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ABSTRACT 

Reduced Fuel Emissions through Connected Vehicles and Truck Platooning 

by 

Paul D. Brummitt 

 

Vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication enable the sharing, 

in real time, of vehicular locations and speeds with other vehicles, traffic signals, and traffic 

control centers. This shared information can help traffic to better traverse intersections, road 

segments, and congested neighborhoods, thereby reducing travel times, increasing driver safety, 

generating data for traffic planning, and reducing vehicular pollution. This study, which focuses 

on vehicular pollution, used an analysis of data from NREL, BTS, and the EPA to determine that 

the widespread use of V2V-based truck platooning—the convoying of trucks in close proximity 

to one another so as to reduce air drag across the convoy—could eliminate 37.9 million metric 

tons of CO2 emissions between 2022 and 2026. 
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Chapter 1. Introduction 

Connected vehicles (CVs) could help to reduce the environmental impact of internal 

combustion engines by improving the efficiency of vehicular travel. Vehicle internal combustion 

engines produce pollutants that include SO2, CO, CO2, and other greenhouse gases. The Texas 

A&M Transportation Institute reports that congestion in 439 urban areas during 2017 accounted 

for 8.8 billion hours of extra drive time and 3.3 billion gallons of wasted fuel at a cost of $166 

billion (Schrank et al., 2019). 

CVs reduce pollutants and greenhouse gases by reducing fuel consumption, idling, and 

vehicle travel miles. CV technology could reduce vehicular stops, starts, and idling by 

coordinating arrivals at traffic intersections, suggesting alternate routes around congestion, 

directing drivers to free parking spaces, and enabling the formation and management of vehicular 

platoons. By reducing spacing between vehicles, platooning improves road utilization and 

reduces drag, thereby reducing fuel consumption, operating costs, and emissions. 

In 2019, according to the Environmental Protection Agency’s (EPA’s) “Overview of 

Greenhouse Gases and Sources of Emissions”, humans generated 6,558 million metric tons of 

CO2 equivalents—5,769 million metric tons of CO2 equivalents after accounting for 

sequestration from the land sector (Environmental Protection Agency, 2021). The EPA further 

noted that actions can be taken to reduce emissions. For example, from 2018 to 2019, after 

accounting for sequestration, emissions decreased by 1.7%. The decrease in emissions from 

fossil fuel combustion was driven in part by the decrease in total energy use in 2019 as compared 

to 2018 (ibid.). In the electric sector, a continued shift from coal to natural gas and renewables 

also contributed to the decrease in emissions. EPA data also indicate that greenhouse gas 

emissions in 2019 were 13 percent below 2005 levels after accounting for sequestration from the 
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land sector. According to the Greenhouse Gas Emissions website, CO2 makes up 80% of overall 

greenhouse gas emissions, 29% of which come from the transportation industry (ibid.). 

One effort in the transportation industry toward reducing CO2 emissions is the 

implementation of truck platooning. The current study’s analysis of Heavy-Duty Vehicle (HDV) 

traffic statistics shows that platooning could eliminate 37.9 million metric tons of CO2 emissions 

between 2022 and 2026. In the study, RStudio software was used to build a predictive model for 

HDV traffic and expected fuel usage between 2022 and 2026. Based on the predicted diesel fuel 

usage, likely CO2 emissions were calculated using the diesel to CO2 conversion established in 

2010 by the EPA and the Department of Transportation (Environmental Protection Agency, 

n.d.). The difference between likely CO2 emissions when platooning and when not platooning 

was then compared to calculate the results. 

Limitations on the results include conservative estimates for future heavy-duty vehicle 

miles and choosing MAPE as the sole guide to test the accuracy of the predictions. Possibilities 

for future work include applying the method to other CV approaches such as coordinated traffic 

intersections, and applying additional predictive analytics approaches such as regression. 
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Chapter 2. Literature Review 

In “Clean Mobility and Intelligent Transport Systems”, Fiorini and Lin provide an 

overview of considerations related to integrating communication and transportation (Fiorini & 

Lin, 2015). Intelligent Transport Systems (ITS)—systems that use information technology to 

manage traffic—have been proposed as a means to reduce traffic congestion, energy 

consumption, and traffic emissions; increase public and private market share of clean vehicles 

and transport system efficiency; and enhance road safety. ITSes apply information and 

communication technologies to road transport, including infrastructure, vehicles, users, traffic 

management, and mobility management. ITS technologies include vehicle-to-infrastructure (V2I) 

systems and vehicle-to-vehicle (V2V) technology. V2V and V2I can provide real-time 

information on vehicular locations and speeds, communicating this information to other vehicles, 

traffic signals, and traffic control centers. 

ITSes could benefit drivers and communities by reducing travel times, increasing driver 

safety, reducing vehicular pollution, and generating data for improving traffic management 

plans. Other benefits could include rerouting traffic to avoid obstacles caused by road 

construction or accidents and using traffic signal control to coordinate traffic signals for vehicles 

approaching an intersection, thereby reducing stop and go events. Drivers needing parking spots 

could be directed to an available spot immediately without having to search for a spot. 

Given ITS’s potential benefits, Fiorini and Lin (2015) argue for establishing policy goals 

that contribute to efficient traffic management. If government and industry establish 

sustainability as a goal for emerging ITS technology and transportation systems, smart 

transportation, in theory, can help to reduce the impact of automobile travel on society and the 

natural environment, 
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In “A Decentralized Energy-Optimal Control Framework for Connected Automated 

Vehicles at Signal-Free Intersections”, Malikopoulos et al. analyze strategies for maximizing 

connected autonomous vehicle (CAV) traffic through an intersection by minimizing gaps 

between vehicles while minimizing energy consumption (Malikopoulos, 2018). The authors’ 

study simulates traffic through a Merging Zone (MZ), an intersection where vehicles cross, 

together with a Control Zone (CZ), a surrounding region within which vehicles can receive 

communications from a coordinator. Decision-making is assumed to be decentralized; the CAVs, 

rather than the coordinator, manage their speed and changes in velocity. 

When a CAV reaches an intersection’s CZ, the coordinator assigns it a unique identity 

and grants it access to all information about the CZ’s other CAVs. A standard methodology used 

in optimal control problems establishes the CAV’s intersection crossing time. First, an 

unconstrained crossing time is calculated based on current velocity. If that crossing time conflicts 

with another CAV’s crossing time, the times are desynchronized by making slight adjustments to 

each CAV’s speed. If the resulting crossing times conflict with a third CAV’s crossing time, the 

three routes are adjusted in combination with one another. The process is repeated until there are 

no conflicts. 

The authors evaluated the proposed strategy’s effectiveness using a MATLAB-based 

study of 20 simulated vehicles. The study was then repeated using VISSIM to simulate a 448-

vehicle traffic flow. The studies’ results were compared to a comparable scenario involving an 

intersection with traffic lights with fixed switching times. The simulations showed a 46.6% 

improvement in fuel consumption and a 30.9% improvement in travel time. Fuel consumption 

was improved because momentum is conserved when vehicles do not have to stop, and transient 

engine operation is minimized when the need to accelerate and decelerate is reduced. 
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In “A Survey on Congestion Detection and Control in Connected Vehicles”, Paranjothi 

illustrates the importance of a reliable vehicle network (Paranjothi, 2020). CAVs use devices 

known as On-Board Units (OBUs) and roadside communication devices known as Roadside 

Units (RSUs) to establish V2V and V2I communications. The resulting communications 

networks, known as vehicular ad hoc networks (VANETs), are a subclass of mobile ad hoc 

networks (MANETs). MANETs are collections of mobile nodes that act as routers and hosts in 

an ad hoc wireless network and that dynamically self-organize without pre-established 

infrastructure (Munoz, 2021). Nodes in MANETs typically broadcast messages that reach only 

nearby nodes. Since CAVs may move rapidly, VANET topology can change rapidly and in 

unpredictable ways. 

VANETs, when overloaded with network traffic, can potentially delay or drop messages 

that would otherwise contribute to road safety. Network overload, known as network congestion, 

is typically identified by detecting packet loss. Classic strategies for congestion management 

limit transmission ranges and rates and allocate bandwidth using priority scheduling. Networks 

then respond by reducing nodes’ bandwidth utilization—ideally before congestion becomes 

significant. 

Congestion management in VANET offers challenges not seen in traditional network 

environments. Additional strategies for managing VANET congestion could include 

reinforcement learning and deep learning. Reinforcement learning is a subfield of machine 

learning (ML) that uses trial and error to identify and select strategies for solving problems 

(Osiński, 2018). A design team initially equips a learning algorithm like a router-based 

congestion management algorithm with knowledge about a set of desired outcomes. This 

algorithm can then learn to make optimal decisions based on ad hoc changes to the network 
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topology caused by a sudden increase in nodes connecting to the network. 

Deep learning, another subfield of ML, analyzes raw data more completely and builds 

response strategies based on that data. Like reinforcement learning, deep learning uses trial-and-

error to identify strategies for problem management. Unlike reinforcement, it learns from 

simulations produced using a high-performance computing environment; the results are then 

programmed into network AI. The integrated AI then has a much deeper foundation with which 

to work at managing network challenges. 

In “A Cooperative Autonomous Traffic Organization Method for Connected Automated 

Vehicles in Multi-Intersection Road Networks”, Wang emphasizes the importance of network 

reliability for traffic management (Wang, 2020). Reliable vehicle communication and computing 

technologies ensure that CAVs can efficiently exchange information with other vehicles and 

infrastructure. Wang argues that these technologies should be used to manage vehicular traffic 

more efficiently: i.e., to replace signal controllers at intersections with strategies for organizing 

traffic that improve traffic efficiency and ride comfort and reduce energy consumption. These 

strategies should account for crossings at intersections, trajectory optimization in road segments, 

and route planning in road networks. 

Design challenges for CAVs include evaluating the types of conflicts that arise at 

intersections, optimizing trajectories, and accommodating the different types of vehicles that 

share roads. Wang’s (2020) proposed system addresses the need to coordinate heterogeneous 

decision-making behaviors and assess the impact of different proportions of CAVs with 

heterogeneous decision-making behaviors on global system performance. It includes an 

autonomous crossing strategy for CAVs at unsignalized intersections, an improved model to 

optimize vehicle trajectories in road segments that connect intersections, and a strategy that 
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combines cooperative and autonomous decision making for CAVs to plan routes in multi-

intersection road networks. 

Wang’s (2020) research used a model intersection with four entrances, each of which has 

a left lane for left turns, a center lane for through traffic, and a right lane for going straight or 

turning right. Wang’s algorithm seeks to assure that, vehicles in the conflict area maintain 

maximum crossing speeds to maximize crossing efficiency, with two exceptions. One is that 

turning speeds are reduced to ensure that turns execute safely. Also, if a vehicle’s trajectory 

conflicts with a vehicle scheduled to arrive ahead of it, this vehicle’s trajectory is adjusted to 

prevent a collision. Wang assumes a communication range that covers the intersection and road 

segments, allowing enough time to plan vehicle trajectories. Vehicles approaching the 

intersection receive information about other vehicles in the communication range. A conflict 

resolution algorithm establishes a traffic-situation-dependent minimum safe headway, or distance 

between vehicles, for any two vehicles that could arrive at the same conflict point at roughly the 

same time. It does so by adjusting the time when vehicles enter the intersection. 

For trajectory optimization, an intersection’s autonomous crossing strategy is determined 

well in advance of a vehicle’s arrival at the intersection, based on time, speed, acceleration, and 

location. For energy savings, acceleration is minimized, and for comfort, vehicle jerk is 

minimized. The resulting, iterative model for trajectory optimization adjusts speeds based on 

analyses of evolving conditions. These optimized trajectories provide safe, energy-saving, and 

comfortable ride experiences. 

The third need that Wang (2020) addressed is cooperative decision making. Although 

each individual CAV can plan its route, cooperative decision enables vehicles to help balance 

road network traffic demand. Each CAV submits service requests in advance to an established 
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information center. The request includes origins and destinations, departure time, and trajectory 

optimization objectives. The customized routes are then planned cooperatively and transmitted to 

the vehicles before their travels, enabling them to save travel time and reducing road congestion. 

Wang (2020) tested his strategies using MATLAB-based simulation experiments. His 

simulations assume a road network with 10 entrances and 6 identical intersections. Using his 

cooperative autonomous traffic organization method, Wang ran multiple trials using four 

different scenarios. In the simulations, no collisions occur, and trajectories are smooth with small 

jerks and accelerations. Compared to fixed time signals and actuated signals for traffic control, 

the proposed method reduces the average delay of CAVs by over 85%. While the results are 

encouraging, Wang acknowledges that the study does not address hybrid flows that include 

HDVs. In addition, high quality V2V and V2I communications are required.  

Unlike Wang, Avedisov studied the operation of ITSes with hybrid traffic (Avedisov, 

2019). Mixed traffic that includes CAVs, conventional human driven vehicles (HVs), and 

connected human driven vehicles (CHVs) will dominate highways in the next several decades. In 

“Effects of Connected Automated Vehicles on Traffic Flow”, Avedisov develops a prototype 

CAV to study its effects on traffic patterns amongst human driven vehicles. The prototype is first 

programmed to follow a CHV at a desired distance. The CAV is then placed in an experimental 

configuration with two HVs to determine the effectiveness of CAVs using beyond-line-of-sight 

(BLOS) information for smoothing traffic flow in a mixed environment. 

BLOS information includes information from outside of the normal visible range of a 

human driver and automated vehicle (AV) sensors. BLOS information is gradually being made 

available to CAVs via vehicle-to-everything (V2X) communication. The primary competing 

protocols for V2X communication are dedicated short range communication (DSRC) and 
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Cellular V2X (C-V2X). DSRC, the initial standard, was developed to improve HV safety by 

providing data for safety critical applications like forward collision warning, blind spot warning, 

and intersection movement assist. In November 2020 the FCC reallocated spectrum reserved for 

DSRC, making the lower 45 GHz available for unlicensed operations, and reserving the upper 30 

MHz for cellular vehicle to everything (C-V2X) transmissions. This decision to allocate 

spectrum for C-2VX communication was seen by many providers as a positive move. Initial field 

experiments show that C-V2X provides a longer communication range than DSRC and, unlike 

DSRC, allows for packet retransmission. C-2VX can also potentially enable equipped vehicles to 

communicate with pedestrians and vehicles with cellular phones in addition to other vehicles and 

the infrastructure. 

Avedisov (2019) used the framework developed in his dissertation to assess how 

connectivity affects traffic flow in DSRC networks. While the study assumed that all AVs are 

equipped with V2X, the CAVs still function when no other vehicle in the neighborhood has 

V2X. Avedisov’s study also accounts for CAV penetration: i.e., the percentage of CAVs in a 

traffic environment. If a CAV cannot communicate with other CAVs, it essentially operates as an 

AV and can only use information from its immediate predecessor obtained from its sensors to 

control its longitudinal motion (forward motion of the vehicle in line with other traffic). This 

type of control strategy is referred to as adaptive cruise control (ACC). The presence of at least 

two CAVs in a connected vehicle network enables the use of connected cruise control (CCC). 

With CCC, a CAV can use BLOS information from a downstream CV for longitudinal control 

and line of sight and BLOS information from upstream CVs. Because it does not require a pre-

defined connectivity structure, CCC is effective for small penetrations of CVs and CAVs. In an 

environment with high CAV penetration, CAVs can implement cooperative adaptive cruise 
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control (CACC), where all CAVs use V2V communication to coordinate their motion. 

To determine how the prototype CAV could mitigate congestion and promote a stable 

flow of traffic, Avedisov (2019) used simple car-following models without communication to 

characterize traffic patterns in HV traffic. Avedisov’s experimental CAV follows cars like a 

human driver, while exploiting BLOS information by means of V2V communication. An 

experimental framework was also designed for a three-car CV network with one CAV and two 

CHVs. The setup allows traffic pattern observation with a wide range of traffic densities and 

speeds and helps determine whether the network would tend to create uniform flow or permit the 

development of congestion waves. The setup also helps evaluate the effects of introducing 

BLOS-enabled CAVs. Experiments were completed in a real three-car connected network, and 

conclusions were confirmed in a simulated environment. 

Based on his study, Avedisov (2019) concluded that using BLOS communication to 

control a CAV adds stability and throughput to a CV network. The study showed that to 

significantly improve traffic flow in the CV network at low penetration, the CAVs must use 

information from BLOS vehicles. Increasing the penetration of CHVs would enable a small 

percentage of CAVs (on the order of 10 - 20 % out of all the cars) to significantly improve traffic 

flow. 

In “Reducing Gasoline Consumption in a Mixed Connected Automated Vehicles 

Environment: A Joint Optimization Framework for Traffic Signals and Vehicle Trajectory”, Yao 

observes that reducing gasoline consumption and improving transportation efficiency could help 

the environment while reducing driver frustration and inconvenience (Yao et al., 2020). In 2017, 

traffic jams on urban roads led Americans to waste an average of 41 hours a year during peak 

traffic hours, at an estimated cost of nearly $305 billion. In 2018 143 billion gallons of gasoline 
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were used through a daily average of 391 million gallons.  

Yao (2020) sees CAV technologies as a means of reducing fuel consumption, 

transportation emissions, and traffic congestion. Through VANET-enabled I2V communication, 

data on traffic signal status, road conditions, and vehicular identification, position, speed, and 

acceleration can be used to manage vehicle trajectories and traffic signaling, leading to reduced 

gasoline consumption. 

Studies prior to Yao’s (2020) used three approaches to optimize traffic signals. One, 

which used information from CAVs to adjust traffic signals in real time to optimize flow, 

showed that CVs could reduce vehicle delay and travel time significantly; they failed, however, 

to optimize CAV trajectories while minimizing gasoline consumption and transportation 

emissions, relative to a fixed traffic signal timing plan. A second approach, which showed that 

platooning improves fuel consumption improves in CVs and other vehicles the CVs influence, 

failed to optimize signal timing at intersections. The third approach, which considered joint 

optimization of traffic signals and CAV trajectories, ignored the impact of human driving 

vehicles (HDVs). 

Yao (2020), by contrast, focuses on optimizing delays in traffic signals and vehicle 

trajectories in mixed CAV-HDV environments, while reducing gasoline consumption and 

transportation emissions. Yao’s approach uses a two-level optimization framework that 

optimizes vehicle trajectories at the first level and traffic signals at the second. The first level 

uses model predictive control (MPC), an approach to process control that accounts for 

constraints, to optimize vehicle trajectories while accounting for gasoline consumption. The 

second level uses a two-stage dynamic programming (DP) algorithm to control traffic signals 

based on vehicle arrival. It uses a state variable to calculate a feasible set of decision variables, 
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which are then used to optimize signal timing. In its first, forward, stage, the algorithm calculates 

an optimal objective function at each time step. The algorithm’s second, backward stage then 

uses the objective function to find the best traffic signal plan. 

Yao (2020) used his algorithm to control the movement of simulated vehicle platoons of 

HDVs and CAVs through simulated, signaled intersections. These experiments were intended to 

determine a set of speeds for the platoons together with a traffic signal plan that minimizes the 

platoon’s total gas consumption. Each platoon featured a leading CAV, whose speed and 

acceleration was optimized for reduced gasoline consumption. For comfort and safety, the 

algorithm assumes that the platoon passes the intersection at a fixed velocity. Yao’s framework 

proceeds by assuming an initial traffic signal plan; calculating a potential arrival time for each 

vehicle platoon; then using MPC to generate vehicle trajectories. Optimal traffic signal plans are 

then developed based on vehicle arrival times. Iterating between the MPC and DP processes 

optimizes the signal plan as well as vehicle trajectories. 

Yao (2020) tested fifteen scenarios on a standard desktop computer with an Intel 3.6 GHz 

processor and 8 GB of memory. The study considered volumes of 200, 400, and 600 vehicles per 

lane per hour with five penetration rates of CAVs, from 0.2 to 1.0 with a 0.2 step. Each scenario 

ran for 900 seconds and was repeated 5 times. Yao found that average vehicle delays decrease 

significantly under CAV-based control and that CAV based control outperforms actuated control 

in all experimental scenarios. By optimizing vehicle trajectories, the framework reduces average 

vehicle delay by up to 57%, even as traffic penetration rates increase. In addition, gasoline 

consumption is reduced by as much as 22% and CO2 emissions by as much as 18%. Average 

CO2 emissions are lowered as traffic penetration increases. Based on the results, Yao asserts that 

CAV-based control can significantly improve the traffic capacity of intersections, and that the 
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application of CAV can reduce CO2 emissions significantly. 

Ghiasi (2017), who likewise studied traffic control at intersections, considered additional 

means for enhanced traffic capacity (Ghiasi et al., 2017). Experiments with CAVs suggest that 

V2V communication and automated control can improve traffic highway capacity by reducing 

headway: the time difference between successive vehicles when they cross a given point. CAV 

platooning enables consecutive CAVs to function like concatenated cars in a train, greatly 

reducing headways typical of disconnected HDVs. Studies of pure automated traffic with 

computer simulation and analytical models predict that highway capacities will be maximized in 

the far future when all vehicles are platooned CAVs.  

Ghiasi (2017) uses a novel framework to assess the impact of lane management on 

highway capacity in mixed CAV-HDV traffic. Lane management, the establishment of dedicated 

lanes for routing different types of traffic, has improved capacity in traditional HDV traffic. 

Ghiasi’s framework attempts to determine the optimal number of CAV lanes to maximize mixed 

traffic throughput at varying demand levels, platooning intensities, and technology scenarios. 

Ghiasi’s (2017) framework treats time headways between vehicles as stochastic: i.e., 

“randomly determined; having a random probability distribution or pattern that may be analyzed 

statistically but may not be predicted precisely” (OED Online, 2022). This differentiates Ghiasi’s 

work from prior capacity analyses for mixed traffic, which assume a constant headway for each 

vehicle. The framework also accounts for the impact of CAV market penetration—the 

percentage of CAVs in traffic—on highway capacity. Earlier studies that showed that increased 

CAV market penetration increases highway capacity were based on models that fail to account 

for platooning. Even at the same market penetration rate, different degrees of CAV platooning  

may result in different traffic capacities. When CAVs are better clustered instead of being 
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scattered, highway capacity will increase because of longer CAV platoons with reduced 

headways. 

To capture complex stochastic headway and unify a full spectrum of CAV penetration 

rates and platooning intensities, Ghiasi (2017) used a Markov chain model. A Markov chain is a 

model of the random motion of an object in a discrete set of possible locations (Damiani, 2021). 

Traditional Markov chain models aim to predict an object’s status over time. For Ghiasi’s model, 

a stream of vehicles with a given penetration rate of CAVs is processed to determine a clustering 

strength to establish optimum platoon levels. A mixed traffic capacity is analytically formulated 

using stochastic and heterogeneous headway settings across the full spectra of CAV market 

penetration rates and platooning intensities in mixed traffic. Ghiasi claims that this methodology 

links traditional traffic flow analysis to emerging CAV traffic management; provides an effective 

and accurate means of quantifying mixed traffic capacity; and will help aid in better management 

of mixed CAV traffic flow. 

Contrary to the assumption that higher CAV penetration rates and platooning intensities 

always yield greater mixed traffic capacities, Ghiasi’s (2017) model indicates that these two 

factors alone may not always improve highway capacity. Traffic operators should be aware that 

there is an optimum level for CAV penetration rates. 

In “Cybersecurity Challenges in the Uptake of Artificial Intelligence in Autonomous 

Driving”, Dede discusses the need for security awareness in discussions of CAV technology 

(Dede, 2021). The automotive sector increasing adoption of digital components in vehicles is 

intended to reduce traffic accidents by automating aspects of vehicular operation, thus reducing 

opportunities for human drivers, the most common cause of traffic accidents, to make bad 

decisions. AV technology, however, also creates new opportunities for threats to public safety. 
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An inadequately secured system or road network can render an AV vulnerable to attack. For 

example, a bad actor could sabotage an AV’s operation by making misleading changes to its 

operating environment: e.g., by adding paint to a road to mislead its navigation system or adding 

stickers to road signs to interfere with proper identification. 

The European Union Agency for Cybersecurity discusses cybersecurity challenges in 

autonomous driving and recommends security measures for addressing these threats (Dede, 

2021). The agency asserts that the automotive sector must increase preparedness and reinforce 

incident response capabilities to handle emerging cybersecurity challenges. Artificial intelligence 

as an enabler for autonomous vehicles further complicates the establishment of cybersecurity as 

a critical component for ensuring safety and promoting trust.  

To mitigate the potential dangers, AV security should be assessed throughout an AV’s 

lifecycle. A security strategy should also analyze the entirety of the supply chain that contributes 

to a vehicle’s design and implementation. 

Discussion   

These studies indicate the extensive growth of interest in CV technology. The proposed 

applications of CV technology suggest opportunities to reduce fuel usage and make roads safer. 

Despite these advances, for the near future, allowing a human driver to surrender control to 

technology will only be likely in specific driving scenarios. Driving in a platoon on a highway is 

one of those scenarios. 

Due to the continuing growth of HDV transport volumes, the large volume of highway 

miles, and the centralized control of fleet vehicles, the transportation industry has been an early 

adopter of platooning: the grouping of vehicles that move in unison, using automatic control and 

V2V communication to maintain a short distance between vehicles. Platooning improves road 
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throughput and safety and reduces air drag across the platoon, thereby reducing fuel 

consumption, operating costs, and emissions. Effective platooning results from vehicles driving 

behind each other with controlled gaps between them. Modern sensor and wireless 

communication enable automated control of the gaps, reducing risk of accidents due to 

insufficient gaps and inattentive drivers. One such technology, Adaptive Cruise Control (ACC), 

relieves the driver of the task of controlling the distance to the vehicle in front. A second, 

Cooperative Adaptive Cruise Control (CACC), allows vehicles to reduce inter-vehicle gaps 

compared to human controlled gaps without compromising safety. 

Based on his 2016 simulation of truck transport, van de Hoef concluded that “coordinated 

platooning can yield significant fuel savings and that coordination is crucial in leveraging these 

savings” (van de Hoef, 2016). For 2000 transport assignments starting over the course of two 

hours, a number that Van de Hoef cited as reasonable, the simulation found that platooning 

reduced platoon follower consumption by 15.9% at a speed of 80 km/h and overall fuel 

consumption by 7.6%. Van de Hoef notes that the total distance traveled in the simulated 

scenario is in the same order of magnitude as the total distance traveled by domestic road freight 

transport in Sweden within two hours, assuming that traffic volume is equally spread over the 

year. The simulated density of road freight traffic in this study was only a fraction of the total 

road freight traffic in countries with high population density. 

In all likelihood, these reductions in fuel consumption could translate directly to 

reductions in emissions for years to come. As van de Hoef states “another problem is that the 

great majority of trucks is powered by fossil fuels, and despite various research efforts such as 

electric highways and alternative fuels, this is not likely to change soon, in particular in the 

domain of long haulage transport” (van de Hoef, 2016). Van de Hoef also reports that fuel 
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accounts for roughly a third of a heavy truck's operation costs in long haulage transport. The use 

of fossil fuels leads to problematic emissions, most prominently CO2. In 2014, the transport 

sector accounted for 20% of greenhouse gas emissions in the European Union, of which 72% 

were due to road transport. Van de Hoef reports that experiments motivate that the air drag of a 

heavy truck in a platoon can be lowered by 40 %, translating into an overall reduction in fuel 

consumption of over 10%. 

This thesis was undertaken to further quantify the potential for platooning to reduce CO2 

emissions generated by long-haul transportation. Chapter 3 presents the research’s findings, as 

published in the Proceedings from the 2022 IEEE GreenTech Conference. The results of the 

study show that with the implementation of truck platooning 37.9 million metric tons of CO2 

emissions could be eliminated between 2022 and 2026. 

The study takes calculations on fuel savings and reductions in emissions and applies them 

toward known traffic and fuel consumption patterns to predict the benefits that could result with 

the implementation and growth of truck platooning. RStudio software provides the foundation 

for the calculations in the study. To apply predictive analytics, the Forecast, MLmetrics, and 

fpp2 packages were applied. The data containing HDV miles between 2007 and 2019 were 

obtained from the Bureau of Transportation Statistics (Bureau of Transportation Statistics, n.d.). 

Because short trips are often not amenable to platooning, platoonable miles are miles during 

which it is reasonable that a truck could take advantage of platooning opportunities.   
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Abstract— Platooning is the use of vehicle-to-vehicle (V2V) technology to form train-

like convoys of vehicles. Truck platooning can potentially contribute to safer roadways 

through the use of inter-vehicle communication to coordinate traffic movement, while 

increasing fuel economy through reduced wind drag and reducing vehicular emissions. Fuel 

economy savings described in the literature on truck platooning are applied toward a 

forecast of heavy-duty vehicle (HDV) traffic through 2026 to predict a potential reduction of 

CO2 emissions between 2022 and 2026 of 37.9 million metric tons. 

Index Terms—Advanced driver assistance, Connected Vehicles, Intelligent vehicles, 

Machine-to-machine communications, Mobile communication, Truck platooning, Vehicle 

platooning, Vehicle routing, Vehicle safety, Vehicular ad hoc networks. 

I. INTRODUCTION 

Vehicle internal combustion engines produce pollutants that include SO2, CO2 emissions, 

and other pollutants and greenhouse gases. Advances in vehicle-to-vehicle (V2V) and vehicle-to-

infrastructure (V2I) communication create opportunities to reduce CO2 emissions in the 

transportation sector. By reducing fuel consumption, idling, and vehicle travel miles, connected 

vehicles (CVs) can reduce pollutants and greenhouse gases. Platooning refers to a group of 

vehicles forming a road train using electronic coupling between the vehicles. In platooning, 

automatic control and V2V communication enable vehicles to travel closely together, thereby 

improving road throughput and safety. The reduced air drag contributes to reduced fuel 
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consumption and emissions. Reduced fuel consumption leads to decreased operating costs, and 

reduced emissions leads to a cleaner and healthier environment. Increased use of truck platooning 

in the coming years can reduce CO2 emissions and contribute to a cleaner environment.  

This paper presents a study of the potential environmental and economic benefits of truck 

platooning. According to the “Overview of Greenhouse Gases and Sources of Emissions” provided 

by the Environmental Protection Agency (EPA), in 2019, greenhouse gas emissions totaled 6,558 

million metric tons of carbon dioxide equivalents, or 5,769 million metric tons of carbon dioxide 

equivalents after accounting for sequestration from the land sector [1]. According to the 

Greenhouse Gas Emissions website [1], carbon dioxide makes up 80 percent of overall greenhouse 

gas emissions, and 29 percent of greenhouse gas emissions come from the transportation industry. 

Multiple studies in platooning and Heavy-Duty Vehicle (HDV) platooning have shown 

platooning’s potential to reduce emissions while improving vehicular safety and fuel economy.  

In summary, the study showed a potential for 4 percent savings in fuel usage that could 

lead to a savings of nearly 38 million metric tons of CO2 between 2022 and 2026. Limitations on 

the results include conservative estimates for future heavy-duty vehicle miles and choosing only 

MAPE as the guide to test the accuracy of the predictions. This study also did not fully consider 

multiple heavy-duty vehicle (HDV) platooning or traffic capacity. Future studies can improve 

upon this study by applying additional predictive analysis techniques and by considering additional 

vehicles added to the platoon. 

II. RELATED WORK 

Alam shows the potential for significant fuel reduction using HDV platooning while 

finding a safe distance between HDVs in a platoon [2]. Alam’s study shows a fuel reduction of 3.9 

to 6.5% for a heterogeneous platoon of HDVs. 
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Lakshamanan et al. present the importance of reliable V2V communication in fuel-efficient 

platooning [3].  

McCarthy [4] argues that V2V communication provides the most efficient and safe means 

of platooning while contributing to significant fuel use reduction. McCarthy points out the 

SARTRE project, a UN sponsored environmental program, which shared that “platooning could 

reduce 2.85 tons of CO2 in a diesel truck every year.  

Stegner et al. created experimental fuel consumption results from a heterogeneous four 

truck platoon. They found benefits of 5 to 11% for following vehicles, and 0 to 4% for the lead 

vehicle in a platoon relative to their baseline fuel consumption [5]. Compared to the sum of the 

standalone trucks’ fuel consumption, all platoons in the study cumulatively saved fuel in the range 

of 6% to 8%.  

Van de Hoef et al. used convex optimization techniques to create travel plans for thousands 

of trucks to show that significant fuel savings can be achieved with truck platoons [6]. Their 

simulation showed a 7.6% reduction in fuel consumption for 2000 transport assignments starting 

over the course of two hours. Van de Hoef says that “platoon coordination might be the key to 

leveraging the full potential of truck platooning”.  

Ghiasi et al. references platooning in a broader discussion of connected vehicles [7]. Ghiasi 

focuses on traffic capacity benefits provided by platooning. Increased traffic capacity also 

contributes to fuel economy through reduced congestion.  

Yao includes platoons operating within a joint optimization framework to reduce 

congestion with the goal of reducing gasoline consumption [8].  

The National Renewable Energy Laboratory (NREL) continually conducts studies to assess 

the fuel saving potential of truck platooning and pinpoint areas in need for future research. 
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According to the NREL’s Transportation and Mobility Research web site, “platooning reduces 

aerodynamic drag by grouping vehicles together and safely decreasing the distance between them 

via electronic coupling, which allows multiple vehicles to accelerate or brake simultaneously” [9]. 

In an overview of studies conducted with various organizations, NREL reported that lead vehicle 

savings are up to 10 percent at the closest separation distances, the middle vehicle saves up to 17 

percent, and the trailing vehicle saves up to 13 percent [9]. Additional variables assessed with 

varying results include speed variations, road curvature, unplanned vehicles cutting in and out of 

the platoon, mismatched vehicles, and the presence of surrounding passenger vehicles.  

This paper differs from previous literature by quantifying CO2 emissions that result from 

reduced fuel consumption in truck platooning. Alam, Lakshamanan, Stegner et al., Van de Hoef, 

Ghiasi, Yao, and NREL focus on reduced fuel consumption without discussing CO2 emissions. 

McCarthy references CO2 emissions in the context of a variety of methods for fuel efficiency. This 

paper's focus is quantifying and forecasting CO2 emissions that result from implementing truck 

platooning.  

III. METHODS 

A. Overall Approach  

This study sought to quantify the degree to which truck platooning could improve fuel 

efficiency, thereby contributing to CO2 reductions and a cleaner environment. Data sets provided 

by NREL [10], the EPA [11], and the Bureau of Transportation Statistics (BTS) [12] were used to 

predict the potential benefits from implementing widespread truck platooning. A dataset named 

“Combination Truck Fuel Consumption and Travel” from BTS provides the study’s core data [13]. 

The dataset provides data about HDV fuel consumption and highway miles from 2007 to 2019. 

Between 2007 and 2019, the average miles per gallon of fuel for heavy-duty vehicles 
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remained steady at 6.0. Average miles traveled per vehicles decreased during that time, but that 

did not translate into a fuel consumption reduction because there was an increase in registered 

heavy-duty vehicles. In 2009 there were 2,617,100 registered heavy-duty vehicles, and in 2019 

there were 2,925,200. Although average miles traveled per truck had reduced, there were more 

trucks on the road. 

The “Vehicle or Engine Group” selected for the study was referenced as “Long Haul – 

Combination” and is a Class 8 vehicle. The foundation for the study’s predictive model was built 

in RStudio using the Forecast, MLmetrics and fpp2 packages. A model was trained using data 

from 2007 to 2014, then validated using data from 2014 to 2019 to obtain a Mean Absolute 

Percentage Error (MAPE). The MAPE provides realistic guidelines for the study’s forecasts into 

the future.  

In addition to calculating the MAPE, a naive method was created to help ensure the forecast 

model’s performance. A simple naive uses a day’s worth of data to forecast the next [14]. A 

seasonal naive uses a longer range of observations such as a week, a month, or a year to provide 

the forecast for tomorrow. For this data set, the seasonal naive, snaive, was based on observations 

between 2007 and 2019.  

B. Specifics  

1. Naive method  

Table 2.1 provides details on each element in the command to establish the seasonal naive 

calculation. A seasonal naive forecast in the Forecast package is calculated as follows:  

naive = snaive(training, h=length(validation))                         (1) 

In the formula, the variable naive is calculated using the snaive function on the training set 

and the validation set. The goal is to use the “training” set to help predict what should be expected  
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Table 2.1. Elements of the Command Used to Establish the Seasonal Naive. 
naive  the variable that will hold the data
snaive  average prediction for a month, listed as mean,

followed by low and high values in the 80th and 
95th percentile

training  the variable to be studied
h=length  indicates to read through validation and count the

data points
start  row at which to start reading data

validation  the variable used for comparison

in the “validation” set. The result provides a point forecast broken down by month that provides  

the average prediction for the month, listed as mean, followed by low and high values in the 80th 

and 95th percentile. 

Naive then contains the predicted values for what should be in the validation set. Each row 

of data is listed in month and year format (Month, Century, Year). The validation set contains the 

observed values for the time period listed. The naive values can then be compared to the actual 

values to see how well the prediction performed.  

2. Calculating MAPE  

To determine the prediction’s accuracy, the Mean Absolute Percentage Error (MAPE) was 

calculated using the seasonal naive stored in the naive variable:  

  MAPE(naive$mean, validation) * 100                                           (2) 

The result was used as a guideline for predictions. In a simple naive, what happened in the 

last year of data is forecast for the entire validation set. When modeling with MAPE, a smaller 

MAPE results in a better prediction model. For this data set, the Mean Absolute Percentage Error 

(MAPE) for the data is 4.704094 percent.  

3. Forecasting HDV miles per year.  

Snaive was used to forecast to 2026 the miles per year traveled by heavy duty vehicles. 

Because it is a naive forecast, the “Point Forecast” will show the average values for each year. 
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Using the Hi 80th percentile values, a meaningful prediction can be obtained that is within the 4.70  

MAPE that was established. Table 2.2 shows the results of the snaive calculation that were stored 

in the to2026 variable.   

Table 2.3 shows Hi 80th percentile values for HDV yearly miles predicted for 2022 through 

2026, and Figure 1 shows the predicted values for 2020 through 2026 next to the observed values 

for 2007 to 2019 used to establish the predictive model. 

4. Determining Platoonable Miles  

“Platoonable” miles were determined based on the predicted miles between 2022 and 2026 

(Table 2.4). Per NREL, this calculation assumed that trucks would “driv[e] at platoonable speeds 

of at least 50 miles per hour for at least 15 consecutive minutes” [15], implying that 55 percent of 

HDV miles are “platoonable” miles (Table 2.5). 

Table 2.2. Results of the Snaive Calculation Providing Forecasts of HDV Miles (in Millions) per 
Year to 2026. 

Point  Forecast Lo 80 Hi 80 Lo 95 Hi 95

2015  169830 159263.5 180396.5 153670 185990

2016  169830 154886.8 184773.2 146976.3 192683.7

2017  169830 151528.4 188131.6 141840.1 197819.9

2018  169830 148697.1 190962.9 137510 202150

2019  169830 146202.7 193457.3 133695.2 205964.8

2020  169830 143947.6 195712.4 130246.3 209413.7

2021  169830 141873.8 197786.2 127074.7 212585.3

2022  169830 139943.6 199716.4 124122.6 215537.4

2023  169830 138130.6 201529.4 121350 218310

2024  169830 136415.9 203244.1 118727.6 220932.4

2025  169830 134785 204875 116233.4 223426.6

2026  169830 133226.7 206433.3 113850.1 225809.9
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Table 2.3. Hi 80th Percentile Values for HDV Yearly Miles in Millions Predicted for 2022 
through 2026. 

Year Predicted
2022 199,716.4
2023 201,529.4
2024 203,244.1
2025 204,875.0
2026 206,433.3

 

 

Figure 2.1. U.S Heavy Duty Vehicle Miles Traveled (in Millions), Including 2007 to 2019 Data, 
with Predictions for 2020 to 2026. 

 
 

Table 2.4. Potential Platoonable Miles (in Millions) Based on the Hi 80th Percentile Values for 
HDV Yearly Miles Predicted for 2022 through 2026. 

  Year Predicted Platoonable
  2022 199,716.4 109,844.0
  2023 201,529.4 110,841.2
  2024 203,244.1 111,784.3
  2025 204,875.0 112,681.3 
  2026 206,433.3 113,538.3

 
 

Table 2.5. Total Miles (in Millions) Predicted for 2022 through 2026, by Standard and 
Platoonable miles. 

Year    Total Standard Platoonable
2022    199,716.4 89,872.3 109,844.0
2023    201,529.4 90,688.2 110,841.2
2024    203,244.1 91,459.9 111,784.3
2025    204,875.0 92,193.8 112,681.3
2026    206,433.3 92,895.0 113,538.3
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IV. RESULTS 

A. Gallons of Fuel Saved  

Table 2.6 shows the results of the calculations and the resulting fuel savings between 2022 

and 2026. HDV fuel usage between 2022 and 2026 for non-platooned (i.e., standard) miles was 

calculated as miles / 6.0, where 6.0 is the Bureau of Transportation Statistics’s estimate of HDV 

fuel efficiency in terms of miles per gallon. 

HDV fuel usage for platooned miles was calculated assuming 6.25 miles per gallon, based 

on Alam’s conservative estimate that platooning can save 4 percent in fuel usage.  

B. CO2 Emission Reduction  

Table 2.7 shows the CO2 emissions that could be reduced between 2022 and 2026 with the 

implementation of platooning. The calculations in Table 2.7 are based on the potential gallons of 

fuel saved from Table 2.6, and the diesel to CO2 conversion established in 2010 during a joint 

rulemaking session between the EPA and the Department of Transportation [16]. The formula for 

converting diesel fuel used to CO2 emissions is shown on the EPA’s “Greenhouse Gas 

Equivalencies Calculator” web site [17] and is listed here:  

10,180 grams of CO2/gallon of diesel = 10.180 × 10-3 metric tons CO2/gallon of diesel (3) 

Table 2.6. Total Gallons of Fuel Saved (in Millions) Predicted for 2022 through 2026 Assuming 
Implementation of Platooning. 

.  
Year  Without 

Platooning
With 

Platooning
Gallons 
Saved

2022  33,286.1 32,553.8 732.3
2023  33,588.2 32,849.3 738.9
2024  33,874.0 33,128.8 745.2
2025  34,145.8 33,394.6 751.2
2026  34,405.6 33,648.6 756.9
Total  169,299.70 165,575.10 3,724.50
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V. DISCUSSION 

This data suggests the extent to which truck platooning could improve fuel efficiency in 

Class 8 trucks. The reduction in fuel usage reduces costs for operators and CO2 emissions. 

Although a conservative approach is taken in this paper by only assuming a 4 percent improvement 

in fuel economy, the results suggest that even minor improvements can make significant 

differences. Future studies should consider the savings realized by all trucks in a platoon. 

Based on the study, implementing platooning in heavy duty vehicles between 2022 and 

2026 could result in a reduction of 37,915,410 metric tons. While this is a modest fraction of the 

6.5 billion metric tons released in 2019 [1], it would still contribute to a lowering of greenhouse 

gas emissions.  

For comparison, based on the Greenhouse Gas Equivalencies Calculator available at 

epa.gov [17], the reduction of nearly 38 million metric tons of CO2 is comparable to the amount 

of energy used to provide energy to 4,565,894 houses for a year, or to use 87,782.190 barrels of 

oil. In addition, as Milner et al. note, “lower carbon emissions can also improve [public] health” 

[18]. Specific benefits noted by the Health and Environment Alliance are “reduced dementia, 

cardiovascular disease, diabetes, obesity, breast cancer, colon cancer, and depression” [19]. 

Table 2.7. Potential CO2 Emission Reductions in Metric Tons for 2022 through 2026 with Truck 
Platooning.  

Year    Metric Tons of CO2 Emissions Reduced
2022    7,454,814
2023    7,522,002
2024    7,586,136
2025    7,647,216
2026    7,705,242
Total    37,915,410
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Chapter 4. Conclusion 

V2I and V2V communications in  combination with VANETs are essential for 

implementing and advancing CV technology and achieving safer and more efficient vehicles. As 

shown through the literature review, CV studies share many of the same goals including creating 

safer roadways, reducing traffic congestion, and reducing energy consumption and CO2 

emissions. Different approaches that can be used to achieve these goals include platooning, 

optimizing vehicle trajectories, managing traffic crossings at intersections, and reducing 

headways between vehicles. Malikopoulos (2018) and Yao (2020) discussed signal free 

intersections that can help reduce stop and go traffic resulting in better fuel efficiency. Ghiasi 

(2017) also discussed traffic control at intersections with an added focus on reducing headways. 

Paranjothi (2020) and Wang (2020) discussed network reliability and congestion control in the 

VANETs that support the infrastructure. Van de Hoef (2016) presented coordinated platooning 

to yield significant fuel savings. For each approach, improved fuel efficiency results.  

In the study, predictive analysis was applied to show measurable reductions in CO2 

emissions when implementing truck platooning. The study showed a potential for 4 percent 

savings in fuel usage which translates to a savings of nearly 38 million metric tons of CO2 

between 2022 and 2026. Increased use of truck platooning and other connected vehicle enabled 

approaches to traffic management can lower transportation costs, reduce CO2 emissions, and 

improve roadway safety. One challenge in truck platooning that could merit further study is 

platoon formation by trucks that must adjust their speed to arrive at the start of the common part 

of their route to form a platoon. Because increased velocities require more fuel, a coordination 

scheme to help form platoons could contribute to reduced fuel consumption by preventing the 

need to increase velocity to join an assigned platoon.  
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APPENDIX: Glossary 

Actuated Signal Control - A type of signal control where time for each phase is at least partially 

controlled by detector actuations 

Actuator - a component of a machine that is responsible for moving and controlling a mechanism 

or system. An actuator requires a control signal and a source of energy. 

ACC – adaptive cruise control 

adaptive cruise control – a cruise control unit that uses information from the immediate 

predecessor obtained from its sensors to control longitudinal motion 

automated vehicle – a vehicle that relies on an internal computer rather than a human to process 

information from sensors such as cameras or radars to control their motion 

AV – automated vehicle 

beyond-line-of-sight - distances outside of the normal visible range of a human driver, or outside 

of the range of sensors in an automated vehicle 

BLOS – beyond line of sight 

C-V2X - cellular vehicle to everything communication 

CAV – connected automated vehicle 

CACC - cooperative adaptive cruise control 

CCC – connected cruise control 

cellular vehicle to everything communication - a unified connectivity platform designed to offer 

vehicles low-latency communication 

CHV – connected human-driven vehicle 

connected automated vehicle – an automated vehicle that uses information from V2X 

communication in addition to sensory information to control its motion 

connected cruise control: cruise control augmented with motion signals from vehicles in the line 

of sight  

connected human-driven vehicle – one with some form(s) of V2X connectivity 
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connected vehicle – A vehicle equipped with V2V that can communicate with other CVs in 

traffic over several hundred meters, beyond the line of site of lidars, cameras, or radars. The 

received information helps augment its perception of the environment and enhances its 

ability to respond to cooperative adaptive cruise control - used by all CAVs; uses V2V 

communication to control CAV motion in a coordinated fashion to achieve certain control 

objectives 

CV - connected vehicle 

CZ - control zone 

deep learning - part of a broader family of machine learning methods based on artificial neural 

networks with representation learning. Learning can be supervised, semi-supervised or 

unsupervised 

DP – dynamic programming 

dynamic programming - an algorithmic technique for solving an optimization problem by 

breaking it down into simpler subproblems in a recursive manner 

General Pseudospectral Optimal Control Software - MATLAB software intended to solve 

general nonlinear optimal control problems (problems where it is desired to optimize systems 

defined by differential-algebraic equations) 

GPOPS - General Pseudospectral Optimal Control Software 

HDV – human-driven vehicle 

headway – the distance between vehicles measured in time or space. Minimum headway is the 

shortest such distance or time achievable without a reduction in speed (see also 

heterogeneous headways and stochastic headways) 

Heterogeneous headways – an assumed constant distance between vehicles in traffic studies 

human-driven vehicle – a human driven vehicle without connectivity  

HV – human-driven vehicle 

identification - a unique identifier assigned to a network interface controller (NIC) for use as a 

network address in communications within a network segment 
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iterative algorithm - one that proceeds in discrete steps, with each step operating on the result of 

the previous step. 

I2V – infrastructure to vehicle communication  

ID – identification  

infrastructure to vehicle communication – communication to a vehicle from an infrastructure 

device 

intelligent transportation system – systems that enable traffic and transport networks to behave in 

an intelligent manner through the application of sensing, analysis, control, and 

communications technologies to ground transportation to improve safety, mobility, and 

efficiency management  

ITS – intelligent transportation system 

latitudinal dynamics – an automated driving technique for lane keeping typically, a vision-based 

system augmented by high precision GPS and high-definition maps 

line of sight - the normal visible range of a human driver, or of the range of sensors in an 

automated vehicle (AV) 

longitudinal dynamics – a type of automated driving technique for maintaining speed; includes 

classical, adaptive, or connected cruise control and maintaining separation from vehicles 

being followed 

machine learning - the study of computer algorithms that improve automatically through 

experience and the use of data 

MANET – mobile ad hoc wireless network  

(Ghiasi’s) Markov Chain Representation– Captures the full spectrum of CAV market penetration 

rates and all possible values of CAV platooning intensities that largely affect the spatial 

distribution of different headway types. It accurately quantifies that corresponding mixed 

traffic capacity at various settings. Allows for examination of the impact of different CAV 

technology scenarios on mixed traffic capacity. 

MATLAB – a proprietary multi-paradigm programming language and numeric computing 

environment developed by MathWorks that allows matrix manipulations, plotting of 
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functions and data, implementation of algorithms, creation of user interfaces, and interfacing 

with programs written in other languages; used for simulation 

merging zone – the area at an intersection where vehicles pass and could potentially sustain 

lateral collisions 

mobile ad hoc wireless network – a collection of mobile nodes that act as routers and hosts in an 

ad hoc wireless network and that dynamically self-organize in a wireless network without 

pre-established infrastructure 

model predictive control - a method of process control used to control a process while satisfying 

a set of constraints 

MPC – model predictive control 

MZ - merging zone 

OBU – on-board unit  

on-board unit – a communication device mounted inside a vehicle 

penetration – the percentage of a type of vehicle within a vehicular network or traffic 

environment.  

perception – situational awareness for an automated vehicle; based on data collected via sensors, 

including GPS, cameras, radars, lidars, and V2X communication from beyond line of sight 

proximity sensors - a sensor that detects the presence of nearby objects without any physical 

contact 

reinforcement learning - an area of machine learning concerned with how intelligent agents 

ought to take actions in an environment to maximize the notion of cumulative reward 

roadside unit – a roadside communication device 

RSU – roadside unit 

simultaneous longitudinal and latitudinal dynamics – a combination of longitudinal and 

latitudinal dynamics; this corresponds to fully autonomous vehicle control; it involves 

generating a motion plan and using a feedback controller to ensure appropriate behavior 

Stochastic headways – an allowance for a randomly determined distance between vehicles in 
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traffic studies 

V2C – vehicle to cloud connectivity 

V2I – vehicle-to-infrastructure connectivity 

V2V – vehicle-to-vehicle connectivity 

V2X – vehicle-to-anything connectivity 

VANET - vehicular ad hoc network 

vehicle-to-anything connectivity - wireless connectivity from vehicles to other entities 

vehicle to cloud connectivity - a form of V2X communication 

vehicle-to-infrastructure connectivity - a form of V2X communication 

vehicle-to-vehicle connectivity - a form of V2X communication 

vehicular ad hoc network – the spontaneous creation of a wireless network of vehicle and 

roadside infrastructure-based network devices 

VISSIM - a microscopic multi-modal traffic flow simulation software package developed by 

PTV 

  



44 
 

VITA 

PAUL D. BRUMMITT 

Education:  M.S. Computer Science, East Tennessee State University,  

Johnson City, Tennessee, 2022 

B.S. Computer Science, East Tennessee State University,  

Johnson City, Tennessee, 2009 

 Public Schools, Church Hill, Tennessee 

Professional Experience:  Systems Administrator, State of Tennessee; Johnson City, TN, 

 2003-Present   

    Graduate Assistant, East Tennessee State University, College of  

     Arts and Sciences, 2020-2022 

Publications:  Paul D. Brummitt, & Mohammad S. Khan. (2022). Truck 

Platooning and Its Impact on Fuel Emissions. The Institute of 

Electrical and Electronics Engineers, Inc. (IEEE) Conference 

Proceedings. 

https://doi.org/10.1109/GreenTech52845.2022.9772028 


	Reduced Fuel Emissions through Connected Vehicles and Truck Platooning
	Recommended Citation

	Microsoft Word - Brummitt Thesis 2022_0713.docx

