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Abstract: With the increasing numbers of Cloud Service Providers and the migration of the
Grids to the Cloud paradigm, it is necessary to be able to leverage these new resources. Moreover, a
large class of High Performance Computing (hpc) applications can run these resources without (or
with minor) modifications. But using these resources come with the cost of being able to interact
with these new resource providers. In this paper we introduce the design of a hpc middleware
that is able to use resources coming from an environment that compose of multiple Clouds as
well as classical hpc resources. Using the Diet middleware, we are able to deploy a large-scale,
distributed hpc platform that spans across a large pool of resources aggregated from different
providers. Furthermore, we hide to the end users the difficulty and complexity of selecting and
using these new resources even when new Cloud Service Providers are added to the pool. Finally,
we validate the architecture concept through cosmological simulation ramses. Thus we give a
comparison of 2 well-known Cloud Computing Software: OpenStack and OpenNebula.

Key-words: Cloud, IaaS, OpenNebula, Multi-Clouds, DIET, OpenStack, RAMSES, cosmology

∗ ENS de Lyon, France, Email: FirstName.LastName@ens-lyon.fr
† ENSI de Bourges, France, Email: FirstName.LastName@ensi-bourges.fr
‡ INRIA, France, Email: FirstName.LastName@inria.fr

FirstName.LastName@ens-lyon.fr
FirstName.LastName@ensi-bourges.fr
FirstName.LastName@inria.fr


Comparison on OpenStack and OpenNebula performance

to improve multi-Cloud architecture on cosmological

simulation use case

Résumé : Avec l’augmentation du nombre de fournisseurs de service Cloud et la migration
des applications depuis les grilles de calcul vers le Cloud, il est ncessaire de pouvoir tirer parti de
ces nouvelles ressources. De plus, une large classe des applications de calcul haute performance
peuvent s’excuter sur ces ressources sans modifications (ou avec des modifications mineures).
Mais utiliser ces ressources vient avec le cot d’tre capable d’intragir avec des nouveaux four-
nisseurs de ressources. Dans ce papier, nous introduisons la conception d’un nouveau intergiciel
hpc qui permet d’utiliser les ressources qui proviennent d’un environement compos de plusieurs
Clouds comme des ressources classiques. En utilisant l’intergiciel Diet, nous sommes capable
de dployer une plateforme hpc distribue et large chelle qui s’tend sur un large ensemble de
ressources aggrges entre plusieurs fournisseurs Cloud. De plus, nous cachons l’utilisateur final
la difficult et la complexit de slectionner et d’utiliser ces nouvelles ressources quand un nouveau
fournisseur de service Cloud est ajout dans l’ensemble. Finalement, nous validons notre concept
d’architecture via une application de simulation cosmologique ramses. Et nous fournissons une
comparaison entre 2 intergiciels de Cloud: OpenStack et OpenNebula.

Mots-clés : Cloud, IaaS, OpenNebula, Multi-Clouds, DIET, OpenStack, RAMSES, cosmologie
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1 Introduction

In recent years, distributed storage and computing have proved to be mandatory in IT. Internet
Computing and Storage have considerably evolved, going from small isolated Physical Machines
to large-scale cluster-like architectures driven by efficiency and scalability, one instance of these
architectures is the “Clouds” [1, 2]. They aim being to be dynamically scalable and offer vir-
tualized resources as a service over the Internet. Usually, most solutions deployed in Clouds
focus on web applications and the load balanced is implicit or integrated. Nevertheless, Clouds
can also be used in more computational-intensive domains as scalable computational resources.
From a middleware point of view, Cloud infrastructures introduce new sets of resources with
different features. Thus middleware environments should be extended to manage these plat-
forms. Clouds is not yet an efficient solution for hpc but we can not neglected in future. In
this paper, we propose a middleware to deal with a multiple Clouds (aka., Sky middleware),
i.e., a Cloud middleware for several Cloud platforms working together. We show how we can
upgrade its design is based on an existing Grid middleware for managing virtual resources. Fur-
thermore, we show that our proposal can be used to execute a complex scientific application for
cosmological simulation, ramses [3], on different Cloud middleware without modifying it. We
show that Cloud middleware must be taken into account when deploying a new private Cloud
on user owned hardware. Indeed, even with similar virtualization facility, they do not expose
the same performance. Moreover, installed Cloud middleware must also be taken into account
when provisioning resources for the same reason as resource provisioning can be slower or faster
depending of the Cloud middleware. Moreover a study of the scalability for this application on
Cloud resources is provided.

Section 2 presents existing works on comparing Clouds and the application running on them.
Then we present the existing Cloud APIs. We conclude the section by presenting multi-Clouds
and brokering software. We use this state of the art to motivate our choice of software archi-
tecture. In Section 3, we present our extension of the Diet toolbox to support Cloud resources.
First, we come back on the hierarchical architecture of Diet. Then we show how we have in-
tegrate a mechanism to support multi-Clouds environments. Furthermore, we explain how an
application can leverage these mechanisms to transparently use resources coming from different
Clouds. Moreover, the classical Diet scheduler is still used to efficiently schedule client requests
to the best fitting instantiation of the requested application. In Section 5, we describe our ex-
perimental environment. We then highlight the performance variation between different Cloud
middleware. We show the impact of this variability on our scientific application. Conclusion and
future works are given in Section 6.

2 Related Work

In the first part of this section, we present the existing works on comparing Cloud software
and their underlying components and especially the virtualization one. We show that all Cloud
middleware and commercial Cloud Service Providers have their advantages and drawbacks. We
motivate our new study focused on the comparison of OpenStack and OpenNebula to run cosmo-
logical simulation through ramses. The large number of Cloud platforms has resulted in a large
number of different APIs. It is thus very difficult for the user and for the middleware integrator
to choose which one to support. Indeed, we do not want to add new codes every time we add
the support of a new Cloud middleware or a new public Cloud Service Provider.

Accordingly, in the Section 2.2, we show the different approaches to leverage the difficulty of
managing different APIs to communicate with a set of Clouds.

In the last part of this section, we present the existing works on creating multi-Clouds.
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Furthermore, we present a quick survey of Cloud brokering methods. Finally, we motivate our
choice of integrating a Cloud brokering features in Diet.

2.1 Comparing Clouds

The common base components between all Clouds (Infrastructure as a Service layer) solutions
is a virtualization layer or hypervisor. Numerous studies [4, 5] have compared the different
hypervisors. The comparison of different hypervisors and Cloud middleware solutions is out of
the scope of this paper. To avoid the noise due to different hypervisors when comparing Cloud
middleware, we always use the same hypervisor, KVM.

At the Cloud middleware layer, several papers [6, 7, 8] have presented studies that compare
the features of the different Cloud middleware. They only compares the functionalities and user
communities. Other studies [9, 10] focus on the performance evaluation of scientific applications
on a given Cloud.

Another group of papers presents benchmarks and benchmark tool suites for Clouds. They
are used to compare different Cloud middleware and Cloud Service Providers. CloudCmp [11]
proposes to compare different Cloud Service Providers. To do so, it measures the elastic com-
puting, persistent storage, and networking services. C-Meter [12] allows to measure the time
to acquire and release virtual computing resources. It also allows to compare different config-
urations of Virtual Machines. But, even on a single Cloud on a given template, it is requisite
to closely study the performance given for the selected application. Indeed, variability is an
important factor to study and can help to find the reason of it. Many papers [13, 14, 15, 16]
study the performance variability of the same VM Template. This variability [17] is part due to
what the other VMs are doing. Another factor of variability is the underlying hardware on which
instances run [15]. These different hardware configurations can induce up to 60% performance
variation.

Benchmarks are great to evaluate all the features of a Cloud and how it reacts with different
workloads. Work on a real and targeted application is more complicated but more realistic. Thus
we decided to focus on comparing Cloud middleware (OpenNebula and OpenStack) on a given
hardware configuration and a cosmological simulation software called ramses. Accordingly we
want to evaluate if on top of features, performance can be another factor to select a Cloud
middleware.

2.2 Cloud APIs

There is 2 way to provide an abstraction to communicate with different Clouds providing dif-
ferent APIs. The Cloud adapters provide a library that easy the building of interfaces with
different Clouds. The Cloud standardized APIs provide the scheme to respect in a Cloud library
implementation.

Cloud Adapters Because of the fragmentation of Cloud APIs, software have been designed
to cope with this issue: Simple Cloud API [18], Fog [19], Jclouds [20], Dasein Cloud [21], Apache
Libcloud [22] and δ-Cloud [23]. We will focus on Libcloud and δ-Cloud that are the most active
projects with a large set of features available.

[22] is a common library for controlling VMs in the Cloud. Libcloud currently supports a
couple dozen Cloud providers. The principal drawback about LibCloud is its exclusive use of
Python as the programming language to connect drivers to vendor APIs.

δ-Cloud offers a standardized API definition for Infrastructure as a Service (IaaS) Clouds
with drivers for a range of different Clouds. It can be seen as an API for APIs. The δ-Cloud API

Inria
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is designed as a RESTful web service and comes with client libraries for all major programming
languages. Red Hat’s δ-Cloud, leverages a REST based API that offers more flexibility than the
LibCloud library for the purpose of migrating software deployments from one Cloud infrastruc-
ture to another. Moreover, δ-Cloud API is compatible with Cloud-oriented storage systems such
as S3 and Cloudfiles. The conception of the δ-Cloud API as a web service instead of a library
makes it possible to operate the δ-Cloud server in one of 2 base configurations - close to the
user, such as on a local computer/LAN or close to the Cloud provider’s native API, which is
particularly interesting for private Clouds. Of course, providers can also use δ-Cloud directly as
their sole interface.

Cloud Standards Another type of API is provided through the standardization efforts of
several standards [24, 25]. We introduce briefly 2 major standardizations: occi and the work
from dmtf.

The Open Cloud Computing Interface (occi) began in March 2009 and comprises a set
of open community-lead specifications delivered through the Open Grid Forum, which define
how infrastructure service providers can deliver their Cloud resources through a standardized
interface. The working group has a membership of over 250 members and includes numerous
individuals, industry and academic parties. occi is a RESTful Protocol and API for all kinds of
tasks management. occi was originally initiated to create a remote management API for IaaS
model based Services, allowing for the development of interoperability tools for common tasks
including deployment, autonomic scaling and monitoring. It has since evolved into an flexible
API with a strong focus on interoperability while still offering a high degree of extensibility.
occi is designed to meet the demand on interoperability, portability and integration (to note
that it serves as an integration point for other standards efforts including dmtf, ietf, and snia).
δ-Cloud implements this standard as the δ-Cloud driver for OpenNebula is an implementation
based on the ogf occi API.

The dmtf (Distributed Management Task Force) is an industry organization that develops,
maintains and promotes standards for systems management in enterprise IT environments. Many
standardization efforts around the Cloud are done. dmtf’s Cloud Management Working Group
focuses on standardizing interactions between Cloud environments by developing Cloud manage-
ment use cases, architectures and interactions. The Open Virtualization Format (ovf) has been
designed by this organization. As well the Cloud Infrastructure Management Interface (cimi) is
a document to define a logical model for the management of resources within the Infrastructure
as a Service domain. The standards produced are fruitful for IaaS developers.

Summary To conclude this study, it is very difficult to forecast which Cloud APIs will be the
most commonly used. Thus we have choose δ-Cloud for the large scope of functionalities and
the number of supported Cloud IaaS. Moreover δ-Cloud is not dedicated to a specific language.
Finally through the support of the Red Hat company, this API should be sustainable.

2.3 Multi-Clouds middleware and Cloud Brokers

With the raising of customer’s request of computational resources, the main problem that public
Cloud providers have to address is the scalability. Now, one public Cloud for satisfying all
demands are not enough, that is why in the literature, one spokes about Cloud Federation or
Federated Clouds. In a Cloud Federation, small, medium and large Cloud providers put their
Cloud together to gain in scalability. This federation of Clouds raises problem such as placement.
Indeed, how to choose the Cloud among the federation of heterogeneous Clouds in terms of
computational power, availability capacity.
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Commercial brokering solutions exist: RightScale1 or SpotCloud2 For example, RightScale
solution allows to manage a Cloud application that is spread between different Cloud Service
Providers. It allows to automatically adapt the application based on the load on the applications.
RightScale provides a single management interface that interacts with different Clouds such as
Amazon Web Services, Rackspace, Windows Azure, CloudStack and OpenStack.

Open-source brokering solutions also exist. Aeolus3 uses δ-Cloud to communicate with the
Clouds. Its functionalities are less advanced than RightScale.

Most of the academic works on Cloud brokering is focused toward resources provisioning
algorithms [26, 27, 28]. Nonetheless, RESERVOIR project [29] has proposed a multi-Cloud
broker software. CLEVER project [30] has proposed a similar software.

We want to leverage all the multi-Cloud resources while hiding the complexity of managing
them. So we choose to use the Diet open source project [31] to hide this complexity. We choose
an approach similar to the Aeolus one as we also use δ-Cloud. Commercial, open-source or aca-
demic Cloud federation or brokering software would have added an additional layer without a
gain of features. Nonetheless, Diet has been built so it is easy to change all the resources alloca-
tion algorithms. Accordingly, it is easy to test different Cloud resource provisioning algorithms
with our proposal.

3 Diet: a Novel Cloud Toolbox

The Diet open source project [31] is focused on the development of a scalable middleware with
initial efforts relying on distributing the scheduling problem across a hierarchy of agents. At
the top of it sits the Master Agent (MA), with Service Daemon (SeD) agents at the leaf level.
Over the last few years, the Cloud phenomenon has been gaining more and more traction in
the industry and in research communities because of its qualities. Of particular interest are its
on-demand resource-provisioning model and its pay-as-you-go billing approach. We believe these
features would make highly interesting additions to Diet.

3.1 The Diet Architecture

The Diet component architecture is hierarchically structured for improved scalability as illus-
trated in Fig. 1. The Diet toolkit is implemented in Corba [32] and thus benefits from the
many standardized, stable services provided by freely-available, high-performance Corba imple-
mentations.

The Diet framework is composed of several elements. The first element is a Client, an
application that uses the Diet infrastructure to solve problems using a GridRPC approach [33].
The second is the SeD (Server Daemon) which acts as the service provider, exposing func-
tionalities through a standardized computational service interface; a single SeD can offer any
number of computational services. The third element of the Diet architecture, the agents, fa-
cilitates the service location and invocation interactions between clients and SeDs. Collectively,
a hierarchy of agents provides higher-level services such as scheduling and data management.
These services become scalable by distributing them across a hierarchy of agents composed of
one or more Master Agents (MA) and several Local Agents (LA).

The first step towards the Cloud was to enable Diet to benefit from on-demand resources.
This should be done at the platform level and stay transparent to the user. In [34] we described

1http://www.rightscale.com/
2http://www.spotCloud.com/
3http://www.aeolusproject.org/
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Figure 1: Diet multi-hierarchy.

how the Eucalyptus [35] Cloud platform can be used by Diet. Eucalyptus has the same man-
agement interface as Amazon EC2, but unlike EC2, it allows customized deployments on the
user’s hardware. There is a large number of ways in which the Diet platform can be connected
to the Eucalyptus platform to give the required result. On one side, the Diet platform itself
can be virtualized inside Eucalyptus Virtual Machines which would allow for dynamism at every
level in the Diet platform. On the other side, the Diet platform sits completely outside of the
Eucalyptus platform and treats the Cloud only as a provider of compute resources. We have
implemented the latter as an extension of Diet that allows it to use on-demand resources when
handling client service requests. This opened the path towards new researches around Grids and
Cloud resource provisioning, data management over these platforms and hybrid scheduling in
general. Thanks to this first proof of concept we have designed a new architecture described in
the following sections.

3.2 The Diet Cloud Architecture

Diet already implements many prerequisites, such as service calls, scalable scheduling and data
management. This allowed us to implement a Cloud middleware with minimal effort. In this
section, we describe the architecture that upgrades Diet to a multi-Cloud middleware designed
to interact multi-Cloud platforms. This architecture is shown in Fig. 2 where hierarchical agent
connection is represented by the Diet logo. The aim of the SeD Cloud is to provide a component
that deals with a large number of Cloud middleware and Cloud Service Providers. Thus it hides
the complexity and heterogeneity of the Cloud API layer (thanks to δ-Cloud [23]). Nevertheless
the Diet SeD Cloud could be interfaced with different APIs if it is required but we try to
minimize this number of interface through a good choice of API. Diet can benefit from the IaaS
capabilities and manage Virtual Machines. Nevertheless Virtual Machine management decisions
will be taken according to the scheduler and the required SLA (Service Level Agreement). Diet

has successfully interacted with Amazon EC2, thus the feasibly of this approach was validated
in [34].

The Diet SeD Cloud can bootstrap a Cloud instance, thus some Virtual Machines will be

RR n° 8421
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PIGA for labeling each request folder in each VM

DIET SeD Cloud

Delta Cloud

Scheduler

SLA

Virtual Machine Layer

VM1 VM2 VM3 VM4 ... ... VMn
DIET App Catalog

- Cosmology Application1

- Cosmology Application2

- Cosmology Application3

- Climat Application1

- Climat Application2

- BLAST

- Robotic Simulation

- Games Application

- ...

DIET Cook

IaaS Information 

API EC2

...

Figure 2: The Diet Cloud architecture.

available for computations. However applications must be deployed on these VM so that they can
be added to the Diet platform. The Diet cook component enables the automatic installation
of applications inside the provisioned VMs. When VMs are available, the Diet cook manager
deploys a set of applications and launches the service registration into Diet. Many tools exist
that ease automated application deployment such as Puppet [36] or chef [37]. After this step
a classical Diet platform is available. Thank to the Diet SeD Cloud, a Diet architecture can
expand or reduce the number of its compute resources.

4 Deploying ramses on multi-Clouds

Fig. 4 shows the classical and hierarchical architecture of Diet withMA and LA augmented with
SeDs Cloud that offers Cloud services like instantiation of Virtual Machines end destruction of
Virtual Machines.

Inria
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4.1 ramses

ramses is a typical computational intensive application used by astrophysicists to study the
formation of galaxies. It is used, among other things, to simulate the evolution through cos-
mic time of a collisionless, self-gravitating fluid called dark matter. Individual trajectories of
macro-particles are integrated using a state-of-the-art N body solver, coupled to a finite volume
Euler solver, based on the Adaptive Mesh Refinement techniques. The computational space is
decomposed among the available processors using a mesh partitioning strategy based on the
Peano-Hilbert cell ordering. ramses is a parallel program based on MPI (Message Passing
Interface).

ramses reads the initial conditions from Fortran binary files, which are generated using a
modified version of the grafic2 code. This application generates Gaussian random fields at
different resolution levels, consistent with current observational data obtained by the WMAP5
satellite observing the CMB radiation. The generated IC can be of 2 sorts. Either it contains
a single level of resolution, i.e., the universe has a “homogeneous” distribution of dark matter,
these IC are used to perform the initial low resolution simulation of a zoom re-simulation. Or,
it can generate multiple levels of resolution, i.e., several nested “boxes”, like matryoshka dolls.
These nested boxes add more particles, and thus more precision locally, on a point of interest
in the universe. These are used in the zoom part of the simulation. The outputs of ramses

are twofold. Periodically, ramses outputs backup files so as to be able to restart a simulation
at a given time step. The second kind of output is of course the result of the simulation. The
user defines time epochs at which she would like to obtain a snapshot of the simulation, i.e., a
description of all particles (their position, mass, velocity, . . . ), ramses will then output as
many snapshots as requested.

The workflow is depicted in Fig. 3. It is divided into 2 main parts: the dark matter simulation
(i.e., IC generation with grafic2, and the simulation itself with ramses) and the “one-shot”
post-process (i.e., halomaker and treemaker), followed by the parameter sweep part with
galaxymaker and momaf. Three Diet services are dedicated to executing this workflow. The
first one deals with the dark matter simulation itself along with halomaker and treemaker

post-processing, and can possibly run galaxymaker, if no parameter sweep is requested. The
second service executes an instance of galaxymaker, thus, during the parameter sweep part,
we have x—parameters— calls to the galaxymaker service (x being the number of files that
treemaker created, and parameters the set of tested parameters). The same number of calls
holds for the last service, which is in charge of running momaf. This workflow is submitted
by the Diet to the Cloud infrastructure (the Diet agent in charge of managing and scheduling
workflows), which in turn manages the execution of the different services.

4.2 VMs Provisioning

In the general case, the client connects itself to the MA, and make a request req: “I want m

Virtual Machines with the hardware profile x”. As input parameters of the ramses workflow,
we give the number of MPI processes to use, which is equal to the number of Virtual Machines,
the path to the output directory on the NFS share and a set of specific parameters for the
ramses application. A SeD Cloud is selected by the VM provisioning algorithm. As other
algorithms within the Diet toolbox, it is easy to add new ones thanks to a plugable approach.
Then the selected SeD Cloud requests m Virtual Machines with the hardware profile x to the
corresponding Cloud platform. When the provisioning is completed, i.e. the VMs are running,
the SeD Cloud returns to the client a file containing all IP addresses of these Virtual Machines.
After this step the client can use the Virtual Machines to install SeDs or any other applications.
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Figure 3: The ramses computational workflow

4.3 Application Deployment on VMs

To make easy the usage of their services and Cloud resources, SeD developers may design a
xSeD4 which directly uses the file containing IP addresses, connects itself to the Virtual Machines
and leverages computational and networking resources. This Diet xSeD is a kind of wrapper
to software preinstalled or automatically installed in the Virtual Machines through the Diet

cook (see Fig. 2). Applying this approach, a xSeD can be launched on-demand, i.e. when a
client who needs this particular xSeD. Fig. 4 shows an example of a Diet Cloud hierarchy
using 3 Cloud platforms, 2 based on the OpenStack middleware and 1 based on the OpenNebula
middleware. Here, x = ramses and it is the name of the cosmological application. Furthermore
the xSeD is launched and connects to a Virtual Machine, it behaves as a classical SeD which
raises information useful for task scheduling. So this architecture presents twofold advantages
over a federation of Cloud: Virtual Machine provisioning and task scheduling.

4
x denotes an arbitrary name of any software package.

Inria
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Figure 4: The Diet Cloud architecture using a cosmological application.

5 Experiments

Here, we study the behavior of 2 well-known Cloud middleware: OpenStack [38] Grizzly
(2013.1.2) and OpenNebula [39] version 3.8.3. Experiments are carried out on the Grid’5000
platform [40].

5.1 Cloud Testbeds

We use 2 hardware configurations to compare both middleware.

5.1.1 Hardware configuration 1

We use 5 Physical Machines to build a Cloud infrastructure: 1 for the Cloud middleware and 4
for hosting VMs. Each Physical Machine has an Intel(R) Xeon(R) CPU X3440 2.53GHz with 4
cores and 16 GB of RAM. The 5 Physical Machines are connected to a switch with a bandwidth
capacity of 1Gbit/s.

5.1.2 Hardware configuration 2

We use 4 Physical Machines to build a Cloud infrastructure: 1 for the Cloud middleware and 3
for hosting VMs. Each Physical Machine has 2 IntelXeonCPUs L5420 2.5GHz with 4 cores and
32 GB of RAM. The 4 Physical Machines are connected to a switch with a bandwidth capacity
of 1Gbit/s.

5.1.3 Common configuration

We use only one 1 Physical Machine for the deployment of Diet. The Diet deployment is
made of 1 MA and 1 SeD with a service for Virtual Machine instantiations and 1 SeD with a
service for Virtual Machine destruction. All the Physical Machines are using Ubuntu 12.04 x64
as Operating System. For OpenStack, we use the default configuration. By default, OpenNebula

RR n° 8421



12 E. Caron, L. Toch and J. Rouzaud-Cornabas

is not configured to obtain good performance. We have configured it to use the virtio [41] module
of Linux kernel in order to obtain almost-native network transfer between Virtual Machines and
deactivate the disk cache of Virtual Machines.

5.2 Experimental parameters for ramses

Each ramses execution is using x VMs (1 ≤ x ≤ 15) for running the workflow and 1 VM for
sharing files (NFS). The Virtual Machine image that contains the ramses software has a size of
about 2 GB and the Virtual Machine image that contains the NFS server is about 1GB.

Our experimental campaign has 2 parameters: Cloud middleware used and number of VMs
on which ramses runs. Each combination of parameters is executed 4 times and between each
the whole Cloud testbed is destroyed and reinstalled from scratch. This destruction of the
testbed is performed in order to avoid some residual image files of VMs in the Physical Hosts
that could disturb the experiments. We have evaluate 2 different Cloud middleware: OpenStack
and OpenNebula. Furthermore, we have evaluated ramses using from 1 to 15 VMs. Each
experiment is composed of 2 steps: 1) instantiating and configuring VMs and 2) executing a
ramses simulation. We measure the duration of these 2 steps. Indeed, we are interested in these
2 metrics since they are crucial to take an accurate choice between Cloud middleware in a hpc

context.

5.2.1 Initial conditions for ramses simulations 1

First we want to compare the 2 Cloud middleware parameters for the cosmological simulations
known as initial conditions while keeping the hardware 1. Then we want to compare the 2 Cloud
middleware with these initial conditions on the hardware 2.

5.2.2 Initial conditions for ramses simulations 2

We also want to compare the 2 Cloud middleware with other parameters for the cosmological
simulations known while keeping the hardware 1. These parameters involve more intensive
computations.

The instantiating and configuring VMs step is composed of 4 sub-steps:

1. Instantiating and configuring a VM for the NFS server

2. Instantiating x VMs for ramses

3. Configuring the NFS share in each ramses VMs

4. Launching the ramses SeDs and link them to their corresponding ramses VM.

Between each experimentation, all the VMs are terminated. When the first step is completed,
we launch the ramses workflow.

5.3 Experiment Results

Fig. 5 shows the time to instantiate Virtual Machines on OpenStack and OpenNebula. This time
is measured between the date when the Cloud middleware starts to instantiate Virtual Machines
and the date when they are ready to accept SSH connections. When instantiating between 1
and 4 VMs, OpenNebula is faster than OpenStack. But, when instantiating more than 5 VMs,
OpenStack is a lot faster. Indeed, the instantiation time for OpenNebula is linear with the
number of Virtual Machines whereas with OpenStack this time is not linear.
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Figure 5: Time to allocate VMs with cosmological initial conditions 1 and hardware 1

These observations highlight the behaviors of both Cloud middleware. Indeed, with Open-
Stack, when n Virtual Machines have to be instantiated and scheduled on m Physical Machines,
m copies of the Virtual Machine image are send to the m Physical Machines and they stay in
cache on the Physical Machines. On the contrary, in this phase, OpenNebula sent n copies of
the Virtual Machine image into the m Physical Machines. The problem is that, when Virtual
Machines are destroyed, images in the cache of the Physical Machines are also destroyed. Ac-
cordingly when a Virtual Machine image needs to be deployed on a Physical Machine where
it has already been deployed, the entire image will be transferred against from the controller
Physical Machine to the Physical Machines that host VMs.
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Figure 6: Time to run a ramses workflow with cosmological initial conditions 1 and hardware 1

We can notice that the curve for OpenStack presents some picks and larger error-bars than
OpenNebula. They come from the fact that OpenStack checks whether a Virtual Machine image
is present on the chosen Physical Machine or not. If an image is not present the middleware
sends the image to the Physical Machine.

Fig. 6 shows the time to run a Ramses workflow on Virtual Machines instantiated with
OpenStack and OpenNebula. This time is measured between the date when the computational
workflow is submitted to Diet and the date when all computations are finished. We notice, that
for any number of Virtual Machines, OpenStack and OpenNebula has the same performance.
That seems to be coherent, since both Cloud middleware rely on the libvirt and KVM layers.

Fig. 7 shows the time to run an experiment. This time is measured between the date when
the Cloud middleware starts to instantiate Virtual Machines and the date when all computations
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Figure 7: Time to allocate VMs and run a ramses workflow with cosmological initial conditions
1 and hardware 1
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Figure 8: Time to allocate VMs with cosmological initial conditions 2 and hardware configuration
1
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Figure 9: Time to run a ramses workflow with cosmological initial conditions 2 and hardware
configuration 1

are finished. We can notice that OpenStack is more suitable for the hpc than OpenNebula due
to a faster instantiation of large (bigger than 4) number of VMs.

Fig. 8 shows the time to allocate VMs. We notice that the behaviors of both Cloud middleware
are not changed. As we expected the initial conditions have no impact on VM allocations.

Fig. 9 shows the time to run a workflow. It confirms that with these initial conditions the
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Figure 10: Time to allocate VMs and run a ramses workflow with cosmological initial conditions
2 and hardware configuration 1

runtime is more important than the simulations presented with the Fig. 6. A computation with
1 VM require almost 1 hour in this case against a hundred of seconds in the previous case. It also
shows that the performance of the ramses executions similar for both Cloud middleware. Fig. 10
shows the sum of the allocation time and the runtime. With these new ramses parameters, the
allocation time is negligible relatively to the runtime. Accordingly the slower allocation time of
OpenNebula in comparison with OpenStack is almost negligible on the overall execution time.
So in this case, we can say that for high computation intensive application the choice of a Cloud
middleware does not matter a lot.

Fig. 11 shows the time to allocate VMs on the hardware configuration 2. We notice that the
behaviors of both middleware are not changed even if we have used another hardware architecture.
Fig. 12 shows the time to run a workflow. We notice, that for this hardware and any number of
Virtual Machines, both OpenStack and OpenNebula have almost the same performance. Fig. 13
shows the sum of the allocation time and the runtime and for this case it shows that the best
Cloud middleware to choose is still OpenStack when using a large number of VMs. So this set
of experiments shows that the comparison between the 2 Cloud middleware is independent from
the hardware architecture on which they are deployed.
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Figure 11: Time to allocate VMs with cosmological with initial conditions 1 and hardware
configuration 2
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Figure 12: Time to run a ramses workflow with initial conditions 1 and hardware configuration
2

6 Conclusion

Our objective was to propose a multi-Cloud middleware that is able to deal with a set of Cloud
middleware and Cloud Service Providers, thus seeing as a single pool of resources the multi-
Clouds environment. In this paper, we have presented our open-source multi-Clouds middleware,
Diet, and how it has been extended to access virtualized resources. Furthermore, we have also
shown how a cosmological application, ramses, can easily take advantages of these new resources
thank to Diet. Finally, we have compared the performance of 2 Cloud middleware and show
that OpenStack is slightly better than OpenNebula due to a smaller instantiation time. This
piece of information is important for further works, since it can be used to build a scheduler
probe inside the SeD Cloud. The goal will be to choose the best Cloud platforms to instantiate
Virtual Machines for the Diet services. Indeed, it motivates the need of providing monitoring
information of the Cloud resources to the multi-Cloud middleware in order to take better choices
when provisioning new Cloud resources. Our future works will be to work on algorithms for multi-
Clouds that take into account these information and provides the adequate Cloud resources for
the application based on users requirements and Cloud feedback.

OpenNebula
OpenStack

 200

 400

 600

 800

 1000

 1200

 1400

 2  4  6  8  10  12  14

T
o
ta

l 
ti

m
e 

(s
)

number of VMs

Figure 13: Time to allocate VMs and run a Ramses workflow with initial conditions 1 and
hardware configuration 2
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