31 research outputs found

    BonFIRE: A multi-cloud test facility for internet of services experimentation

    Get PDF
    BonFIRE offers a Future Internet, multi-site, cloud testbed, targeted at the Internet of Services community, that supports large scale testing of applications, services and systems over multiple, geographically distributed, heterogeneous cloud testbeds. The aim of BonFIRE is to provide an infrastructure that gives experimenters the ability to control and monitor the execution of their experiments to a degree that is not found in traditional cloud facilities. The BonFIRE architecture has been designed to support key functionalities such as: resource management; monitoring of virtual and physical infrastructure metrics; elasticity; single document experiment descriptions; and scheduling. As for January 2012 BonFIRE release 2 is operational, supporting seven pilot experiments. Future releases will enhance the offering, including the interconnecting with networking facilities to provide access to routers, switches and bandwidth-on-demand systems. BonFIRE will be open for general use late 2012

    A comparison framework and review of service brokerage solutions for cloud architectures

    Get PDF
    Cloud service brokerage has been identified as a key concern for future cloud technology development and research. We compare service brokerage solutions. A range of specific concerns like architecture, programming and quality will be looked at. We apply a 2-pronged classification and comparison framework.We will identify challenges and wider research objectives based on an identification of cloud broker architecture concerns and technical requirements for service brokerage solutions. We will discuss complex cloud architecture concerns such as commoditisation and federation of integrated, vertical cloud stacks

    Handling uncertainty in cloud resource management using fuzzy Bayesian networks

    Full text link
    © 2015 IEEE. The success of cloud services depends critically on the effective management of virtualized resources. This paper aims to design and implement a decision support method to handle uncertainties in resource management from the cloud provider perspective that enables underlying complexity, automates resource provisioning and controls client-perceived quality of service. The paper includes a probabilistic decision making module that relies upon a fuzzy Bayesian network to determine the current situation status of a cloud infrastructure, including physical and virtual machines, and predicts the near future state, that will help the hypervisor to migrate or expand the VMs to reduce execution time and meet quality of service requirements. First, the framework of resource management is presented. Second, the decision making module is developed. Lastly, a series of experiments to investigate the performance of the proposed module is implemented. Experiments reveal the efficiency of the module prototype

    A template description framework for services as a utility for cloud brokerage

    Get PDF
    Integration and mediation are two core functions that a cloud service broker needs to perform. The description of services involved plays a central role in this endeavour to enable services to be considered as commoditised utilities. We propose a conceptual framework for a cloud service broker based on two parts: a reference architecture for cloud brokers and a service description template that describes the mediated and integrated cloud services. Structural aspects of that template will be identified, formalised in an ontology and mapped onto a set of sublanguages that can be aligned to the cloud development and deployment process

    A novel energy-efficient resource allocation algorithm based on immune clonal optimization for green cloud computing

    Full text link
    Cloud computing is a style of computing in which dynamically scalable and other virtualized resources are provided as a service over the Internet. The energy consumption and makespan associated with the resources allocated should be taken into account. This paper proposes an improved clonal selection algorithm based on time cost and energy consumption models in cloud computing environment. We have analyzed the performance of our approach using the CloudSim toolkit. The experimental results show that our approach has immense potential as it offers significant improvement in the aspects of response time and makespan, demonstrates high potential for the improvement in energy efficiency of the data center, and can effectively meet the service level agreement requested by the users.Comment: arXiv admin note: text overlap with arXiv:1006.0308 by other author

    Comparison on OpenStack and OpenNebula performance to improve multi-Cloud architecture on cosmological simulation use case

    Get PDF
    With the increasing numbers of Cloud Service Providers and the migration of the Grids to the Cloud paradigm, it is necessary to be able to leverage these new resources. Moreover, a large class of High Performance Computing (HPC) applications can run these resources without (or with minor) modifications. But using these resources come with the cost of being able to interact with these new resource providers. In this paper we introduce the design of a HPC middleware that is able to use resources coming from an environment that compose of multiple Clouds as well as classical \hpc resources. Using the \diet middleware, we are able to deploy a large-scale, distributed HPC platform that spans across a large pool of resources aggregated from different providers. Furthermore, we hide to the end users the difficulty and complexity of selecting and using these new resources even when new Cloud Service Providers are added to the pool. Finally, we validate the architecture concept through cosmological simulation RAMSES. Thus we give a comparison of 2 well-known Cloud Computing Software: OpenStack and OpenNebula.Avec l'augmentation du nombre de fournisseurs de service Cloud et la migration des applications depuis les grilles de calcul vers le Cloud, il est nécessaire de pouvoir tirer parti de ces nouvelles ressources. De plus, une large classe des applications de calcul haute performance peuvent s'exécuter sur ces ressources sans modifications (ou avec des modifications mineures). Mais utiliser ces ressources vient avec le coût d'être capable d'intéragir avec des nouveaux fournisseurs de ressources. Dans ce papier, nous introduisons la conception d'un nouveau intergiciel HPC qui permet d'utiliser les ressources qui proviennent d'un environement composé de plusieurs Clouds comme des ressources classiques. En utilisant l'intergiciel \diet, nous sommes capable de déployer une plateforme HPC distribuée et large échelle qui s'étend sur un large ensemble de ressources aggrégées entre plusieurs fournisseurs Cloud. De plus, nous cachons à l'utilisateur final la difficulté et la complexité de sélectionner et d'utiliser ces nouvelles ressources quand un nouveau fournisseur de service Cloud est ajouté dans l'ensemble. Finalement, nous validons notre concept d'architecture via une application de simulation cosmologique RAMSES. Et nous fournissons une comparaison entre 2 intergiciels de Cloud: OpenStack et OpenNebula

    Dynamic management of virtual infrastructures

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10723-014-9296-5Cloud infrastructures are becoming an appropriate solution to address the computational needs of scientific applications. However, the use of public or on-premises Infrastructure as a Service (IaaS) clouds requires users to have non-trivial system administration skills. Resource provisioning systems provide facilities to choose the most suitable Virtual Machine Images (VMI) and basic configuration of multiple instances and subnetworks. Other tasks such as the configuration of cluster services, computational frameworks or specific applications are not trivial on the cloud, and normally users have to manually select the VMI that best fits, including undesired additional services and software packages. This paper presents a set of components that ease the access and the usability of IaaS clouds by automating the VMI selection, deployment, configuration, software installation, monitoring and update of Virtual Appliances. It supports APIs from a large number of virtual platforms, making user applications cloud-agnostic. In addition it integrates a contextualization system to enable the installation and configuration of all the user required applications providing the user with a fully functional infrastructure. Therefore, golden VMIs and configuration recipes can be easily reused across different deployments. Moreover, the contextualization agent included in the framework supports horizontal (increase/decrease the number of resources) and vertical (increase/decrease resources within a running Virtual Machine) by properly reconfiguring the software installed, considering the configuration of the multiple resources running. This paves the way for automatic virtual infrastructure deployment, customization and elastic modification at runtime for IaaS clouds.The authors would like to thank to thank the financial support received from the Ministerio de Economia y Competitividad for the project CodeCloud (TIN2010-17804).Caballer Fernández, M.; Blanquer Espert, I.; Moltó, G.; Alfonso Laguna, CD. (2015). Dynamic management of virtual infrastructures. Journal of Grid Computing. 13(1):53-70. https://doi.org/10.1007/s10723-014-9296-5S5370131de Alfonso, C., Caballer, M., Alvarruiz, F., Molto, G., Hernández, V.: Infrastructure deployment over the cloud. In: 2011 IEEE 3rd International Conference on Cloud Computing Technology and Science, pp. 517–521. IEEE. (2011). doi: 10.1109/CloudCom.2011.77Alvarruiz, F., De Alfonso, C., Caballer, M., Hernández, V.: An energy manager for high performance computer clusters. In: 2012 IEEE 10th International Symposium on Parallel and Distributed Processing with Applications, pp. 231–238. (2012). doi: 10.1109/ISPA.2012.38Amazon Web Services: AWS CloudFormation. (2013). http://aws.amazon.com/es/cloudformation/Apache: Whirr (2013). http://whirr.apache.org/Blanquer, I., Brasche, G., Lezzi, D.: Requirements of scientific applications in cloud offerings. In: Proceedings of the 2012 6th Iberian Grid Infrastructure Conference, IBERGRID ’12, pp. 173–182 (2012)Bresnahan, J., Freeman, T., LaBissoniere, D., Keahey, K.: Managing appliance launches in infrastructure clouds. In: Proceedings of the 2011 TeraGrid Conference: Extreme Digital Discovery, TG ’11, pp. 12:1–12:7. ACM, New York (2011). doi: 10.1145/2016741.2016755Buyya, R., Ranjan, R., Calheiros, R.N.: InterCloud: utility-oriented federation of cloud computing environments for scaling of application services. Algoritm. Archit. Parallel Process. 6081, 20 (2010)Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Futur. Gener. Comput. Syst. 25(6), 599–616 (2009). doi: 10.1016/j.future.2008.12.001Caballer, M., De Alfonso, C., Alvarruiz, F., Moltó, G.: EC3: elastic cloud computing cluster. J. Comput. Syst. Sci. (2013). doi: 10.1016/j.jcss.2013.06.005Caballer, M., García, A., Moltó, G., de Alfonso, C.: Towards SLA-driven management of cloud infrastructures to elastically execute scientific applications. In: 6th Iberian Grid Infrastructure Conference (IberGrid), pp. 207–218 (2012)Carrión, J.V., Moltó, G., De Alfonso, C., Caballer, M., Hernández, V.: A generic catalog and repository service for virtual machine images. In: 2nd International ICST Conference on Cloud Computing CloudComp 2010 (2010)Cuomo, A., Modica, G., Distefano, S., Puliafito, A., Rak, M., Tomarchio, O., Venticinque, S., Villano, U.: An SLA-based broker for cloud infrastructures. J. Grid Comput 11(1), 1–25 (2012). doi: 10.1007/s10723-012-9241-4DeHaan, M.: Ansible. http://ansible.cc/ (2013)Distributed Management Task Force, Inc: Open Virtualization Format (OVF) (2010). http://dmtf.org/sites/default/files/standards/documents/DSP0243_1.1.0.pdfDistributed Management Task Force, Inc: Cloud Infrastructure Management Interface (CIMI) Model and REST Interface over HTTP Specification (2012). http://dmtf.org/sites/default/files/standards/documents/DSP0263_1.0.1.pdfEGI.eu: Seeking new horizons: EGI’s role for 2020. Tech. rep. (2012). https://documents.egi.eu/public/RetrieveFile?docid=1098&version=4&filename=EGI-1098-D230-final.pdfElmroth, E., Tordsson, J., Hernández, F.: Self-management challenges for multi-cloud architectures. Towards a service-based internet. Lect. Notes Comput. Sci. 6994, 38–49 (2011)HashiCorp: Vagrant (2013). http://www.vagrantup.com/Jacob, A.: Infrastructure in the cloud era. In: Proceedings of the 2009 International OReilly Conference Velocity (2009)Juve, G., Deelman, E.: Automating application deployment in infrastructure clouds. In: Proceedings of the 2011 IEEE 3rd International Conference on Cloud Computing Technology and Science, CLOUDCOM ’11, pp. 658–665. IEEE Computer Society, Washington DC (2011). doi: 10.1109/CloudCom.2011.102Keahey, K., Freeman, T.: Contextualization: providing one-click virtual clusters. In: 4th IEEE International Conference on eScience, pp. 301–308 (2008)Keahey, K., Freeman, T.: Architecting a large-scale elastic environment: recontextualization and adaptive cloud services for scientific computing (2012)Kecskemeti, G., Kertesz, A., Marosi, A., Kacsuk, P.: Interoperable resource management for establishing federated clouds. In: Achieving Federated and SelfManageable Cloud Infrastructures Theory and Practice, pp. 18–35 (2012). doi: 10.4018/978-1-4666-1631-8.ch002Kertesz, A., Kecskemeti, G., Oriol, M., Kotcauer, P., Acs, S., Rodríguez, M., Mercè, O., Marosi, A.C., Marco, J., Franch, X.: Enhancing federated cloud management with an integrated service monitoring approach. J. Grid Comput. 11(4), 699–720 (2013). doi: 10.1007/s10723-013-9269-0Loutas, N., Kamateri, E., Bosi, F., Tarabanis, K.: Cloud computing interoperability: the state of play. 2011 IEEE 3rd International Conference on Cloud Computing Technology and Science, pp. 752–757 (2011). doi: 10.1109/CloudCom.2011.116Marshall, P., Keahey, K., Freeman, T.: Elastic site: using clouds to elastically extend site resources. In: Proceedings of the 2010 IEEE/ACM 10th International Conference on Cluster, Cloud and Grid Computing, CCGRID ’10, pp. 43–52. IEEE Computer Society, Washington DC (2010). doi: 10.1109/CCGRID.2010.80Massie, M.L., Chun, B.N., Culler, D.E.: The ganglia distributed monitoring system: design, implementation, and experience. Parallel Comput. 30(5-6), 817–840 (2004)Mell, P., Grance, T.: The NIST definition of cloud computing. NIST Special Publication 800-145 (Final). Tech. rep. (2011). http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdfMoltó, G., Caballer, M., Romero, E., Alfonso, C.D.: Elastic memory management of virtualized infrastructures for applications with dynamic memory requirements. In: Proceedings of the International Conference on Computational Science ICCS 2013, pp. 159–168. Elsevier (2013). doi: 10.1016/j.procs.2013.05.179Morfeo: Claudia (2013). http://claudia.morfeo-project.org/wiki/index.php/Main_PageOASIS: Topology and Orchestration Specification for Cloud Applications Version 1.0 (2013). http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.htmlOCCI working group within the Open Grid Forum: Open Cloud Computing Interface Infrastructure (2011). http://ogf.org/documents/GFD.184.pdfOpscode: Chef (2013). http://www.opscode.com/chef/Pawluk, P., Simmons, B., Smit, M., Litoiu, M., Mankovski, S.: Introducing STRATOS: a cloud broker service. In: 2012 IEEE 5th International Conference on Cloud Computing, pp. 891–898 (2012). doi: 10.1109/CLOUD.2012.24Puppet Labs: IT Automation Software for System Administrators (2013). http://www.puppetlabs.com/Redl, C., Breskovic, I., Brandic, I., Dustdar, S.: Automatic SLA matching and provider selection in grid and cloud computing markets. In: Proceedings of the 2012 ACM/IEEE 13th International Conference on Grid Computing, GRID ’12, pp. 85–94. IEEE Computer Society, Washington (2012). doi: 10.1109/Grid.2012.18Rodero-Merino, L., Vaquero, L.M., Gil, V., Galán, F., Fontán, J., Montero, R.S., Llorente, I.M.: From infrastructure delivery to service management in clouds. Futur. Gener. Comput. Syst. 26(8), 1226–1240 (2010). doi: 10.1016/j.future.2010.02.013StratusLab: Claudia Platform (2013). http://stratuslab.eu/doku.php/claudiaSundareswaran, S., Squicciarini, A., Lin, D.: A brokerage-based approach for cloud service selection. In: Proceedings of the 2012 IEEE 5th International Conference on Cloud Computing, CLOUD ’12, pp. 558–565 (2012). doi: 10.1109/CLOUD.2012.119Telefónica Investigación y Desarrollo S.A. Unipersonal.: Telefónicas TCloud API Specification. (2010). http://www.tid.es/files/doc/apis/TCloud_API_Spec_v0.9.pdfYangui, S., Marshall, I.J., Laisne, J.P., Tata, S.: CompatibleOne: The open source cloud broker. J. Grid Comput. (2013). doi: 10.1007/s10723-013-9285-

    Using Clouds to Scale Grid Resources: An Economic Model

    Get PDF
    Infrastructure as a Service clouds are a flexible and fast way to obtain (virtual) resources as demand varies. Grids, on the other hand, are middleware platforms able to combine resources from different administrative domains for task execution. Clouds can be used by grids as providers of devices such as virtual machines, so they only use the resources they need. But this requires grids to be able to decide when to allocate and release those resources. Here we introduce and analyze by simulations an economic mechanism (a) to set resource prices and (b) resolve when to scale resources depending on the users’ demand. This system has a strong emphasis on fairness, so no user hinders the execution of other users’ tasks by getting too many resources. Our simulator is based on the well-known GridSim software for grid simulation, which we expand to simulate infrastructure clouds. The results show how the proposed system can successfully adapt the amount of allocated resources to the demand, while at the same time ensuring that resources are fairly shared among users

    A Descriptive Literature Review and Classification of Cloud Computing Research

    Get PDF
    We present a descriptive literature review and classification scheme for cloud computing research. This includes 205 refereed journal articles published since the inception of cloud computing research. The articles are classified based on a scheme that consists of four main categories: technological issues, business issues, domains and applications, and conceptualising cloud computing. The results show that although current research is still skewed towards technological issues, new research themes regarding social and organisational implications are emerging. This review provides a reference source and classification scheme for IS researchers interested in cloud computing, and to indicate under-researched areas as well as future directions
    corecore