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ABSTRACT 

Heavy-duty trucks (HDTs) play a central role in the U.S. freight transportation, carrying most of 

the goods across the country. The projected increase in freight activity (e.g. truck-miles-traveled) raises 

concerns regarding the potential sustainability impacts of the U.S. freight industry, marking HDTs as an 

ideal domain for improving the sustainability performance of U.S. freight transportation. However, the 

transition to sustainable trucking is a challenging task, for which multiple sustainability objectives must be 

considered and addressed under a variety of emerging HDT technologies while composing a sustainable 

HDT fleet. To gain insights into the sustainability implications of emerging HDT technologies as well as 

how they can be adopted by freight organizations, given their implications, this research employed an 

integrated approach composed of methods and techniques, grounded in sustainability science, operations 

research, and statistical learning theory, to provide a scientific means with public and private organizations 

to increase the effectiveness of policies and strategies. The research has contributed to the scientific body 

of knowledge in three useful ways; (1) by comprehensively analyzing HDT electrification based on regional 

differences in power generation practices and price forecasts, (2) by conducting the first life cycle 

sustainability assessment (LCSA) on HDT automation and electrification, and (3) providing a case study 

of an unsupervised machine learning application for sustainability science. Consequently, the research has 

found that, given the transformation of the U.S. energy system towards renewables, automation and 

electrification of HDTs offer significant potential for improving the sustainability performance of these 

vehicles, especially in terms of global warming potential, life cycle costs, gross domestic product, import 

independence, and income generation. The research has also found that, under the prevailing techno-

economic circumstances and except for energy security reasons, natural gas as a transportation fuel option 

for freight trucks is by almost no means a viable alternative to diesel.  
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CHAPTER ONE: INTRODUCTION 

Overview 

One of the major questions that sustainability science seeks an answer for is how to establish 

sustainable production and consumption by transforming the underlying socio-technical systems such as 

energy, water, food, sanity and waste management, and transportation (Sala et al. 2013a). Within the 

transportation sector, freight transportation lies in the intersection of these two essential socio-economic 

processes (i.e. production and consumption) connecting them and enabling their proper functioning. 

However, transportation itself is a complex and dynamic system intertwined with other socio-technical 

systems that support it. 

The current state of the U.S. freight transportation (especially heavy-duty trucking) raise critical 

concerns regarding the environmental quality, macroeconomic stability, and energy security (Bureau of 

Transportation Statistics 2017), but is also believed to present a window of opportunities for economic 

benefits through investments in alternative fuel options (e.g. electricity, compressed natural gas (CNG), 

biodiesel, and hydrogen) and advanced vehicle technologies (e.g. automated HDTs) (Williams and Haley 

2015). However, these technological alterations applied to heavy-duty trucks (HDTs), be it an alternative 

fuel system or an advanced driving technology, come along with an additional need for socio-economic re-

structuring (e.g. infrastructure, and new social and professional skills). These, in turn, bring about an 

additional cost and complexity for the freight transportation network, along with the associated (negative 

or positive) consequences for the three pillars of sustainability, namely the environment, society, and 

economy, which must be improved in an optimum way. 

Therefore, the sustainability of the freight transportation system must be ensured to transition 

toward sustainable production and consumption, given the interconnectedness of socio-technical systems 

and the role of HDTs in this regard (Quiros et al. 2017). However, this is a challenging task that cannot be 
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overcome solely by the regulatory efforts of governmental agencies but calls for a holistic and 

transdisciplinary approach. In this regard, companies that utilize HDTs for their daily operations also play 

an important role in gearing these efforts toward the direction of sustainable freight transportation. 

Therefore, it would not be an exaggeration to claim that the actors regarded within the triple helix concept 

– a key to innovation in a knowledge-based society –, wherein academia, government, and industry act 

upon overcoming societal challenges together (Jofre and Andersen 2009). Hence, in harmony with 

governmental and academic efforts, and based on the relevant scientific findings, companies should also 

act upon this challenge by incorporating sustainability into their strategic decision-making processes. To 

this end, it becomes crucial to grasp a clear understanding of the sustainability implications of HDTs with 

alternative fuel systems and advanced driving technologies from the life cycle thinking perspective. 

Problem and Hypothesis Statement and Research Objectives 

The economic recovery after the 2008 recession brought substantial growth in freight activity 

across the United States (U.S.). Compared to the year 2012, the amount of goods moved by the U.S. freight 

transportation system rose by 10 percent, reaching to 18.6 billion tons in 2018. Furthermore, the projections 

on the demand for goods indicate that the amount of goods to be moved by the U.S. freight transportation 

system will increase up to nearly 25 billion tons by 2045 (U.S. Department of Transportation Bureau of 

Transportation Statistics 2020), which is likely to result in increased energy consumption as well as the 

emissions of greenhouse gases (GHGs) and air pollutants (U.S. Department of Energy 2013; U.S. EPA 

2016a).  One major source of impact is heavy-duty vehicles or long haul commercial trucks (HDVs or 

HDTs), where substantial reductions (nearly 40 percent) in the sector’s greenhouse gas (GHG) emissions 

are expected for model year (MY) 2027 vehicles compared to MY 2014 reference year (U.S. EPA 2015a). 

HDTs comprise a significant part of today’s U.S. trucking industry and therefore have crucial 

implications related to sustainability. Long-haul HDTs have carried 65 percent of the total U.S. freight in 
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2018 (U.S. Department of Transportation Bureau of Transportation Statistics 2020), while the trucking 

industry employed 11 percent of the total transportation-related labor force in 2014 (U.S. Department of 

Transportation Bureau of Transportation Statistics 2018). In addition, HDTs accounted for 23 percent of 

the total GHG emissions from the U.S. transportation sector in 2016 (U.S. Environmental Protection 

Agency 2018). HDTs were also responsible for 18 percent of the U.S. transportation-related energy 

consumption in the same year (Davis et al. 2016). 

Huge efforts and investments have been made in technology development and commercialization 

of different types of HDTs (National Petroleum Council 2012; National Academies of Sciences Engineering 

and Medicine 2015). Hence, one part of the concerns with respect to the overall sustainability of U.S. HDTs 

should be regarding the identification of where in the system’s unsustainability originates from. Gaining 

insights into the problematic parts of the system is undoubtedly an important first step; however, insufficient 

to act upon. Any scientific effort made in that regard should also be able to provide solutions applicable to 

real-life trucking operations. 

This can be achieved by the comprehensive analysis of different types of HDTs. Thus, the potential 

of any policy measure or technological development aimed at improving the efficiency of HDTs can be 

better interpreted in terms of their sustainability performances. Hence, in the light of the characteristics of 

the sustainability science, such an analysis should at least include the following two features (Sala et al. 

2013a): 

➢ Having a holistic approach based on life cycle thinking in assessing their environmental and 

socioeconomic implications of new technologies in a resource-constrained world, and 

➢ Capability to provide direction addressing strategic and operational questions with regard to viable 

pathways under both prevailing techno-economic circumstances and possible alternative scenarios. 
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The main objective of this research is to comprehend the implications of emerging heavy-duty truck 

technologies within the domain of sustainability science, hypothesizing that alternative fuel-powered HDTs 

could provide a viable option for, at least, transitioning to a more sustainable freight trucking, and hence, 

shedding light on their potential impacts and benefits in this context. This research particularly seeks 

answers for the following questions: 

1- How do alternative fuel HDTs perform relative to conventional/diesel HDTs and each other in 

terms of their life cycle emissions and costs? What are the health impacts of BE HDTs given the 

fact that these HDTs generate no tailpipe emissions? Do different techno-economic circumstances 

influence the life cycle performances of these HDTs? If so, how are their performances influenced? 

2- Given companies’ varying operational needs as well as environmental, social, and economic 

priorities and strategies, what is the optimal composition of an HDT fleet for companies under the 

current techno-economic circumstances? What are the overall improvements that come along with 

considering sustainability in composing an HDT fleet? 

3- Given the limited understanding of how autonomous driving technology due to its infancy, what 

are the potential triple bottom line sustainability impacts of U.S. automated HDTs (A-HDTs)? 



5 

 

Organization of the Dissertation 

This dissertation is comprised of five chapters, as shown in Figure 1. Chapter One presents a brief 

overview of the current state of U.S. freight transportation as well as heavy-duty trucking within the context 

of sustainability science, along with the questions that this research seeks answers for. Chapter Two assesses 

the life cycle environmental and cost impacts of alternative fuel-powered HDTs and compares these impacts 

to those of a conventional HDT. Chapter Three builds upon Chapter Two by broadening the scope of the 

analysis and hence, examines the life cycle sustainability impacts (also referred to as triple-bottom-line 

analysis) of conventional and electrified automated heavy-duty trucks (HDTs). This advanced driving 

technology is taken under investigation based on several sustainability indicators from environmental, 

social, and economic perspectives  

 

Figure 1: Organization of the dissertation 

Chapter Four deepens the analysis carried in the previous chapters by employing a hybrid life cycle 

assessment-based robust Pareto optimization that aims to provide decision support for companies in their 

Chapter One: Introduction and Overview

Chapter Two: Assessment and Comparison of Alternative 
Fuel-Powered HDTs

Chapter Three: Triple Bottom Line Analysis of Automated 
HDTs

Chapter Four: Sustainable HDT Fleet Composition with 
Robust Pareto Optimality: A Case Study

Chapter Five: Conclusions, Discussions, and Future Remarks
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efforts to compose a more sustainable HDT fleet and presents a case study for five U.S. sectors. 

Additionally, freight routes, originating from Miami FL, that are readier for alternative fuel-powered HDTs 

have been also investigated under Chapter Four. Finally, Chapter Five presents the conclusions of the 

research and provides a number of suggestions that will be useful for policy- and decision-makers in public 

and private organizations to better strategize efforts made towards more sustainable HDTs, overall. 
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CHAPTER TWO: HYBRID LIFE CYCLE EMISSION, COST, AND 

EXTERNALITY ANALYSIS OF 

ALTERNATIVE FUEL-POWERED CLASS 8 HEAVY-DUTY TRUCKS 

A partial work of this chapter has been published in the Journal of Cleaner Production, with the title “Does 

a battery-electric truck make a difference? Life cycle emissions, costs, and externality analysis of 

alternative fuel-powered Class 8 heavy-duty trucks in the United States” (Sen et al. 2017) 

Introduction 

Diesel has been the dominant fuel of choice for HDTs for decades around the world, and HDTs on 

U.S. highways have likewise been highly dependent on fossil fuels (TIAX 2008). In this regard, a recent 

study by the American Transportation Research Institute (ATRI) showed that more than 92 percent of trucks 

currently run on fossil fuels (Torrey and Murray 2015a). Furthermore, despite accounting for only 

approximately 1 percent of on-road vehicles in 2013 (U.S. Department of Transportation 2015) and a 

relatively tiny share of the total national vehicle-miles-travelled (VMT) at slightly more than 5 percent in 

2015 (Oak Ridge National Laboratory 2018), HDTs consumed nearly 29 billion gallons of fuel (17 percent 

of the total fuel consumption by highway vehicles) in 2015 (U.S. Department of Transportation Bureau of 

Transportation Statistics 2018). Additionally, including distributed energy-related emissions, HDTs were 

responsible for almost one-fourth of the U.S. transportation sector’s GHGs emissions in 2013 (U.S. EPA 

2016b). 

On one hand, the total global market share of hybrid electric, plug-in hybrid electric, and battery-

electric (BE) trucks was predicted to be ten times larger in volume by 2020 compared to 2013 (Navigant 

Consulting Inc. 2013). Furthermore, the U.S. EPA projected that 3 percent of U.S. HDTs would be 

electrified by 2025 (Fairley 2015). On the other hand, the forecasts carried out by the U.S. Energy 

Information Administration (EIA) (2014) have estimated that the growth in the U.S. economy between 

2013 and 2040 will cause an increase in diesel consumption with an annual average rate of 0.8 percent until 
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2040, with trucking responsible for a large share of this increase. Hence, emissions from HDTs are expected 

to substantially increase by 2040. Therefore, HDTs must be considered more thoroughly, taking into 

account the current status and future predictions related to the U.S. HDTs (National Research Council 

2010).  Furthermore, alternative fuel technology must be given special consideration for HDTs, given the 

potential emissions from their upstream, downstream, and use activities as well as life-cycle costs (LCCs), 

including externalities. 

Literature Review and Objectives of the Study 

Numerous articles have been recently published in the literature addressing the future of alternative 

fuel-powered vehicles from all of the classes defined by the U.S. Federal Highway Administration 

(FHWA), and made comparative life cycle environmental and cost analyses that have applied either 

process-based life cycle assessment (process-LCA), economic input-output-based LCA (EIO-LCA), or a 

combination of these two, known as hybrid LCA. Some of these studies focused on analyzing and 

comparing alternative fuel technologies in passenger vehicles and in light-duty vehicles (LDVs) with 

respect to their environmental and cost impacts, whereas some other studies analyzed medium-duty vehicles 

(MDVs) and heavy-duty vehicles such as buses, delivery trucks, and refuse trucks (see Table 1). Many 

studies are also available that address the environmental and cost performances of alternative fuel-powered 

trucks as shown in Table 1 below.  

Table 1: Review of the related literature 

Type of the 

study 

Reference Short description of the article 

Passenger and 

Light-Duty 

Vehicles (LDVs) 

Aguirre et al., 2012 Comparing BE and gasoline vehicle, using 

LCA 

Nigro and Jiang, 2013 Analyzing life-cycle GHGs emissions from 

different LDVs using different fuels 
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Type of the 

study 

Reference Short description of the article 

Sharma et al., 2013 Comparing life-cycle GHGs emissions from 

hybrid and electric vehicles to conventional 

vehicles in Australia 

Joseck and Ward, 2014 Conducting a total LCA analysis for LDVs 

with different fuel options 

Onat et al., 2014 Analyzing social, economic, and 

environmental impacts of alternative vehicle 

technologies 

Onat et al., 2016 Estimating the optimal distribution of 

alternative passenger cars based on their 

sustainability impacts 

Medium- and 

Heavy-Duty 

Vehicles (M-

&HDVs) 

Clark et al., 1995a Comparing the emissions performance of 

natural gas and diesel buses 

Feng and Figliozzi, 2012 Evaluation of the competitiveness of diesel 

and electric commercial vehicles. 

MJB&A, 2012 Comparative analysis of CNG and diesel 

buses with respect to their economic, and air 

quality and climate impacts 

MJB&A, 2013 Comparing the efficiency and environmental 

performance of CNG and Hybrid-Electric 

transit buses to diesel buses 

Cooney et al., 2013 Assessing the cradle-to-grave life cycle 

impacts of diesel and electric public buses 

California Hybrid Efficient and 

Advanced Truck Research 

Center, 2013 

Assessing the performance of BE parcel 

delivery trucks, and comparing them to 

conventional counterparts 

Sandhu et al., 2014 Analyzing the real-world fuel use rates of 

diesel and CNG refuse trucks 
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Type of the 

study 

Reference Short description of the article 

Zhao and Tatari, 2015 Hybrid life-cycle assessment approach to 

analyzing vehicle-to-grid application in light-

duty commercial fleet 

 

 

Class 8 Heavy-

Duty Trucks 

(HDTs) 

Wang et al., 1993 Analyzing the performances of CNG, 

methanol, and diesel trucks with respect to 

their emissions 

Clark et al., 1995b Evaluating the emissions from conventional 

and ethanol-powered Class 8 trucks 

Clark et al., 1998 Comparing the fuel use of liquefied natural 

gas (LNG) trucks to conventional trucks 

Norton et al., 1998 Comparing Fischer-Tropsch (F-T) diesel-

truck to a diesel-truck, with respect to their 

emission production 

Gaines et al., 1998 Analyzing the life cycle impacts of alternative 

fuel-powered Class 8 heavy trucks 

Wang et al., 2000 Comparing emissions from biodiesel heavy 

trucks to diesel heavy trucks 

Beer et al., 2000 Analyzing GHGs and air pollutants emissions 

from low- and ultra-low sulfur diesel, and 

alternative fuel-powered trucks 

Beer et al., 2002 Applying LCA to examining fuel-cycle GHG 

emissions from alternative-fuel HDTs 

Hofstetter and Müller-Wenk, 

2005 

Monetizing externalities from transportation 

Muller and Mendelsohn, 2007a Measuring the damages caused by air 

pollution 

Graham et al., 2008 Comparing biodiesel, CNG, hybrid, and LNG 

HDTs to diesel HDTs 

Meyer et al., 2011 Analyzing the total fuel-cycle of HDTs 

Michalek et al., 2011 Evaluating the impacts of air emissions and 

oil consumption from passenger vehicles 



11 

 

Type of the 

study 

Reference Short description of the article 

Gao et al., 2012 Comparing diesel and natural gas-powered 

HDTs 

Zhao et al., 2013 Examining of fuel savings potential of Class 8 

trucks 

Zhu et al., 2013 Analyzing the fuel economy of alternative 

fuels in HDTs 

Tong et al., 2015 Examining the use of natural gas in both 

MDVs and HDVs, including tractor-trailers 

 

 As evident from the literature reviewed, given the slow pace of deployment of alternative fuel 

HDTs in the U.S., and the infancy of some alternative fuel-powered vehicle technologies such as battery 

electric (BE) HDTs, there has not been a sufficiently thorough comparison between conventional and 

alternative fuel-powered HDTs with respect to their life cycle emissions, costs, and externalities. This 

chapter attempts to contribute to the scientific body of knowledge in this particular domain by investigating 

alternative fuel-powered HDTs from a life cycle perspective and to provide insights into the sustainability-

related implications of emerging HDT technologies. The HDT technologies considered in the analysis are 

hybrid electric truck, compressed natural gas (CNG)-powered truck, biodiesel truck, and battery-electric 

truck. 

 Hybrid electric and BE HDTs have been considered separately based on the battery sizes they 

employ such as mild hybrid trucks and full hybrid trucks, and BE HDTs with 270 kWh and 400 kWh motor 

sizes. The studied alternative fuel-powered HDTs have all been compared to conventional HDTs with 

respect to their life cycle greenhouse gas (GHG) emissions, life cycle costs (LCC), air pollutant emissions, 

and air pollution externalities (APE). The emissions estimated by the analysis are carbon dioxide (CO2), 

carbon monoxide (CO), nitrous oxides (NOx), particulate matter (PM10 and PM2.5), sulfur dioxide (SO2), 

and volatile organic compound (VOC). 
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 In addition, the regional differences in power generation have been incorporated into the life cycle 

assessment based on the grid characteristics defined by North American Electric Reliability Corporation 

(NERC). Accordingly, the life cycle impacts caused by BE HDTs operating in each of the U.S. NERC 

regions have been analyzed separately. The system boundary of the life cycle analysis essentially includes 

the manufacturing and use phases. The study described in this chapter contributes to the scientific body of 

knowledge in two ways; firstly, by comprehensively analyzing BE HDTs based on regional power 

generation and electricity price forecasts, and secondly, by incorporating into the analysis the cost of air 

pollution incurred by the studied trucks through their life cycle. 

Methods and Materials 

Hybrid Life-Cycle Assessment 

Life cycle assessment (LCA) is a well-known, well-established tool (International Organization for 

Standardization 2006) to analyze the direct and indirect upstream and downstream environmental, social, 

and economic impacts of processes and products that previously could not be accounted for, using 

complementary impact assessment methods. Process-LCA, coined by Haes et al. (2004), and EIO-based 

LCA have recently become more widely used in academia and industrial practices (Park et al. 2015; Onat 

et al. 2016a). For the analysis of this research, both EIO-based LCA and process-based LCA are hybridized 

to account for both the upstream and the downstream environmental impacts of HDTs. 

Almost all of the upstream environmental impacts are obtained using the Carnegie Mellon 

University Green Design Institute’s publicly available online EIO-LCA tool (Carnegie Mellon University 

Green Design Institute 2008). The EIO-LCA tool uses EIO tables based on transactions in 2002 (Noori et 

al., 2015).  Downstream environmental impacts are obtained using the EIO model and a variety of process-

based models and databases, such as the Greenhouse gases, Regulated Emissions, and Energy use in 
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Transportation (GREET), Alternative Fuel Life-Cycle Environmental and Economic Transportation 

(AFLEET), and the U.S. EPA’s Motor Vehicle Emissions Simulator (MOVES). The EIO-LCA tool uses a 

linear model based on the EIO matrix developed by Leontief (1970). The monetary value of the product in 

question, in 2002 dollars, is used as input into the model embedded in the tool. The matrix used in this 

model is composed of economic transactions between 428 industries in the U.S. economy. The North 

American Industry Classification System (NAICS) is used to categorize the data used in the model (Green 

Design Institute 2006). Hence, the input values needed to calculate the upstream life cycle environmental 

impacts are the purchase prices of each HDT and, if any, those of their additional parts. As for the 

downstream emissions from fuel consumption during the use phase, the AFLEET (Burnham 2016) and 

GREET (Center for Transportation Research 2016) models are used, both of which were developed by the 

Argonne National Laboratory. 

The LCA method has been widely used by many scientific fields, although hybridization has not 

yet been applied as widely. Egilmez et al. (2013) and Egilmez et al. (2016) used the EIO-LCA method to 

assess the sustainability of 53 U.S. manufacturing industries and 33 U.S. food manufacturing industries, 

respectively. Using the EIO-LCA method, Kucukvar et al. (2014a) carried out an analysis with regard to 

the sustainability of U.S. consumption and investment activities. Similarly, Kucukvar et al. (2014) and 

Kucukvar et al. (2014b) incorporated the EIO-LCA method into their studies to assess the sustainability of 

different asphalt pavement systems. Onat et al. (2014b) identified sustainability hotspots of U.S. residential 

and commercial buildings throughout their life cycle, using hybrid LCA. Furthermore, Onat et al. (2014b) 

also analyzed the carbon footprint of U.S. buildings, using the same method. Facanha and Horvath (2006) 

applied a hybrid LCA method to analyze air pollutant emissions from freight transportation in the U.S. 

Jiang et al. (2014) likewise conducted an hybrid LCA study for the manufacturing of a diesel engine. Ercan 

and Tatari (2015) analyzed the life cycle emissions, LCCs, and total water withdrawal rates for alternative 
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fuel-powered transit buses in the U.S., while Zhao and Tatari (2015) performed a hybrid LCA of the vehicle-

to-grid applications for LDVs.  

Monte Carlo Analysis 

HDTs have a wide range of configurations, and thus a wide variety of possible life cycle inventory 

(LCI) components. Furthermore, as previously discussed in Section 1, the currently limited degree of 

deployment for alternative-fuel HDTs means that the number of available data points for such HDTs is 

limited. A probabilistic method should be integrated with the LCA methods in order to accommodate this 

uncertainty and the applicable value ranges. One such probabilistic method is the Monte Carlo method, 

which simulates point values with variable distributions, allowing the LCA analysis results to be presented 

within a range instead of being limited to only using average values (Kucukvar and Tatari 2012; Noori et 

al. 2015c; Tatari et al. 2012). The Monte Carlo simulation method is widely utilized in many scientific 

areas, and numerous examples of combining LCA with Monte Carlo uncertainty analyses are available 

from the literature (McCleese and LaPuma 2002; Finkel 1995; Peters 2007). Within the considered ranges, 

inputs are regenerated for one thousand iterations and linked with their corresponding hybrid LCA 

components. 

Materials: Life-Cycle Inventory 

In the inventory analysis phase of a typical LCA, inputs to and outputs from a production system 

are quantified to assess the impacts in the subsequent step. Process-based LCA requires data inputs specific 

to each unit process included in the product manufacturing system under investigation, while EIO-based 

LCA requires the monetary values of products as inputs. The vehicle characteristics of the HDT considered 

in this study are presented in Table 2. Based on the goal and scope of the study, the life cycle assessment 

phases included in the system boundary are divided into two primary parts, as shown in Figure 2. 
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Table 2: Vehicle characteristics and battery specifications 

Characteristics Value Source 

Lifetime 6.6 – 10 years (Torrey and Murray 2014; 

CALSTART 2013) 

Average annual mileage 109,226 – 170,000 miles (Torrey and Murray 2015b; 

CALSTART 2013) 

Physical features Class 8 heavy-duty trucks with 

53’ truck-trailer; >33,001 lbs. 

(U.S. Department of Energy 

2011) 

Battery specifications (BE) 270kWh, 400kWh, 150Wh/kg, 

Li-ion batteries 

(California Air Resources Board 

2015) 

Battery specifications (Hybrid) 5 kWh, 25 kWh, 150Wh/kg, Li-

ion batteries 

(TRB and NRC 2010) 
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Figure 2: System boundary for hybrid-life cycle assessment 
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The baseline truck has been assumed to be made of the essential truck components such as the 

truck’s body, shell, engine, other required miscellaneous parts, and a trailer. The purchase price for such a 

truck is converted to 2002 US dollars using the U.S. Bureau of Labor Statistics’ CPI Inflation Calculator 

and used as an input to run the EIO-based LCA model and obtain the environmental impact results from 

the relevant NAICS economic sector. The hybrid electric, CNG, and BE trucks each require additional parts 

during the manufacturing phases, and these additional parts come with additional costs to the baseline truck 

manufacturing. 

According to the California Air Resources Board (2015), BE trucks additionally require power 

electronics, an electric motor, and a battery system. Likewise, CNG trucks require the installation of a metal 

tank and a heavy gauge (Burnham 2013). For battery system manufacturing, the GREET tool’s Vehicle-

Cycle Model has been used to calculate the environmental impacts of battery manufacturing based on the 

battery specifications from Table 2. 

CNG and BE trucks also necessitate the construction of refueling/recharging stations. The U.S. 

Department of Energy estimates the cost of a natural gas refueling station (NGRS) with the daily supply 

capacity of 1,500-2,000 gasoline-gallon-equivalents of fuel to range between $910K and $1,365K (both in 

2002 dollars) (Smith et al. 2014). As in the study conducted by Ercan and Tatari (2015), it has been assumed 

that 46 percent, 39 percent, and 15 percent of the total cost of a unit of NGRS consists of investment, labor, 

and installation costs for miscellaneous electrical equipment installed in the NGRS, respectively. The 

relevant NAICS sectors for the environmental impacts of the CNG refueling infrastructure are provided in 

Table 3. 

Based on the study conducted by De Filippo et al. (2014) as well as a report published by NREL 

(2012), charging stations used for HDTs have been assumed to adopt a conductive charging technique. 

Therefore, like in the study conducted by Ercan and Tatari (2015), and also based on additional cost 
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information from Proterra, it has been assumed that BE HDTs are charged using Level 3 charging stations, 

each with a charging capacity of 250 kW. Furthermore, it has been assumed based on Kempton et al. (2001), 

that each charging station has an efficiency of 90 percent. It has been also assumed that the existing diesel 

infrastructure is suitable to refuel hybrid electric and B20 trucks (i.e. a fuel blend composed of 20 percent 

of biodiesel and 80 percent of conventional diesel). 

In this research, the load-specific fuel economy (LSFE) has been taken into account, thereby 

assuming that a truck’s fuel economy decreases by 1 percent for each 1,000-pound increase in the payload 

(TRB and NRC 2010). The truck fuel economy values have been assumed to be for trucks with empty 

trailers, and that the maximum payload capacity of truck-trailers is 54,000 pounds. (TRB and NRC 2010). 

Based on these assumptions, the fuel economies of each truck type relative to their payload has been first 

calculated in decreasing order, and the resultant fuel economies are normally distributed for each truck type. 

The load-specific fuel consumption of each type of truck has been then randomized based on the relevant 

statistical parameters (e.g. mean and standard deviation). To calculate the environmental impacts of 

biodiesel production, the emissions generated by a biodiesel HDT per gallon of B20 have been taken from 

the GREET tool’s process-LCA model. 

Changing diesel prices have been also reflected in the analysis, as have been the various 

environmental impacts of regional electricity production and electricity prices. Based on a study conducted 

by U.S. EIA (2015), it has been assumed that diesel prices follow a steady 30 percent increase from 2015 

to 2025. Additionally, the MOVES analysis results for HDTs indicate that tailpipe emissions deteriorate 

over the HDT lifetime for each emission type. These deterioration factors have been considered in the 

analysis, and the values of these factors for the overall impacts and costs of tailpipe emissions have been 

taken from the AFLEET database (Burnham 2016). 
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As for battery manufacturing and replacement, it has been assumed that lithium-ion batteries are 

used in BE and hybrid electric HDTs, based on Transportation Research Board (2010). Based on Zhao et 

al. (2013), it has been assumed that the battery of a hybrid electric truck lasts for 3 years. Therefore, this 

truck type has been assumed to replace its battery 2 or 3 times during its entire lifespan, depending on its 

average lifetime, which is randomized between 6.6 and 10 years. It has been also assumed, based on a study 

conducted by Ozdemir (2012), that BE truck batteries are replaced approximately every 4 years. The 

GREET tool’s Vehicle-Cycle Model is used to obtain the emissions from battery replacement (Burnham 

2012). The future projections of battery price declines have been reflected, applying a 2 percent annual 

inflation rate to this initial battery price, based on data from the EIA (2015). 

With regard to the maintenance and repair of trucks, it is possible to assume based on NREL (2012), 

that hybrid electric and BE trucks have lower M&R costs than conventional trucks because conventional 

trucks have more fluids to change and far more moving parts. Based on M&R cost and relevant NAICS 

Sector data for each of the studied truck types, given in Table 3, the environmental impacts of M&R 

activities have been calculated, using the applicable M&R LCCs as inputs in the EIO-based LCA tool. The 

details of the specific data for each of the aforementioned tools as applicable to each relevant part are 

presented in Table 3. The emissions factors used for the calculations can be found in Appendix A. 
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Table 3: Inputs for hybrid life-cycle assessment 

Vehicle 

technolo

gy 

LCA component Cost (2015$) EIO-LCA tool 

NAICS sector 

Process-LCA data Source 

Commo

n for all 

types of 

trucks 

Truck manufacturing 

 

 

Trailer manufacturing 

$107,362 

 

 

$32,500 

#336120 

 

 

#336212 

n.a. 

 

 

n.a. 

(California Air Resources Board 

2015) 

(Commercial Truck Trader 2016) 

Diesel Diesel fuel production $1,030,445 #324110 n.a. (U.S. Department of Energy 2015) 

Maintenance $224,873 #81111 n.a. (Burnham 2013) 

Biodiesel 

(B20) 

Biodiesel fuel 

production 

$867,976 #324110 GREET’s biodiesel 

production 

(Burnham 2013; U.S. Department 

of Energy 2015) 

Maintenance $223,020 #81111 n.a. (Burnham 2013) 

CNG Natural gas 

manufacturing 

$855,785 #325120 n.a.  

Metal tank, Heavy 

gauge manufacturing 

$60,495 #332420 n.a. (Burnham 2013) 

Infrastructure $58,278 #332420, #237100, 

#335999 

n.a. (Smith et al. 2014) 

Maintenance $224,873 #81111 n.a. (Burnham 2013) 

Hybrid 

 

Diesel fuel 

production  

Mild 

 

$757,262  

#324110 

 

n.a. 

(U.S. Department of Energy 2015) 

Full $803,928 

Battery 

system 

manufactur

ing 

Mild 

 

$3,000 n.a. GREET’s Battery 

Model based on 

specifications. 

(TRB and NRC 2010; Burnham 

2013) 

Full $15,000 

Battery 

replacemen

t 

Mild $4,960 n.a. 

Full 

 

$24,802 

Maintenance $211,314 #81111 n.a. (Burnham 2013) 
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Vehicle 

technolo

gy 

LCA component Cost (2015$) EIO-LCA tool 

NAICS sector 

Process-LCA data Source 

BE Power generation $380,211 #221110 n.a. (California Air Resources Board 

2015) 

Battery 

system 

manufactur

ing 

270kWh $162,000 n.a. GREET’s Battery 

Model based on 

Table 2. 

(California Air Resources Board 

2015; Burnham 2013) 
400kWh $240,000 

Battery 

replacemen

t 

270kWh $160,885 n.a. GREET’s Battery 

Model based on 

Table 2. 

(California Air Resources Board 

2015; Burnham 2013) 400kWh $238,350 

Motor $9,290  

#335212 

 

n.a. 

(California Air Resources Board 

2015) Power electronics $12, 388 

Maintenance $202,715 #81111 n.a. (Burnham 2013) 
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Regional Electricity Generation and Prices 

A regional approach has been adopted to evaluate electricity generation-related environmental 

impacts of BE HDTs. More specifically, the North American Electric Reliability Corporation (NERC) 

regions have been considered for further analysis, as listed below: 

1. Texas Regional Entity – TRE 

2. Florida Reliability Coordinating Council – FRCC 

3. Midwest Reliability Organization – MRO 

4. Northeast Power Coordinating Council – NPCC 

5. Reliability First Corporation – RFC 

6. SERC Reliability Corporation – SERC 

7. Southwest Power Pool – SPP 

8. Western Electricity Coordinating Council - WECC 

Similarly, the regional variations in electricity generation and prices have been also considered in the 

fuel life cycle costs (LCCs) of BE HDTs, based on data from the EVRO tool (Noori, 2015; Noori et al., 

2015a). To account for electricity price projections, the commercial electricity rate has been assumed to be 

equal to the levelized cost of electricity. More detailed information on regional electricity prices and on the 

environmental impacts of power generation can be found in Ercan et al. (2016). 

Air Pollution Externality Costs 

A few studies have included the externalities from a vehicle’s emissions during operation (Muller 

and Mendelsohn 2007; Michalek et al. 2011; Onat et al. 2014a). In general, the estimation of operation and 

maintenance costs for trucks typically do not include these externalities (NESCCAF/ICCT 2009). With this 

in mind, the externality costs considered in this study have been estimated based on the Air Pollution 

Emission Experiments and Policy Analysis (APEEP) model developed by Muller and Mendelsohn (2007b). 
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Air pollution externality (APE) costs of electricity generation have been accounted for to cover the 

total externality costs of BE HDTs. The energy consumption of a CNG truck has been calculated to be 

0.028 GJ/mile, and the total APE costs of natural gas have been obtained based on this value. Regarding 

the externality costs of fuel consumption for conventional, hybrid, and B20 HDTs, the APE costs provided 

for diesel production (in $/ton) have been used. APE costs related to manufacturing, including the 

manufacturing of batteries, and maintenance have been considered within the same category, and have been 

likewise applied to each truck type on a dollar-per-ton basis. Finally, the APE costs of tailpipe emissions 

have been obtained for each type of truck on a dollar-per-ton basis, except for BE HDTs as these types of 

HDTs do not generate tailpipe emissions. 

Results 

Life-Cycle Cost (LCC) Analysis Results 

The use phase has been observed to be the main driver of the life cycle costs (LCCs) of HDTs. As 

shown in Figure 3, BE and mild hybrid electric HDTs have been found to have the best overall performances 

out of all of the considered truck types in terms of their LCC impacts. The dominant contributor to the 

LCCs of all types of HDTs is the cost of fuel consumption followed by their maintenance and repair (M&R) 

costs, except for BE HDTs. Although there has been found a slight difference between the LCCs of 

conventional and CNG trucks, there is a noticeable difference between the life cycle fuel costs (LCFC) of 

these two truck types. The LCFC of a B20 truck has been estimated to be slightly higher than that of a CNG 

truck; however, a B20 truck performs better overall in terms of economic impacts. 
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Figure 3: Life cycle costs of heavy-duty trucks (2015$M) 

 

Unlike the study conducted by Lajunen (2014), which found hybrid electric buses to be performing 

almost the same as a diesel city bus with respect to LCCs, the results of this research have indicated that 

hybrid electric HDT might have moderately less LCC than that of a conventional truck, and therefore, favor 

the hybrid electric configuration for HDTs. Individual LCFCs and battery replacement costs have been the 

two primary differences in the respective LCCs of both hybrid electric HDT types. The fuel economy of 

mild hybrid electric HDTs has been observed to be better than that of full hybrid electric HDTs, resulting 

in lower LCFC for mild hybrid electric HDTs. For BE HDTs, additional part manufacturing has been found 

to be the second largest driver of the LCCs of BE HDTs. The greatest portion of these incremental costs of 

BE HDTs stems from battery system manufacturing. 

An important portion of the LCCs of HDTs comes from M&R activities, with conventional trucks 

being costlier, as expected. Overall, the M&R LCCs of BE HDTs are the lowest out of all truck types, 
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which is consistent with the findings from the NREL (2012), which clearly highlights the lower 

maintenance requirements of battery-electric vehicles due to fewer fluids to change and fewer moving parts 

in such vehicles. 

Life-Cycle Environmental Emissions Results 

According to the analysis results presented in Figure 4, fuel consumption and tailpipe emissions 

have been found to be the predominant contributors to total life cycle GHGs emissions, to the point where 

all other factors are practically negligible. Overall, CNG trucks produced the largest amount of life cycle 

GHGs emissions compared to other trucks, with BE trucks emitting the least amount of GHGs emissions 

at 53 percent less than the GHGs emissions from CNG truck’s life cycle. This is mainly because BE HDT 

does not generate any tailpipe emissions, while CNG HDT has been found to emit as much tailpipe 

emissions as conventional HDT. Like in the LCC results, fuel consumption played a major role in the life 

cycle GHGs emissions from each truck type. In terms of GHGs emissions associated with fuel consumption, 

mild hybrid electric trucks were found to outperform full hybrid electric trucks and CNG-powered trucks 

by more than 6 percent and 121 percent, respectively, due to their better fuel economy. 
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Figure 4: Life-cycle greenhouse gas emissions of heavy-duty trucks (thousand-tons  

of CO2-eq.) 

 

Unlike the findings of Sharma et al. (2013), in which BE passenger vehicles were found to have 

higher life cycle CO2 emissions than diesel passenger vehicles, the results of this research found that BE 

HDTs perform better, albeit slightly, than conventional HDTs in terms of life cycle GHGs emissions. An 

immense amount of GHGs emissions from electricity generation negated the zero tailpipe emission 

advantage of BE HDTs. In fact, the analysis results have shown that the amount of GHGs emissions from 

electricity generation are 70 percent and almost 5 percent greater, compared to the two largest GHGs 

emitters out of the considered truck types (i.e. conventional and CNG trucks), respectively. 

Similarly, conventional and CNG HDTs have yielded the greatest amounts of air pollutant 

emissions compared to other HDTs, as shown in Figure 5. Air pollutants emissions from CNG HDTs are 

twice as much as those from conventional HDTs. This is consistent with the findings in Tong et al. (2015), 
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which also found that CNG HDTs did not yield any emission improvements compared to diesel HDTs. The 

main driver of this significant difference has been observed to CO emissions, which have been estimated 

to account for 68 percent of the tailpipe emissions from CNG HDTs. According to the results, NOx and SOx 

emissions are also significant contributors to the total air pollutant emissions, largely due to fuel 

consumption and tailpipe emissions. Natural gas manufacturing has been observed to be the biggest 

contributor to SOx emissions, followed by electricity generation and diesel manufacturing. Mild hybrid 

electric trucks had the lowest SOx emissions at nearly 90 percent less than those of CNG trucks. 

 

 

Figure 5: Life-cycle air pollutants emissions of heavy-duty trucks (tons) 

 

From a life cycle perspective, this research has found that biodiesel trucks cause almost as much 

PM, CO, VOC, and NOx emissions as do diesel HDTs. The main reason behind this difference between 

these emissions produced by biodiesel HDTs and diesel HDTs is that the emissions from maintenance and 

repair-related, fuel consumption-related , and tailpipe emissions of biodiesel trucks are slightly less than 

diesel trucks. 
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Life-Cycle Air Pollution Externality Costs Results 

Compared to the baseline HDT, all the studied alternative fuel-powered HDT types, except CNG 

HDT, performed better with respect to APE LCCs. Fuel consumption and tailpipe emissions have been 

found to be the two main contributors to APE LCCs, respectively, yielding the largest and second largest 

APE damages out of all the analyzed modules. According to the results presented in Figure 6, the life cycle 

externalities for each HDT type (except for BE trucks) ranged between $280,000 and $340,000 (in 2015 

dollars), with GHGs and SOx emissions as the main drivers of APE LCCs for such HDTs. 

Contrary to the results found by Michalek et al. (2011) regarding BE vehicles’ APE costs, the 

results of this research have shown that BE HDTs significantly outperformed all other HDT types in spite 

of the U.S. electricity generation sector’s high dependency on fossil fuels. This is mainly because BE HDTs 

have no tailpipe emissions, thereby eliminating one of the two main drivers of APE costs. This result is 

consistent with the study conducted by Feng and Figliozzi (2013) in that BE trucks have been found to be 

more competitive when indirect costs are taken into account. On the other hand, CNG trucks have been 

found to have the highest overall APE costs, with BE trucks’ APE LCCs at 85 percent less than those of 

CNG trucks. 
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Figure 6: Life-cycle air pollution externalities (2015$) 
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amount of APE costs from tailpipe emissions, mainly because these trucks still run largely on diesel fuel, 

and because the tailpipe emission values collected from the AFLEET tool’s database and the tailpipe-related 
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because of the additional APE costs from tailpipe CO emissions from CNG HDTs, as well as the higher 

SOx emissions from natural gas manufacturing. 

Cost and GHG Emissions Results for Regional Electricity Consumption 

The regional analysis for BE HDTs is based only on the electricity consumption of such vehicles, 

which varies significantly among regions. Special emphasis is placed on electricity generation, and thus 

fuel consumption, taking into account the regional differences in life cycle emissions and costs. Although 

BE HDTs generally produced lower amounts of GHGs emissions than all other HDT types, electricity 

generation alone was still responsible for a considerable amount of GHGs emissions. The results from the 

previous sections for BE HDTs are based on a national average of the regional electricity grid mixes 

calculated based on NERC regions, but it must not be forgotten that different regions made varying 

contributions to this average. With respect to regional GHGs emissions from fuel consumption, the NPCC 

region produced substantially less emissions than all the other regions. The NPCC region’s emissions from 

electricity generation were found to be 106 percent less than those of the SPP region. This difference is so 

significant that, if BE HDTs, nationwide, are to be charged using the electricity grid mix of NPCC region, 

the fuel consumption-related GHGs emissions of BE HDT type would be reduced by over 70 percent, and 

overall GHGs emissions would be reduced by over 63 percent. As previously noted in Ercan and Tatari 

(2015), this is due in large part to the relatively small share of coal use in the electricity grid mix of the 

NPCC region. 

 

According to the results, another significant impact driven largely by fuel consumption is the 

overall LCCs. That said, with respect to the LCCs of electricity generation-related activities, the differences 

in LCCs are still considerable, though not as vastly different from region to region as GHGs emissions are. 

The electricity grid mix of the SERC region has been found to have the greatest fuel LCCs for BE HDTs at 
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almost 30 percent higher than the LCCs for the U.S. national average grid mix. On the other hand, it has 

been observed that the use of the electricity grid mix in the NPCC region would improve the fuel LCCs of 

BE HDT by 12 percent compared to the U.S. national average grid mix (see Figure 7 and Figure 8). 

 

Figure 7: Regional electricity-consumption-related greenhouse gas emissions for 400 kWh electricity (ton 

of CO2-eq.) 
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Figure 8: Regional life cycle cost of electricity consumption for 400 kWh electricity (2015$) 
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CHAPTER THREE: TRIPLE BOTTOM LINE SUSTAINABILITY 

ASSESSMENT OF AUTONOMOUS HEAVY-DUTY TRUCKS 

A partial work of this chapter has been published in the special issue of Journal of Industrial Ecology on 

‘Life Cycle Assessment of Emerging Technologies’, with the title “Life Cycle Sustainability Assessment of 

Autonomous Heavy-Duty Trucks” (Sen et al. 2019b) 

Introduction 

Connected and automated vehicle (CAV) technology is expected to herald a new era for 

transportation system increasing the system’s efficiency and revolutionizing the way that goods move 

around the world. The CAV technology essentially provides means of communication among vehicles as 

well as between vehicles and infrastructure. Once vehicles are in the range of communication, they become 

connected to each other as well as infrastructure, and this vehicular connectivity facilitates automated 

driving. Given their potential socioeconomic and environmental implications as well as the potential of the 

CAV technology for operational cost savings and environmental improvement (U.S. Energy Information 

Administration 2017), heavy-duty trucks (HDTs) are considered an ideal vehicle segment for early adoption 

of this emerging technology - possibly earlier than passenger vehicles (Shanker et al. 2013). On one hand, 

it is deemed possible that the use of fully automated HDTs will reduce these costs by as much as 30 percent 

(International Transport Forum 2017), including driver costs approaching zero (Wadud et al. 2016). In 

addition to costs, the introduction of automated trucking is also expected to bring improvements in terms 

of energy use and associated emissions owing to greater fuel efficiency and increased operational efficiency 

(Slowik and Sharpe 2018; Collingwood 2018; Greenblatt and Shaheen 2015; Barth et al. 2014). On the 

other hand, some researchers argue that the CAV technology may cause a rebound effect, increasing both 

travel demand and freight demand, which are likely to result in increased energy consumption and public 

health problems (Wadud et al. 2016; Crayton and Meier 2017; Ross and Guhathakurta 2017). 
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Overall, the CAV technology has a potential to alleviate the impacts of environmental and 

socioeconomic issues, caused by freight transportation and trucking in particular, with the implications of 

automated HDTs going beyond the trucking industry to include cybersecurity (Van Meldert and De Boeck 

2016), public health, public policy (Slowik and Sharpe 2018), urban planning and ethics (Alessandrini et 

al. 2015). However, a great deal of uncertainty remains in how these impacts will be experienced in terms 

of sustainability (Fitzpatrick et al. 2017). 

This chapter attempts to contribute to the efforts made for shedding light on some of the 

uncertainties in CAV technology implementation in the U.S. trucking industry by exploring the 

sustainability impacts of automated HDTs (A-HDTs). Going beyond life cycle assessment (LCA), which 

mainly focuses on environmental and energy analysis of an economic activity, life cycle sustainability 

assessment (LCSA) framework presents an effective means to broaden the impact analysis by capturing 

social and economic impacts of such an activity, in addition to its environmental impacts (Sala et al. 2013b). 

In this regards, input-output (IO) analysis is regarded as an effective method to carry out LCSA studies 

(Guinee et al. 2011). Jeswani et al. (2010) underline the usefulness of combining input-output (IO) analysis 

with LCA to create hybrid models that can capture the LCS impacts of intra- and inter-sectoral activities. 

Hence, IO-based LCSA has been employed to investigate the potential LCS impacts of truck automation. 

Consequently, the primary objective of this chapter is to quantify, assess, and compare the macro-

level LCS impacts of automated HDTs taking the environmental, social, and economic dimensions into 

account based on current techno-economic circumstances. With these objectives, this chapter specifically 

aims to contribute to: 

• The general body of scientific knowledge on potential sustainability impacts of A-HDTs 

based on the system boundary defined; and 

• The LCSA literature on CAVs by providing another example of the integration of IO 

analysis for LCSA; and 
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Literature Review 

Several studies have employed IO modeling based on the Eora database developed by Lenzen et 

al. (2012a) and the LCSA framework. The reader interested in the publications that are excluded from the 

review but apply Eora-based IO modeling and the LCSA framework in a wider scientific spectrum is kindly 

referred to Lenzen et al. (2012b) and Onat et al. (2017). 

In recent years, the research on the application of CAV technology in passenger vehicles has 

attracted relatively more attention from researchers (Fitzpatrick et al. 2017). Hence, even though LCSA has 

been previously applied to different types of production systems (Zamagni et al. 2013), the literature on 

automated HDTs is not as abundant as the literature on automated passenger vehicles and LCA of 

alternative fuel HDTs. Using Argonne National Laboratory’s process LCA model – Greenhouse Gas, 

Regulated Emissions, and Energy Use in Transportation (GREET) (Center for Transportation Research 

2016), Gaines et al. (1998) conducted one of the first life cycle analysis of alternative fuel-powered Class 

8 heavy trucks to investigate energy use and emissions from Fischer-Tropsch diesel and liquefied natural 

gas (LNG) powered trucks and their manufacturing as well as recycling. The study found the vehicle 

operation (e.g. fuel economy, payload, and vehicle-miles-traveled [VMT]) to dominate energy consumption 

and emissions. It was concluded that natural gas-powered trucks did not perform better than conventional 

trucks with respect to energy or emission. Beer et al. (2002) applied a process LCA method to examine life 

cycle tailpipe emissions, fuel cycle greenhouse gas (GHG) emissions, and fuel production-related emissions 

from diesel, compressed natural gas (CNG), LNG, liquefied petroleum gas (LPG), and biodiesel heavy-

duty vehicles. Biodiesel was found to outperform other fuels given that emissions from renewable carbon 

stocks are not counted and highlighted the sensitivity of results to energy type used in the fuel production 

process. The study lacked the consideration of the complete life cycle assessment. Graham et al. (2008) 

study compared GHG emissions from trucks fueled with diesel, biodiesel, CNG, hythane (20 percent 

hydrogen, 80 percent CNG), and LNG, and concluded that GHG emissions varied depending on the choice 
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of fuel, revealing that the use of natural gas only moderately improved the tailpipe emissions compared to 

conventional truck. Meyer et al. (2011) conducted a comparative total fuel cycle analysis of diesel and 

alternative fuel (i.e. diesel and its variations, biodiesel, CNG, and LNG) HDTs, carrying 20 tons of cargo, 

based on the GREET model. The researchers found tailpipe emissions to be the main contributor to total 

GHG emissions, concluding that fuel economy and truck payload are two key variables that affect 

operational emissions. Tong et al. (2015) made a comparative analysis of natural gas pathways for medium- 

and heavy-duty trucks, including Class 8 tractor-trailers and refuse trucks, and found that, compared to 

diesel trucks; the use of natural gas did not reduce emissions per unit of freight-distance moved. It was 

further concluded that current technologies do not provide good opportunities to achieve desired reductions 

in emissions from natural gas-fueled Class 8 trucks. Nahlik et al. (2015) estimated GHG and conventional 

air pollutant emissions from diesel, LNG, and hybrid electric HDT freight activities inside and associated 

with California using process LCA method considering vehicle and fuel manufacturing, vehicle operation 

and maintenance, including roadway infrastructure and maintenance. It was found that switching to LNG, 

with 1 percent annual fuel economy improvement, offers short-term reductions, but long-term increases. 

The study concluded that electric-propulsion trucks can lead to additional GHG emission reductions and 

that higher deployment of zero-emission vehicles is needed for California to meet emission reduction goals. 

Gruel and Stanford (2016) developed a system dynamics simulation model to examine the impacts of 

autonomous vehicles on traveling behavior, mode choice, and broader transportation system based on 

various scenarios. The researchers concluded that VMT is likely to increase resulting in increased energy 

consumption and associated emissions; however, have not reported any estimation in this regard. They also 

confirmed the potential of AV technology to improve mobility and traffic safety. Wadud et al. (2016) 

examined travel related energy consumption and emissions of both light- and heavy-duty vehicle 

automation based on an extensive literature review. They underlined the significance of automated vehicle 

operation for the sustainability profile of these vehicles and found that different levels of vehicle automation 
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result in different energy outcomes and travel impacts, with a high level of automation potentially 

increasing travel activities and associated energy consumption. They concluded highlighting the importance 

of further research on how mobility models, vehicle design, fuel choices, and driver’s behavior will change 

the implications of vehicle automation to improve our understanding of these responses. Harper et al. (2016) 

conducted a cost-benefit analysis of partially automated vehicle collision avoidance technologies used in 

U.S. light-duty vehicles. The researchers only considered the social cost of crashes and estimated that over 

130 thousand injury crashes and over 10 thousand fatal crashes could be avoided through the use of such 

technologies resulting in $20 billion net benefits. They did not, however, include the social cost of air 

pollution, and suggested that VMT is an important parameter to incorporate in economic analysis. 

To and Lee (2017) used a triple-bottom-line approach to assess the sustainability performance of 

Hong Kong’s logistics sector based on three non-linear equations representing environmental, economic, 

and social performances. They considered GHG emissions to be the only environmental performance 

indicator; value-added values and R&D expenditures to be the only economic indicators; and education, 

health, housing, public safety, employment, and income to be the social indicators. The sector’s 

environmental performance was found to remain steady, and economic and social performances to show a 

downward trend. The researchers did not include various indicators included in this study and did not report 

any result on the social indicators except for employment. Ross and Guhathakurta (2017) quantified the 

impact of AVs on energy use under three autonomous vehicle dominance scenarios based on literature 

review. Like Wadud et al. (2016), they found a great variation in energy consumption rates for different 

automation levels, with full automation generally resulting in more energy consumption through the 

induced increase in travel demand, and ultimately, higher VMT. Bösch et al. (2017) conducted a cost-based 

analysis of fully autonomous mobility services for different operational modes such as ride-sharing and 

taxis, public transportation, and private vehicle. Vehicle automation was found to bring substantial 

decreases in taxis and public transportation services, while the cost of private vehicle and rail services 
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changed only marginally. It was concluded based on the study result and ongoing developments, that 

electric vehicles will be the prevailing choice by the time autonomous vehicles are introduced. Heard et al. 

(2018) examined the sustainability implications of CAVs for the food supply without employing an 

analytical approach. The researchers pointed out the criticality of evaluating the environmental performance 

of the CAV technology and highlighted the importance of the inclusion of social aspects of the technology 

in assessing its economic impacts. A recent review study concluded that developing quantitative social and 

economic life cycle indicators and life cycle-based approaches to investigate various product development 

scenarios and practical ways to cope with uncertainties still remain as the main challenges of the LCSA 

framework for sustainability assessment of emerging technologies (Guinée 2016). 

Different approaches such as deterministic models, econometric models, and dynamic simulation 

models have been employed to answer important questions and generate valuable knowledge on a likely 

future under the dominance of CAVs. Even though several projects on automated HDTs – particularly on 

platooning of A-HDTs (Tsugawa et al. 2016) – exist, it has been also observed that the research on 

connected automated HDTs is quite limited and most of these studies focused primarily on full-market 

existing systems rather than new technologies. Cucurachi et al. (2018) concluded that, to achieve a more 

sustainable society, new technologies and their life cycle sustainability impacts need to be proven with 

sound and systematic methodologies. As observed, there are many studies in the literature that investigate 

environmental and economic impacts of alternative vehicle technologies; the sustainability impacts (i.e. 

encompassing environmental, social, and economic dimensions) of emerging vehicle technologies such as 

connected automated vehicles have not been investigated sufficiently. These make those calls made by 

several researchers for additional research reasonable (Bechtsis et al. 2017; Slowik and Sharpe 2018; Gruel 

and Stanford 2016; Barth et al. 2014). 

The literature review has also shown that the social cost of emissions has not been included in most 

of the studies. Therefore, Wadud et al. (2016) are agreed with on the level of uncertainty in the 
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environmental and energy impacts of AVs (especially of A-HDTs), and that it is difficult to truly predict 

these impacts under the current circumstances. However, it is crucial to “take a snapshot” of the potential 

life cycle sustainability impacts of A-HDTs based on possible A-HDT specifications given by the literature 

and relevant reports. To this end, the research presented in this chapter is the first attempt to conduct an 

assessment of the life cycle environmental, economic and social impacts of U.S. connected automated 

trucks. 

Objectives of the Study 

The scholars that engage in the research related to the CAV technology seem to agree on the 

potential benefits of the technology with respect to traffic safety. However, it does not seem possible to 

claim such a consensus on the potential environmental and other socioeconomic impacts of automation of 

HDTs. This is a good indication for the need to diversify the research conducted so far regarding this 

emerging technology to grasp a better understanding of its multi-dimensional implications from a holistic 

perspective, which is also evident from the reviewed literature. 

The primary objective of the research conducted in this chapter is to quantify, assess, and compare 

the macro-level LCS impacts of automated HDTs taking the environmental, social, and economic 

dimensions into account based on current techno-economic circumstances. The use table within the input-

output framework not only gives information on primary inputs into industries’ production systems but also 

on the cost structures of industries and their activities (Eurostat 2008). Current technological and economic 

circumstances are important determinants of these cost structures, which, in turn, have a significant 

influence on the multiplier matrix values used to estimate impacts. As known, the main inputs to an 

economic input-output-based LCSA model are the unit costs of variables that are included in the system 

boundary under examination (Kucukvar and Tatari 2013). These unit costs are influenced by vehicle types 

and their technical specifications (Rogge et al. 2018). For example, truck platooning is regarded as a new 
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mode in terms of cost structure (Meersman et al. 2016). In another example, user cost structures are defined 

as those costs related to vehicle ownership and vehicle use such as purchase, insurance, and fuel (U.S. 

Department of Transportation 2018). Accordingly, several considerations underlying the research 

conducted in this chapter, e.g. changing diesel prices, changing electricity prices, deterioration of tailpipe 

emissions over time (which affect the overall health damage costs), changing battery prices, fuel economies 

of HDTs, etc., have been taken into account these circumstances. The research conducted in this chapter 

investigates these dimensions based on the indicators that are presented in the following section specifically 

for U.S. Class 8 diesel and battery electric (BE) automated HDTs with a truck-trailer as defined by the U.S. 

Department of Energy (2011). The developed IO model focuses on the United States for the year 2015 – 

the latest data year in the Eora database at the time of the research conducted (Fry et al. 2018). 

Industrial ecology (IE) is concerned with the sustainability of resources (e.g. materials and energy) 

used in producing goods and services as well as the analysis of the impacts of consumption on the 

environment, society, and economy, i.e. the three pillars of sustainability (Clift and Druckman 2016). In 

doing so, IE adopts a system perspective to operationalize forward-looking research and practice taking 

into account the role of technological change (Lifset and Graedel 2002). LCSA, which is viewed either as 

an analytical framework (Guinée et al. 2011) or a holistic method (Kloepffer 2008), is an IE tool widely 

used to investigate the sustainability of production and consumption activities (Gloria et al. 2017). Within 

this context, this chapter also aims to contribute to 1) advancing the understanding of sustainability 

implications of automated HDTs based on the system boundary shown in Figure 9 and the studied 

sustainability indicators, and 2) advancing the LCSA literature on CAVs by providing another example of 

the integration of IO analysis for LCSA. 
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Methods and Materials 

Triple Bottom Line Life Cycle Sustainability Assessment Model 

Triple bottom line (TBL) is a construct within the ontology of sustainability science that provides 

a framework used to measure the sustainability performance of organizational activities (Goel 2010; Rogers 

and Hudson 2011). Since the term sustainability is equivocally used to refer to the environmental 

performance of products, processes, or organizations, the TBL framework, coined by Elkington (1997), 

expands this sole environmental consideration to integrate economic and social aspects into the 

sustainability agenda (Alhaddi 2015). Hence, the TBL framework has been adopted in this research and 

operationalized with the application of the economic input-output (EIO) modeling technique, introduced 

by Leontief (1970), which is used to assess the sustainability impacts of A-HDTs at the triple bottom line. 

 EIO modeling has been widely used to analyze a wide variety of policy-relevant issues, including 

the sustainability impacts of products, infrastructures, international trade, and households (Lettenmeier et 

al. 2014; Giljum et al. 2008a; Tukker et al. 2014; Kucukvar and Tatari 2013; Weber and Matthews 2007; 

Kucukvar et al. 2017; Giljum et al. 2008b; Zhang et al. 2015; Caron et al. 2014). EIO models are constructed 

based on sectoral monetary transaction matrices (e.g. supply and use tables, which are the building blocks 

of EIO models representing the data on financial flows between sectors) encompassing the economic 

interactions between industries within national economies (Onat et al. 2017a). In this research, the supply 

and use tables, provided by Eora National IO Tables constructed by Lenzen et al. (2012), have been merged 

along with a number of environmental, social, and economic sustainability metrics to construct an EIO 

model capable of analyzing the TBL sustainability impacts of the studied A-HDTs. 

 The Use matrix, denoted as 𝑈, provides data on the consumption of each commodity by each 

industry or by final demand categories, i.e. households, government, investment, and export, whereas the 

Make table, denoted as 𝑉, provides data on the production of each commodity by each industry included in 
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these tables. Accordingly, 𝑢𝑖𝑗 represents the value of commodity 𝑖 purchased by industry 𝑗; and 𝑣𝑖𝑗 

represents the value of commodity 𝑖 produced by industry 𝑗. Using these two tables, it is then possible to 

calculate the direct requirements table, also referred to as technical coefficient matrix, denoted as 𝐵, and 

the market share matrix, denoted as 𝐷, given in Eqs. 1 and 2. 

 

𝐵 = [𝑏𝑖𝑗] = [
𝑢𝑖𝑗

𝑥𝑗
]           (1) 

𝐷 = [𝑑𝑖𝑗] = [
𝑣𝑖𝑗

𝑞𝑖
]           (2) 

In Equations (1) and (2), 𝐵 refers to the amount of input of commodity 𝑖 used by industry 𝑗 to 

produce one dollar of output of that industry; 𝐷 refers to the proportion of the total output of commodity 𝑖 

produced in each industry; and 𝑥𝑗 and 𝑞𝑖 represent the total output of industry 𝑗, and the total output of 

commodity 𝑖, respectively (Horowitz and Planting 2006). After the direct requirement and market share 

matrices are defined, an industry-by-industry IO model can be formulated as the following (Miller and Blair 

2009): 

𝑥 = [(𝐼 − 𝐷𝐵)−1]𝑓           (3) 

In this equation;  

x: Total industry output vector 

I: The identity matrix 

f: Total final demand vector 

DB: Direct requirement matrix 

[(𝐼 − 𝐷𝐵)−1]: Total requirement matrix (also referred to as multiplier matrix) 

 Following the construction of the foundation of industry-by-industry IO model, a diagonal matrix 

𝐸𝑠𝑢𝑠, referring to triple bottom line impacts per dollar of output of each industry is integrated in Eq. 3, as 

shown in Eq. 4. This matrix is constructed by dividing the total direct impact of industry 𝑗, e.g. GHG 

emissions, GDP, income etc., by the total output of that industry. It is then possible to estimate total 
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sustainability impacts per unit of final demand, denoted as r, by pre-multiplying the total industry output 

vector as the following: 

𝑟 = 𝐸𝑠𝑢𝑠𝑥 = 𝐸𝑠𝑢𝑠[(𝐼 − 𝐷𝐵)−1]𝑓         (4) 

 Here, 𝑟 denotes the total impact vector that gives the estimations of LCSA impacts per unit of final 

demand, and 𝐸𝑑𝑖𝑚 represents a diagonal matrix, consisting of LCSA impact values per dollar-worth output 

of each industry. The multiplier matrix consists of the product of 𝐸𝑑𝑖𝑚 and (𝐼 − 𝐷𝐵)−1, values of which 

are provided in Table B.18. These multipliers are used to quantify the LCS indicators considered in the 

analysis. These LCS indicators are presented under the following section. 

Scope and Goal 

Life cycle phases such as material extraction, procurement, manufacturing, and operation phases 

have been included in the analysis. While the vehicle characteristics of the studied HDTs are presented in 

Table 4, Figure 9 shows the system boundary assumed for the LCSA analyses of automate diesel HDT and 

automated electric HDT. The functional unit of the analysis can be given as a commercial truck 

manufactured and operated until its end of lifetime, like in Sen et al. (2017). Therefore, the results will be 

presented based on unit of indicator per truck (e.g. GWP100/truck). 

Table 4: Vehicle characteristics 

Characteristics Value Source 

Lifetime 19 years (CALSTART 2013; Burnham 

2017) 

Average annual mileage 137,000 (Trego and Vice 2017; Burnham 

2017) 

Physical features Class 8 heavy-duty truck with 53’ (16 

meter) truck-trailer; >33,001 lbs. (15 tons) 

(U.S. Department of Energy 

2011) 

Battery Energy 400 kWh of Li-ion battery (California Air Resources Board 

2015) 
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Characteristics Value Source 

Fuel Economy (Diesel) 7.03 mpg (Slowik and Sharpe 2018; 

Burnham 2017) Fuel Economy (BE) 17.9 mpgge 

 

 

Figure 9: System boundary for the life cycle sustainability assessment 

Selected Sustainability Indicators 

Given the importance of indicators used gain insights into the sustainability implications of 

products and processes, scholars involved in scientific research within the domain of sustainability science 

have sought to develop and improve indicators that can enhance society’s understanding of the 

consequences of anthropogenic activities (Ramani 2018). Because the sustainability science deals with 

multi-faceted multi-dimensional dynamic interactions between the nature and society (Sala et al. 2013a), 

the evolution of indicators and the efforts to include different insightful indicators in sustainability impact 
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analysis continue (Malik et al. 2018). To this end, the inclusion (i.e. selection and quantification) of 

indicators – especially when it comes to the social dimension of the triple bottom line – is one of the major 

challenges in making use of a triple bottom line analysis (Onat et al. 2014a). A predetermined set of social 

indicators does not exist, and there is still a need for further research in developing social and economic 

indicators that go beyond traditional indicators such as employment or life cycle cost (Onat et al. 2014a; 

Wood and Hertwich 2013; Finkbeiner et al. 2010; Valdivia et al. 2013). The TBL LCS indicators considered 

in the analysis, as shown in Table 5, have been selected based on the literature, availability of relevant data, 

and ease of integration of the data with current TBL LCS analysis. 

 Environmental Indicators 

Water scarcity, global warming, and fossil and mineral depletion have been among the most 

important emerging environmental concerns for the present century (UNEP 2012). In addition, several 

scholars regarded energy consumption as one of the most important aspects of environmental consequences 

of vehicle automation (Morrow et al. 2014; Greenblatt and Shaheen 2015; Wadud et al. 2016). Furthermore, 

Crayton and Meier (2017) emphasized the significance of particulate matter and ozone – a photochemical 

oxidant – in developing a public health research agenda for the future of transportation, wherein CAVs are 

dominant. The environmental indicators considered in the analysis have been estimated based on the 

characterization factors obtained from the ReCiPe impact assessment method developed by Huijbregts et 

al. (2016) and Goedkoop et al. (2013). 

• Global Warming Potential (GWP100) has been estimated based on the emissions of carbon dioxide 

(CO2), methane (CH4), hydrofluorocarbons (HFC-134A, HFC-143a, and HFC-125), and nitrous 

oxide (NOx). The multipliers for each of these emissions are provided in Table B.17. The GWP100 

is a midpoint impact category, whose characterization factors are provided in Table B.24. 
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• Total Water Footprint (TWF) is included in the satellite accounts provided by the Eora database 

used to construct the IO model. The uses of green, blue, and grey waters are included in the 

estimation of TWF. Thus, the TWF estimation has been calculated as a model output for each TBL 

component considered in the analysis, with the relevant multipliers provided in Table B.18. 

• Mineral Resource Scarcity (MRS) has a characterization factor called Surplus Ore Potential (SOP), 

which is defined by Huijbregts et al. (2016) as the average extra amount of ore that is needed to be 

produced in the future due to the extraction of 1 kg of a mineral resource. To estimate the MRS in 

this study, the estimated use of copper (Cu), lead (Pb), Zinc (Zn), Iron (Fe), and miscellaneous 

minerals, including sand, stone, gravel, clay, and ceramic (as provided by the Eora database as 

Mining and quarrying industry). The MRS is a midpoint impact category, whose characterization 

factors are provided in Table B.21. 

• Fossil Resource Scarcity (FRS)’s characterization factor is given by Huijbregts et al. (2016) as the 

Fossil Fuel Potential of a fossil resource, which is defined as the ratio between the energy content 

of a fossil resource (higher heating value) and the energy content of crude oil. In this research, the 

FRS has been estimated based on the consumption of coal, natural gas, and oil. The FRS is a 

midpoint impact category, whose characterization factors are provided in Table B.21. 

• Particulate Matter Formation Potential (PMFP) is related to the potential of air pollutant emissions 

such as sulfur dioxide (SO2), ammonia (NH3), nitrogen oxides (NOx), and particulate matter (PM) 

to cause primary and secondary aerosols in the atmosphere (Huijbregts et al. 2016). PMFP has been 

estimated based on the PM10, SO2, and NH3 emissions. PMFP is a midpoint impact category, 

whose characterization factors are provided in Table B.24. 

• Photochemical Oxidant Formation Potential (POFP) is related to the potential of air pollutants 

such as non-methane volatile organic compounds (NMVOC), NO2, SO2, and carbon monoxide 

(CO) to form oxidants – particularly ozone (O3) – that are harmful to human health. POFP has been 



47 

 

estimated and reported based on these emissions, like in Fugiel et al. (2017). POFP is a midpoint 

impact category, whose characterization factors are provided in Table B.24. 

 Social Indicators 

The inclusion of social indicators is not as straightforward as the environmental indicators, since, 

as Malik et al. (2018) states, it is challenging to establish causal mathematical relationship between socio-

economic activities and social consequences. Therefore, the authors were inclined more to including the 

traditional, macro-level indicators such as the followings: 

• Income is considered an important indicator in this regard given its contributions to societal welfare, 

like in (Onat et al. 2014a). Since income is an internal component of the Eora database used in the 

form of compensation of employees, its estimate refers to the total income, including wages and 

salaries. 

• Employment has been one of the main concerns when it comes vehicle automation, particularly 

heavy-duty long-haul trucks. Several scholars have brought up this topic of employment and raised 

important concerns over whether and to what extent the CAV technology will influence 

employment. Therefore, employment is considered another social indicator. The data on 

employment was obtained from the U.S. EPA’s Environmental Dataset Gateway database (U.S. 

EPA 2017). 

• Occupational health and safety is another critical social indicator, which has important implications 

in terms of quality of life. Therefore, fatal and non-fatal injuries at industrial facilities are included 

in the analysis. The data on fatal and non-fatal injuries were obtained from the census of fatal 

occupational injuries provided by the U.S. Department of Labor Bureau of Labor Statistics (Bureau 

of Labor Statistics 2015). 
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• As mentioned by (Crayton and Meier 2017), the public health implications of the CAV technology 

have been given relatively less attention. However, without a doubt, it is, maybe, the most important 

aspect to be considered, since any technology is expected to serve the public good first. Human 

Health Impact (HHI) has been included in the analysis based on the health impacts arising from 

GWP, POFP, and PMFP. The health impact characterization factors of each of these midpoint 

impacts are provided in Table B.26. 

 Economic Indicators 

• Gross Operating Surplus (GOS), Import, and Gross Domestic Product (GDP) are internal parts of 

the Eora database used in the analysis as they are key economic indicators considered in several 

studies (Alises and Vassallo 2016; Wood and Hertwich 2013; Onat et al. 2014a; Kucukvar and 

Tatari 2013). GOS refers to the capital available to industries after total intermediate inputs, 

compensation of employees, and taxes subtracted from the total industry output. GDP refers to the 

market value of goods and services produced within a country, and includes compensation of 

employees, GOS, and net taxes on production and imports (Lenzen and Dey 2002; Kucukvar and 

Tatari 2013). Imports refers to the value of goods and services purchased from foreign countries to 

produce domestic commodities. Imports are considered a negative economic indicator as increased 

imports results in an increase in the current deficit through the outflow of money from a country. 

• Tax is another component of value added through consumption and production, and considered a 

relevant indicator for the economic dimension of triple bottom line (Wood and Hertwich 2013). 

Tax is another internal component of the Eora database; hence its estimate has been obtained as a 

model output. 
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• As the life cycle thinking necessitates and given the aforementioned importance of human health 

implications of the CAV technology, the economic costs of externality damages due to emissions 

of CO2, CO, NOx, PM10, SO2, and VOC have been included in the analysis. 

• Finally, yet importantly, Life Cycle Cost (LCC) has been included as an indicator and reported as 

per-mile basis so that the performance of the studied truck configurations can be assessed in a better 

way.
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Table 5: Life cycle sustainability indicators considered in the analysis 

Impact Area Impact/Indicator Unit Description 

Environmental 

Global Warming Potential tCO2-eq. 

Total GHG emissions based on IPCC’s factors for 

GWP100 

Particulate Matter Formation Potential kg PM10-eq. Total criteria air pollutant emissions 

Photochemical Oxidant Formation Potential ( 

kg NMVOC-

eq. 

Amount of airborne substances able to form 

atmospheric oxidants 

Mineral Resource Scarcity t Cu-eq. 

Extra amount of ore mined per additional unit of 

resource extracted 

Fossil Resource Scarcity t Oil-eq. Total decrease in fossil fuel potential of oil 

Total Water Footprint mm3/yr. 

Amount of water polluted or consumed to produce 

goods and services 

Social 

Employment person 

Number of jobs based on Bureau of Labor Statistics 

(BLS) data for total employment for each sector 

Fatal Injuries person 

Number of fatal occupational injuries (FOI) based on 

BLS Census of FOI 

Non=Fatal Injuries 

thousand-

person 

Number of non-FOI by industry based on BLS 

Industry Injury and Illness Data 
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Impact Area Impact/Indicator Unit Description 

Income $M The compensation of employees, wages, and salaries 

Human Health DALY 

The number of years lost due to disability, illness, or 

early death 

Economic 

Import $M 

Purchase of product and/or service from foreign 

countries 

Gross Operating Surplus $M 

The amount of capital available to corporations to 

maintain business 

Gross Domestic Product $M Economic added value by the U.S. industries 

Tax $M Taxes collected from production and imports 

Life Cycle Cost $M 

Cost of a product throughout its life cycle based on 

the system boundary defined 

Mineral Depletion Potential $M 

Total additional future cost to the global society of 

producing one unit of mineral resource 

Fossil Depletion Potential $M 

Total additional future cost of the global society of 

producing one unit of fossil resource 

Air Pollution Cost $M Health damage cost of air pollution 
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Life Cycle Inventory 

Since the foundation of an IO modeling is the matrices that contain monetary transactions between 

industries within a nation’s economy, the inputs required to carry out an IO-based TBL LCS analysis are 

the unit costs of each activity that takes place within the system boundary. After obtaining the relevant unit 

costs, the TBL LCS impact multipliers have been used to estimate the indicators considered in the analysis. 

These multipliers associated with emissions, energy consumption, mineral use, and some internal indicators 

(e.g. TWF, income, GOS, and GDP) are provided in Table B.17, Table B.19, Table B.20, Table B.21, Table 

B.22, Table B.23. Furthermore, the characterization factors for each of the midpoint and endpoint impact 

categories considered in the analysis are provided in Table B.24, Table B.25, Table B.26. 

The additional parts assumed to be used in automating and electrifying an HDT are provided in 

Table 6. In addition to these parts, the construction of a new, private (i.e. having only one dispenser) diesel 

refueling station and battery recharging infrastructure has been included in the analysis. In addition to the 

installation costs, annual maintenance costs for refueling and recharging stations have been considered in 

the analysis to be $6K and $2.3K, respectively, based on the AFLEET2017 database (Burnham 2017). The 

unit costs of each of these parts are the inputs for the constructed IO model, which are presented in Table 

6, along with their sources and corresponding module (e.g. truck manufacturing) and industry (e.g. Heavy-

Duty Truck Manufacturing). 
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Table 6: Inputs for life cycle sustainability assessment 

Truck 

type 
LCSA module 

LCSA 

component 
Eora industry 

 Cost 

(2015$) 
Source 

Common 

for both 

types of 

trucks 

Vehicle 

manufacturing 

Truck 

manufacturing 

Heavy Duty Truck 

Manufacturing 
$107K 

California 

Air 

Resources 

Board (2015) 

Truck trailer 

manufacturing 

Truck trailer 

manufacturing 
$32.5K 

Commercial 

Truck Trader 

(2016) 

LIDAR (A)b 

Search, detection, and 

navigation instruments 

manufacturing 

$7.5K 

Slowik and 

Sharpe 

(2018)  

DSRC (A) Telecommunications $200 

Slowik and 

Sharpe 

(2018)  

V2V 

communication 

(A) 

Broadcast and 

wireless 

communications 

equipment 

$350 

Slowik and 

Sharpe 

(2018)  

Automated 

manual 

transmission (A) 

Mechanical power 

transmission 

equipment 

manufacturing 

$3.75K 

Slowik and 

Sharpe 

(2018)  

Blind spot 

detection system 

(A) 

Search, detection, and 

navigation instruments 

manufacturing 

$850 

Slowik and 

Sharpe 

(2018)  

Mobile eye 

advanced driver 

assistance (A) 

Search, detection, and 

navigation instruments 

manufacturing 

$1.1K 

Slowik and 

Sharpe 

(2018) 

Adaptive cruise 

control (A) 

Relay and industrial 

control manufacturing 
$2K 

Slowik and 

Sharpe 

(2018) 

Predictive cruise 

control (A) 

Relay and industrial 

control manufacturing 
$1K 

Slowik and 

Sharpe 

(2018) 

Other 

miscellaneous 

hardware (A)b 

Hardware 

manufacturing 
$6.7K 

Slowik and 

Sharpe 

(2018) 

Diesel 

truck 

Vehicle 

operation 

Diesel fuel 

productiona 
Petroleum refineries  

Burnham 

(2017) 

Maintenancec 

Automotive 

maintenance and 

repair 

$0.199 
Burnham 

(2017) 
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Truck 

type 
LCSA module 

LCSA 

component 
Eora industry 

 Cost 

(2015$) 
Source 

Refueling station Retail trade $91K 
Burnham 

(2017) 

Battery-

Electric 

truck 

 

Vehicle 

manufacturing 

Power electronics 

and electric motor 

Motor and generator 

manufacturing 
$20K 

California 

Air 

Resources 

Board (2015) 

Glider 
Motor and generator 

manufacturing 
$80K 

California 

Air 

Resources 

Board (2015) 

Battery system 

manufacturing 

Storage battery 

manufacturing 
$109K 

California 

Air 

Resources 

Board (2015) 

Vehicle 

operation 

Battery 

replacementd 

Storage battery 

manufacturing 
 

Wang et al. 

(2016) 

Power 

generationa 

Electric power 

generation, 

transmission, and 

distribution 

 

California 

Air 

Resources 

Board (2015) 

Maintenancec 

Automotive 

maintenance and 

repair 

$0.181 
Burnham 

(2017) 

Recharging 

station 

All other 

miscellaneous 

electrical equipment 

and component 

manufacturing 

$59K 
Burnham 

(2017) 

a The cost values for these inputs are not given in the table because the changing diesel and electricity prices are considered in the 

analysis. 
b(A) stands for automation, meaning that those additional parts are used to manufacture an automated HDT. 
c The values represent per mile cost 
d The battery replacement is assumed to be once in every 10 years. Hence, the cost value for battery replacement varies depending 

on HDT lifetime. Based on Curry (2017) and Berckmans et al. (2017), it is assumed that the initial cost of a battery pack per kWh 

is $273, which goes down to $100/kWh by 2025 (i.e. the first battery replacement), and then further down to $75/kWh by 2035 

(i.e. the second battery replacement). Given these considerations, these values were not included in the table. 
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A fuel economy of 6.3 mpg for a diesel HDT and 16.1 mpgge for a BE HDT has been assumed 

based on the AFLEET2017 database (Burnham 2017). Based on the report published by (Slowik and Sharpe 

2018). HDT automation has been assumed to bring 10 percent improvement in fuel economy. Changing 

diesel prices have been reflected based on the diesel price and the price escalation rate for the period 

between 2015 and 2045 given by (Burnham 2016). Changing electricity prices have been also reflected. 

The projected electricity prices have been acquired from Annual Energy Outlook 2018 report published 

annually by U.S. Energy Information Administration (2018) and converted to 2015$. Additionally, 

increasing tailpipe emissions due to deterioration of vehicle fuel systems have been taken into account 

based on the Motor Vehicle Emission Simulator (MOVES) analysis results for HDTs (EPA 2014). The cost 

values of tailpipe emissions to calculate the air pollution externality (APE) costs have been obtained from 

the AFLEET2017 database (Burnham 2016). 

An electric HDT has been assumed to replace its battery once in every 10 years (Wang et al. 2016). 

Based on the estimation done by Curry (2017), the unit cost of battery has been assumed to be currently 

$273/kWh, going down to $100/kWh by 2025, and $75/kWh by 2035. These projections on battery costs 

have been reflected in the battery replacement cost of a BE HDT. There are different approaches concerning 

the maintenance of automated HDTs. Bösch et al. (2017) assumed no additional maintenance cost for 

autonomous trucks since the automation is likely to cancel out the benefit stemming from more considerate 

automatic driving. Nowak et al. (2016) stated that automation, e.g. remote diagnostics, will provide 

significant savings in maintenance of trucks, which supports Bösch et al. (2017)’s assumption. Bösch et al. 

(2017)’s assumption has been deemed to be agreed upon by some other scholars as well, hence has been 

followed in the analysis. 

Additionally, the air pollution externality (APE) costs from electricity generation and diesel HDT’s 

tailpipe emissions have been estimated based on the health damage cost coefficient per ton of emission 

provided by (Michalek et al. 2011). (Michalek et al. 2011) used the Air Pollution Emission Experiment and 
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Policy (APEEP) model developed by Muller and Mendelsohn (2007) to evaluate these impacts in terms of 

dollars per ton of emissions. The APEEP model quantifies the impacts of air pollutants using county-level 

marginal costs of human health and environmental damages, with said damages consisting of mortality, 

morbidity, crop loss, timber loss, etc. (Michalek et al. 2011).  Accordingly, the APE cost coefficients 

provided by Michalek et al. (2011) for diesel fuel production, vehicle manufacturing (including batteries), 

and vehicle maintenance on dollar-per-ton basis have been used, whereas for power generation, the 

coefficients on dollar-per-megawatt hours have been used. The tailpipe emissions of PM10 from tire and 

brake wear (i.e. PM10 TBW) have been also considered in the calculation of the life cycle tailpipe emissions 

of automated diesel HDTs. Average values of the coefficients have been used in the analysis, though the 

APEEP model quantifies these externalities on a county basis.  



57 

 

Sensitivity Analysis 

In addition to vehicle characteristics, the life cycle sustainability impacts of HDTs are also 

significantly dependent on how these vehicles are used, e.g. annual mileage and lifetime. Given different 

plausible sources such as (Hooper et al. (2018) and Burnham (2017) that report different values for these 

two variables, a sensitivity analysis has been performed to primarily determine how a variation from -10 

percent to +10 percent in the values of these variables would influence the selected LCS indicators. 

Results 

The TBL sustainability assessment results are presented in the following subsections based on the 

quantified environmental, social, and economic impacts associated with each life cycle phase for each of 

the studied HDTs. Additionally, the TBL analysis of a conventional HDT is also studied and presented in 

a separate subsection to enable a clearer picture as to where the efforts are likely to land and a comparison 

with respect to the TBL sustainability performance of an A-HDT, since this is also regarded essential in the 

literature (Flämig 2016). 

Environmental Impacts 

Life cycle water footprint (WF) of automated diesel HDT and automated electric HDT has been 

estimated to amount to 116 thousand cubic meters and 72 thousand cubic meters, respectively. Fuel 

consumption is the primary contributor to the total WF of an automated diesel HDT, being responsible for 

over 70 percent of the total WF, whereas it represents slightly less than 20 percent of the total WF of 

automated electric HDT (see Figure 10). The main driver of automated electric HDT’s total WF is the total 

truck manufacturing (more than 45 percent) due to the manufacturing of battery, including battery 

replacement, (almost 30 percent) and incremental parts such as glider and power electronics (almost 15 

percent). Overall, these values translate into a water intensity of 0.044 m3 per mile for an automated diesel 
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HDT and 0.027 m3 per mile for an automated electric HTD; and an energy intensity of 7.75 MJ per mile 

for a diesel A-HDT and 10.4 MJ per mile for a BE A-HDT. 

As shown in Figure 10, Global warming potential (GWP) of automated diesel HDT is estimated to 

be 11.6 thousand-tons CO2-eq.; 4.7 thousand-tons CO2-eq. higher than that of automated  electric HDT. 

As shown in Figure 10, almost 90 percent of automated diesel HDT’s GWP is driven by tailpipe emissions 

(65 percent) and fuel consumption (23.5 percent), whereas the contributors to automated electric HDT’s 

GWP are fuel production, representing 35 percent of the GWP, followed by BE truck manufacturing, 

accounting for 28 percent. Battery-related activities, i.e. manufacturing and replacement, have been found 

to cause 30 percent of an automated electric HDT. An automated diesel HDT and an automated electric 

HDT have been found to reduce GHG emissions by 10 percent and over 60 percent, respectively, relative 

to a conventional HDT. Nahlik et al. (2015) found similar results, reporting that switching to hybrid or LNG 

truck technologies could reduce GHG emissions by 5 percent and 9 percent, respectively. The difference 

between the numbers may well be attributed to automation given the expected increase in driving efficiency. 
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Figure 10: Environmental impact results of the LCSA per truck: Total water footprint (thousand 

m3) and Global warming potential (ton CO2-eq.) 

According to the analysis results, fuel consumption is by far the greatest contributor to fossil 

resource scarcity (FRS) for both truck types, as shown in Figure 11 and Figure 12. Mineral resource scarcity 

(MRS) impact of an automate electric HDT has been estimated to be 45 tons Cu-eq., which is significantly 

larger than that of an automated diesel HDT (10 tons Cu-eq.). This difference appears to be stemming from 

battery manufacturing (including battery replacement), which has been estimated to account for over 75 

percent of this impact due to the use of copper in the battery manufacturing process. This finding aligns 

with the findings of Notter et al. (2010), stating that the supply of copper is a major contributor to the 

environmental burden caused by battery manufacturing. Additionally, the results have shown that fuel 

consumption is responsible 65 percent of the MRS impact caused by an automated diesel HDT, followed 

by the truck manufacturing process, which accounts for 18 percent of the MRS impact.
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Figure 11 Impacts on mineral resource scarcity (ton Cu-eq.) for (a) diesel A-HDT and (b) BE A-HDT 
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 The manufacturing of automation parts has been observed to have a negligible impact on both 

mineral resource scarcity and fossil resource scarcity indicators. The results showed that automating a 

heavy-duty truck with the automation parts considered in the analysis is less costly than manufacturing a 

trailer in terms of these two scarcity related indicators. It has been estimated that the manufacturing of 

automation parts results in less than a ton oil-eq. of fossil resource scarcity and 0.2 metric ton Cu-eq. of 

mineral resource scarcity. On the other hand, the MRS value for trailer manufacturing has been estimated 

to be around 0.35 metric ton Cu-eq. 

Even though automated electric HDT’s fuel economy is more than two times that of automated 

diesel HDT, the use of coal in the average U.S. electricity grid mix is the primary cause for automated 

electric HDT to have a relatively larger impact on fossil resources, as shown in Figure 12. Fossil resource 

scarcity caused by an automated electric HDT is found to be 45 tons oil-eq. higher than that of an automated 

diesel HDT. As in mineral resource scarcity, both the manufacturing of automation parts (0.2 percent) and 

of trailer (0.7 percent) has been estimated to make up a tiny fraction of the overall fossil resource scarcity 

caused by both HDT types (see Figure 12). Both diesel and charging infrastructures have been observed to 

cause approximately the same fossil resource scarcity, with 2 and 2.5 metric tons oil-eq., respectively. 
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Figure 12 Impacts on fossil resource scarcity (ton oil-eq.) for (a) diesel A-HDT and (b) BE A-HDT 
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Particulate matter formation potential (PMFP) of an automated diesel HDT has been estimated to 

be almost two times that of an automated electric HDT, as shown in Figure 13. According to the results, as 

expected, tailpipe emissions with over 75 percent contribution are the primary driver of the PMFP of an 

automated diesel HDT due to nitrogen oxides emissions, followed by fuel production (17 percent). The 

PMFP of an automated electric HDT is driven largely by fuel production/electricity generation (70 percent) 

due to sulfur dioxide (SO2) emissions at power plants, while the manufacturing of incremental parts and 

battery has accounted for 13 percent of an automated electric HDT’s PMFP. The manufacturing of 

automation parts and of trailer caused only 0.5 percent and 2 percent of an automated electric HDT’s PMFP, 

respectively, while the PMFP impacts of these components in an automated diesel HDT have been 

estimated to be half the impacts from an automated electric HDT. It can be also seen from Figure 13, that 

diesel fuel production has resulted in relatively greater particulate matter formation potential than power 

generation. Overall, electrification and automation of heavy-duty trucks has been estimated to reduce 

particulate matter formation potential from these vehicles by 45 percent. 
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Figure 13 Particulate matter formation potential of the studied HDTs (metric ton PM10-eq.) 
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As presented in Figure 14, the photochemical oxidant formation potential (POFP) of an automated 

diesel HDT has been estimated to be almost three times that of an automated electric HDT. Due primarily 

to methane (CH4) and volatile organic compound (VOC) emissions at diesel production facilities, fuel 

production is responsible for slightly over 80 percent of an automated diesel HDT’s POFP impact, followed 

by the impact from tailpipe emissions (14 percent), according to the results. The rest of the processes 

accounted for 5 percent of automated diesel HDT’s photochemical oxidant formation potential. Within this 

5 percent, almost half of the POFP impacts is attributed to the impacts stemming from activities related to 

maintenance and repair (0.22 metric ton VOC-eq.) of an automated diesel HDT, while the process of vehicle 

body manufacturing, including trailer accounted for over 35 percent of the POFP impacts from the 

processes other than operation (i.e. tailpipe) and fuel production). The manufacturing of automation parts 

has been estimated to make up only a tiny fraction (i.e. less than 1 percent) of automated diesel HDT’s 

POFP. 

Similarly, automated electric HDT’s POFP impact has been found to be also driven by fuel 

production (i.e. power generation), which accounted for 71 percent of the impacts in this category, due 

largely to VOC and SO2 emissions. Fuel production is followed by the battery replacement, and 

maintenance and repair processes, accounting for almost 6 percent and 5.50 percent of the total POFP 

impacts, respectively, due to VOC and CO emissions. Overall, the total POFP impact caused by an 

automated diesel HDT has been estimated to be almost three times that of an automated electric HDT. 
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Figure 14 Photochemical oxidant formation potential of the studied HDTs (metric ton VOC-eq.) 

 

0.12

0.05

0.227.42

0.05

1.27

0.47

Photochemical Oxidant Formation Potential (metric ton VOC-eq.)

Diesel A-HDT

Vehicle Main Body Manufacturing Automation Parts Manufacturing

Trailer Manufacturing Maintenance and Repair

Fuel Production Incremental Parts Manufacturing

Infrastructure Construction Infrastructure Maintenance and Repair

Tailpipe

0.12

0.05

0.20

2.57
0.11

0.05

0.11

0.15

0.21

0.45

Photochemical Oxidant Formation Potential (metric ton VOC-eq.)

BE A-HDT

Vehicle Main Body Manufacturing Automation Parts Manufacturing

Trailer Manufacturing Maintenance and Repair

Fuel Production Incremental Parts Manufacturing

Infrastructure Construction Infrastructure Maintenance and Repair

Battery Manufacturing Battery Replacement



67 

 

Social Impacts 

As shown in Figure 15, the results on the social impact categories have shown that automated 

electric HDT generates more employment than its diesel counterpart. Maintenance and repair, and fuel 

production-related activities make the major contributions to the employment rate from an automated diesel 

HDT accounting for 47 percent and 35 percent of the total employment, respectively. While 14 percent of 

an automated diesel HDT’s employment rate is attributable to truck manufacturing, it accounts for almost 

20 percent of an automated electric HDT’s employment rate given the manufacturing of additional parts. 

Maintenance and repair related activities represent almost 40 percent of an automated electric HDT’s 

employment rate, followed by truck manufacturing related activities (18 percent). 
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Figure 15: Estimated impact of automating a HDT on employment in person: a) Impacts from individual 

processes and b) Total employment generated (Note: The values in (a) have been left in two decimals in 

order to avoid the rounding error.) 

Diesel A-HDT BE A-HDT

Employment

0.69

1.49

3.39
3.09

2.56

1.38

0.61

1.64

0.00

0.58

a)

Total Vehicle Manufacturing Maintenance and Repair Fuel Production

Infrastructure Battery Replacement

7

8

Diesel A-HDT BE A-HDT

Employment

b)



69 

 

As shown Figure 16, the results have indicated that income is generated largely through activities 

related to fuel production (39 percent), M&R (40 percent), and truck manufacturing (14 percent) for 

automated diesel HDT. The results have also shown a more diverse distribution of income generation for 

automated electric HDT, with truck manufacturing (21 percent) and fuel production (22 percent) related 

activities having the two largest shares owing to additional parts required for automated electric HDT. The 

income from M&R related activities have represented 25 percent of the total income generated by an 

automated electric HDT. 

 

Figure 16: Estimated impact of automating a HDT on income (K$): a) Impacts from individual processes 

and b) Total income generated 
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According to the results presented in Figure 17, the human health impact (HHI) of automated diesel 

HDT is estimated to be 11 DALY – four units higher than that of automated electric HDT. Tailpipe 

emissions are the primary cause of this impact, accounting for 65 percent of automated diesel HDT’s HHI 

total. The estimates have shown that the manufacturing of additional parts, including battery manufacturing 

and replacement, is responsible for almost 35 percent of the total HHI caused by automated electric HDT. 

It has been estimated that diesel production results in slightly higher HHI than power generation. Similarly, 

automated diesel HDT maintenance and repair has been estimated to cause higher HHI than that of 

automated electric HDT, as the former is equipped with more parts and fluids. 

 

 

Figure 17 Human health impact (HHI) (DALY) from (a) diesel A-HDT and (b) BE A-HDT 
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According to the results, while automated electric HDT causes noticeably higher fatal injuries, 

automated diesel HDT has been observed to cause higher non-fatal injuries, as shown in Figure 18. Overall, 

the differences in both injury categories have been observed to be small. Aligning with the rate of 

employment for both truck types, most of the injuries have been observed to occur in truck and refueling 

station M&R, fuel production, and truck manufacturing (including additional parts for automated electric 

HDT) related activities. The results indicate that 85 percent of the fatal injuries caused by an automated 

diesel HDT occurs due to M&R (65 percent) and fuel production (20 percent) related activities, whereas 

truck M&R, refueling station M&R, and truck manufacturing related activities cause 52 percent, 25 percent, 

and 10 percent of the fatal injuries caused by an automated electric HDT, respectively. According to the 

results on non-fatal injury impact category, a great majority of non-fatal injuries caused by automated diesel 

HDT stems from activities related to M&R (42 percent), fuel production (24 percent), and refueling station 

M&R (17 percent). The activities related to truck M&R, truck manufacturing, and power generation have 

been found to be responsible for over 40 percent, 15 percent, and almost 20 percent of non-fatal injuries 

caused by automated electric HDT, respectively. 

 

Figure 18 Total fatal and non-fatal injuries caused by the studied HDTs (person) 
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Economic Impacts 

The total import of goods and services used for an automated diesel HDT have been estimated to 

amount to slightly less than $1M – almost four times higher than that of an automated electric HDT. As 

provided in Figure 19, the results showed that more than 85 percent of this import is associated with fuel 

production, while imports related to power generation represent only 12 percent of the total imports caused 

by an automated electric HDT. This finding is consistent with several others such as Larson et al. (2013), 

Pontau et al. (2015), U.S. EPA (2015), and Goldin et al. (2014), confirming the U.S. dependence on foreign 

oil. The largest import item for an automated electric HDT has been found to be the manufacturing of 

additional parts (including battery), accounting for almost 35 percent of the imports, followed by the 

imports associated with M&R activities (26.5 percent). Gross operating surplus (GOS) and gross domestic 

product (GDP) indicators show an identical pattern for both truck types, with fuel production and M&R 

related activities generating the major share of the GOS and GDP, as shown in Figure 19. 

 

Figure 19: Economic impact results of the LCSA per truck: Import ($K), Gross Domestic 

Product ($M), Gross Operating Surplus ($M) 
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Total health impact cost (or the cost of air pollution) of an automated electric HDT has been 

observed to be almost entirely driven by fuel production related activities, estimated to be responsible for 

90 percent of this impact category, whereas activities related to fuel production (32 percent) and fuel 

combustion (i.e. tailpipe emissions) (65 percent) have been found as the two major drivers of the total health 

impact cost of an automated diesel HDT, as presented in Table 7. Hence, an automated diesel HDT causes 

a per-mile health cost of $0.14, whereas an automated electric HDT causes a per-mile health cost of $0.10. 

Based on the cost assumptions considered in the analysis, the air pollution cost of automation-related parts 

may be regarded as negligible for the studied HDTs. LCC of an automated diesel HDT is largely driven by 

the expenditures on fuel, accounting for almost 65 percent of the total cost, whereas, for an automated 

electric HDT, life cycle fuel cost (27 percent), M&R cost (26 percent), and battery replacement cost (8 

percent) have been found to be the main drivers of the LCC. Hence, an automated diesel HDT’s per-mile 

cost has been estimated to be $0.88, while an automated electric HDT’s per-mile cost is estimated to be 

$0.71. Overall, electrification and automation of HDTs brings significant improvements in terms of both 

externality costs caused by air pollution and HDT’s life cycle costs. 

Table 7 Life cycle air pollution costs and life cycle costs associated with each process caused by HDTs 

 Air Pollution Cost ($) Life Cycle Cost ($) 

 

Diesel A-

HDT 

BE A-

HDT 

Diesel A-

HDT 

BE A-HDT 

Vehicle Main Body Manufacturing 0.86% 1.26% 4.66% 5.83% 

Automation Parts Manufacturing 0.09% 0.14% 1.02% 1.27% 

Trailer Manufacturing 0.32% 0.47% 1.41% 1.77% 

Maintenance and Repair 1.33% 1.77% 22.54% 25.68% 

Fuel Production 32.28% 90.36% 63.12% 27.38% 

Incremental Parts Manufacturing 0.00% 1.10% 0.00% 5.44% 

Infrastructure Construction 0.34% 0.51% 2.34% 3.25% 

Infrastructure Maintenance and Repair n/a n/a 4.91% 15.31% 

Battery Manufacturing n/a 1.86% n/a 5.95% 

Battery Replacement n/a 2.54% n/a 8.12% 

Tailpipe 64.77% n/a n/a n/a 

Total Impacts 373,500 255,000 230,000 184,000 
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Aligning with the mineral resource scarcity results, mineral resource depletion (MDP) caused by 

an automated electric HDT ($13K) has been estimated to be four times that of an automated diesel HDT, 

as shown in Figure 20. This is due largely to additional part manufacturing, including battery, which has 

been estimated to account for more than 75 percent of the total MDP. Automated diesel HDT’s MDP is 

caused largely by fuel consumption related activities (65 percent), followed by truck manufacturing, 

accounting for 18 percent of the total MDP of an automated diesel HDT. Of this 16 percent, the 

manufacturing of automation related parts has been estimated to account for about 2 percent-point. 

Accordingly, an automated diesel HDT have caused an MDP of $0.001 per mile, whereas it has been 

estimated to be $0.005 for an automated electric HDT. Similarly, fossil resource depletion impacts of both 

truck types have been found to be largely caused by fuel production related activities, accounting for 91 

percent and 78 percent of the total FDP for an automated diesel HDT and an automated electric HDT, 

respectively. This means that every mile driven by an automated diesel HDT brings an additional cost of 

fossil resource production of about $0.11, whereas it is $0.08 for an automated electric HDT. 
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Figure 20 Estimated impacts of the studied HDTs on (a) Mineral resource deplition ($K) and (b) Fossil 

resource depletion ($K) 
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diesel HDT. Furthermore, since an automated electric HDT requires less M&R than that of an automated 

diesel HDT, which may be attributed to an automated electric HDT’s less sophisticated powertrain, it 

generates less M&R-related tax than an automated diesel HDT. Of the total tax generated through an 

automated electric HDT, 80 percent can be attributed to electricity production and M&R activities, with 

truck manufacturing accounting for 9 percent of the total tax. 

 

Figure 21 Estimated tax generated by each of the studied HDTs ($) 
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Sensitivity Analysis Results 

The results have shown that the life cycle sustainability impacts of the studied HDTs are fairly 

sensitive to the variations in assuming values for truck’s annual mileage and lifetime, which were entered 

as input variables for the sensitivity analysis. The analysis has also revealed parameters other than annual 

mileage and lifetime, to which the life cycle sustainability impacts are sensitive as well, even though such 

variables were not considered in the sensitivity analysis as variables. In this regard, HDT’s fuel economy 

has been observed to influence various impact categories to an important extent, as shown in Figure 22. For 

example, a 10 percent increase in automated diesel HDT’s fuel economy results in 600 tons CO2-eq. 

emission reduction and brings imports down to below $880K per HDT, and the LCC of automated diesel 

HDT down to below $2.2M. 
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Figure 22: Sensitivity analysis results for the selected parameters 

 

8.5 10.5 12.5 14.5

Lifetime

Annual Mileage

Fuel Economy

a)
Global Warming Potential (thousand tons CO2-eq.)

10 percent -10 percent

6 6.5 7 7.5 8

Lifetime

Annual Mileage

Fuel Economy

Battery Capacity

b) Global Warming Potential (thosand tons CO2-eq.)

10 percent -10 percent

9 11 13 15

Lifetime

Annual Mileage

Fuel Economy

Human Health Impact (DALY)

10 percent -10 percent

6 6.5 7 7.5 8

Lifetime
Annual Mileage

Fuel Economy
Battery Capacity

Human Health Impact (DALY)

10 percent -10 percent

$1.75 $2.00 $2.25 $2.50 $2.75 $3.00

Lifetime

Annual Mileage

Fuel Economy

Life Cycle Cost ($M)

10 percent -10 percent

$1.40 $1.60 $1.80 $2.00 $2.20

Lifetime

Annual Mileage

Fuel Economy

Battery Capacity

Life Cycle Cost ($M)

10 percent -10 percent



79 

 

Similarly, the sensitivity analysis for automated electric HDT was initially run for two variables, 

i.e. annual mileage and lifetime. However, the software (Frontline Systems's (2019) Analytic Solver) used 

to carry out the sensitivity analysis revealed battery capacity and fuel economy as other primary variables 

that influence the results. Therefore, these parameters have been also included in the sensitivity analysis. 

Accordingly, annual mileage, which is an indication of vehicle usage, has been observed to bring the 

greatest improvement in the global warming potential and human health impact categories for automated 

electric HDT, as shown in Figure 22. As for the LCC of automated electric HDT, lifetime has been observed 

to bring the highest variation, as expected. 

Comparison of Triple Bottom Line Impacts Between  

an Automated HDT and Conventional HDT 

Total water footprint of a conventional HDT has been estimated to be 126 Mm3, corresponding to 

a water intensity of 0.048 m3 per mile. This corresponds to a reduction in water intensity of 8 percent for 

an automated diesel HDT, and 43% for an automated electric HDT. Fossil resource scarcity impact of a 

conventional HDT is estimated to be 468 tons oil-eq., with the total energy consumptions of conventional 

HDT being 22 TJ, corresponding to an energy intensity of 8.5 MJ per mile. Hence, automation of a diesel 

HDT is estimated to reduce its energy intensity by 10 percent, while an automated electric HDT’s energy 

intensity is 22 percent higher than that of a conventional HDT. 

Based on the assumed techno-economic circumstances, an automated diesel HDT and an automated 

electric HDT bring about a reduction in GWP of about 6 percent and 45 percent, respectively. The reduction 

in particulate matter formation potential (PMFP) through automation of a conventional HDT has been 

observed to be quite conservative, with only 2 percent reduction; however, automation and electrification 

of a HDT brings about 46 percent reduction in PMFP, as shown in Figure 23. Similarly, reduction in 

photochemical oxidant formation potential (POFP) through only automation is less than 10 percent, while 
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when an HDT is both automated and electrified, the reduction in POFP goes almost up to 65 percent. Given 

automated electric HDT’s configuration (i.e. need for additional parts and battery), the impact on MRS of 

an HDT is estimated to increase by over 75 percent relative to a conventional HDT; however, an automated 

diesel HDT’s MRS impact is found to be 7 percent less than that of a conventional HDT. 

 

 

Figure 23: Comparison of environmental impacts between the studied HDTs and a conventional HDT 
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number of fatal and non-fatal injuries, respectively. When automation and electrification combined, the 

number of fatal injuries has been observed to increase by 9 percent, due to activities related to charging 

infrastructure maintenance. However, the number of non-fatal injuries caused by an automated electric 

HDT has been estimated to decrease by 8 percent compared to that of a conventional HDT. The income 

generated through an automated diesel HDT has been estimated to decrease by 2.5 percent, largely due to 

improved fuel consumption and maintenance through automation; however, an automated electric HDT has 

been estimated to generate 30 percent more income than a conventional HDT owing to activities related to 

the manufacturing of additional parts, including battery, and refueling infrastructure. Finally, human health 

impact has been estimated to decline by 5 percent through automation of an HDT, and by almost 45 percent 

through automation and electrification of an HDT, as shown in Figure 24. 

 

Figure 24: Comparison of social impacts between the studied HDTs and a conventional HDT 
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their conventional counterpart. However, improved fuel consumption and maintenance have been also 

observed to result in a decrease in GOS from an automated diesel HDT and an automated electric HDT by 

5 percent and 0.3 percent, respectively. Relative to a conventional HDT, GDP generated through an 

automated diesel HDT has been estimated to decline by 4.5 percent, while an automated electric HDT has 

been estimated to increase by 12 percent. Similar to the GOS results, the amount of tax generated through 

an automated diesel HDT has been estimated to decrease by 5 percent due to improved fuel consumption 

and maintenance, while an automated electric HDT has been estimated to generate 6.5 percent less tax 

relative to a conventional HDT. Even though additional minerals and materials are used to manufacture 

automation related parts, an automated diesel HDT has been estimated to decrease the mineral depletion 

potential of HDTs by 5 percent, thanks to improved fuel consumption; however, due to battery need of an 

automated electric HDT, the mineral depletion potential has been estimated to be 77 percent higher than 

that of a conventional HDT. Thanks solely to improved fuel consumption, the fossil depletion potential of 

a conventional HDT has been estimated to decrease by almost 10 percent through automation, and almost 

35 percent through automation and electrification. With conventional HDT estimated to have a health 

impact cost of $0.16 per mile, an automated diesel HDT and an automated electric HDT achieves a 

reduction in health impact cost of about 10 percent and more than 35 percent, respectively. Finally, as 

shown in Figure 25, the LCCs of a n automated diesel HDT and an automated electric HDT have been 

estimated to be 6 percent and 25 percent less than that of a conventional HDT, which incurred a LCC of 

$3.1M. The LCC results correspond to an average decrease of $7,900 and $36,000 per truck per year in the 

LCCs of an automated diesel HDT and an automated electric HDT relative to a conventional HDT, 

respectively. These results align with the findings of Bishop et al. (2015), who reported only the fuel savings 

from two-diesel truck platooning to be $14,000 per truck per year. 
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Figure 25: Comparison of economic impact indicators between the studied HDTs and a conventional HDT 
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Comparison of the LCSA Results with EORA and  

Carnegie Mellon University’s EIO-LCA Tool 

The Eora database based on the year 2015 has been used in constructing the IO model to conduct 

the present study, instead of the EIO LCA tool developed by Carnegie Mellon University Green Design 

Institute (2008). The most recent version (i.e. the model based on the year 2007) of CMU’s EIO-LCA tool 

covers only limited end-point impact categories and does not allow one to report on some of the 

sustainability indicators such as total water footprint, mineral resource scarcity, and none of the social and 

economic indicators. On the other hand, Eora is a high-resolution global MRIO database and provides one 

of the most up-to-date data, including social and material satellite accounts, in addition to all that are 

provided by EIO-LCA, for the base year of 2015 (Malik et al. 2018; Wiedmann et al. 2015). Hence, the 

CMU’s EIO-LCA model is not suitable for LCSA, and the comparison between the two models could not 

be adequately reported. It is evident from Figure 26 that there is a discrepancy between the results obtained 

from two different models. This is consistent with the findings of other scholars such as Eisenmenger et al. 

(2016), Moran and Wood (2014), and Kucukvar et al. (2019). 
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Figure 26: Comparison of some of the environmental endpoint impacts between Eora and Carnegie 

Mellon University’s EIO-LCA tool: a) Fossil resource scarcity (ton oil-eq.), b) Global warming 

potential (ton CO2-eq.), c) Particulate matter formation potential (ton PM10-eq.), and d) 

Photochemical oxidant formation potential (ton VOC-eq.) 
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CHAPTER FOUR: PARETO-OPTIMAL APPROACH TO SECTOR 

SPECIFIC LOAD SPECIFIC 

SUSTAINABLE FLEET COMPOSITION OF HEAVY-DUTY TRUCKS 

A partial work of this chapter has been published in the Journal of Resources, Conservation, and Recycling, 

with the title “Robust Pareto Optimal Approach to Sustainable Heavy-Duty Truck Fleet Composition” (Sen 

et al. 2019a) 

Introduction 

The circumstances and projections mentioned in the overview regarding freight transportation – 

especially heavy-duty trucks – in the U.S. raise critical concerns regarding the sustainability of the U.S. 

freight industry (Williams and Haley 2015), making it an ideal target to improve the sustainability 

performance of U.S. freight transportation system as a whole (Boriboonsomsin 2015; Nealer et al. 2012). 

To this end, companies can make a difference by making strategic decisions towards reducing their HDT 

fleets’ fuel consumption, thereby reducing fleet costs, life cycle GHG emissions, and air pollutant-borne 

externalities while also achieving sustainable growth (U.S. EPA 2016a). 

However, freight transportation cost is a particularly important factor for determining trade 

activities, making the transition to sustainable trucking a challenging task (Hummels 2007) that would 

require HDT fleet owners to meet multiple sustainability objectives, including minimizing the LCCs, life 

cycle GHG (LCGHGs) emissions, and life-cycle air pollution externality costs (LCAPECs) of trucks, while 

composing a sustainable truck fleet relative to a conventional truck fleet composed of diesel trucks only. 

The main challenge in this task is to develop a fleet mix that can meet the given sustainability objectives to 

be addressed, optimizing their resulting costs and impacts while also taking national and global 

sustainability goals into account. An effective approach to addressing this difficulty is to apply multi-

objective decision-making methods, which take multiple conflicting objectives into account, such as socio-

economic benefits versus environmental impacts (Kucukvar et al. 2014c; Onat et al. 2016b). Therefore, in 
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this chapter, a robust multi-objective optimization model has been developed based on the hybrid life cycle 

assessment results from Chapter Two in an effort to provide decision support with companies for 

transitioning to alternative fuel-powered HDT fleet for their operations. 

The environmental and socioeconomic implications of deploying alternative fuel-powered heavy-

duty trucks such as biodiesel, natural gas (e.g. compressed natural gas (CNG)), and electricity, have been 

investigated by many scholars such as Wang et al. (2000), Lipman and Delucchi (2002),(Frey and Kuo 

(2007), Graham et al. (2008), Gao et al. (2012), and Sen et al. (2017). Despite these scientific findings, 

alternative fuels have not been adopted in freight transportation as much as in public transportation (U.S. 

Energy Information Administration 2020). A significant barrier to wider deployment of alternative fuels by 

U.S. trucking industry appears to be stemming from a ‘chicken and egg’ conundrum, creating a vicious 

circle, in which truck fleet owners are reluctant to procure alternative fuel-powered heavy-duty trucks (AF-

HDTs), unless there is no infrastructure, and agencies and/or truck providers are hesitant to investing in 

infrastructure for vehicles that are not in the market yet (Browne et al. 2012). 

However, the deployment of alternative fuel HDTs is still a critical issue that requires an effective 

coordination and cooperation between relevant stakeholders (e.g. government agencies, truck 

manufacturers, infrastructure technology providers, etc.) (Melaina et al. 2017). This is also evident on the 

government end as the lawmakers in the U.S. Senate Environment and Public Works Committee recently 

approved a $1 billion in funding for various transportation programs, including the expansion of alternative 

fuel stations such as electricity, hydrogen, and natural gas (Barrasso 2020). Such a policy is expected to 

recreate a momentum for paving the way for alternative fuel-powered surface transportation, including 

freight. To that end, Ko et al. (2017) stated that, given flourishing research in this particular domain in 

recent years, clustering refueling facilities to expedite policy design for early deployment could be a 

reasonable strategy. In fact, He et al. (2015) mentioned a typical approach, in which clustering techniques 
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could be used to group demands for alternative fuel stations (AFSs), which, in turn, provides reasonable 

locations (e.g. centers of formed clusters) for AFS deployment. 

Hence, in an effort to contribute to the ongoing discussions on and planning efforts for building 

sustainable freight network in the U.S., the research conducted in this chapter also attempts to provide 

useful insights into freight routes that are readier for alternative fuel truck deployment by industries that 

transport goods through these routes by clustering U.S. domestic freight routes based on the number of 

alternative fuel refueling stations (AFSs) (i.e. electricity, biodiesel, hydrogen, and compressed natural gas). 

The present article is expected to provide a decision support with HDT fleet owners for planning on 

alternative fuel-powered HDT deployment. Given their important role in the development and deployment 

of alternative fuel vehicles (Melaina et al. 2017), this chapter is also expected to contribute to aiding 

transportation agencies (e.g. state Departments of Transportation) in prioritizing investments on alternative 

fuel station infrastructure that will increase the market penetration of emerging HDT truck technologies 

and facilitate the transition to sustainable freight transportation. Additionally, this chapter presents a simple 

but practical and effective case study of an application of data mining for sustainable transportation. 

Literature Review 

Despite the data constraints that are mainly due to the heterogeneous structure of HDT sector 

(Askin et al. 2015), several studies existing in the literature have used various multiple-objective 

optimization (MOO) approaches to study the subject of fleet management with varying focuses and 

techniques. However, to the authors’ knowledge, the number of studies that have adopted a robust Pareto 

optimal approach is limited in the literature. For example, Dessouky et al. (2003) integrated the economic 

input-output (EIO) LCA method into the MOO model, with an objective to maximize environmental and 

economic improvements in fleet scheduling. Leung et al. (2002) and Leung et al. (2006) each studied 

optimal fleet management solutions for cross-border logistics from two different approaches, i.e. a robust 
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optimization model and a goal programming model, respectively, to aid the development of a long-term 

transportation strategy, i.e. optimal delivery routes and vehicle fleet compositions; the objectives of these 

two studies (minimizing trip costs, hiring costs, inventory costs, and fixed costs) were both kept constant 

for two different approaches. Similarly, List et al. (2003) developed a robust optimization model to 

determine an optimal truck fleet size, which would optimize a combination of objectives that involved 

minimizing fleet ownership costs, operating costs, and service quality penalties. 

 Gouge et al. (2013) built a MOO model for transit bus fleet scheduling to find an optimal solution 

that would minimize the operational costs, and climate and health impacts of the operation of a public bus 

on the Central Business District drive cycle, although Gouge et al.’s study included only a part of a bus’s 

life cycle, i.e. operation phase. Mishra et al. (2014) developed a branch-and-bound algorithm-based 

optimization model for transit fleet resource allocation to find Pareto-optimal solutions that will maximize 

the fleet’s lifetime while also minimizing its maintenance costs. Ercan et al. (2015) utilized a different MOO 

technique (combined with a life cycle assessment method) to find an optimal solution for a transit bus fleet 

of 100 buses that would minimize the fleet’s LCGHGs, air-pollutant-related health damage costs, and total 

LCCs under three different drive-cycles, as well as the trade-off relationship (the Pareto optimality) among 

the multiple objectives being considered. Zhao et al. (2016a) conducted a more recent study with a similar 

approach to sustainable fleet management problem, focusing on minimizing LCGHGs, LCCs, and health 

externality costs for a heterogeneous delivery truck fleet. Like in Ercan et al.'s (2015) study, Zhao et al. 

(2016a) approximated to the Pareto optimal solution, taking into account the maximum weighted deviations 

of three objective function values from the best-case values of their respective objectives.  

 Noori et al. (2015a) developed a MOO model using the compromise programming technique 

combined with a LCA method to find an optimal, region-specific combination of passenger vehicle types 

that would minimize LCCs, environmental damage costs, and water footprint; instead of using a robust 

optimization technique, they applied Exploratory Modeling and Analysis (EMA) to account for 
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uncertainties in the input parameters. Likewise, Onat et al. (2016) presented a novel example for a combined 

application of MOO and life cycle sustainability assessment to find a Pareto optimal passenger vehicle fleet 

distribution that will meet several environmental and socio-economic objectives, using distance-based 

compromise programming to approximate to the ideal solution. 

Numerous other studies in the literature have combined multi-objective optimization (MOO) 

methods with LCA in an effort to strengthen decisions geared towards improving the sustainability of the 

transportation sector and other socio-technical systems such as construction (Kucukvar et al. 2016b, 2014d; 

Antipova et al. 2014), energy (Cambero et al. 2016; Páez et al. 2016; Rentizelas and Georgakellos 2014), 

and water (Ahmadi and Tiruta-Barna 2015). 

In addition, several studies in the literature have provided estimations for alternative fuel 

infrastructure availability and/or location, relying either on simple metrics such as number of existing 

refueling stations or on mathematical models to provide optimum deployment and locations of AFSs (Tong 

et al. 2019). For example, Melaina and Bremson (2008) constructed a statistical model to partition refueling 

stations into two groups as “urban” and “rural” to provide an estimate for the number of refueling stations 

contained in an unspecified area, basing their study on the assumption that the number (i.e. counts) of 

stations in a given region is a function of population of that region. It was shown that some cities contained 

more refueling availability than it was economically sufficient. Ip et al. (2010) employed a two-step 

approach, consisting of hierarchical clustering and linear programing to identify similar roads based on 

traffic information and allocate optimum number of charging stations for electric vehicles. It was concluded 

that the approach implemented was useful for designing a refueling infrastructure. Momtazpour et al. (2014) 

employed a similar approach, implementing the K-Spectral Centroid (K-SC) algorithm to determine 

candidate locations for charging stations, followed by an optimization model to maximize user benefits in 

assigning appropriate charging stations to electric vehicle users. In doing so, Momtazpour and colleagues 

based their modeling approach on two fundamental assumptions, which are (1) that users prefer the cheapest 
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charging option, and (2) that users desire to minimize their detour and waiting time for charging. It was 

concluded that the adopted approach was useful for identifying locations to place charging infrastructure. 

Andrenacci et al. (2016) applied the Fuzzy K-means clustering method to determine the suitable locations 

of electric vehicle charging infrastructure represented by the centroids of formed clusters. The researchers 

then assigned each trip, represented as a row in the dataset, to one of the formed clusters. It was concluded 

that although important factors cannot be taken into account, clustering-based approach is a reasonable first 

step to helping solve optimum recharging station allocation problem based on trip energy profiles. 

It appears that the limited number of studies that exist in the literature have focused on first 

identifying potentially ideal locations of alternative fuel stations using clustering techniques, and then 

allocating either the optimum number of charging stations to those locations using mathematical models or 

assigning trips to clusters formed based on the number of charging stations. Hence, investigating alternative 

fuel infrastructure availability for alternative fuel-powered heavy-duty trucks provides valuable insights 

into the topic. Furthermore, Melaina and Bremson (2008) stated that refining estimates for alternative fuel 

infrastructure availability would facilitate more effective policy design for the deployment of alternative 

fuel-powered vehicles as well as provide insights useful for managing investment risks possibly faced by 

both transportation agencies and businesses pursuing alternative fuel vehicle technologies. 

Research Motivation and Objectives of the Study 

There are several important considerations that decision makers should take into account when 

composing a fleet suitable for their sectoral needs. However, different sectors have different logistical needs 

for their sector-related activities. For example, TRB and NRC (2010) illustrated the differences in the 

average payload of various commodities that are each attributed to different sectors. This results in 

variations in operational costs and the associated environmental and social impacts, especially those due to 

fuel consumption that differs based on the payload. Furthermore, each sector has varying priorities in terms 
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of its environmental and socio-economic performances depending on sectoral activities and regulatory 

environments. 

Given the current circumstances faced by the U.S. trucking industry, and the explicit research need 

pointed out by Gorissen et al. (2015), this chapter aims to contribute to the scientific body of knowledge in 

the multi-objective optimization literature (particularly with respect to HDT fleet composition problem) by 

proposing a combined application of a robust Pareto optimal (RPO) solution and a hybrid LCA method. 

The Executive Order 13693 by The White House (2015) has been considered another indication of a 

research need in this regard as well as a point of departure, from which to arrive at more realistic model 

assumptions, thus yielding practical as well as policy-relevant results. 

The main objective of the study conducted in this chapter is to develop a RPO solution model that 

will be used to find an optimum HDT fleet composition for the studied U.S. sectors (i.e. Food Products, 

Beverages (e.g. alcoholic beverages), Household Durables, Oil and Gas, and Automotive), minimizing the 

life cycle greenhouse gas emissions (LCGHGs), life cycle costs (LCC), and life cycle air pollution 

externality costs (LCAPEs). Several aspects distinguish the research conducted in this chapter from 

previous efforts. Firstly, since costs and emissions incurred by HDT fleets are dependent on vehicle 

characteristics (Ranaiefar and Regan 2011), the analysis incorporates a hybrid life cycle model into the 

multi-objective optimization modeling framework, including in the analysis a variety of alternative fuel 

HDTs (i.e. hybrid, biodiesel, CNG, and BE HDTs), in addition to diesel HDT. Secondly, sector-specific 

load-specific operational costs (i.e. fuel costs, emissions associated with fuel consumption and production, 

and APEs) based on varying average payloads of commodities carried by HDTs within the studied sectors 

have been considered, given the impact of payload on fuel consumption. Finally, the uncertainties in 

objective optimization by sectors, e.g. changing weighting factors assigned by each sector to each objective 

under different socio-economic circumstances, have been considered using the robust Pareto optimal 

approach. 
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Additionally, another objective of this chapter is essentially to examine the AFS availability over 

the freight routes selected according to the origins and destinations provided in the Freight Analysis 

Framework 4 database. The analysis focuses particularly on the routes originating from Miami FL, given 

its significance for freight transportation as a U.S. freight hub. For that purpose, a clustering algorithm 

defined within the subject of unsupervised machine learning have been applied to cluster alternative fuel 

stations such battery recharging, compressed natural gas refueling, and biodiesel refueling stations. Such 

an examination over the selected routes will provide useful insights into the readiness of AFSs in order for 

freight industry to better plan transition to sustainable trucking. 

Methods and Materials 

Hybrid Life Cycle Assessment 

The hybrid LCA approach proposed in this study consists of the combined application of the 

process-based LCA and economic input-output (EIO) LCA methods (Kucukvar et al. 2014d; Tatari and 

Kucukvar 2012). Through this hybridization, the impacts from the upstream activities, used to produce a 

HDT (i.e. manufacturing phase, consisting of the extraction and transportation of raw materials) and from 

the downstream activities corresponding to HDT use (i.e. use phase consisting of HDT maintenance and 

repair (M&R) and fuel consumption) can both be more effectively accounted for and analyzed.  

The process-based LCA method attempts to capture the overall environmental impacts of a product 

over the course of its entire lifetime, evaluating individual unit process flows that comprise an overall 

cradle-to-grave manufacturing system (Onat et al. 2014a). However, the complexity of supply chains is a 

serious drawback for the process-based LCA method in terms of the time, resources, and boundary selection 

required for a sufficiently plausible analysis (Onat 2015a; Kucukvar and Samadi 2015).  
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The EIO-based LCA modeling, on the other hand, is based on national input-output (IO) tables 

representing monetary transactions within or between entire economies, and enables the quantification of 

environmental impacts from complex supply chains, integrating the environmental loads associated with 

these transactions accordingly (Onat 2015b; Kucukvar et al. 2014b). Hence, the EIO-based LCA method 

eliminates some of the key drawbacks of the process-based LCA method, such as the aforementioned issues 

with boundary cutoff, and higher data requirements (Noori et al. 2015c). However, the EIO-based LCA 

method also suffers from a serious drawback due to the level of uncertainty inherent in the level of product 

aggregation found in the EIO-based LCA method (Facanha and Horvath 2006; Mattila et al. 2010; 

Hendrickson et al. 1997; Zhao et al. 2016b; Onat et al. 2015, 2014a, 2014b; Kucukvar et al. 2015; Kucukvar 

and Samadi 2015; Kucukvar et al. 2016a; Noori et al. 2015b; Yue et al. 2016; Onat et al. 2014c). Therefore, 

both these methods have been integrated into a single hybrid methodology in this chapter as hybridization 

reduces overall disadvantages of using these techniques individually as previously mentioned. 

Life Cycle Inventory 

The life-cycle inventory analysis phase of a typical LCA is where the inputs and outputs of a 

product system are quantified with respect to the system boundary in order to assess the impacts arising 

from the overall system (Onat et al. 2017b). The LCA phases considered in this study are divided into two 

primary parts: 

1) The manufacturing phase, i.e. raw material extraction and procurement, and vehicle, battery 

manufacturing, and miscellaneous equipment manufacturing, and 

2) The operation phase, i.e. fuel consumption and associated tailpipe emissions, and maintenance and 

repair. 

Figure 27 illustrates the overall system boundary to be considered in this study. Furthermore, 

vehicle characteristics based on CALSTART (2013), Torrey and Murray (2015), TRB and NRC (2010), 
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California Air Resources Board (2015), and Alternative Fuel Life-Cycle Environmental and Economic 

Transportation (AFLEET) model (Burnham 2013) are given in Table 8. 

 

 

Figure 27: System boundary for hybrid life-cycle assessment 

Data on the majority of the upstream environmental impacts of the studied HDTs have been 

obtained from the Carnegie Mellon University Green Design Institute’s publicly available online EIO-LCA 

tool (Carnegie Mellon University Green Design Institute 2008). The downstream environmental impacts, 

on the other hand, have been acquired from both the EIO model which consists of 428 U.S. sectors, and 

various process models and databases such as Greenhouse gases, Regulated Emissions, and Energy Use in 

Transportation (GREET), AFLEET, and the U.S. EPA’s Motor Vehicle Emissions Simulator (MOVES). 

More details on the data sources of the LCA indicators, the inputs of the LCA model, and the relevant 

calculations can be found in the authors’ earlier study by Sen et al. (2017). 

 

Table 8: Assumptions regarding vehicle characteristics 



97 

 

Characteristics Value 

Lifetime 10 years 

Average annual mileage 140,000 miles 

Physical features Class 8 heavy-duty trucks with 53’ truck-trailer; >33,001 lbs. 

Battery specifications (BE) 400 kWh, 150 Wh/kg Li-ion battery 

Battery specifications (Hybrid) 25 kWh, 150 Wh/kg Li-ion battery 

The baseline truck (i.e. a diesel HDT) includes all essential truck parts, including the truck’s body, 

shell, engine, and relevant miscellaneous parts, as well as a trailer. In addition to these parts, which are all 

assumed to be common for any type of truck considered in this study, additional parts for a CNG HDT (e.g. 

a metal tank and a heavy gauge), and for hybrid electric and BE HDTs (e.g. power electronics, an electric 

motor, and a battery system) have been also considered (California Air Resources Board 2015; Burnham 

2013). Data on the environmental impacts of battery system manufacturing has been derived from GREET’s 

Vehicle-Cycle Model (Center for Transportation Research 2016). Furthermore, the additional 

infrastructural needs of CNG and BE HDTs have been considered in the LCAs of each of these HDTs, as 

well. Based on studies conducted by Ercan and Tatari (2015) and by Smith et al. (2014), a natural gas 

refueling station (NGRS) has been assumed to have a daily supply capacity of 1500 to 2000 gasoline-gallon 

equivalents of fuel, and the investment, labor, and installation costs respectively take up 46 percent, 39 

percent, and 15 percent of the total infrastructure cost of a NGRS. Likewise, based on studies conducted by 

De Filippo et al. (2014), Ercan and Tatari (2015), Kempton et al. (2001), and NREL (2012), it has been 

assumed that BE HDTs are charged using a Level 3 conductive battery charging station (BCS), which has 

a charging efficiency of 90 percent and a charging capacity of 250 kW. Lastly, the existing refueling 

infrastructure has been assumed to be sufficient for all other HDTs. 

The life-cycle impacts caused by fuel consumption take into account the load-specific fuel economy 

(LSFE) specific to each of the 5 sectors considered in this study. Therefore, based on TRB and NRC (2010), 

it has been assumed that each 1000-pound increase in a HDT’s payload results in a 1 percent decrease in 



98 

 

its fuel economy. The payloads assumed in the analysis have been derived from data from a report published 

by the Transportation Research Board and National Research Council (2010), and are all listed in Table 9. 

The fuel prices used in the LCA calculations for diesel and hybrid, biodiesel, CNG, and BE HDTs have all 

been obtained from the databases of the U.S. EIA (2017a, 2017b) and the  U.S. Department of Energy 

(2015). The environmental impacts and APE costs incurred by tailpipe emissions have been derived from 

the AFLEET database, and based on the results of the MOVES analysis, these externalities also include the 

relevant deterioration factors, which can subsequently affect tailpipe emissions. Additionally, based on 

studies conducted by Zhao et al. (2013) and by Ozdemir (2012), it has been assumed that hybrid electric 

HDTs and BE HDTs replace their batteries 3 times, and 2 times during their individual lifetimes, 

respectively. The emissions from battery replacement have been derived from GREET’s Vehicle-Cycle 

Model. The LCA conducted in this chapter also reflects battery price projections, which estimate a 2 percent 

annual inflation in battery prices (U.S. EIA, 2015).  
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Table 9: Payloads and load-specific fuel economy (LSFE) values of heavy-duty trucks considered in hybrid 

life-cycle analysis 

Sectors 
Average  

Payload (lbs.) 

 
LSFEs for each HDT type 

 

 
Diesel 

miles/gal 

Biodiesel 

miles/gal 

CNG 

miles/gal 

Hybrid 

miles/gal 

BE 

kWh/mile 

Food Products 40,000 

 

4.21 4.21 3.81 4.48 2.77 

Beverages 36,000 4.38 4.38 3.96 4.66 2.67 

Household Durables 23,000 4.99 4.99 4.52 5.31 2.34 

Oil and Gas 40,000 4.21 4.56 3.81 4.48 2.77 

Automotive 32,000 4.56 4.21 4.13 4.85 2.56 

 

The data used to calculate the LCGHGs and LCCs caused by the M&R of HDTs during operation 

have been taken from the AFLEET model (Burnham 2013), and the LCAPEs caused by the operation of 

HDTs have been also reflected in their respective LCA phases. Since the fuel consumption behavior of 

HDTs is a key factor in the magnitudes of the corresponding LCAPECs, sector-specific LSFE factors have 

been taken into account to calculate individual LCAPEs. It is important to note that the LCAPEs incurred 

by each HDT have ben considered differently from the LCCs of these HDTs, the latter of which are 

composed of cost components, such as initial capital costs i.e. the cost of a baseline truck and trailer, the 

costs of additional parts i.e. parts for alternative HDTs, and infrastructure costs, i.e. NGRS, BCS, fuel, and 

M&R. 

Robust Pareto Optimal Fleet Composition 

The three objectives of the optimization analysis conducted in this research consist of three LCA 

indicators, i.e. LCGHGs, LCCs, and LCAPECs, all of which have been quantified using the hybrid LCA 

method. All the three indicators are functions of the fleet portfolio mixes composed of different types of 
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trucks, making fleet composition the basic decision to be made in this research. Regarding the multi-

objective optimization (MOO) method used in this study, because multiple objectives almost certainly do 

not all achieve their optima in the same solution, it is usually useful to find the Pareto efficient frontier, on 

which all of the possible non-dominated points in terms of the multiple objectives lie. 

However, there could be infinitely many points on this efficient frontier and finding analytical 

closed-form functions of this frontier might be difficult, if not impossible; in practice, it is sufficient to find 

many representative Pareto points or an important subset of the frontier. Under relatively mild conditions, 

a Pareto optimal solution (corresponding to a point in the Pareto efficient frontier) can be obtained by 

solving a single-objective optimization problem and thereby optimizing the weighted sum of the multiple-

objectives (Miettinen 1999). Hence, many effective and successful MOO applications have used the 

weighted-sum-single-objective approach (Li et al. 2016; Onat et al. 2016a), and assigning appropriate 

weights to each of the multiple objectives is therefore an important step in finding the right Pareto optimum 

solutions. Many research efforts have been devoted to defining effective and meaningful weights, including 

tradeoff weighting (Keeney and Raiffa 1976), swing weighting (von Winterfeldt and Edwards 1986), and 

worst-case weighting (Hu and Mehrotra 2012). 

The main challenge encountered in the weighting approach lies in its subjectivity in assessing and 

determining decision-makers’ priorities with respect to each objective, particularly in terms of which 

objective(s) should be prioritized over other objectives (Kucukvar et al. 2014d). This inherent subjectivity 

in the weighting approach is due largely to potential biases in judgements with respect to each objective 

(Seppälä et al. 2016) as well as different value structures and differences in values, which is also referred 

to as value plurality (Bengtsson 2001; Finnveden 1997). Finnveden (1997) mentions that these differences 

in values can lead to different views on market economy, the environment, and society, leading to variations 

and/or disagreements as well as subjective uncertainties in weighting factors as they apply to the 

organizational objectives of each decision-maker. In addition to design variables, uncontrollable parameters 
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such as those corresponding to key environmental and socio-economic factors (e.g. noise factors) also exist, 

thus affecting the feasibility of a solution for “real-world” optimization problems causing differentiations 

and uncertainties in the weighting factors of objectives (Gaspar-Cunha and Covas 2008; Gorissen et al. 

2015; Gabrel et al. 2014; Onat et al. 2016a).  

This research takes these considerations into account while also characterizing the uncertainty set 

to be used in the model, based on a survey conducted by RobecoSAM AG (2016). This survey is annually 

conducted and asks thousands of companies, each operating in different sectors around the world, various 

questions that focus on the environmental, social, and economic dimensions relevant to their organizational 

objectives. Hence, in this research, a Robust Pareto Optimal (RPO) approach has been employed to find 

the optimal composition of future HDT fleets in different sectors under varying level of priorities (i.e. 

weights). 

First, the MOO model has been introduced as it applies to the fleet composition problem, focusing 

on the five U.S. sectors previously discussed (i.e. Food Products, Beverages, Household Durables, Oil and 

Gas, and Automotive), which are indexed on 𝑗 = 1,2,3,4,5. Each sector has five truck types available, all 

indexed on 𝑖 with respect to the set given as the following: 

 𝐴 = {1(diesel), 2(biodiesel), 3(CNG), 4(hybrid), 5(BE)}  

The investment decision on each type of truck 𝑖 by each sector 𝑗 is denoted by the variable ℎ𝑖𝑗. Three 

major LCA indicators are considered as previously mentioned, and the parameters used to estimate these 

three indicators have been obtained from the life cycle inventory. LCGHG parameters include CO2 

emissions from various life cycle activities, including: 

a) Truck manufacturing, M&R, infrastructure (NGRS and BCS), and battery manufacturing and 

replacement, collectively denoted by 𝑒𝑖; 
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b) Fuel production (supply), denoted by 𝑛𝑖𝑗
1 ; and 

c) Downstream activities, i.e. fuel consumption (tailpipe), denoted by 𝑡𝑖𝑗
1 . 

LCAPE parameters are determined in a similar manner and are converted into the LCAPECs as described 

previously; these parameters are denoted as 𝑦𝑖, 𝑛𝑖𝑗
2 , and 𝑡𝑖𝑗

2 , respectively. Lastly, the three main constituents 

of the LCC parameters are: 

a) The initial truck cost, denoted by 𝑚𝑖; 

b) The life-cycle operation costs (consisting of M&R, battery replacement, and refueling 

infrastructure costs), denoted by 𝑞𝑖𝑗; and 

c) Fuel expenditures, denoted by 𝑛𝑖𝑗
3 . 

It is worth noting that these costs may vary from sector to sector, depending on the relevant LSFE 

factors. 

Denoting the values of the indicators for each sector 𝑗 as 𝑓1𝑗, 𝑓2𝑗, 𝑓3𝑗 for LCGHGs, LCAPECs, and 

LCCs, respectively, these three indicators are calculated using the following three equations:  

 

𝑓1𝑗 = ∑ ℎ𝑖𝑗 × (𝑒𝑖 + 𝑛𝑖𝑗
1 + 𝑡𝑖𝑗

1 )

5

𝑖=1

, 𝑗 = 1,2,3,4,5 

𝑓2𝑗 = ∑ ℎ𝑖𝑗

5

𝑖=1

× (𝑦𝑖 + 𝑛𝑖𝑗
2 + 𝑡𝑖𝑗

2 ), 𝑗 = 1,2,3,4,5 

𝑓3𝑗 = ∑ ℎ𝑖𝑗

5

𝑖=1

× (𝑚𝑖 + 𝑛𝑖𝑗
3 + 𝑞𝑖𝑗), 𝑗 = 1,2,3,4,5 
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Without loss of generality, it has been assumed that each sector has a total of 30 trucks, for which 

the optimal selection of truck types is to be determined, as modeled in the constraint shown as Eq. (3). In 

reality, many restrictions exist when selecting which type of truck to invest on. Based on the fleet 

requirement scenarios set forth by Executive Order 13693 from The White House (2015), it has been 

assumed that 50 percent of a HDT fleet comprises of zero-emission vehicles, as represented in Constraint 

(4). Likewise, alternative fuel HDTs have been assumed to comprise 50 percent to 75 percent of the truck 

fleet, as represented by Constraints (5) and (6). Additionally, the constraints that observe potential GHG 

reductions, life-cycle fuel costs (LCFCs), LCAPECs, and LCCs of a newly composed HDT fleet relative 

to conventional fleet (i.e. a truck fleet composed of 30 diesel HDTs) have been also included in the MOO 

model, and are each represented in Eqs. (7), (8), (9), and (10), respectively.  

In summary, the MOO problem is presented as follows: 

[MOO]:     Minimize [𝑓1, 𝑓2, 𝑓3]𝑇 (1) 

Subject to 𝑓𝑘 = ∑ 𝑓𝑘𝑗
5
𝑗=1 , 𝑘 = 1,2,3   (2) 

 ∑ ℎ𝑖𝑗
5
𝑖=1 = 30, 𝑗 = 1,2,3,4,5  (3) 

 ℎ5𝑗 ≥ 30 × 50%,   𝑗 = 1,2,3,4,5 (4) 

 ∑ ℎ𝑖𝑗
5
𝑖=2  ≥ 30 × 50%,   𝑗 = 1,2,3,4,5  (5) 

 ∑ ℎ𝑖𝑗
5
𝑖=2  ≤ 30 × 75%,  𝑗 = 1,2,3,4,5  (6) 

 ∑ ℎ𝑖𝑗
5
𝑖=1 × (𝑒𝑖 + 𝑛𝑖𝑗

1 + 𝑡𝑖𝑗
1 ) ≤ 30 × (𝑒1 + 𝑛1𝑗

1 + 𝑡1𝑗
1 ), 𝑗 =

1,2,3,4,5  

(7) 

 ∑ ℎ𝑖𝑗
5
𝑖=1 × 𝑛𝑖𝑗

3 ≤ 30 × 𝑛1𝑗
3 ,   𝑗 = 1,2,3,4,5  (8) 

 ∑ ℎ𝑖𝑗
5
𝑖=1 × (𝑦𝑖 + 𝑛𝑖𝑗

2 + 𝑡𝑖𝑗
2 ) ≤ 30 × (𝑦1 + 𝑛1𝑗

2 + 𝑡1𝑗
2 ), 𝑗 =

1,2,3,4,5  

(9) 
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 ∑ ℎ𝑖𝑗
5
𝑖=1 × (𝑚𝑖 + 𝑛𝑖𝑗

3 + 𝑞𝑖𝑗
1 ) ≥ 30 × (𝑚1 + 𝑛1𝑗

3 + 𝑞1𝑗
1 ), 𝑗 =

1,2,3,4,5  

(10) 

 ℎ𝑖𝑗 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠,    ∀ 𝑖 ∈ 𝐴,   𝑗 = 1,2,3,4,5 (11) 

Here, the model [MOO] tries to minimize the multiple indicators of the aggregated cost/impact of 

all sectors as calculated in Eq. (2). By taking the weighted average of the three objectives, this problem has 

been transformed into a single-objective minimization problem. Because most of the sectors perceive the 

objective weights differently and independently, five different problems for each sector can be solved 

separately because Constraints (3) through (11) are separable with respect to each sector. For each sector 𝑗, 

let the weights be modeled by 𝛼𝑘𝑗, 𝑘 = 1,2,3. Hence the single objective optimization problem for each 

sector 𝑗 can be presented as follows: 

[SOO𝑗]:  Minimize {∑ 𝛼𝑘𝑗𝑓𝑘𝑗
3
𝑘=1 | (3)𝑗 − (11)𝑗} 

Here, the equations with subscript 𝑗 denote the constraints in the MOO model above with respect 

to index 𝑗 only individually, and αkj has been assumed to be a deterministic parameter. As previously 

mentioned, the weights on each of the three indicators represent the perceptions of the decision-makers 

regarding their corresponding importance, which are subject to expert opinions and future socio-economic 

uncertainties. This means that, for each sector 𝑗, the weighting factors 𝛼𝑘𝑗 (𝑘 = 1,2,3) are no longer fixed 

or deterministic but may instead vary within an uncertainty set (Ωj). The lower and upper weighting factors 

(also referred to as the lower and upper bounds and denoted as 𝑏𝑘𝑗 and 𝑎𝑘𝑗, respectively) for each sector 

and objective have been acquired from the survey conducted by RobecoSAM AG (2016). As also 

mentioned previously, the companies included in the survey are asked to assign weights to economic, social, 

and environmental dimensions of sustainability, each of which comprises of certain number of criteria. The 

sum of the assigned weights is 1. For example, for the Household Durables sector, the sum of the weighting 
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factors for the economic, environmental, and social dimensions is 0.48, 0.23, and 0.29, respectively. 

Furthermore, the Household Durables sector assigns the minimum weight of 0.2 to materiality criteria; this 

minimum weight assigned by a sector to a certain criterion has been used as the lower bound (𝑏𝑘𝑗), and the 

sum of the weights assigned to a certain dimension is then used as the upper bound (𝑎𝑘𝑗). Hence, it is very 

valuable to find the Robust Pareto Optimal solutions, which can be obtained by solving the following bi-

level optimization problem: 

[RPOj]:     Minimize Maximize {∑ 𝛼𝑘𝑗𝑓𝑘𝑗
3
𝑘=1 | 𝛼𝑗 ∈ 𝛺𝑗}  

Subject to 𝑓𝑘𝑗, ℎ𝑖𝑗 ∈ {(3)𝑗 − (11)𝑗}    

Here, 𝜶𝒋 is a vector composed of 𝛼𝑘𝑗 (𝑘 = 1,2,3). Based on the survey by RobecoSAM AG (2016), 

the uncertainty set 𝛺𝑗 can be set up as { 𝜶𝒋| ∑ 𝛼𝑘𝑗 = 13
𝑘 , 𝑏𝑘𝑗 ≤ 𝛼𝑘𝑗 ≤ 𝑎𝑘𝑗, 𝑘 = 1,2,3}. When 𝛺𝑗 is a 

compact and convex set (which is the case in this study), the bi-level optimization problem is equivalent to 

a single-level optimization problem as shown below: 

[SRPj]:     Minimize 𝑧𝑗  

Subject to 𝑧𝑗 ≥ ∑ �̂�𝑘𝑗
𝑙 𝑓𝑘𝑗

3

𝑘=1

, ∀𝑙 ∈ 𝐸𝑗  
 

 𝑓𝑘𝑗, ℎ𝑖𝑗 ∈ {(3)𝑗 − (11)𝑗}  

Here, 𝑧𝑗 is an unrestricted continuous variable, 𝐸𝑗 is the extreme point set of 𝛺𝑗, and �̂�𝑘𝑗
𝑙  (𝑘 =

1,2,3) is the 𝑙𝑡ℎ extreme point in the set. The uncertainty set 𝛺𝑗 is a closed 2-dimensional polyhedral set, 

because the three weight factors sum up to 1. In the case where there are only bounds (upper and lower) on 

each factor, all possible extreme points can be easily enumerated. By choosing two factors at either their 

upper or their lower bounds (4 combinations), the other factor can then be determined, since these three 

factors sum up to 1. The solution (of all factors) is then treated as an extreme point if the third factor is 
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within its bounds; if not, the solution is simply discarded. The MATLAB software, developed by The 

Mathworks Inc. (2017), has been used for the computations needed to determine the extreme points. In the 

case of three weighting factors, only (
3
2

) × 4 = 12 possible combinations are to be checked. For general 

cases, the following cutting plane algorithm is suggested to find robust Pareto optimal solutions: 

Step 0: Initialize the Extreme Point Set 𝐸𝑗
𝑛 and 𝑛 = 0. 

Step 1: Solve [SRP𝑗] using 𝐸𝑗
𝑛 instead of 𝐸𝑗. 

Step 2: Let the optimal solution be 𝑓𝑘𝑗, ℎ̂𝑘𝑗, ∀𝑘, 𝑗. 

Step 3: Solve Maximize{∑ 𝑓𝑘𝑗𝛼𝑘𝑗
𝐾
𝑘=1  | 𝜶𝒋 ∈ 𝛺𝑗}. 

Step 4: Let its optimal solution be �̂�𝑗
𝑛+1. If �̂�𝑗

𝑛+1 is already in 𝐸𝑗
𝑛, stop; the current solution 𝑓𝑘𝑗, ℎ̂𝑘𝑗, ∀𝑘, 𝑗 

is the robust Pareto optimal solution. 

Step 5: Let 𝐸𝑗
𝑛+1 = 𝐸𝑗

𝑛 ∪ {�̂�𝑗
𝑛+1}, and 𝑛 = 𝑛 + 1, and proceed accordingly to Step 1. 

The algorithm above is an iterative method that adds cutting planes (a.k.a. extreme points) at each 

step, where 𝐾 is the number of indicators (in general cases) and 𝑛 is the iteration count. This algorithm 

avoids the complete enumeration of the extreme point set 𝐸𝑗. To initialize the extreme point set, one or a 

few feasible points from the uncertainty set 𝛺𝑗 are to be found. The algorithm stops when a newly found 

extreme point already exists in the set 𝐸𝑗
𝑛, and at the same time, the upper and lower bounds of [𝑅𝑃𝑂𝑗] 

match each other. All programs have been coded in GAMS (General Algebraic Modeling System), which 

was developed by GAMS Development Corporation (2013) to solve the Robust Pareto Optimal Fleet Mix 

problem. 
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K-Means Clustering  

Regarded as an important unsupervised learning technique for exploratory data analysis, clustering 

is a well-established approach widely studied in the statistical learning and data mining literature to unveil 

hidden patterns and information in a dataset (James et al. 2007). The main aim of clustering is to segment 

data points (or observations) into a number of nonpredetermined and homogenous groups, called clusters, 

such that each cluster formed as a result contains those observations that are similar to each other but 

dissimilar to observations in other clusters based on a predetermined similarity function. For this very 

reason, a clustering problem can be approached as an optimization problem such that the predetermined 

similarity function is minimized for observations within the same cluster but maximized between 

observations in different clusters (Bandyopadhyay and Saha 2013). Given its applications found in a wide 

spectrum of scientific disciplines, a great number of clustering algorithms have been introduced and applied 

(James et al. 2007). The least squares quantization algorithm introduced by Lloyd (1982)– also famously 

known as K-means algorithm – is by far the most widely used clustering algorithm in the scientific and 

industrial applications (Reddy and Vinzamuri 2014), given its simplicity and computational convenience, 

with a time complexity of O(n), where n is the number of observations (Jain et al. 1999). Another reason 

why the K-means algorithm has been very popular among others is that the algorithm can be applied to 

almost any dataset and guarantees to converge, though not to the global optima (Aggarwal and Reddy 

2014), and provide useful solutions in many practical applications (Rodriguez et al. 2019). 

The K-means algorithm partitions a dataset into predetermined number (𝑘) of distinct, non-

overlapping clusters based on the Euclidean distance and assigns each of the n data points to one of the 𝑘 

clusters. Hence, as mathematically described by James et al. (2007), there are two properties that are 

satisfied by the 𝐶1, … , 𝐶𝑘 sets of data points in each cluster: 

1. 𝐶1 ∪ 𝐶2 ∪ … 𝐶𝑘 = {1, … , 𝑛}. In words, because each data point is assigned to only one cluster, 

the total number of data points in each set 𝐶 equal the number of data points in the dataset. 
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2. 𝐶𝑘 ∩ 𝐶𝑘′ = 0 for all 𝑘 ≠ 𝑘′. In words, clusters formed as a result of partitioning does not 

overlap. 

The K-means algorithm employs a squared error criterion and thus, it generates clusters such that 

the within-cluster variation, or in other words the sum of squared errors (SSE) defined as squared distances 

from the cluster centroids, is minimized. Given this information, the objective function for the K-means 

clustering method can be written as the following: 

min
𝐶,{𝑚𝑘}1

𝐾
∑‖𝑥𝑖 − 𝑐𝑘‖2

𝐾

𝑘=1

 

Here, 𝑐𝑘 is the mean vector 𝑐𝑘 = (𝑥1𝑘, … , 𝑐𝑝𝑘) associated with the 𝑘𝑡ℎ cluster (𝐶𝑘) and denotes the 

center of cluster 𝑘; and 𝑥𝑖 is a data point in cluster 𝐶𝑘. As explained by Bandyopadhyay and Saha (2013), 

supposing 𝑘 is the number of predetermined clusters and the similarity function is the Euclidean distance, 

the process of the algorithm starts with arbitrarily selecting 𝑘 points from the dataset as initial cluster 

centroids. Then, each point in the data set is assigned to a cluster, the centroid of which it is closest to, 

determined based on the similarity function. Once the clusters are formed, the cluster centers are updated 

to the means of newly formed clusters and the within-cluster variation for each cluster is computed. These 

two steps are repeated until a convergence criterion is met, i.e. either the data point assignment to clusters 

do not change or the within-cluster variations are minimized. 

 

Step 1: Randomly select k points from the dataset (x1, x2, …, x3) as initial cluster centroids, 𝑐1, … , 𝑐𝑘. 

repeat 

Step 2: Assign point xi to the closest cluster 𝑐𝑗, 𝑗 ∈ 1, 2, … , 𝐾. 

Step 3: Recompute new cluster centers 𝑐1
∗, 𝑐2

∗, … , 𝑐𝑘
∗ as follows: 

𝑐𝑖
∗ =

∑ 𝑥𝑗𝑥𝑗∈ 𝐶𝑖

𝑛𝑖
, 𝑖 = 1, 2, … , 𝐾., where 𝑛𝑗 denotes the number of data points in cluster Ci. 

until 

Step 4: Convergence criterion is met. 
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According to the K-means algorithm provided above, there are two major parameters that 

significantly impact the performance of the K-means clustering algorithm: (1) Choosing the initial 

centroids, and (2) Selecting the most appropriate number of clusters 𝑘 to partition a dataset into. These 

parameters are significant because, unless the lengths of 𝐾 and 𝑛 are quite small, there are usually so many 

ways (i.e. 𝐾𝑛) to group 𝑛 observations into 𝑘 number of clusters, which is why the K-means algorithm 

converges at a local optima providing a good solution. Because the K-means algorithm find a local 

optimum, cluster initialization becomes crucial, as the shape of clusters formed would change depending 

on the assumed initialization (James et al. 2007). Therefore, to assume more effective cluster initialization, 

the K-means++ algorithm introduced by Arthur and Vassilvitskii (2007) has been employed in this study. 

Different from the K-means algorithm is the probabilistic approach used in the K-means++ algorithm, 

which adds two more steps before assigning data points to clusters. Accordingly, in between Step 1 and 

Step 2 in Algorithm 1 shown above, the K-means++ algorithm adds the following steps, as laid out by 

Arthur and Vassilvitskii (2007): 

Step 1b: Take a new cluster centroid 𝑐𝑖, selecting 𝑥 ∈ 𝑋 with the probability  
𝐷(𝑥)

2

∑ 𝐷(𝑥)
2

𝑥 ∈𝑋
. 

Step 1c: Repeat Step 1b until 𝑘 cluster centroids have been taken altogether 

Here, 𝐷(𝑥) denotes the shortest distance from a data point in the data space to the closest center that 

has been already chosen. After the initialization is made, the K-means++ algorithm follows the K-means 

algorithm in the remainder of the steps. Since selecting a right number of clusters 𝑘 is dealt within the 

subject of cluster validation, it will be explained under the relevant section. 

To carry out a cluster analysis, the steps outlined in Figure 28 have been followed. The steps were 

adopted from Ogbuabor and Ugwoke (2018). 
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Figure 28 Steps taken for the cluster analysis 

Data Collection and Preprocessing 

The data used for the analysis is the count of public alternative fuel stations (AFSs), i.e. electric 

vehicle direct-current (DC) fast charging, (compressed) natural gas refueling station, and biodiesel (B20 

and above) refueling station, over the selected routes. The count data of the studied AFSs has been acquired 

from Alternative Fuel Data Center provided by U.S. Department of Energy (2020) using a simple data 

mining technique, called web scraping – an automated process of collecting useful information from a 

certain webpage. Accordingly, a Python script was implemented, which opened the alternative fuel station 

locator webpage, selected the studied AFSs, typed the names of the origins and destinations, and retrieved 

the count of AFSs within 5 miles distance from the route between the given origin-destination pair. A 

sample route selection, with existing fast recharging stations scattered throughout the route, presented in 

Figure 29, shows the route between Miami FL as the origin, and Atlanta GA as the destination. The routes 

selected in this fashion for each pair of origin and destination provided by the Freight Analysis Framework 

4 (FAF4) database has been checked for consistency with the National Freight Highway Network map 

generated by (U.S. Department of Transportation 2020). 

  

Data collection
Data 

preprocessing
Parameter 

configuration

Applying the 
clustering 
algorithm

Visualization 
and 

interpretation
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Figure 29 A sample route selection between Miami FL and Atlanta GA with existing fast recharging 

stations 

The routes and transported goods analyzed are freight origins and destinations, and goods carried 

over those routes, defined in the FAF4 database (Center for Transportation Analysis 2015). All the routes 

but those to and from Alaska and Hawaii have been excluded from the analysis, given the scope of the study 

encompassing the contiguous United States. The FAF4 database contains origins and destinations that were 

specified as states (i.e. Idaho, Iowa, Maine, New Mexico, Montana, Mississippi, North Dakota, South 

Dakota, Vermont, West Virginia, Wyoming, and Arkansas), metropolitan statistical areas, and combined 
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statistical areas. Hence, for those state origins and destinations, state capitals have been considered in 

collecting the count data of AFSs over the routes to and from those state capitals. The dictionary and 

characteristics of the data collected are provided in Table 10. 
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Table 10 Characteristics and description of the data used in the analysis 

 

 

Field Description 
N 

statistic 
Maximum Minimum 

Standard 

Deviation 

Skewness Kurtosis 

Statistic Std. Error Statistic Std. Error 

od_pair 

Origin-destination pair, 

indicating FAF region 

or state where a freight 

movement begins (o) 

and ends (d) 

6414 - - - - - - - 

sctg2_updated 

Types of 

goods/commodity 

carried according to the 

Standard Classification 

of Transportation 

Goods (SCTG) 

6414 - - - - - - - 

bio_station 

Biodiesel stations over 

the course of the route 

between an OD pair 

6414 275 0 27.69201 0.983 0.031 2.47 0.061 

cng_station 

Compressed natural gas 

stations over the course 

of the route between an 

OD pair 

6414 33 0 3.54418 3.500 0.031 17.388 0.061 

ev_station 

Electric vehicle 

charging stations over 

the course of the route 

between an OD pair 

6414 69 0 15.14097 1.219 0.031 1.408 0.061 

orig_lat Latitude of the origin 6414 - - - - - - - 

orig_lon Longitude of the origin 6414 - - - - - - - 

dest_lat 
Latitude of the 

destination 
6414 - - - - - - - 

dest_lon 
Longitude of the 

destination 
6414 - - - - - - - 
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After collecting the data, it has been observed that the existing electric vehicle charging stations 

and CNG refueling stations remarkably outnumbered the existing biodiesel stations as of January 2020, 

having greater variability, as well. Because a distance-based clustering has been employed and because it 

has been unwanted that large numbers in some features (e.g. ev_sta) dominate the clustering of the data 

space, the z-score scaling has been applied to the collected count data. The z-score scaling is one of the data 

preprocessing steps recommended to attempt to give all variables an equal weight, in the hope of achieving 

objectivity (Kaufman and Rousseeuw 1990). Furthermore, in their study, in which the effects of different 

scaling approaches on the K-means clustering were investigated, Johor Bahru et al. (2013) concluded that 

the z-score standardization was more effective and efficient than the min-max and decimal scaling methods. 

The data after the z-score scaling is shown in Figure 30. 

 

Figure 30 A scatter plot showing the z-score scaled data for the studied alternative fuel refueling stations 
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 Because the K-means algorithm is known to be sensitive to outliers, given its use of the mean of 

squared Euclidean distances, the analysis has been carried out using the data both with outliers and without 

outlies. The interquartile range (IQR) rule has been applied to detect the outliers in each feature. In total, 

499 data points have been detected as outliers (see Figure 31), and thus, removed from the data set. The 

scatter plot of the data, from which the outliers were removed, is presented in Figure 32. 

 

Figure 31 Outlier detection based on the interquartile range (IQR) rule 
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Figure 32 A scatter plot showing the z-score scaled data for the studied alternative fuel refueling stations 
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Parameter Configuration and Cluster Validation 

There are two major factors such as initialization of cluster centroids and selecting the number of 

clusters 𝑘, that affect the performance and validity of clustering a data space using the K-means algorithm 

(Reddy and Vinzamuri 2014). The latter also leads to two crucial questions to be addressed for insightful 

cluster analysis: (1) How many clusters naturally exist in the data and (2) how good is the clustering? 

Therefore, one must also take into account the validity of the clusters formed as a result of implementing a 

clustering algorithm (Bandyopadhyay and Saha 2013). As mentioned previously, the cluster initialization 

was done using K-means++ initialization method because it performs reasonably well in providing an 

effective initialization (Fränti and Sieranoja 2019). 

As for determining the right number of clusters 𝑘, one of the widely adopted approaches to selecting 

an appropriate number of clusters in a data set is the Elbow method used in various clustering applications. 

The Elbow method, as a variance-based approach (Mirkin 2011). relies on the within-cluster sum of squared 

errors (SSE), also referred to as inertia, as a performance indicator (Yuan and Yang 2019). Intuitively, as 

the number of clusters increases, the inertia of clusters decreases; when the number of naturally occurring 

clusters is reached, a rapid decline in the value of inertia becomes apparent. The Elbow method has been 

implemented for the data both with and without outliers. Though a valid method, the Elbow graph does not 

provide a measure in terms of the separation of the formed clusters. That is, it is not possible to gain insights 

into how well the clusters are separated from each other. Therefore, the cluster validation metrics introduced 

previously have been also implemented. 

There are two categories of cluster validation approaches such as external cluster validation and 

internal cluster validation. The difference between these two approaches is that the former validates the 

clusters formed with respect to external information not present in the data, e.g. the ground truth, whereas 

in the latter, the clustering validation relies on metrics measured based on the structure of the data (Liu et 

al. 2010). In addition to measuring the goodness and quality of clusters formed, internal validation 
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techniques can be also used to determine the number of naturally occurring clusters 𝑘 in the data space 

(Baarsch and Celebi 2012). To that end, in an effort to ensure that the most appropriate number of clusters 

is selected, the following internal cluster validation indices have been implemented: Silhouette coefficient, 

Calinski-Harabasz score, and Davies-Bouldin score, which were previously adopted by others, as well 

(Vogel et al. 2011; Rendón et al. 2011; Hasnat and Hasan 2018). The main reason behind the selection of 

these metrics is their performances in providing a good indication of an appropriate number of clusters 

(Sharman and Roorda 2011) as well as good cluster validation (Baarsch and Celebi 2012; Mirkin 2011). In 

fact, Rendón et al. (2011) carried out a study, comparing the internal cluster validation indexes to the 

external cluster validation indexes on a number of different datasets. It was concluded based on the 

comparative analysis results, that, when the K-means algorithm, along with internal cluster validation 

indexes, is used, the DB index and Silhouette scores provide more accurate partitioning. 

Silhouette coefficient is a metric that provides insights into the cohesion and separation of clusters, 

thereby considering both the average distance of data point 𝑖 in cluster 𝐶𝑘 to all other data points in the 

same cluster, denoted as (𝑎𝑖), and the average distance (𝑏𝑖)  of data point 𝑖 in cluster 𝐶𝑘 to all other data 

points in other clusters 𝐶 ≠ 𝐴. One of the most important characteristics of the Silhouette coefficient is 

that it only depends on the actual partition of the data space, regardless of the clustering algorithm used 

(Kaufman and Rousseeuw 1990). The Silhouette coefficient varies between -1 and +1, and values less than 

0.25 indicate the inexistence of a substantial cluster structure, values between 0.26 and 0.50 indicate a weak 

structure, and values above 0.50 indicate an existence of reasonable to strong cluster structure. Therefore, 

higher Silhouette coefficient indicates a better separation as well as compactness of the cluster formed. In 

case the average Silhouette coefficient is between 0.26 and 0.50, the implementation of additional methods 

is recommended (Kaufman and Rousseeuw 1990). Accordingly, the average Silhouette coefficient for 

cluster 𝐶𝑘 is computed as the following: 
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𝑠𝐶𝑘

𝑏𝑖 − 𝑎𝑖

𝑚𝑎𝑥 {𝑎𝑖, 𝑏𝑖}
 

Calinski-Harabasz (CH) score, also known as the Variance Ratio Criterion, evaluates the clusters 

formed based on the ratio of between-cluster sum of square errors (SSB) to within-cluster sum of squared 

errors (SSW). Given a dataset 𝐷 consisting of 𝑛 data points to be partitioned into 𝑘 number of mutually 

exclusive clusters, with 𝑐𝑞 denoting its cluster centroid, the CH index can be computed as the followings, 

as provided by Scikit-Learn Developers (2019): 

CH =
trace(

SSB
k − 1

)

trace(
SSW
n − k

)
 

Therefore, a higher CH score indicates a better separation of clusters and the 𝑘 value, for which the 

CH index is at its maximum should be considered the most appropriate value for the number of clusters. 

Given Equation 3, the SSB and SSW must be computed using the following formulas as provided by Scikit-

Learn Developers (2019): 

𝑆𝑆𝑊 = ∑ ∑ ‖𝑛 − 𝑐𝑞‖
2

𝑛∈𝐶𝑞

𝑘

𝑞=1

 

SSB = ∑ nq × ‖cq − c‖

k

q=1

 

Davies-Bouldin (DB score is a commonly used dispersion-based cluster validation measure, which 

evaluates clusters based on between-cluster distances and the dispersion of clusters. According to the DB 

score, the most appropriate number of clusters is the one that minimizes the average similarity, while having 

distant clusters with constant dispersion. This can be mathematically expressed in the following way, as 

introduced by Davies and Bouldin (1979) and provided by Scikit-Learn Developers (2019): 



120 

 

DB =
1

n
∑

max(Si + Sj)

dij

N

i=1

 

Here, 𝑆𝑖denotes the average distance between each data point xi in cluster 𝐶𝑖and the centroid of 𝐶𝑖; 

𝑆𝑗 denotes the distance between each point 𝑥𝑗 in cluster 𝐶𝑗 and the centroid of 𝐶𝑗; and 𝑑𝑖𝑗 denotes the 

distances between the centroids of 𝐶𝑖 and 𝐶𝑗. Given the equation above, the 𝑘 value, for which the DB score 

is at its maximum, should be considered an appropriate number of clusters to form. Consequently, all these 

techniques of determining the most appropriate number of clusters based on the data structure have been 

applied to the data, both with and without outliers. The results of these measures as well as the clustering 

analysis are presented in the following section. 

Python 3.6 has been used to run both the K-means algorithm and the scripts associated with the 

cluster validation metrics mentioned in this section. The values for the Elbow graphs have been obtained 

for each 𝑘, where 𝑘 = [1, 30], whereas the values for the cluster validation metrics have been obtained for 

each 𝑘, where 𝑘 = [2, 30]. 

Results 

This section presents the results of the hybrid LCA and RPO solution analysis. The tables presented 

for the hybrid life cycle analysis results constitute the foundation of the optimization analysis. Furthermore, 

two scenarios regarding the constraints on the number of BE HDTs have been considered in the RPO 

solution analysis, based on the document authored by Gore and Kurien (2017). These scenarios examine 

the composition of the HDT fleets in question, in that the number of BE HDTs must be no more than 50 

percent (Scenario 1) or no less than 50 percent (Scenario 2) of the composed HDT fleet. Additionally, the 

fuel cost savings, and the reductions in GHG emissions and LCAPECs achieved by the new fleet 
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composition have been analyzed and compared against the emissions produced, LCAPECs, and fuel costs 

incurred by a conventional fleet. 

Hybrid Life Cycle Analysis Results 

Table 11 presents the results of the hybrid LCA regarding the life cycle GHG and tailpipe emissions 

from the manufacturing and operation of the studied HDTs for each sector analyzed. The results confirm 

that fuel consumption plays a major role in the life cycle emissions from HDTs, and show that tailpipe 

emissions are the largest individual contributor to the life cycle GHG and air pollutant emissions of each 

HDT, except for CNG and BE HDTs. For these two HDT tpes, the fuel supply has been observed to be the 

largest contributor to these emissions instead. However, the fact that BE HDTs do not produce any tailpipe 

emissions means that these HDT types produce the least amount of emissions. According to the results, 

CNG and BE HDTs produce 51 percent and 53 percent more fuel supply-related emissions than 

conventional HDTs for each of the studied sectors.
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Table 11: Life-cycle greenhouse gas (GHG) (tone CO2 eq.) and tailpipe emissions from each heavy-duty truck (HDT) in each sector 

Sector 

GHG emissions from HDT types (tone) Tailpipe emissions from HDT types (tone) 

Diesel Biodiesel CNG Hybrid BE Diesel Biodiesel CNG Hybri

d 

BE 

Food 

Products 
5590 5575 6900 5265 4620 3390 3340 2470 3185 0 

Beverages 5375 5360 6640 5060 4445 3255 3205 2375 3060 0 

Household 

Durables 
4735 4720 5850 4460 3925 2855 2815 3080 2685 0 

Oil and Gas 5590 5575 6905 5265 4620 3390 3340 2470 3185 0 

Automotive 5170 5155 6380 4870 4280 3125 3080 2280 2939 0 
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According to the results, the manufacturing of a CNG HDT produces 37 percent more emissions 

than the manufacturing of a conventional HDT and 11 percent more emissions than the manufacturing of a 

BE HDT, due mainly to the manufacturing of additional parts installed on these trucks. As can also be seen 

in Table 11, the sectors with higher average payloads produce higher magnitude of emissions due primarily 

to the effect of payload on fuel consumption. 

Likewise, the results have shown that CNG and BE HDTs incur the greatest amount of LCCs 

(excluding LCAPECs) due to additional parts and infrastructural needs. The LCC of BE HDTs has been 

observed to be 12 percent higher than that of conventional HDTs, as shown in Table 12. The analysis reveals 

that fuel expenditures comprise the largest cost component for most of the studied HDTs, the sole exception 

being the BE HDT. Given current fuel prices, biodiesel HDTs incur the highest fuel costs, followed by 

those of CNG HDTs. Consequently, for each of the sectors studied, the life cycle fuel cost (LCFC) of a 

biodiesel HDT is over 15 percent more than that of a conventional HDT and almost 60 percent higher than 

that of a BE HDT. Conversely, the LCFC of a BE HDT is 50 percent less than that of a conventional HDT.
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Table 12: Life-cycle costs and life-cycle health costs from each HDT in each sector 

Sectors 
Diesel Biodiesel CNG Hybrid BE 

LCC LCAPEC LCC LCAPEC LCC LCAPEC LCC LCAPEC LCC LCAPEC 

Food 

products 
$1.1M $694K $1.24M $695K $1.25M $936K $1.1M $651K $1.26M $210K 

Beverages $1M $682K $1.21M $683K $1.22M $927K $1M $640K $1.25M $202K 

Household 

durables 
$991K $645K $1.1M $683K $1.13M $889K $1M $608K $1.2M $180K 

Oil and gas $1.1M $694K $1.24M $695K $1.25M $936K $1.1M $651K $1.26M $210K 

Automotive $1M $670K $1.1M $671K $1.1M $918K $1M $630K $1.2M $195K 
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Regarding LCAPECs results, the costs incurred by the health impacts of tailpipe emissions are the 

major cost component for each HDT in each studied sector. Similarly, the average payloads carried by each 

of the sectors are positively correlated with the magnitude of LCAPECs from the HDTs considered in this 

study. Hence, sectors with higher average payloads caused higher tailpipe emissions, resulting in higher 

LCAPECs. 

CNG HDTs incur the highest LCAPECs, owing mainly to their high carbon-monoxide (CO) 

tailpipe emissions. The LCAPECs of diesel, biodiesel, and hybrid HDTs differ only slightly from each 

other, with conventional HDTs incurring the highest LCAPECs. On the other hand, the only LCAPEC 

source for BE HDTs is the air pollutant emissions emitted during electricity generation, making them the 

least LCAPECs incurring HDT option. Being 70 percent less costly than conventional HDTs in terms of 

LCAPECs, BE HDTs have been observed to be the cleanest truck type for a truck fleet for each studied 

sector. 

Robust Pareto Optimal Solution Analysis Results 

The sector-specific weight ranges, on which the EPs are based, are presented in Table 13. As shown in 

Figure 33, the HDT fleets for each studied sector are almost always composed only of diesel, hybrid electric, 

and BE HDTs; conversely, given the constraints and the hybrid LCA data, no optimal fleet composition 

was found that includes biodiesel and/or CNG HDTs. 

Table 13: Sector-specific weighting factors 

Sector Economic Environmental Social 

Lower Upper Lower Upper Lower Upper 

Food Products 0.388 0.588 0.192 0.392 0.22 0.42 

Beverages 0.486 0.686 0.164 0.364 0.15 0.35 

Household Durables 0.472 0.672 0.138 0.322 0.206 0.406 

Oil and Gas 0.388 0.588 0.164 0.364 0.248 0.448 
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Sector Economic Environmental Social 

Lower Upper Lower Upper Lower Upper 

Automotive 0.318 0.518 0.234 0.434 0.248 0.448 

 

Figure 33 presents the results of the first scenario analysis. Accordingly, it has been observed that 

BE HDTs are dominant in the majority of the sectors being considered, even when the allocation of BE 

HDTs was not dictated by the constraint2 shown in Table C.30. The fleet compositions of all sectors have 

been observed to change depending on the constraint related to the number of BE HDTs to be considered 

in the fleet. For the Food Products, Automotive, and Oil and Gas sectors in Scenario 1 (where the number 

of BE HDTs must make up no more than 50 percent of the fleet), the truck distribution in the fleet has been 

observed to be 8 diesel, 7 hybrid, and 15 BE HDTs. However, in Scenario 2 (where no less than 50 percent 

of the fleet must consist of BE HDTs), the truck distribution has been observed to change to 8 diesel and 

22 BE HDTs for these same three sectors. The underlying reason for such distributions is the relatively 

higher level of significance of environmental and social concerns for those three sectors. Another reason in 

this regard is that there is no significant difference between the LCCs of BE HDTs and those of other HDT 

types, while the LCAPEC of BE HDTs is considerably lower than those of other HDT types. Therefore, the 

HDT fleet in those sectors include BE HDTs regardless of any constraints on the number of BE HDTs. 
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Figure 33: Fleet compositions for each sector under each scenario 

On the other hand, as for the Beverages and Household Durables sectors, neither of the HDT fleets 

includes any BE HDTs; instead, in Scenario 1, both fleets consist of 8 diesel HDTs and 22 hybrid electric 

HDTs, mainly because, unlike in the other studied sectors, the level of significance of economic concerns 

is relatively higher for the Beverages and Household Durables sectors. In Scenario 2, the truck distribution 

for both the Beverages sector and the Household Durables sector has been observed to be 8 diesel, 7 hybrid 

electric, and 15 BE HDTs. Here, the underlying reason for this distribution is the constraint specified in 

Scenario 2, under which the HDT fleet must consist of no less than 15 BE HDTs. 

The load-specific fuel economy (LSFE) has been found to be the greatest determinant in the 

variations in the magnitude of GHG emissions released by the HDT fleets evaluated in this study. Also, as 

shown in Figure 34, the HDT fleet of the Household Durables sector has been observed to produce the least 

amount of GHG emissions under both of the scenarios considered.  

0

5

10

15

20

25

30

F
o

o
d
 P

ro
d

u
ct

s

B
ev

er
ag

es

H
o

u
se

h
o
ld

 D
u

ra
b
le

s

O
il

 a
n

d
 G

as

A
u

to
m

o
ti

v
e

F
o

o
d
 P

ro
d

u
ct

s

B
ev

er
ag

es

H
o

u
se

h
o
ld

 D
u

ra
b
le

s

O
il

 a
n

d
 G

as

A
u

to
m

o
ti

v
e

BE<50% BE>50%

N
u

m
b

er
 o

f 
h

ea
v

y
-d

u
ty

 

tr
u

ck
s

BE

Hybrid

CNG

Biodiesel

Diesel



128 

 

 

Figure 34: Total amounts of greenhouse gas emissions from each sector’s HDT fleet under each scenario 

Furthermore, the results have shown that the fleets of the Food Products and Oil and Gas sectors 

emit approximately the same amount of GHGs, as indicated by their fleets having the same LSFE. Under 

Scenario 1, the GHG emissions exceed 150K tons CO2-eq. for both sectors, whereas the Automotive sector 

has been found to have GHG emissions of slightly less than 140K tons CO2-eq, despite having the same 

fleet. According to the results of Scenario 1, the GHG emissions from the fleets of the Food Products and 

Oil and Gas sectors decrease by 8 percent relative to those of an all-diesel HDT fleet, whereas the 

corresponding GHG emission reduction from the Automotive sector’s fleet has been observed to be slightly 

over 7.5 percent compared to this same conventional fleet.  

Under Scenario 2, it has been estimated that the magnitudes of the GHG emissions from the fleets 

of these same sectors are further reduced by 3 percent compared to the corresponding Scenario 1 results, 

which decrease to 146K for the Food Products and Oil and Gas sectors and 135K for the Automotive sector. 

Likewise, under Scenario 2, these fleets achieved a 10 percent reduction in GHG emissions compared to a 

conventional fleet under Scenario 2.  
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The amount of GHG emissions produced in Scenario 1 by the fleets of the Beverages and 

Household Durables sectors have been observed to be 154K and 136K tons CO2-eq., respectively. The 

Beverages sector’s fleet emits the largest amount of GHG emissions, owing mainly to the exclusion of BE 

HDTs from its HDT fleet due to its prioritization of socio-economic factors in terms of its sector-specific 

environmental and social weighting factors. The results also show that the fleets of the Beverages and 

Household Durables sectors composed under the Scenario 1 only achieve 2 percent and slightly over 1.5 

percent GHG emission reductions, respectively, compared to the GHG emissions of a conventional HDT 

fleet. Under Scenario 2, the HDT fleets of the Beverages and Household Durables sectors emit 145K and 

127K tons CO2-eq., respectively, resulting in a 6 percent reduction in GHG emissions compared to Scenario 

1 and, on average, a GHG emission reduction of 7.5 percent compared to the GHG emissions of a 

conventional fleet. 

Figure 35 presents the fuel costs (LCFCs) (Figure 35a) and total LCCs (Figure 35b) incurred by 

each sector’s fleet throughout its life cycle under each of the two scenarios being considered. Accordingly, 

despite their relatively lower average payloads, and the higher level of significance of economic concerns 

with respect to these sectors in terms of weighting factors, the fleets of the Beverages and Household 

Durables sectors have been observed to incur the highest fuel expenditures. It has been also observed that 

the LCFCs of the fleets of these two sectors are 23 percent higher under Scenario 1 than under Scenario 2. 

Under Scenario 1, the LCFCs of the fleets of the Beverages and Household Durables sectors exceed $20 

million and $17 million, respectively, resulting in LCFC reductions of over 4 percent relative to the 

corresponding LCFC of a conventional fleet, whereas these same LCFCs under Scenario 2 are 

approximately $15 million for the Beverages sector and approximately $13 million for the Household 

Durables sector, each decreasing by over 26 percent compared to the LCFC of a conventional fleet.  

This looks contradictory at first glance, but the total LCCs incurred by each sector fleet disprove 

this contradiction because, as shown in Figure 35a, the fleets of the Beverages and Household Durables 
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sectors are the two fleets with the lowest total LCCs. These results show that the fleets of the Food Products 

and Oil and Gas sectors both incur LCFCs of approximately $16 million under Scenario 1 and 

approximately $14 million under Scenario 2, indicating a LCFC reduction of almost 15 percent from 

Scenario 1 to Scenario 2. The LCFCs of the Automotive sector fleet, on the other hand, decrease from $15 

million under Scenario 1 to $13 million under Scenario 2. Overall, compared to a conventional fleet, the 

LCFC reductions achieved by the HDT fleets of these three sectors amount to 26 percent under Scenario 1 

and 37 percent under Scenario 2, due primarily to the inclusion of BE HDTs in the composed fleets in 

Scenario 2. 

 

 

Figure 35: (b) Individual life-cycle fuel costs of fleets under each scenario and (a) Total life-cycle costs of 

each sector 
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It has been observed that the LCCs of newly composed fleets exceed the LCCs of a conventional 

fleet in each sector under each of the two scenarios considered. Under Scenario 1, the LCCs of the fleets of 

the Food Products and Oil and Gas sectors have been each found to reach approximately $35 million, 

whereas the Automotive sector’s fleet incurs a LCC of roughly $34 million; on the other hand, under 

Scenario 2, the LCCs of the fleets of Food Products and Oil and Gas sectors each increase by 3 percent, 

whereas the LCC of the Automotive sector’s HDT fleet increases by 3.5 percent. This means that the LCCs 

of a newly composed HDT fleet in each of these sectors (respectively) are 6 percent, 6 percent, and 8 percent 

higher than that of a conventional fleet under Scenario 1, and 9 percent, 9 percent, and 11.5 percent higher 

than that of a conventional fleet under Scenario 2. Likewise, the fleets of the Beverages and Household 

Durables sectors incur LCCs of $32 million and almost $30 million, respectively, under Scenario 1, whereas 

the LCCs of these same fleets under Scenario 2 increase to $35 million for the Beverages sector and $33 

million for the Household Durables sector. According to these results, the increases in the LCCs of the 

fleets in these sectors are negligible compared to the LCC of a conventional fleet. However, the HDT fleets 

in the Beverages and Household Durables sectors under Scenario 2 have been estimated to incur 7 percent 

and 10 percent higher LCCs, respectively, relative to those of a conventional fleet. 

The LCAPECs observed in this analysis are shown in Figure 36 for the HDT fleets of each of the 

studied sectors under both of the scenarios being considered. The fleets in the Beverages and Household 

Durables sectors have incurred the highest LCAPECs, given the relative lack of BE HDTs (the only HDT 

type among those considered in this study that has zero tailpipe emissions) in their fleets under each 

scenario. Under Scenario 1, the LCAPECs of the fleets in these sectors exceed $19 million for the Beverages 

sector and $18 million for the Household Durables sector, although these LCAPECs decrease in Scenario 

2 to $12.9 million for the Beverages sector and $12.1 million for the Household Durables sector, resulting 

in 33 percent and 34 percent reductions in their LCAPECs, respectively, in Scenario 2 compared to their 

corresponding LCAPECs in Scenario 1. 
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The HDT fleets of the Food Products and Oil and Gas sectors incur LCAPECs of slightly over $13 

million under Scenario 1, and slightly over $10 million under Scenario 2, achieving a LCAPEC reduction 

of 23 percent from Scenario 1 to Scenario 2. This LCAPEC reduction is even higher when compared to the 

LCAPEC of a conventional fleet, with reductions of 36 percent under Scenario 1 and over 50 percent under 

Scenario 2. As can be seen in Figure 36, the HDT fleet of the Automotive sector has the lowest LCAPEC 

in both scenarios, mainly because of this sector’s relatively lower payload and the higher number of BE 

HDTs in its fleet compared to other sectors, such as the Household Durables sector, which has the lowest 

payload. As a result, the LCAPEC of the Automotive sector fleet amounts to $15 million under Scenario 1 

and $9 million under Scenario 2, indicating a decrease of 24 percent from Scenario 1 to Scenario 2. 

Compared to a conventional fleet in the Automotive sector, the newly composed fleet in this sector achieves 

the same reduction levels as those previously cited for the Beverages and Household Durables sectors under 

each scenario. 

 

Figure 36: Life-cycle health impact costs of each sector fleet under each scenario 
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Parameter Selection and Cluster Validation 

Figure 37 shows the Elbow graph for the dataset with outliers analyzed. As mentioned previously, 

the Elbow graph has been created based on cluster inertia, defined as the within-cluster sum of squared 

errors. Accordingly, the cluster inertia for 𝑘 = 1 has been observed to be 22,794.58 – the highest value, as 

expected-, and then it went down drastically to 15,273.71 for 𝑘 = 2; 7,131 for 𝑘 = 3; and 5,954.76 for 𝑘 =

4. After this point, the change in cluster inertia has been observed to be relatively slightly, going down to 

5,281.14 for 𝑘 = 5, which marked the “elbow” of the Elbow graph. This indicated that the appropriate 

number of 𝑘 is 4 for the Z-score scaled dataset, with outliers, and 3 for the Z-score scaled dataset, without 

outliers. 

 

Figure 37 The Elbow curves for the data with outliers  

The estimation of the cluster validation metrics (i.e. Silhouette coefficient, CH score, and DB score) 

for each cluster 𝑘 has followed the creation of the Elbow graph. Accordingly, for the data with outliers, the 

silhouette coefficient has been observed to be 0.403, reaching the maximum value for 𝑘 = 4. However, 
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according to the subjective interpretation of the silhouette coefficients defined by Kaufman and Rousseeuw 

(1990), the maximum value found for the Silhouette coefficient lies in the range of 0.26 and 0.50, which 

may indicate that the clustering structure may be weak or artificial, suggesting the implementation of other 

metrics to ensure the result. To that end, CH and DB scores have been estimated to ensure the naturality of 

the 4 clusters formed. Accordingly, the maximum value for the CH score has been estimated to be 3710.72 

for 𝑘 = 5, and the value closest to its maximum has been estimated to be 3628.056 for 𝑘 = 4. On the other 

hand, the DB score has been observed to reach at its minimum value, which has been estimated to be 0.863, 

at 𝑘 = 4. Figure 38 presents the plots for all these cluster validation metrics for the data, with outliers 

included. 

 

Figure 38 Silhouette coefficient, Calinski-Harabasz score, and Davies-Bouldin score for the Z-score scaled 

data (with outliers) 

The same procedure as the one explained above has been applied to the Z-score scaled data, without 

outliers. The value of inertia for 𝑘 = 1 has been estimated to be 13793.758, and decreased to 7694.125 for 
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𝑘 = 2, and 4395.775 for 𝑘 = 3. After this point, the relative change in inertia has not shown a substantial 

change, going further down to 3719.354 for 𝑘 = 4. According to the estimation of inertias for each cluster, 

Figure 39 has been plotted, clearly revealing the “elbow” to appear at 𝑘 = 3, indicating the most appropriate 

value for 𝑘 to be 3 for this dataset. 

For this dataset, without outliers, all three cluster validation metrics have been estimated to reach 

their maximum at 𝑘 = 3, as shown in Figure 39, and the separation was clearer. At the point where 𝑘 = 3, 

the maximum Silhouette score has been estimated to be 0.516 – 0.04 unit higher than the second highest 

value, while the maximum CH score and the minimum DB score have been estimated to be 6409.252 and 

0.803, respectively. Unlike the metrics for the data, with outliers, it has been observed looking at the cluster 

validation metrics estimated for the data, without outliers, that a better cluster structure and separation were 

achieved (Figure 40). This is also supported by the subjective interpretation of the estimated Silhouette 

coefficient, as defined by Kaufman and Rousseeuw (1990). Accordingly, the Silhouette coefficient 

estimated for the data set, without outliers, lies in the range of 0.51 and 0.70, which indicates the existence 

of a reasonable cluster structure. 
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Figure 39 The Elbow curves for the data without outliers 
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Figure 40 Silhouette coefficient, Calinski-Harabasz score, and Davies-Bouldin score for the Z-score scaled 

data (without outliers) 

Clusters of Freight Routes 

Following the analysis regarding the parameter selection and cluster validation analysis, the K-

means algorithm has been run again for 𝑘 = 4 for the dataset, with outliers included, and for 𝑘 = 3 for the 

dataset, with outliers removed. As shown in Figure 41, the final cluster centers, indicated by the mean value 

of all the data points belonging to each cluster formed, show the same pattern. It has been observed based 

on these results, that the treatment of the potential outliers in the data resulted in the removal of a cluster 

that provided information regarding the routes ready for deployment of biodiesel HDTs. Therefore, to 

include in the analysis the information obtained from this cluster, the further analysis has been conducted 

based on the dataset, with outliers. 
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Figure 41 Final cluster centers for (a) dataset with outliers and (b) dataset without outliers 

Based on the cluster analysis results, it has been observed that Cluster 1 consists of 1108 routes, 

while Cluster 2 and Cluster 3 consist of 3134 and 2002 routes, respectively. On the other hand, Cluster 4 

consisted of only 170 routes. Cluster 1 has been observed to have the lowest electric HDT recharging 

stations and the highest number of CNG refueling stations relative to the other clusters. Cluster 2 has been 

observed to consist of the lowest number of biodiesel refueling stations and CNG refueling stations relative 

to all other clusters, while the number of electric HDT recharging has been higher relative to Cluster 1, 

though substantially lower than Cluster 3 and Cluster 4. The number of electric HDT recharging stations 

dominated Cluster 3, with moderate number of CNG refueling stations existing, as well. Cluster 4, on the 

other hand, has been observed to contain the highest number of biodiesel stations relative to the other 

clusters, with moderate numbers of electric HDT recharging and CNG HDT refueling stations existing, as 

well. The formed clusters are presented in Figure 42. 
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Figure 42 Clusters formed in the Z-score scaled data with outliers 

To ease the interpretation of the results, it has been assumed that battery electric HDT consumes 

240 kWh of energy per 100 miles and has a battery capacity of 700 kWh (Phadke et al. 2019), that a 

biodiesel HDT can fuel up to 120 gallons of biodiesel and has a fuel economy of 6 mile per gallon (Burnham 

2017), and that a CNG HDT has a range of 400 miles, on average (Tong et al. 2019). Accordingly, the 

ranges of a battery electric HDT and a biodiesel HDT have been assumed to be approximately 300 miles 

and 720 miles, respectively. Based on these assumptions, it has been observed that the routes included in 

Cluster 1, Cluster 3, and Cluster 4 can support either one of the alternative fuel-powered HDT type 

considered in the analysis. Therefore, Cluster 2 should be paid an extra attention as it contains the routes, 

on which lack of infrastructure has been identified. 

 The distances over the routes originating from Miami, FL vary between 1,000 and 3,050 miles, 

with the latter being the distance between Miami FL and San Jose CA. As shown in Figure 43, Cluster 1 

included mostly the routes destined to the west and mid-west of the country, while the routes destined to 

the east and south of the country are mostly included in Cluster 3. On the other hand, the only route included 

in Cluster 4 has been observed to be Miami FL and Portland OR, indicating that the availability of biodiesel 
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HDT refueling stations is higher relative to other routes. Accordingly, despite their sustainability 

performance similar to conventional HDTs, CNG HDTs can be an option for the freight originating from 

Miami FL and reaching at FAF destinations in California. As opposed to the FAF destination in California, 

the most viable alternative fuel option has been observed to be electricity for the routes originating from 

Miami FL and reaching at the FAF destinations in Texas, as all of these destinations appeared to be clustered 

in Cluster 3. It has been observed that the number of the longest routes (i.e.2,000+ miles) are mostly 

clustered in Cluster 1, where the number of CNG stations is higher relative to other clusters. The analysis 

has shown no route, originating from Miami FL, that has less than 10 charging stations. The longest route 

among these ones are Miami FL – Tucson AZ, with 2,200 miles, and Miami FL and Las Vegas NV, with 

2,600 miles.  

 

Figure 43 Clusters of the routes originating from Miami FL 
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CHAPTER FIVE: CONCLUSIONS, DISCUSSIONS, LIMITATIONS,  

AND FUTURE REMARKS 

In Chapter Two, a holistic analysis and comparison of the life cycle emissions and costs, and air 

pollution externality costs of different types of alternative-fuel heavy-duty trucks have been presented. The 

HDT types analyzed in this research were biodiesel (B20) HDT, compressed natural gas (CNG) HDT, 

hybrid electric HDT, and battery electric BE HDT, with special attention paid to BE HDTs as an emerging 

technology. To that end, the life cycle performance of BE HDTs has been found to be heavily dependent 

on electricity generation-related activities. The changing circumstances of HDTs, i.e. projections for future 

diesel and electricity prices, the effect of payload on the fuel economy of a truck, and of tailpipe emissions 

deterioration factors, throughout their lifetimes have been also reflected. 

This research has been the first comprehensive study that, in addition to the LCA of alternative 

fuel-powered HDTs, accounted for air pollution externalities in the form of APE costs incurred from the 

life cycle of a HDT. The inclusion of APE costs for different HDTs in LCA is an important consideration 

and a valuable contribution to the scientific body of knowledge in this particular domain. Another important 

consideration has been the inclusion of a specific analysis and comparison of BE HDTs based on the 

regional differences in electricity grid mixes and in the cost of electricity. Major differences have been 

observed between different NERC regions with respect to the emissions and costs from electricity 

generation. 

EIO-LCA model used has been based on matrixes of transactions between sectors of a single 

country. The use of single-region I-O model leads to the fact that the impacts that are embedded in the 

domestic trade are better reflected in the results. However, a future study can extend the scope of this study 

including the environmental impacts of U.S. HDTs embedded in international trade using multi-regional 

input-output model as a complementary method in order to see the role of economic globalization, and 



142 

 

minimize related uncertainties (Hertwich and Peters 2009; Kucukvar and Samadi 2015; Kucukvar et al. 

2015, 2016a; Zhao et al. 2016b). An important limitation in Chapter Two is that the analysis did not present 

any estimation on potential impacts of the studied HDTs on midpoint or endpoint sustainability indicators. 

In fact, the research conducted in Chapter Three accounted for such indicators; however, it only accounted 

for automated diesel HDT and automated electric HDT, rather than including other HDT technologies such 

as hybrid electric, biodiesel, and CNG HDTs. Therefore, a future study could also broaden the analysis by 

including those HDT types left out and estimating the potential impacts of those HDTs on sustainability 

indicators (i.e. environmental, economic, and social indicators) such as global warming potential, water 

footprint, income and tax generation, and contribution to gross domestic product, as well. 

As observed during the literature review, the data regarding BE HDTs is currently more limited 

than that of other alternative-fuel HDTs. For example, specific data on recharging infrastructure for BE 

HDTs could not be found and was therefore assumed to be the same as that for BE bus charging 

infrastructure. The lack of data on APE costs per gram of emissions from electricity generation meant that 

the authors could not compare the APE costs of BE trucks on a regional basis. Under the light of this 

research, it can be therefore stated that there is a dire need for improving the data collection regarding the 

alternative fuel-powered HDTs. 

In Chapter Three, automation and electrification of HDTs, as an emerging technology, has been 

put under the spotlight to investigate its potential life cycle sustainability implications. Automating HDTs 

is certainly a multi-faceted, multi-dimensional task, necessitating the involvement of multiple stakeholders 

in developing, commercializing, and regulating the technology. Hence, focusing solely on one aspect or 

one dimension of the sustainability implications of the technology may mislead stakeholders involved in 

policymaking. To that end, the application of an input-output-based LCSA has been found useful for 

quantifying and encompassing several aspects and three dimensions of sustainability of automated and 

electrified HDTs. However, it should still be noted that the analysis carried out based on a different IO 
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database, e.g. EXIOBASE, WIOD, or GTAP, would have likely shown some discrepancies in the results, 

as revealed in the studies such as Eisenmenger et al. (2016) and Moran and Wood (2014). There may be 

several reasons such as different approaches taken to construct an IO data, different standards used by 

countries to publish relevant data, and variation in sectoral resolution, that explain such a discrepancy 

between results obtained from using different databases (Wood et al. 2014). 

Almost all of the considered aspects of the environmental dimension have been improved through 

automation and electrification, with the exception of mineral resource scarcity, which is a crucial point 

given the growing demand for minerals around the world (Ali et al. 2017). The improvement in mineral 

intensity brought by an automated diesel HDT is small, and an automated and electrified HDT increases 

mineral intensity significantly due to battery manufacturing. Activities associated with battery is an 

important driver of life cycle sustainability (LCS) impacts for BE HDTs, in general. In fact, the sensitivity 

analysis results have shown that the battery capacity has indeed a remarkable impact on LCSA results. 

Therefore, battery technology is a significant factor to be considered in assessing the sustainability impacts 

of HDTs. Given the method used in the analysis, the impact of battery technology and battery chemistry, 

e.g. Li-ion, NiMH, Lithium polymer, etc., would have been more visible, if an EIO-based LCSA method 

hybridized with process-based LCA for battery’s impacts were used to analyze the LCS impacts of the 

studied vehicles. 

The same holds for energy intensity, which decreases through automation, but increases due to the 

prevailing practice of power generation when an automated HDT is electrified. This means that, while 

automation is likely to lead to a decreased global warming potential of HDTs, it may result in an increase 

in the global warming potential of power generation, which may outweigh the benefits gained through 

automation in HDTs. The validation of the results can be better realized as more studies that examine the 

life cycle impacts of connected automated trucks are carried out. However, to the author’s best knowledge, 

there is no study that has investigated the LCSI of automated trucks. Therefore, it is difficult to make an 
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“apple-to-apple” comparison of this research’s results with those of another study. Nonetheless, some 

examples can be given. A automated diesel HDT and an automated electric HDT have been found to reduce 

GHG emissions by 10 percent and more than 60 percent, respectively, relative to a conventional HDT. 

Nahlik et al. (2015) reported similar results. They found that switching to hybrid or LNG truck technologies 

could reduce GHG emissions by 5 percent and 9 percent, respectively. The difference between the numbers 

may well be attributed to automation given the expected increase in driving efficiency. The LCC results 

correspond to an average decrease of $7,900 and $36,000 per truck per year in the LCCs of an automated 

diesel HDT and an automated electric HDT relative to a conventional HDT, respectively. These results 

align with the findings of Bishop et al. (2015), who reported only the fuel savings from two-diesel truck 

platooning to be $14,000 per truck per year. 

As brought up by several scholars such as Clements and Kockelman (2017), Heard et al. (2018), 

and Crayton and Meier (2017), the findings of this research also show a decline in the rate of employment 

due to automation of diesel HDTs. Automated electric HDT has been observed to increase employment; 

however, this increase is not due to the automation but is attributed to charging infrastructure-related 

activities. The author agrees with Heard et al. (2018), stating that the negative effects of the decrease in 

employment (e.g. physical and mental health (Crayton and Meier 2017)) must be mitigated while seeking 

improvements in the overall sustainability performance. When the human health impact (HHI) due to 

tailpipe emissions are taken into consideration, the HHI has been observed to decline by 45 percent owing 

to electrification and automation, despite the health impacts of current electricity generation. In case the 

HHI due to tailpipe emissions are not taken into account, automation and electrification of HDTs have been 

observed to increase the risk on public health due to the indirect health impact caused by power generation. 

An analysis of an alternative power generation scenario, e.g. power generation from renewable energy 

resources, was out of the scope of this research. However, as also concluded in Chapter Two, the power 

generation phase is an important driver of HDT electrification. Therefore, if the power used to propel a BE 
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HDT is generated from a sustainable energy resource or an environmentally friendly grid mix, the impact 

profile of this truck type is highly likely to be positively different. 

On the economic front, the decreases in the values of gross operating surplus (GOS) and gross 

domestic product (GDP) may look alarming at the first glance. However, the gains through the decreased 

import of materials – especially oil – as well as decreased cost of air pollution outweigh the loss resulting 

from decreased GOS and GDP combined. Fuel economy is a significant determinant for many aspects of 

sustainable HDTs. Therefore, interpreting the impacts of HDT automation on imports by focusing only on 

fuel may lead to overlooking the impacts of other system components. To this end, when fuel is removed 

from the picture, the impact of truck manufacturing as well as maintenance and repair of trucks can be seen 

better. In this regard, the application of sustainable design practices, e.g. switching to light-weighting 

materials, as suggested by Center for Automotive Research (2015), may further decrease the cost burden 

of imports going into automated HDTs. Such an application may have implications beyond imports by 

improving the mineral intensity of HDTs, which negligibly change through automation but increases due 

to automation and electrification of HDTs. Overall, given fuel economy’s significant role in the LCS 

impacts of HDTs, the behavior of consumers and the market, and possible rebound effects that are likely to 

come along with automation should all be taken under scrutiny. 

Several limitations exist due to the infancy of the technology and the lack of data associated with 

it on some important considerations. An important limitation arises from the year (i.e. 2015) of the IO tables 

used. The connected automated vehicle technology is a rapidly emerging technology that bears a certain 

level of uncertainties especially with regard to vehicle operation, including maintenance and fuel 

consumption, which are important considerations when making a vehicle purchase decision. In case of a 

large deployment of automated HDTs, the cost and technology structure of the industries included in IO 

tables may well change, leading to different results. Therefore, the estimated LCS impacts are limited only 

to the industry structure of the year 2015. 
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As stated by Greenblatt and Shaheen (2015), several other environmental impacts are worth 

investigating such as land use change (e.g. how the introduction of automated HDTs will affect roadway 

capacity) and impacts on biodiversity (e.g. urban ecosystems). The results were limited to the reported 

LCSA indicators due to a lack of data in this respect. In addition, as applied in Onat, Kucukvar, & Tatari 

(2016), multivariate uncertainty analysis can be applied to estimate the likelihood of the behavioral limits 

of sustainability potentials of each truck type. 

Since the automated HDTs are likely to require a new set of skills for their maintenance and repair, 

a new industry (or industries), with its own price and technology structure, may be born, which could not 

be included in the analysis as existing IO databases, including the Eora database, do not currently contain 

such industry (or industries). As stated by Miller and Blair (2009), impacts associated with the introduction 

of a new industry into a regional or a national economy is possible within the IO modeling framework. In 

order to be able to assess such impacts, estimation of the input coefficients for the new sector, i.e. inputs 

from all other sectors per dollar output of the new sector, is required. However, the lack of data in this 

regard did not make it possible for this research to report the impact of the introduction of a potential new 

sector. Similarly, since the Eora database does not have data on the PM2.5 pollutions, the sustainability 

impacts of this pollutant could not be reported. However, the author acknowledges that PM2.5 is an air 

pollutant that has significant public health implications. Another aspect that was left out of the scope is the 

end-of-life of the studied automated HDTs. Given more data availability, the author will attempt to include 

this phase, as well, and report an HDT’s cradle-to-grave life cycle sustainability impacts in a future study. 

The impact of connected automated vehicle technology on employment should be further 

scrutinized. The IO modeling framework alone does not provide a means to identify the driving factors of 

impacts on employment. Structural decomposition analysis (SDA) could be applied to identify these factors 

of what has caused the reported decrease in employment and analyze how employment related to 

transporting goods (i.e. truck drivers) is affected by the introduction of the technology. Such an analysis 



147 

 

will be applied in a follow-up study, which will employ a dynamic multi-regional IO modeling. However, 

its impact on the overall employment was put under the spotlight, which is still an important insight 

provided by this research. Furthermore, while the CAV technology’s impact on the employment of truck 

drivers is an important point of discussion regarding the adoption of autonomous trucks among researchers, 

American Trucking Association stated that the impact of driver-assist automation technologies installed in 

HDTs may even have a positive impact on the driver shortage experienced by the industry (Costello 2017). 

Similarly, a recent report published by Viscelli (2018) concluded that, while the jobs that might be lost to 

automated HDTs could reach as much 300,000, there would be enough jobs to replace the displaced drivers, 

thanks to the growth of e-commerce and significance of local delivery. The results of the research conducted 

in Chapter Two reported with respect to employment align with these viewpoints to a certain extent.  

Another important aspect that has been left out but will be scrutinized in a future study is the 

examination of likely LCS profiles of automated HDTs under potential renewable energy transition 

scenarios. To increase the benefits of this research or similar ones focusing on emerging technologies in 

transportation, the implications of the social impacts from public policy perspective should be further 

investigated by experts that can evaluate these implications from such a perspective (e.g. a political 

scientist). However, the author humbly believes that any aspect that improves the public’s standards of 

living, starting from human health, should be prioritized.  

Furthermore, the author has encountered some difficulties in assessing some of these impacts more 

thoroughly given methodological and data limitations. It is also quite difficult to make a scientific inference 

regarding the changes in the sustainability impacts overall in the future, given the pace of technological 

developments as well as the level of uncertainty in the on-going transformation in transportation. 

Nevertheless, the author expects a rapid change towards automation and connectivity in the near future, 

particularly in surface transportation. The budgetary actions realized both by governments and by 

automotive industry giants are a good indication of this tendency. Remarkable improvements may be 
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expected in the sustainability performance of HDTs; however, there are always questions that remain 

problematic such as how the demand for transportation will evolve, which will have an important influence 

on the likely future. 

Another aspect that may be regarded as a limitation is that other fuel technologies such as 

compressed natural gas (CNG)-powered HDTs have not been included in the analysis, as mentioned 

previously. There are two main reasons that explain this exclusion. Firstly, the research conducted in 

Chapter Two on the life cycle analysis of alternative fuel-powered Class 8 heavy-duty vehicles showed that 

CNG HDTs remarkably underperform BE HDTs, and only slightly outperforms diesel HDTs. Secondly, 

transforming the transportation system is planned to be fully autonomous and connected. Such a smart 

concept of vehicles of the future is deemed to be generally inherently including the use of electricity, which 

may be due to a realization that fossil fuels cannot be a smart choice anymore. 

Coupled with pressures currently arising from various social-ecological circumstances, today’s 

competitive market environment necessitates the consideration of multiple objectives while designing an 

HDT fleet for any sector. Chapter Four addressed this necessity by conducting a hybrid LCA-based robust 

Pareto optimal analysis. This research presented an adaptive and applicable model that can be modified 

based on each sector’s fleet requirements in order to find an optimal fleet mix for each application. 

Overall, it can be concluded that hybrid electric and BE HDTs are both viable options for a 

transition to a robust Pareto optimal, more sustainable HDT fleet for each of the studied sectors. This holds 

despite the relatively higher initial cost (including per-truck infrastructure cost) of BE HDTs. BE HDTs 

were included in the RPO solution in a vast majority of the considered sector/scenario combinations, even 

when the constraint on GHGs emissions was soft. The viability of BE HDTs holds from the perspective of 

infrastructure readiness, as well. Despite its several limitations, the cluster analysis showed that the 

alternative fuel infrastructure is, in fact, relatively readier for BE HDT deployment than other alternative 
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fuel types. The fleets composed based on the robust Pareto optimal solution lead to important reductions, 

particularly in both LCFCs and LCAPECs compared to those of a conventional fleet. Since LCAPEs are 

related to air pollutants, to which communities are exposed to, and regarded as a parameter representative 

of the social aspect in the analysis, the relative reduction in these costs indicate improved social well-being 

through cleaner air. However, LCGHG emissions reductions were relatively unsatisfactory, not exceeding 

10 percent compared to the LCGHG emissions of a conventional HDT fleet, due to the high GHG emissions 

associated with the current form of electricity generation as well as the current fuel economy of HDTs. This 

means that additional efforts are necessary to be made in order to contribute to mitigating negative 

consequences of HDTs’ global warming potential, which has been estimated to pose serious concerns for 

societal well-being. One of these efforts may be to reform energy policies that currently favor the use of 

fossil resources in supplying energy as well as internalize sustainability strategies as a part of policymaking 

and governance at all levels, including corporate, regional, national, and international. When the newly 

composed fleet was required to achieve a 30 percent reduction in GHG emissions (i.e. the primary aim of 

Executive Order 13693 issued by the White House (2015)), the GAMS software could not find any feasible 

solution under neither of the two scenarios analyzed. Furthermore, LCC reductions do not seem possible 

under the current techno-economic circumstances and given the constraints on the number of alternative-

fuel HDts. 

Biodiesel- or CNG-fueled HDTs were not included in any fleet mix. The reason is likely to be that 

these two types of HDTs do not bring any significant life cycle environmental, social (i.e. LCAPE costs), 

or economic improvements relative to conventional HDTs. One measure that can explain this result is that 

the emission intensity of natural gas production and use is greater than that of diesel production and use. 

Additionally, CNG-fueled HDTs require the construction of a natural gas refueling station, which increases 

the life cycle costs of this truck type higher than that of diesel HDT. Similarly, even though the cost of 

biodiesel HDT operation is less than that of diesel HDT, the former incurs relatively higher LCCs. Based 
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on the cluster analysis conducted in Chapter Four, the inclusion of biodiesel is not recommended under the 

current circumstances, as several freight routes have been found lacking the appropriate infrastructure. On 

the other hand, even though CNG HDTs do not significantly change the “picture” in terms of the 

sustainability performance of freight transportation, it can be considered a deployment option alternative to 

diesel HDTs from the perspective of energy security. 

Technological advancements in HDTs and their improvements in the sustainability performance of 

these vehicles are sensitive to socio-political circumstances, meaning that different policy-making 

approaches are likely to result in different optimal solutions when composing a heavy-duty truck fleet in 

any economic sector. The environmental burdens arising from the national electricity generation can be 

decreased through cleaner means of power generation. The efforts made by governmental institutions to 

improve the fuel economy of HDTs should be continued (and/or strengthened, wherever possible) if U.S. 

HDT freight fleets are to meet the given objectives by 2025. Otherwise, the GHG emissions reduction 

objectives set forth in the Executive Order 13693 cannot be achieved. 

The sector-specific goal prioritizations tempered the effect of the load-specificity on the fleet 

composition as a factor. This explains why, for instance, the Beverages sector fleet produced more GHG 

emissions than the Food Products sector fleet despite having a lower average payload. Even though this 

research was conducted for 5 sectors only, it considered ordinary operation conditions with relatively soft 

constraints on LCCs, LCAPECs, and LCGHG emissions as shown in Table C.30. Therefore, the 

applications of this study are not restricted to these sectors but can include the optimization of HDT fleets 

in all U.S. sectors. 

It is possible to mention several limitations that hindered to an extent drawing more effective 

conclusions in Chapter Four. One of these limitations is the lack of constraints with respect to HDTs. The 

author believes that this is due mainly to the fact that, even though policy-makers and scientists have 
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recently put significant amounts of effort into improving the sustainability of heavy-duty vehicles, such 

vehicles have not yet been studied or regulated as much as light-duty vehicles have been. Therefore, to add 

more value to this analysis, a future study should attempt to apply more constraints, if necessary, to the 

RPO solution model (e.g. air pollutant constraints) that are plausible and representative of real-world 

operational conditions. 

Given the existence of several plausible data sources, assumptions are an intrinsic part of the studies 

that incorporate sustainability implications of economic activities (e.g. production and consumption). The 

values assumed for model variables, e.g. fuel prices, annual mileage, battery capacity, etc., may well change 

from region to region and fleet to fleet, and companies may have different sensitivities to any one of these 

variables. Additionally, fleets may be subjected to different constraints depending on regulatory and techno-

economic circumstances, under which they operate. Therefore, the results of the study conducted in Chapter 

Four represent only the cases that have been showcased. 

Another important limitation is that the cluster analysis conducted following the optimization 

problem considered a single route for each origin-destination pair. Although the routes were checked for 

consistency with respect to the National Freight Highway Network map, the real-world traffic conditions 

may well affect the routing of freight trucks, causing them to divert from their usual routes. Furthermore, 

the cluster analysis did not consider the freight traffic flow over these routes, which would give an idea 

regarding the demand for an alternative fuel option and help make use of alternative fuel station capacities. 

The assumption made for the cluster analysis, that alternative fuel stations would be readily available for 

immediate refill, may not hold at all times and this would obviously imply a reduction in infrastructure 

availability. 

The research conducted in Chapter Four is also limited by the lack of consideration of different 

means of electricity generation (e.g. renewable electricity). This is especially important given the fact that 
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variations in electricity generation sources can and will have a significant impact on the overall efficiency 

and sustainability of BE HDTs (Mai et al. 2018). The inclusion of different electricity sources (especially 

renewable electricity) is likely to change the HDT fleet distribution. Furthermore, a future study could carry 

out a sector-specific survey investigating more robust weighting factors for study objectives. This is 

particularly important because of two primary reasons: 

1) The literature lacks data with regard to sector-specific weighting factors, and 

2) The weighting factors, which determine the sector-specific prioritization of objectives, are as 

significant as LSFE of HDTs in determining a robust Pareto optimal solution to composing a 

sustainable HDT fleet. 
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Table A.14: Emission factors obtained from GREET  

LCI component GHGs (t) CO (t) NOX (t) PM10 (t) PM2.5 (t) SOX (t) VOC (t) 

Battery 

Manufacturing and 

Replacement (400 

kWh) 

13.0008 0.00852 0.0223 0.00993 0.00597 0.10733 0.00411 

Battery 

Manufacturing and 

Replacement (270 

kWh) 

8.79426 0.00576 0.0151 0.00671 0.00403 0.07248 0.00277 

Battery 

Manufacturing and 

Replacement (25 

kWh) 

0.866242 0.00055 0.0014 0.00063 0.00038 0.00680 0.00026 

Battery 

Manufacturing and 

Replacement (5 

kWh) 

0.219172 0.00013 0.0003 0.00013 0.000082 0.00144 0.00005 

Biodiesel (B100) 

production 

0.002018 5.58E-6 4.81E-6 3.70E-7 3.10E-7 0 2.97E-6 

 

Table A.15: Tailpipe emission factors obtained from AFLEET 

LCI component CO (g/mile) NOX (g/mile) PM10 (g/mile) PM2.5 (g/mile) VOC (g/mile) 

Diesel – B20 – 

Hybrid 

1.574 4.2967 0.0284 0.0276 0.4015 

CNG 24.2396 2.57892 0.0284 0.0276 1.304875 

 

Table A.16: CO emission factors (ton per $1 million) for Diesel and CNG fuels 

Phase NAICS Sector Diesel CNG 

Vehicle 

Manufacturing 

and Refueling 

Infrastructure 

Heavy Duty Vehicle Manufacturing 3.27 3.27 

Trailer Manufacturing 4.5 4.5 

Metal Tank, Heavy Gauge Manufacturing (additional part for CNG 

trucks) 

n.a. 4.22 

Metal Tank, Heavy Gauge Manufacturing (material necessary for 

CNG infrastructure) 

n.a. 4.22 

Other nonresidential construction equipment n.a. 4.21 

All miscellaneous electrical equipment manufacturing (for CNG 

infrastructure) 

n.a. 1.72 

Fuel Production 

(based on fuel 

consumption) 

Natural (industrial) Gas Manufacturing n.a. 3.37 

Petroleum Refineries 5.22 n.a. 
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Phase NAICS Sector Diesel CNG 

Operation/Use 
Automotive Mechanical and Electrical Repair and Maintenance  1.38 1.38 

Tailpipe (g/mile) 1.574 24.2396 
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Table B.17: Life cycle sustainability impact multipliers related to greenhouse gas emissions (tons) per $M output of each 

industry 

 
Eora Sectors CO2 CH4 NOx HFC-134a HFC-143a 

HFC-

125 

Manufacturing 

Phase, 

including 

manufacturing 

of automation 

related parts, 

battery, trailer, 

and fuel 

production 

Truck trailer manufacturing 301.43 1.52 0.67 0.72 0.75 0.74 

HDT manufacturing 353.06 1.07 0.28 0.30 0.31 0.31 

Motor vehicle parts manufacturing 358.74 1.33 0.19 0.18 0.19 0.19 

All other miscellaneous electrical equipment and component 

manufacturing 
163.09 0.84 0.44 0.49 0.50 0.50 

Search, detection, and navigation instruments manufacturing 178.88 0.58 0.17 0.18 0.19 0.19 

Telecommunications 121.18 0.62 0.06 0.06 0.06 0.06 

Broadcast and wireless communications equipment 

manufacturing 
184.88 0.54 0.17 0.18 0.19 0.19 

Mechanical power transmission equipment manufacturing 268.39 1.78 0.88 0.97 1.01 0.99 

Hardware manufacturing 234.54 1.09 0.34 0.36 0.38 0.37 

Relay and industrial control manufacturing 153.48 0.69 0.37 0.40 0.42 0.42 

Storage battery manufacturing 324.15 1.47 0.63 0.68 0.71 0.69 

Electric power generation, transmission, and distribution 3,734.25 11.51 0.13 0.06 0.06 0.06 

Petroleum refineries 942.12 9.49 0.22 0.05 0.05 0.053 

Operation 

Phase, 

including 

M&R, 

infrastructure 

Electronic and precision equipment repair and maintenance 73.43 0.42 0.15 0.16 0.17 0.165 

Automotive repair and maintenance  130.68 0.58 0.07 0.06 0.06 0.064 

Storage battery manufacturing 324.15 1.47 0.63 0.68 0.71 0.69 

Retail trade 159.07 0.75 0.07 0.04 0.05 0.048 
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Eora Sectors CO2 CH4 NOx HFC-134a HFC-143a 

HFC-

125 

construction, 

and battery 

replacement 

 

Commercial and industrial machinery and equipment repair 

and maintenance 
83.48 0.57 0.14 0.15 0.15 0.15 
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Table B.18: Life cycle sustainability impact multipliers related to criteria pollutant emissions and Total Water Footprint (TWF) 

  Impact Multipliers* 

 Eora Sectors CO PM10 VOC SO2 TWF 

Manufacturing 

Phase, 

including 

manufacturing 

of automation 

related parts, 

battery, trailer, 

and fuel 

production 

Truck trailer manufacturing 3.85 0.73 1.30 1.26 104.69 

HDT manufacturing 2.79 0.33 0.87 1.02 104.80 

Motor vehicle parts manufacturing 3.56 0.24 0.89 0.92 103.37 

All other miscellaneous electrical equipment and component manufacturing 2.82 0.42 0.85 0.92 60.15 

Search, detection, and navigation instruments manufacturing 1.63 0.48 0.66 0.78 55.82 

Telecommunications 0.79 0.09 0.28 0.27 11.55 

Broadcast and wireless communications equipment manufacturing 1.38 0.20 0.42 0.55 55.07 

Mechanical power transmission equipment manufacturing 3.22 0.95 1.27 1.47 79.46 

Hardware manufacturing 2.59 0.38 0.77 0.83 54.10 

Relay and industrial control manufacturing 1.63 0.40 0.60 0.67 52.55 

Storage battery manufacturing 3.07 0.69 1.15 1.35 82.54 

Electric power generation, transmission, and distribution 3.16 0.60 3.98 10.88 26.88 

Petroleum refineries 1.13 0.16 4.87 1.25 57.95 

Operation 

Phase, 

including 

M&R, 

infrastructure 

construction, 

and battery 

replacement 

 

Electronic and precision equipment repair and maintenance 0.68 0.17 0.29 0.27 6.92 

Automotive repair and maintenance  1.14 0.09 0.34 0.28 13.41 

Storage battery manufacturing 3.07 0.69 1.15 1.34 82.54 

Retail trade 1.50 0.08 0.35 0.33 61.55 

Commercial and industrial machinery and equipment repair and maintenance 0.72 0.162 0.32 0.28 9.23 

* The unit for emissions is ton/$M, whereas it is m3/$M for TWF. 
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Table B.19: Life cycle sustainability impact multipliers related to criteria pollutant emissions and Total Water Footprint (TWF) 

  Impact Multipliers* 

 Eora Sectors CO PM10 VOC SO2 TWF 

Manufacturing 

Phase, 

including 

manufacturing 

of automation 

related parts, 

battery, trailer, 

and fuel 

production 

Truck trailer manufacturing 3.85 0.73 1.30 1.26 104.69 

HDT manufacturing 2.79 0.33 0.87 1.02 104.80 

Motor vehicle parts manufacturing 3.56 0.24 0.89 0.92 103.37 

All other miscellaneous electrical equipment and component 

manufacturing 
2.82 0.42 0.85 0.92 60.15 

Search, detection, and navigation instruments manufacturing 1.63 0.48 0.66 0.78 55.82 

Telecommunications 0.79 0.09 0.28 0.27 11.55 

Broadcast and wireless communications equipment manufacturing 1.38 0.20 0.42 0.55 55.07 

Mechanical power transmission equipment manufacturing 3.22 0.95 1.27 1.47 79.46 

Hardware manufacturing 2.59 0.38 0.77 0.83 54.10 

Relay and industrial control manufacturing 1.63 0.40 0.60 0.67 52.55 

Storage battery manufacturing 3.07 0.69 1.15 1.35 82.54 

Electric power generation, transmission, and distribution 3.16 0.60 3.98 10.88 26.88 

Petroleum refineries 1.13 0.16 4.87 1.25 57.95 

Operation 

Phase, 

including 

M&R, 

infrastructure 

construction, 

and battery 

replacement 

 

 

 

Electronic and precision equipment repair and maintenance 0.68 0.17 0.29 0.27 6.92 

Automotive repair and maintenance  1.14 0.09 0.34 0.28 13.41 

Storage battery manufacturing 3.07 0.69 1.15 1.34 82.54 

Retail trade 1.50 0.08 0.35 0.33 61.55 

Commercial and industrial machinery and equipment repair and 

maintenance 
0.72 0.162 0.32 0.28 9.23 
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Table B.20: Life cycle sustainability impact multipliers related to energy consumption per $M output of each sector (TJ) 

 

 
Eora Sectors 

Impact Multipliers* 

 Coal Natural Gas Oil 

Manufacturing 

Phase, including 

manufacturing of 

automation related 

parts, battery, 

trailer, and fuel 

production 

Truck trailer manufacturing 965.47 1,209.61 2,519.59 

Heavy duty truck manufacturing 1,331.64 1,243.04 2,003.46 

Motor vehicle parts manufacturing 1,347.11 1,740.69 2,885.60 

Motor and generator manufacturing 964.05 1,022.04 1,882.23 

All other miscellaneous electrical equipment and component 

manufacturing 
507.90 626.43 991.85 

Search, detection, and navigation instruments manufacturing 638.97 774.03 945.57 

Telecommunications 514.80 629.53 855.88 

Broadcast and wireless communications equipment 447.18 681.95 936.87 

Mechanical power transmission equipment manufacturing 1,156.53 985.05 1,751.36 

Hardware manufacturing 877.17 900.77 1,681.57 

Relay and industrial control manufacturing 481.36 681.87 1,010.38 

Storage battery manufacturing 1,420.85 1,189.41 1,735.71 

Electric power generation, transmission, and distribution 29,492.78 10,681.96 6,506.98 

Petroleum refineries 1,514.61 6,385.66 4,606.11 

Operation Phase, 

including M&R, 

infrastructure 

construction, and 

battery 

replacement 

Electronic and precision equipment repair and maintenance 304.90 348.17 414.30 

Automotive repair and maintenance, except car washes 551.40 548.05 751.74 

Storage battery manufacturing 1,420.85 1,189.41 1,735.71 

Retail trade 681.81 605.37 781.50 
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Table B.21: Life cycle sustainability impact multipliers related to mineral use per $M output of each sector (tons) 

 

   

 
Eora Sectors 

Impact Multipliers 

 Copper Lead Zinc Min. Qu.* Iron 

Manufacturing 

Phase, including 

manufacturing of 

automation related 

parts, battery, 

trailer, and fuel 

production 

Truck trailer manufacturing 9,583.39 383.04 381.76 26.92 21,231.08 

Heavy duty truck manufacturing 10,476.69 418.74 417.35 24.86 9541.06 

Motor vehicle parts manufacturing 23,108.98 923.64 920.56 36.04 27,305.35 

Motor and generator manufacturing 40,919.33 1,635.49 1,630.05 21.06 23,804.15 

All other miscellaneous electrical equipment and 

component manufacturing 
21,152.53 845.44 842.63 12.87 3427.93 

Search, detection, and navigation instruments 

manufacturing 
10,296.97 411.56 410.19 13.27 2,248.73 

Telecommunications 4,339.19 173.43 172.86 23.02 665.60 

Broadcast and wireless communications equipment 11,386.00 455.08 453.57 14.92 2,255.96 

Mechanical power transmission equipment 

manufacturing 
8,770.31 350.54 349.37 23.16 25,196.53 

Hardware manufacturing 12,394.80 495.40 493.76 18.65 22,480.64 

Relay and industrial control manufacturing 32,841.07 1,312.62 1,308.25 10.59 4,988.92 

Storage battery manufacturing 131,662.00 5,262.37 5,244.86 35.07 4,792.81 

Electric power generation, transmission, and 

distribution 
2,434.54 97.31 96.98 79.07 913.87 

Petroleum refineries 4,251.19 169.91 169.35 28.11 948.06 

Operation Phase, 

including M&R, 

infrastructure 

construction, and 

battery replacement 

Electronic and precision equipment repair and 

maintenance 
12,276.59 490.68 489.05 5.82 558.84 

Automotive repair and maintenance, except car 

washes 
2,153.67 86.08 85.79 8.17 707.10 

Storage battery manufacturing 131,662.00 5,262.37 5,244.86 35.07 4,792.81 

Retail trade 2,914.39 116.48 116.10 10.60 754.94 
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Table B.22: Life cycle sustainability impact multipliers related to social indicators per $M output of each sector 

 

 

Eora Sectors 

Impact Multipliers 

 
Employmenta Fatal Injuriesa Non-Fatal 

Injuriesb Incomec 

Manufacturing 

Phase, including 

manufacturing of 

automation related 

parts, battery, 

trailer, and fuel 

production 

Truck trailer manufacturing 6,808.26 0.82 0.60 $502,293.78 

Heavy duty truck manufacturing 3,680.95 0.12 0.29 $405,066.07 

Motor vehicle parts manufacturing 3,795.74 0.18 0.36 $290,581.24 

Motor and generator manufacturing 3,888.80 0.09 0.27 $447,575.87 

All other miscellaneous electrical equipment 

and component manufacturing 
4,739.97 0.07 0.37 $492,736.38 

Search, detection, and navigation instruments 

manufacturing 
5,082.56 

0.07 0.31 $556,919.22 

Telecommunications 2,675.77 0.10 0.44 $211,352.11 

Broadcast and wireless communications 

equipment 
3,990.95 

0.08 0.34 $458,386.65 

Mechanical power transmission equipment 

manufacturing 
4,266.62 

0.10 0.33 $574,124.49 

Hardware manufacturing 3,493.68 0.09 0.29 $460,321.04 

Relay and industrial control manufacturing 4,733.90 0.06 0.25 $455,389.68 

Storage battery manufacturing 3,858.33 0.11 0.23 $443,892.89 

Electric power generation, transmission, and 

distribution 
2,743.11 

0.12 0.18 $298,521.54 

Petroleum refineries 1,763.35 0.08 0.10 $126,817.27 

Operation Phase, 

including M&R, 

infrastructure 

construction, and 

battery replacement 

Electronic and precision equipment repair 

and maintenance 
4,232.35 

0.15 0.21 $476,658.30 

Automotive repair and maintenance, except 

car washes 
6,544.75 

0.76 0.52 $370,479.75 

Storage battery manufacturing 3,858.33 0.11 0.23 $443,892.89 

Retail trade 3,672.04 0.30 0.93 $181,413.95 
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Table B.23: Life cycle sustainability impact multipliers related to economic indicators per $M output of each sector (‘000 

USD) 

 

 
Eora Sectors 

Impact Multipliers 

 Import GOS GDP Tax 

Manufacturing Phase, 

including manufacturing 

of automation related 

parts, battery, trailer, and 

fuel production 

Truck trailer manufacturing 217.79 210.88 739.12 25.95 

Heavy duty truck manufacturing 264.93 249.46 680.97 26.45 

Motor vehicle parts manufacturing 202.97 391.16 718.46 36.72 

Motor and generator manufacturing 167.88 339.29 806.60 19.73 

All other miscellaneous electrical equipment and component 

manufacturing 
184.96 277.08 790.24 20.42 

Search, detection, and navigation instruments manufacturing 135.42 233.42 812.49 22.15 

Telecommunications 56.68 407.44 791.28 172.49 

Broadcast and wireless communications equipment 227.84 231.99 717.04 26.66 

Mechanical power transmission equipment manufacturing 115.34 259.46 855.97 22.39 

Hardware manufacturing 125.37 366.37 846.40 19.70466 

Relay and industrial control manufacturing 158.28 347.75 821.88 18.74201 

Storage battery manufacturing 264.63 244.73 712.00 23.38033 

Electric power generation, transmission, and distribution 61.22 470.40 877.60 108.6796 

Petroleum refineries 568.87 244.92 399.47 27.73358 

Operation Phase, 

including M&R, 

infrastructure 

construction, and battery 

replacement 

Electronic and precision equipment repair and maintenance 96.57 396.42 896.00 22.93053 

Automotive repair and maintenance, except car washes 144.93 385.70 811.62 55.43569 

Storage battery manufacturing 264.63 244.73 712.00 23.38033 

Retail trade 40.55 452.50 815.58 181.6691 
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Table B.24: Emissions characterization factors (CFs) for Global Warming Potential (GWP), Particulate Matter Formation Potential 

(PMFP), and Photochemical Oxidant Formation Potential (POFP) 

 

 

 

 

 

 

 

 

 Emissions GWP CFs (kg CO2 eq. per 

kg of emission) 

PMFP CFs (kg PM10-eq. per kg 

emission) 

POFP CFs (kg NMVOC-

eq. per kg emission) 

CO2 1 -  

CH4 34 - 0.01 

CO - - 0.046 

NOx 298 0.22 - 

PM10 - 1 - 

SO2 - 0.2 0.081 

VOC   1 

HFC-134a 1549 - - 

HFC-125 3691 - - 

HFC-143a 5508 - - 
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Table B.25: Characterization factors for Mineral Resource Scarcity (kg Cu-eq. per kg of 

resource) and Fossil Resource Scarcity (kg oil-eq per kg of resource) 

Mineral and Energy 

Sources 

Mineral Resource Scarcity 

CFs  

Fossil Resource Scarcity 

Copper 1 - 

Lead (t) 0.490962827 - 

Zinc (Zn) (t) 0.153471592 - 

Gold (t) 3734.1494 - 

Mining and quarrying (t) 0.0104398 - 

Iron (Fe) (t) 0.061936591 - 

Coal - 0.32 

Natural Gas - 0.84 

Oil - 1 
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Table B.26: Characterization factors for endpoint impacts of each of the midpoint impacts 

 Human Health Impact 

(DALY/kg midpoint 

impact) 

Mineral Resource 

Depletion ($/kg Cu-eq.) 

Fossil Resource  Depletion 

($/kg) or ($/Nm3) 

Global Warming Potential 9.28E-07 - - 

Particulate Matter Formation Potential 2.60E-04 - - 

Photochemical Oxidant Formation 

Potential 
3.90E-08 - - 

Mineral Resource Scarcity - 2.31E-01 - 

Oil - - 0.46 

Coal - - 0.03 

Natural Gas - - 0.30 
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APPENDIX C  

DETAILS OF THE MULTIOBJECTIVE OPTIMIZATION 

MODEL
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Sets: 

The set i consists of the studied heavy-duty truck types, and is indexed as shown in Table C.27. 

 Table C.27: Index for the set of heavy-duty truck types 

Fuel alternative for heavy-duty trucks (HDTs) Index 

Diesel i = 1 

Biodiesel i = 2 

CNG i = 3 

Hybrid i = 4 

Battery-electric i = 5 

 

The set j consists of the studied sectors, and is defined as shown in Table C.28. 

Table C.28: Index for the set of sectors 

Sectors Index 

Food Products j = 1 

Beverages j = 2 

Household Durables j = 3 

Oil and Gas j = 4 

Automotive j = 5 

 

The set r consists of the objectives, and is defined as shown in Table C.29. 

Table C.29: Index for the set of objectives 

Objectives Index 

Environmental (LCGHG) r = 1 

Social (LCAPE) r = 2 

Economic (LCC) r = 3 

 

Table C.30: Description and indexing of decision variables, parameters, and constraints 

 Index Description 

Decision variables hij Integer variable denoting the number of heavy duty truck type i in 

sector j 

Z Weighted objective function variable 

Parameters ei CO2 emissions from manufacturing, maintenance and repair, 

infrastructure, and battery manufacturing (and replacement) for 

truck type i 

f1
ij CO2 emissions from life-cycle fuel supply for truck type i in sector 

j 
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t1
ij CO2 emissions from operation of truck type i in sector j throughout 

its life-cycle 

yi APE cost of manufacturing, maintenance and repair, infrastructure, 

and battery manufacturing (and replacement) for truck type i 

f2
ij APE cost of life-cycle fuel supply for truck type i in sector j 

t2
ij APE cost of tailpipe emissions from truck type i in sector j 

mi LCC of manufacturing of truck type i 

ocij LCC of operation cost of truck type i in sector j 

f3
ij LCC of life-cycle fuel supply for truck type i in sector j 

Constraints Constr1 The constraint on the fleet size 

Constr2 The constraint on the first set of EPs 

Constr3 The constraint on the second set of EPs 

Constr4 The constraint on the third set of EPs 

Constr5 The constraint on the number of BE HDTs in a fleet (BE 

HDTs<50% or BE HDTs>50%) 

Constr6 The constraint on the number of alternative-fuel HDTs (the number 

of alternative-fuel HDTs is at least 50% of the fleet) 

Constr7 The constraint on the number of alternative-fuel HDTs (the number 

of alternative-fuel HDTs is at most 75% of the fleet) 

Constr8 The constraint observing the magnitude of GHG emissions 

Constr9 The constraint observing the magnitude of life-cycle fuel cost 

expenditures 

Constr10 The constraint observing the magnitude of LCAPECs 

Constr11 The constraint observing the magnitude of LCCs 
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