row_id=var_rowid;   
        
       else update acceleration set state = 'ROOR' where Row_id=var_rowid;   
       end if; 
         
    end loop; 
    -- Don't forget to close the cursor when you finish 
    close curComm3; 
     
end$$ 
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DELIMITER ; 
Procedure Name Fill_Time_Duration 

Description Fill State time duration table with duration of each state per trip 

DELIMITER $$ 
CREATE DEFINER=`root`@`localhost` PROCEDURE `Fill_Time_Duration`() 
begin 
    -- Variables to hold values from the communications table 
     declare Trip_count int; 
     declare max_trips int; 
 
     -- initiate count number 
set trip_count=1; 
     
    -- Get the maximum number of trips 
 
select max(substring(zone_new,2,1)) into max_trips from acceleration where zone_new like 
'L%'; 
 
    -- Loop to calculate when the trip count is less than maximum trips 
 
   while trip_count < max_trips Do 
    
   begin 
 
    -- Fill the start and end of each state 
     
update State_Time_Duration set WFL_F = (select min(time) from acceleration where state = 
'WFL' and zone_new = concat('L',trip_count) ) where trip_id=trip_count; 
update State_Time_Duration set WFL_T = (select max(time) from acceleration where state = 
'WFL' and zone_new = concat('L',trip_count) ) where trip_id=trip_count; 
update State_Time_Duration set L_F = (select min(time) from acceleration where state = 
'Loading' and zone_new = concat('L',trip_count) ) where trip_id=trip_count; 
update State_Time_Duration set L_T = (select max(time) from acceleration where state = 
'Loading' and zone_new = concat('L',trip_count) ) where trip_id=trip_count; 
update State_Time_Duration set EL_F = (select min(time) from acceleration where state = 'Exit 
Load' and zone_new = concat('L',trip_count) ) where trip_id=trip_count; 
update State_Time_Duration set EL_T = (select max(time) from acceleration where state = 'Exit 
Load' and zone_new = concat('L',trip_count) ) where trip_id=trip_count; 
update State_Time_Duration set H_F = (select min(time) from acceleration where state = 
'Hauling' and zone_new = concat('R',trip_count,'LD') ) where trip_id=trip_count; 
update State_Time_Duration set H_T = (select max(time) from acceleration where state = 
'Hauling' and zone_new = concat('R',trip_count,'LD') ) where trip_id=trip_count; 
update State_Time_Duration set WFD_F = (select min(time) from acceleration where state = 
'WFD' and zone_new = concat('D',trip_count) ) where trip_id=trip_count; 
update State_Time_Duration set WFD_T = (select max(time) from acceleration where state = 
'WFD' and zone_new = concat('D',trip_count) ) where trip_id=trip_count; 
update State_Time_Duration set D_F = (select min(time) from acceleration where state = 
'Dumping' and zone_new = concat('D',trip_count) ) where trip_id=trip_count; 
update State_Time_Duration set D_T = (select max(time) from acceleration where state = 
'Dumping' and zone_new = concat('D',trip_count) ) where trip_id=trip_count; 



 

226 
 

update State_Time_Duration set ED_F = (select min(time) from acceleration where state = 'Exit 
Dump' and zone_new = concat('D',trip_count) ) where trip_id=trip_count; 
update State_Time_Duration set ED_T = (select max(time) from acceleration where state = 'Exit 
Dump' and zone_new = concat('D',trip_count) ) where trip_id=trip_count; 
update State_Time_Duration set R_F = (select min(time) from acceleration where state = 
'Return' and zone_new = concat('R',trip_count,'DL') ) where trip_id=trip_count; 
update State_Time_Duration set R_T = (select max(time) from acceleration where state = 
'Return' and zone_new = concat('R',trip_count,'DL') ) where trip_id=trip_count; 
end; 
  
 set trip_count = trip_count+1; 
 
   end while; 
    
    -- Fill the duration of each state 
  
update State_Time_Duration set WFL_duration = 
timediff(STR_to_date(substring(WFL_T,1,8),'%H:%i:%s'),STR_to_date(substring(WFL_F,1,8),'
%H:%i:%s')); 
update State_Time_Duration set L_duration = 
timediff(STR_to_date(substring(L_T,1,8),'%H:%i:%s'),STR_to_date(substring(L_F,1,8),'%H:%i:
%s')); 
update State_Time_Duration set EL_duration = 
timediff(STR_to_date(substring(EL_T,1,8),'%H:%i:%s'),STR_to_date(substring(EL_F,1,8),'%H:
%i:%s')); 
update State_Time_Duration set H_duration = 
timediff(STR_to_date(substring(H_T,1,8),'%H:%i:%s'),STR_to_date(substring(H_F,1,8),'%H:%i:
%s')); 
 
update State_Time_Duration set WFD_duration = 
timediff(STR_to_date(substring(WFD_T,1,8),'%H:%i:%s'),STR_to_date(substring(WFD_F,1,8),'
%H:%i:%s')); 
update State_Time_Duration set D_duration = 
timediff(STR_to_date(substring(D_T,1,8),'%H:%i:%s'),STR_to_date(substring(D_F,1,8),'%H:%i:
%s')); 
update State_Time_Duration set ED_duration = 
timediff(STR_to_date(substring(ED_T,1,8),'%H:%i:%s'),STR_to_date(substring(ED_F,1,8),'%H:
%i:%s')); 
update State_Time_Duration set R_duration = 
timediff(STR_to_date(substring(R_T,1,8),'%H:%i:%s'),STR_to_date(substring(R_F,1,8),'%H:%i:
%s')); 
-- Fill the total duration column 
update State_Time_Duration set total_duration = 
addtime(WFL_duration,addtime(WFD_duration,addtime(L_duration,addtime(EL_duration,addtim
e(H_duration,addtime(D_duration,addtime(ED_duration,R_duration)))))));     
     
-- Fill the duration of each state in minutes format 
 
update State_Time_Duration set WFL_duration_M = 
substring(WFL_duration,5,1)+(substring(WFL_duration,7,2)/60) ; 
update State_Time_Duration set L_duration_M = 
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substring(L_duration,5,1)+(substring(L_duration,7,2)/60); 
update State_Time_Duration set EL_duration_M = 
substring(EL_duration,5,1)+(substring(EL_duration,7,2)/60); 
update State_Time_Duration set H_duration_M = 
substring(H_duration,5,1)+(substring(H_duration,7,2)/60); 
 
update State_Time_Duration set WFD_duration_M = 
substring(WFD_duration,5,1)+(substring(WFD_duration,7,2)/60); 
update State_Time_Duration set D_duration_M = 
substring(D_duration,5,1)+(substring(D_duration,7,2)/60); 
update State_Time_Duration set ED_duration_M = 
substring(ED_duration,5,1)+(substring(ED_duration,7,2)/60); 
update State_Time_Duration set R_duration_M = 
substring(R_duration,5,1)+(substring(R_duration,7,2)/60); 
 
update State_Time_Duration set total_duration_M = 
substring(total_duration,4,2)+(substring(total_duration,7,2)/60);      
          
    end$$ 
DELIMITER ; 

Procedure Name Calculate_Productivity 

Description Update the Loadcell, Water and State time duration table with the volume, 
density, mass, TA, Per_WC 

DELIMITER $$ 
CREATE DEFINER=`root`@`localhost` PROCEDURE `Calculate_Productivity`() 
begin 
 
 
declare done int default false; 
declare var_Time varchar(25);  
declare var_mass double;  
declare var_state varchar(25);  
declare Latt double; 
declare Longt double; 
declare Pointt varchar(100); 
declare var_density double; 
declare Trip_count int; 
declare max_trips int; 
declare v_rowid varchar(25); 
  
declare curComm1 cursor for 
select time,mass,row_id from loadcell order by row_id;  
declare continue handler for not found  
set done = true; 
 
-- Update loadcell with mass value 
 
update loadcell set mass = 2500 * voltage; 
 
-- Update Water with TA Value 
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update water set TA = (150940 - (19.74*Frequency)) / ((2.8875*Frequency) - 137.5) ; 
 
-- Update loadcell with Per_WC value 
 
update water set Per_WC = (- 4.036*(LN (TA))) + 28.342;  
 
open curComm1; 
    loop_comm1: loop 
        fetch curComm1 into var_Time, var_mass, v_rowid; 
        if done then 
            leave loop_comm1; 
        end if; 
        
        SELECT count(*) into var_state FROM acceleration where substring(time,1,8) = var_time 
and state = 'Loading'; 
 
if var_state <> 0 then  
        
    begin 
   
select LongitudeD, LatitudeD into LongT, Latt from gps1 where time = var_time; 
        SET pointt = CONCAT('POINT(',Latt,' ',LongT,')');  
        set var_density= (SELECT density FROM sub_polygons WHERE 
MBRContains(polygon_data,GeomFromText(pointt)) AND 
point_inside_polygon(Latt,LongT,ASTEXT(polygon_data)));  
                 
-- Update loadcell with volume value using density 
update loadcell set volume = (mass/var_density) where time = var_time; 
        Update loadcell set density = var_density where time = var_time;  
               
        end; 
end if; 
                
    end loop; 
set done = false; 
 
close curComm1; 
     
set trip_count=1; 
     
select max(substring(zone_new,2,1)) into max_trips from acceleration where zone_new like 
'L%'; 
 
   while trip_count < max_trips Do 
    
   begin 
 
    -- Update state_time_duration  
     
    update state_time_duration set volume = (select max(volume) from loadcell where zone_new 
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= concat('L',trip_count)) where trip_id=trip_count; 
     
    end; 
   
 set trip_count = trip_count+1; 
 
   end while; 
   
update state_time_duration set productivity = volume/(TIME_TO_SEC(total_duration)/60); 
            
end$$ 
DELIMITER ; 

Procedure Name Check_road_condition 

Description Fill road condition table with relevant checks tests 

  
DELIMITER $$ 
CREATE DEFINER=`root`@`localhost` PROCEDURE `Check_Road_Condition`() 
begin 
 
declare done int default false; 
declare var_Time varchar(25);  
declare var_x double;  
declare var_y double;  
declare var_z double;  
declare var_xp double;  
declare var_yp double;  
declare var_zp double;  
declare var_rowid INT; 
declare var_count INT; 
declare var_long double;  
declare var_lat double;  
  
declare curComm1 cursor for 
select time,x,y,z,row_id from acceleration where row_id >1 and zone_new like 'R%' order by 
row_id;  
 
declare continue handler for not found  
set done = true; 
 
delete from road_condition; 
 
open curComm1; 
    loop_comm1: loop 
        fetch curComm1 into var_Time, var_x, var_y, var_z, var_rowid; 
        if done then 
            leave loop_comm1; 
        end if; 
        
         select count(*) into var_count from gps1 where time = substring(var_Time,1,8); 
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        if var_count <> 0 then  
   begin  
    select LongitudeD, LatitudeD into var_long, var_lat from gps1 where time 
= substring(var_Time,1,8); 
   end; 
       else 
   select LongitudeD, LatitudeD into var_long, var_lat from gps1 where time < 
substring(var_Time,1,8) order by time desc limit 1; 
       end if;  
        
        SELECT x,y,z into var_xp,var_yp, var_zp FROM acceleration where row_id=var_rowid-1; 
 
       if abs(var_x)-abs(var_xp) >= 3 then insert into road_condition values (var_Time, 
var_long,var_lat,var_x,var_y, var_z,'1','0','0','0','0','0'); 
       elseif abs(var_x)-abs(var_xp) <= -3 then insert into road_condition values (var_Time, 
var_long,var_lat,var_x,var_y, var_z, '0','1','0','0','0','0'); 
       elseif abs(var_y)-abs(var_yp) >= 5 then insert into road_condition values (var_Time, 
var_long,var_lat,var_x,var_y, var_z,'0','0','1','0','0','0'); 
       elseif abs(var_y)-abs(var_yp) <= -5 then insert into road_condition values (var_Time, 
var_long,var_lat, var_x,var_y, var_z,'0','0','0','1','0','0'); 
       elseif abs(var_z)-abs(var_zp) >= 2 then insert into road_condition values (var_Time, 
var_long,var_lat, var_x,var_y, var_z,'0','0','0','0','1','0'); 
       elseif abs(var_z)-abs(var_zp) <= -2 then insert into road_condition values (var_Time, 
var_long,var_lat, var_x,var_y, var_z,'0','0','0','0','0','1'); 
       else insert into road_condition values (var_Time, var_long,var_lat, var_x,var_y, 
var_z,'0','0','0','0','0','0'); 
       
       end if; 
        
    end loop; 
set done = false; 
close curComm1; 
     
end$$ 
DELIMITER ; 
 

 

 


